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High-Throughput Experimentation and Catalyst Informatics 

for Oxidative Coupling of Methane 

Thanh Nhat Nguyen 

1720408 

Materials informatics (MI) is one rising area, which applies data-oriented approaches 

to the research and development of materials science. One of fundamental requirements for MI 

is the presence of a proper dataset in terms of consistency, distribution, and size. Once such a 

dataset is prepared, an appropriate learning method is selected from the toolbox. While 

enormous materials data have been accumulated in literature, they suffer from an insufficient 

scale, non-uniformity, and anthropogenic biases towards good data with the burial of poor data. 

Moreover, materials properties such as catalyst performance are highly sensitive to process 

conditions, while individual research groups have commonly employed their own conditions. 

In order to overcome the problem of the data scarcity in MI, high-throughput experimentation 

is considered to be the most promising and effective approach. In this thesis, I attempted to 

establish complete high-throughput experimentation for the generation of a proper dataset, and 

implement catalyst informatics to extract knowledge from the obtained dataset. The concept 

was demonstrated by taking oxidative coupling of methane (OCM) reaction as a case study, 

which is a long researched reaction toward industrialization. 

In Chapter 2, a high-throughput screening instrument was successfully developed for 

automatic performance evaluation of 20 catalysts at a series of predefined conditions in a fixed-

bed configuration. The catalytic test was done in steady states at 900 to 850, 800, 775, 750, and 

700 °C. At each temperature, the total flow volume, the CH4/O2 ratio, and the Ar concentration 

were stepwise varied, leading to 216 conditions per catalysts and 4320 observations for 20 

catalysts in a single automated operation. By only 3 operations, 59 catalysts of a Mn-

Na2WO4/SiO2 type were successfully evaluated in OCM, which enabled knowledge extraction 

using common visualization tools and machine learning techniques. It was found that the OCM 

reaction is generally sensitive to the process conditions, and catalyst design has a great impact 

on the process dependence. In particular, the modification of Si-based support affects the 

performance of Mn-Na2WO4 in terms of the low-temperature activation of CH4 and the 

selectivity tolerance against high O2 concentration.  

 

Figure 1. Concept of catalyst informatics achieved in this thesis. 

In order to explore the origin of the low-temperature CH4 activation, in Chapter 3, a 

series of catalysts were prepared by depositing the Mn–Na–W active phase on various Si-based 

supports which differed in the pore size, the structure, and the amount of foreign elements (Al, 

Ti). The OCM performance of these catalysts was acquired on the developed HTS instrument 
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under various reaction conditions. It was found that high-silica supports were good supports in 

general, while mesoporous silica supports appeared to be superior at low temperature 

specifically. From the characterization results, it was elucidated that high-silica supports are 

advantageous in forming the α-cristobalite phase, which is known to stabilize tetrahedral WO4
2– 

and Mn2O3 active species. The mesoporous silica offered the largest accessible surface area to 

improve the dispersion of the active phase. 

In Chapter 4, I aim to discover new catalysts by means of random sampling from a 

vast materials space, HTS, and data analysis. 300 M1–M2–M3/support catalysts were prepared 

and evaluated, where M1, M2, M3, and support were randomly selected from a given library. 

By statistical analysis, I successfully identified individual elements and their binary 

combinations which are positive for the OCM performance. Machine learning was employed 

to generalize the effective catalytic system for OCM. The results not only rediscovered known 

catalysts obtained in the past three decades, but also newly discovered novel combinations that 

have never been explored so far. 

Based on all of these results, I successfully demonstrated the implementation and 

power of the MI in the research and development of OCM catalysts, where the presence of 

high-throughput experimentation was truly indispensable for obtaining a proper dataset.  

Keywords: High-throughput experimentation, Catalysts informatics, Oxidative coupling of 

methane, Machine learning, Combination effect  
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Preface 

The present thesis is submitted for the Degree of Doctor of Philosophy at 

Japan Advanced Institute of Science and Technology, Japan. The thesis is 

consolidation of results of the research work on the topic “High-Throughput 

Experimentation and Catalyst Informatics for Oxidative Coupling of Methane” 

under the supervision of Assoc. Prof. Toshiaki Taniike during October 2017–

September 2020 at Graduate School of Advanced Science and Technology, Japan 

Advanced Institute of Science and Technology. 

Chapter 1 describes a general introduction and the purpose of this thesis. 

Chapter 2 focuses on the development of high-throughput screening instrument 

and its demonstrative application to catalyst informatics in oxidative coupling of 

methane. Chapter 3 pursues the origin of a low-temperature activation ability of 

Mn-Na-W catalysts supported on different types of silica materials. Chapter 4 

reports a study of combination effects in the design of OCM catalysts on the basis 

of catalyst informatics. Chapter 5 describes the general summary and conclusion 

of this thesis. To the best of my knowledge, the work is original and no part of this 

thesis has been plagiarized.  

 

Thanh Nhat Nguyen 

Graduate School of Advanced Science and Technology 

Japan Advanced Institute of Science and Technology 

April 2020  
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Chapter 1 

General introduction
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1.1. Material informatics  

1.1.1. Overview of material informatics 

The evolution in the field of materials science is comparable to the way how 

sciences and technologies have been developed. Thousand years ago evidenced the 

growth of purely empirical science, as clearly observed by the metallurgical evolution 

throughout three periods of “age” (stone, bronze, iron) [1]. After that, the 17th century 

witnessed the paradigm of theoretical models with the finding out numerous “laws” and 

mathematical equations (such as laws of thermodynamics in materials science). But in 

some problems, the theoretical models are not practical or infeasible owing to the 

difficulty in measurements or no analytical solutions. The last few previous decades 

saw the rise of computational science, which allowed the simulations of complex real-

world phenomena. For example, density functional theory (DFT) and molecular 

dynamics (MD) simulations are perhaps two greatest progresses which were brought in 

material science in the third period. Nowadays, the three paradigms of science, which 

are based on experiments, theories, and computations/simulations, are commonly used 

in all scientific domains [2,3]. In the last decade, the significant increase in the amount 

of data being generated by has prompted the emergence of the next paradigm of science, 

i.e. data science (Figure 1.1) . 

Data science has been has been considered as the “fourth paradigm” of science 

[1]. Machine learning has been continuously studied since the middle of the previous 

century and used in numerous applications such as data mining, image recognition and, 

materials discovery [2,3]. The power of machine learning is to mimic the human 

cognitive functions in decision making [2]. When a new situation is encountered, 

cognitive systems (including humans) have a tendency to make a decision based on 
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past similar encounters. Even completely new situations occur, human mind still makes 

the correct decision based on assumptions and extrapolation of the past experiences [4]. 

Machine learning aims to mimic this human sense by training algorithms on “prior 

experiences”, made of past data, and then leveraged to make predictions for “future 

events” such as the performance of unknown materials for a specific purpose. Such 

application of machine learning to improve the understanding and discovery of 

materials in materials science is called materials informatics. 

 

Figure 1.1. The four paradigms of science: empirical, theoretical, 

computational, and data-driven science. Reproduced from Ref. [1]. 

 

A number of algorithms have been applied to create intuition in machines [5,6]. 

Artificial neural nets and random forest are well-known algorithms, which were 

developed for modeling the brain functions of animals or handwritten numbers 

classifications [7]. Both of these algorithms, along with many more not described here, 

were developed for different applications at different stages of computer technology, 

and many have since been adopted for application in the materials sciences.  
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The dawn of materials informatics plausibly came from atomistic calculations. 

The atomistic calculations have been frequently used in materials science [8]. These 

calculations describe properties of a solid on the basis of physical interactions among 

atoms in the solid. In general, atomistic calculation techniques have allowed them to 

calculate a wide range of materials problems [9]. More recently, the burgeoning of 

computational infrastructures and algorithms enables ‘‘high-throughput” calculations, 

which dramatically speed up the prediction up to thousands of materials within single 

studies [10]. It must be noted that the computational cost intrinsically limits the scale 

of problems feasible (i.e. the space and time scales for calculations). Even a few 

calculations containing trillions of atoms or spanning over a millisecond have been 

reported in some reports; they are not such easy to achieve and only possible with 

simplified models for the interatomic interactions [11,12]. Besides, more precise 

prediction generally requires further greater computational cost. One strategy to reduce 

the computational costs is to predict the properties of new materials based on the 

previous calculations using data-driven approaches. As stated in the last paragraph, the 

rise of data-driven technologies such as machine learning may enable to predict 

properties of new materials from the previously obtained data. Such the research 

direction gradually became prevalent, and eventually it was called “materials 

informatics”. The ultimate target of materials informatics is to extract knowledge from 

the datasets of materials properties. This knowledge can take several views. More 

specifically, the knowledge could be a predictive model for a complex material property 

based on simple and easier-to-compute properties of the materials. Or, it could be a 

small set of previously-unknown factors that help explain materials behaviors. Of 

course, these could be also goals of conventional scientific practice. The advantage of 

materials informatics is that creating models and learning descriptors can be done 
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quickly and sometimes even automatically. Nowadays, much of efforts have been 

devoted to material informatics, which may be attributed to the Materials Genome 

Initiative (MGI), a trigger of this paradigm shift towards computational solutions for 

materials discovery [1]. The ultimate goal of the MGI is to accelerate the speed of 

materials discovery by combining computational tools, experimental tools, and 

standardized materials data cataloging [13]. In doing so, databases of experimentally 

and computationally determined materials properties are leveraged by machine learning 

algorithms to predict new materials composition with targeted properties. Following 

the success of MGI, many databases for storage data generated from first-principles 

calculations are opened for readily using such as the Open Quantum Materials Database 

(OQMD) [14], Automatic Flow for Materials Discovery (AFLOW) and the Novel 

Materials Discovery repository (NoMad) [15], and [16]. Recent works have used data-

driven approaches for predicting the physical properties of solid, inorganic materials, 

organic materials [10,17], and Metal Oxide Frameworks (MOFs) [18,19]. 

1.1.2. Implementation of materials informatics 

Generally, implementation of material informatics required requires 3 three 

fundamental ingredients: A set of target variables (output), a set of materials features 

(input), and a machine learning algorithm to establish a mapping between the two sets 

[4]. This architecture of the implementation for materials informatics is shown in Figure 

1.2 
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Figure 1.2. Implementation of materials informatics.  

 

The target variable in this example is the measured experimental data. 

Connection exists between this measured data and the corresponding materials features, 

such that some features cause positive changes in the measured data and other features 

cause negative changes. If the amount of data becomes sufficiently large, the 

connection between the target variable and materials features become challenging for 

human mind to understand. In such cases, machine learning is powerful to solve this 

task. The machine learning can then be used to predict the target variable of new 

materials, or extract knowledge related to the system of materials. 

The target variables are usually properties of the materials. The property of 

interest varies depending on individual applications, which, for example, includes 

materials hardness, conductivity, band gap, catalytic performance, etc. [20,21]. The 

prerequisite for the target variable is the presence of a proper dataset in terms of 

consistency, distribution, and size [22]. The target variables could be obtained either 

from simulation or experimental data. For simulations/computations, the data are 

calculated for a variety of materials to create a training dataset, and machine learning 
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is used to learn from these calculation results, and then drastically speed up materials 

discovery by bypassing the computational cost of the calculations [23,24]. Through the 

acquisition of datasets by computations are fast, low cost, and consistent, but these lack 

of information of processes and their conditions, thus applicable only in simple cases, 

e.g. band gap of perfectly crystalline materials. For experiments, even the datasets are 

the best fit to a practical target as it contains material properties under process 

conditions. However, acquiring a sufficiently large dataset in a short time span is 

difficult, and using conventional experimental techniques is impractical. For this 

purpose, high-throughput experimentation techniques can dramatically accelerate the 

speed of dataset creation [25-27]. 

The second component of materials informatics is the set of materials features, 

called descriptors. These features could be any information that relate to the materials. 

Prevalent features are enumerated by the materials composition or elemental properties, 

such as electronegativity or atomic radius. These features are easily available and 

therefore most frequently used in terms of the ease of usage to estimate materials 

behaviors. Nevertheless, they are usually not good features as they are not directly 

correlated with fundamental phenomena within the materials. For example, the atomic 

radius may be a valid predictor to estimate whether a certain phase will be formed or 

not, since it contributes to the geometry of the material [28]. However, the atomic radius 

alone would not make accurate predictor, and must be combined with other features in 

order to achieve any degree of accuracy. In some case, the use of a single feature may 

be enough for prediction in a simple system such as mono-metallic materials. However, 

it is not sufficient for the prediction of binary or tertiary metallic systems as there is an 

interaction among elements. Thus, researchers have developed so-called synthetic 

descriptors for describing the interaction between elements. For example, Meredig et 
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al. proposed the weighted average or the maximum difference of atomic masses or 

electronegativity values of elements present in the system. In some literature, more 

complex descriptors like the skewedness and kurtosis of d-bands were used [29]. More 

complex operations, such as “the absolute values of sums of differences”, have also 

been proposed [30]. Materials behaviors do not only depend on materials themselves 

but also depend on the process conditions. In such cases, information related to 

materials synthesis such as the type of precursors or the preparation methods should be 

included as features [31]. For some applications, such process-related features such as 

the pH of a particular environment or a reaction temperature were included [32]. 

In addition, materials features could be obtained by computation methods, for 

example, density functional theoretical calculations for adsorption and activation 

energies, bond distances, molecular geometries, etc. [33,34]. This type of descriptors 

can be used to provide extremely accurate chemical information as long as models 

employed in the computations are sufficiently realistic (this requisite is not trivial for 

solid materials) [4]. Broad descriptors are better for general screening or materials 

discovery endeavors, while fine descriptors are best suited for high-accuracy 

understanding of chemical phenomena in a narrow materials space [4]. Since the 

subject of this thesis is materials, discovery, fine descriptors will not be covered in 

depth here. 

The third component in the implement in material informatics is the machine 

learning algorithm. There are so many algorithms suited for specific situations; 

however, there is no such algorithm that always gives the best results [35]. Rather, the 

performance of machine learning depends on the data structure or the number of 

descriptors [55]. Therefore, to determine which algorithm has the best performance, 

many algorithms should be applied and compared for a given dataset. There are, 



15 

 

however, heuristics, which can narrow the range of algorithms considered for an 

application. Artificial neural networks (ANNs) are frequently used for a wide range of 

applications, but typically require huge datasets [36]. ANN requires at least 10000 data 

points, which are usually infeasible in material informatics [22]. Rather, other machine 

learning methods such as decision tree, random forest and support vector machine are 

more prevalent till now [37]. 

1.2. Machine learning 

Machine learning has recently received a lot of interests due to its ability to 

predict materials properties from materials data. There are two categories of machine 

learning: supervised and unsupervised learning. Unsupervised machine learning 

algorithms classify the data based on similarity of features. These unsupervised 

algorithms need a set of materials features in order to perform classification. 

Unsupervised algorithms are typically utilized in classification (clustering) problems, 

in which the target is to associate a particular material with a class of materials. There 

are several unsupervised machine learning algorithms, like k-means clustering, 

Gaussian mixtures model, and principal component analysis (PCA).  

On the other hand, supervised machine learning algorithms could correlate a 

feature set with materials labels (provided) with the ultimate target of correctly 

predicting the labels from the feature set. The data features could be any properties that 

describe a material system, e.g. material compositions, synthesis methods, morphology, 

or other factors. Materials labels are the conclusion obtained through expert analysis or 

from the measurements or calculations. Supervised machine learning algorithms are 

sub-categorized into regression and classification algorithms. Regression algorithms 

are used to predict continuous variables, while classification is used to assign a category 
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to each material. The classification algorithms generally work similarly to the 

unsupervised algorithms. However, the main difference is that supervised classification 

algorithms have access to the true class labels of materials during the training step, 

while unsupervised algorithms automatically generate their class labels based on 

feature similarity. Thus, it is natural that supervised algorithms tend to have better 

classification accuracy since it adjusts the model to maximize the accuracy of the train 

set. However, due to the adjustment to the train data, supervised classification also 

suffers from bias and human error through the misclassification. 

Due to the vast number of machine learning algorithms available, detailed 

explanations will be given only for decision tree and random forest algorithms, which 

are used in my research. Other, there are many algorithms, which include K-means 

clustering, hierarchal clustering, and density-based spatial clustering, kernel ridge 

regression (KRR), and support vector machines (SVM), LASSO, ridge regression.  

Random forest and decision tree 

The random forest algorithm is a method of supervised machine learning, which 

was proposed by Tin Kam Ho [7]. This algorithm is based on the decision tree 

algorithm, which has been known as a very popular classification technique. However, 

decision tree is suffered from training bias and the model became easily over-learning. 

In order to avoid this, random forest includes many decision trees and each tree has its 

own bias, and vote all the tree results. By referring to the results of many trees, the bias 

problem of decision tree is removed in random forest. 

Decision tree is the basic unit of random forest. Decision tree is established from 

a dataset using a process so-called binary recursive splitting, where a split occurs on a 

particular feature at a specified value.  Each individual location on the decision tree is 
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called a node, and nodes that do not split are called leaves (Figure 1.3). At the 

beginning, decision tree selects a feature among all the available features that is best to 

split at this position by using information entropy or Gini index. However, the exact 

implementation depends on the variable is discrete (typically in classification 

problems) or continuous (in regression problems).  

 

Figure 1.3. A basic structure of decision tree. 

For discrete variable, the information entropy of a feature is calculated as: 

H(X) = −∑ P(xi)log2P(xi)
n
i=1 , where H(X) is the entropy of feature X, n is the sample 

number described by feature X, P(xi) is the probability mass function of xi, and xi is the 

individual feature value for sample i. To select the best feature, the information gain is 

calculated as: IG(X) = H(X) − ∑ H(X|α)n
i=1 ,  where IG is the information gain of 

feature X, n is number of categories in feature X, and H(X|αi) is the information entropy 

when feature X is used and split along the ith attribute of a. From the equation, feature 

where obtained maximized information gain is selected to split. In the case of 

continuous variable, the information entropy along the continuous set of value is 

calculated by: H(X) = −∫P(x)ln(P(x))dx, where H(X) is the information entropy, x 

is an individual feature, and P(X) is the probability function for feature x. However, 
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calculating the information gain for continuous variable is computationally complex 

unlike discrete variable, because there are infinite split locations, rather than the finite 

“bins” or categories encountered in the discrete case. To deal with this problem, 

extremely randomized trees (ERT) algorithm is often utilized to create a set number of 

equally spaced split locations and calculate the information gain for only these discrete 

locations. 

Next, stopping criteria needs to be consider for build a decision tree. This 

criteria determines at what point the tree terminates the splitting process. There are 

several approaches for stopping criteria. First, it is possible to building a full tree, when 

all leaves node are contain a single sample (totally pure),  however, this approach often 

leads to significant over fitting for the decision tree, since machine memory the 

connection between features and target variable rather than learning from the trends. 

Another approach is the threshold tree, which uses a residual sum of squares (RSS) 

approach to optimize the tree. The RSS, calculated as equation ∑ ∑ (𝑦𝑖 − �̂�𝑖)
2

𝑖∈𝑅𝑗
𝑗
𝑗=1 , 

is the sum of the differences in each leaf node between the average value and each 

individual sample value. In the case of building full decision tree, RSS equal to 0, since 

all leaves nodes are pure so the average value would be the value of the sample. In this 

approach, a threshold RSS is established, and the tree is constructed until that threshold 

is reached. This approach generally performs better than the full tree, but threshold have 

to be chosen carefully to prevent over fitting or under fitting. The third approach (called 

cost complexity pruning) is frequently used to escape from the need of threshold 

optimization. This approach initially build a full tree and then systematic evaluate the 

splitting from the bottom up. Split which do not show the improvement of the accuracy 

of predictions are pruned. This approach could significantly avoid the over fitting. 
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All of the implementations above are referred to as a top-down, greedy 

approach. In other words, a decision tree algorithm does not search for a global 

optimum; rather, the algorithm searches for the best binary split at each node (local 

optimum), and uses the collection of local optima to make predictions. This decision 

tree can suffer dramatically from high variance. Small variation in the training set can 

result in the large variation in the tree architecture, and consequently, significantly 

varies in the model predictions. Hence, the decision tree algorithm might not be a strong 

predictor, but the creation of many decision trees, making prediction from reviewing 

many decision trees leading to more accurate prediction and robust models. This is the 

philosophy of random forest algorithm, which make the final predictions from 

reviewing many decision trees. The idea of random forest is shown in Figure 1.4, where 

each decision tree have a different results of prediction and the average prediction of 

each decision tree is contributed to the final conclusion of random forest. 

 

Figure 1.4. Example of the random forest algorithm ensemble approach. An 

ensemble of decision trees are created and used to generate an overall prediction for the 

algorithm. 

1.3. High-throughput experimentation 
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Catalysis appears in all aspects of industrially process. Nowadays, even many 

catalysts have been invented for industrial application; research always motivates 

themselves to develop a novel catalyst with the ultimate aim reducing of more and more 

the cost, time, and energy for production. However, catalyst finding has mostly 

depended on the trial–and–error process, which is time–consuming and relies on 

serendipity. With the increasing demand for reducing time to release to market, an 

effective methods for catalyst development need be considered. High–throughput 

experimentation, which promises to speed up the discovery and development processes, 

has evolved rapidly during the last decade. 

The catalyst preparation is a crucial step for the success for high–throughput 

screening. Preparation time is a pre-requisite component for HTS. The key for 

accelerating catalyst synthesis is to use a straightforward method such as impregnation 

and precipitation. These methods can be scaled up relatively quickly to numerous 

samples per day. In addition, the introduction of synthetic robots that can contribute 

greatly for enhancing the catalyst preparation process. The automation could 

significantly increase the synthesis throughput, otherwise, minimizing the mistake 

taken by human errors. 

Another concern in high–throughput experimentation topics is the bottleneck of 

catalyst evaluation. While the catalyst preparation could be achieved numerous 

catalysts per day, the high-throughput screening (HTS) technique must take some effort 

to catch up that quantity. The common techniques for product evaluation are 

chromatography and spectroscopy. The key advantage of chromatography is high 

sensitivity, it is highly time–consuming. For example, if the product can be determined 

in five minutes using GC, it costs over five hours to analyze all 64 reactors [38]. 

Conversely, spectroscopic analysis enjoys the high speed screening but requires of 
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multivariate calibrati,n or deconvolution to obtain the concentrations of individual 

component. However, despite several weakness, spectroscopic analysis (IR and mass 

spectrometry) are now mature and frequently applied in HTS [39-41] in the various 

catalytic reaction such as OCM, coupling of methane with ammonia or aldol 

condensation of acetone . For example, mass spectrometry enables to obtain catalyst 

finding with capacity up to 80 catalysts per round. However, they only reported for 

catalyst information, while a few reaction conditions are measured. As catalyst 

performance is process dependent, reaction conditions is deemed to as crucial as 

catalyst information. 

 

1.4. Catalysts informatics  

Heterogeneous catalysis plays a vital role over 70% industrial chemical 

processes and greatly contributes to the global GDP [42]. Consequently, catalyst 

discovery and optimization greatly help to boost process efficiency, thus reducing the 

prices of the products and environmental footprints of the production [42]. The 

discovery and optimization process has been dominantly taken place via an Edisonian 

trial-and-error approach, which has been most successful yet costly and slow 

[37,43,44]. The speed of catalyst discovery and optimization could be expedited by 

more intelligent approaches such as design of experiments (DOE) and high-throughput 

experimentation [45]. Advances in computer infrastructures resulted in the 

breakthrough in computational techniques such as density functional theory (DFT), 

which allows implementation of in-silico catalyst design. Each of these techniques 

could accelerate catalyst discovery over the traditional Edisonian approach.  
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Another avenue for catalyst discovery that has gained popularity recently is 

machine learning [46]. Much similar to materials informatics, the application of 

machine learning for giving a better understating on a catalyst system or predicting new 

catalysts is called catalyst informatics. One of the earliest examples of catalysts 

informatics is related to the application of artificial neural networks (ANN) and genetic 

algorithms (GA) to experimental catalysis data [47]. Following this, due to the 

development of computational catalysis, many machine learning algorithms were 

applied for speeding up the catalyst finding and knowledge extraction from DFT 

databases. The purposes of these studies are to efficiently identify the most likely 

reaction mechanisms for CO hydrogenation [48], to discover more selective catalysts 

for chiral reactions, to learn atomistic potentials, and to predict the performance of 

catalysts [49]. Till now, most of efforts in the implementation of catalyst informatics 

have been limited to computational datasets, as they can be obtained in a very quick 

and consistent manner [37]. However, as stated in 1.1.2, computational datasets lack 

consideration of process conditions. This is more than critical for predicting catalysts, 

which are integral components of chemical processes and quite sensitive to process 

conditions. Therefore, this thesis focuses exclusively on the developments in 

experimental catalysis.  

One of the earliest examples of catalysis informatics was reported in 1994 by 

Kito et al. [37]. They used an ANN to predict the product yield in oxidative 

hydrogenation of ethylbenzene when the surface area, the amount of a catalyst, and 

other catalyst materials information such as ionic radius, electronegativity, and standard 

heat of formation of oxides were given as the input. They training set contained the data 

of 18 promoted/unpromoted SnO2 catalysts. Such severe restriction in the parametric 
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space was suitable for accurate prediction within interpolation but not adequate for the 

discovery of new catalyst compositions.  

Following these pioneering paper, many research groups tried to explore 

catalyst informatics in optimizing the experimental conditions, and catalyst 

compositions, e.g. Sasaki et. al [50], Hou et al. [51]., Holena and Baerns [52-55] for 

NO decomposition, propane ammoxidation reaction, dehydrogenation of ethane 

(ODHE) to ethylene. However, these models only memorized the performance of the 

given compositions (i.e. data interpolation) rather than learned from the data, and thus, 

the prediction outside the training set gave poor results. The problems may come from 

the limited data size and the materials diversity.  

More recent studies in catalyst informatics have focused on the past literature 

data to predict new catalysts. The Yildirim group made a statistical analysis of literature 

data for trans-esterification reactions using an ANN and a decision tree. 1324 data 

points were collected from 31 experimental publications [56]. Based on the decision 

tree and ANN analysis, they found that the most important variable for high conversion 

was the reaction time, and the other descriptors such as the catalyst loading, reactant 

amount, temperature, and type of supports exhibited only less than 10% relative 

importance.  

Another effort by the same Yildirim group was on the collection of literature 

data for CO oxidation over Cu- and Au-based catalysts [57,58]. An ANN model well 

predicted within the data-rich regions, whereas the prediction was unfeasible in the 

other sparse regions. The Yildirim group also collected 4360 experimental data points 

on the Pt- or Au-catalyzed water gas shift reaction (WGS), which converts CO and H2O 

to CO2 and H2 [59]. The dataset was studied using several data mining tools to extract 
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knowledge: Decision trees, ANNs and support vector machines. In particular, i) 

decision trees were utilized to comprehend the empirical rules and conditions for high 

CO conversion, and ii) ANN and support vector machines were used to assess the 

relative importance of a variety of experimental variables and their effects on the 

catalytic activity. 

 

1.5. Oxidative coupling of methane  

Methane, which is deemed as the major constituent of natural gas, is mostly 

being used for heating and for the production of electricity [60]. In some aspects, 

methane is a good fuel because of generating the highest heat of combustion regarded 

to the amount of CO2 formed, among a wide ranges of hydrocarbons. Besides, methane 

is an under-utilized resource for producing chemicals and liquid fuels [39]. Known 

resources of natural gas are abundant and can be compete with liquid petroleum. 

Moreover, the known reserves of methane are increasing more rapidly than those of 

liquid petroleum. Methane are mostly found in located area, which is far away from 

industrial complexes [61]. This means its high cost for transportation is uneconomical. 

Transportation issues and the surging oil price have resulted in the great efforts for 

converting methane into easy transportable (methanol) and value-added products, such 

as ethylene (feedstock for petrochemicals), aromatics and liquid hydrocarbon fuels. 

One promising reaction to convert methane into C2 building blocks is the oxidative 

coupling of methane (OCM), which was first published by Keller and Bhasin in 1982 

[49].  
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1.5.1. Reaction mechanism of OCM  

In the OCM process the following reactions occur simultaneously or 

sequentially [62,63]:  

2CH4 + 0.5O2 → C2H6 + H2O (1)  

C2H6 + 0.5O2 → C2H4 + H2O (2)  

C2H6 → C2H4 + H2 (3)  

CH4 + 2O2 →CO2 + 2H2O (4)  

CH4 + 1.5O2 → CO + 2H2 O (5)  

C2H6, C2H4, H2 + O2 → CO, CO2, water (6)  

The reaction starts with the coupling of methane to ethane (1). After that, 

ethylene is formed by either oxidative or non-oxidative dehydrogenation of ethane 

(2,3), while the reaction (3) occurs at a much  rate than (2). The oxidative reactions (1) 

and (2) are slightly exothermic, and the combustion reactions (2), (4) and (5) are 

extremely exothermic, results in the excessive heat formation in the OCM process. 

Although the gas-phase free radical process plays a crucial role in the overall process, 

the contribution of a catalyst is significant. According to literature, methane 

dehydrogenates on surfaces of catalysts to form methyl radicals that can react on the 

surfaces or in the gas phase. The abstraction of a hydrogen atom is caused by oxygen 

atoms on the surfaces of the catalyst. Besides the efficient formation of methyl radicals, 

coupling of the radicals is also a key. It is true that coupling of CH3• radicals takes place 

in the gas phase [64]. Several catalyst and reactor designs have been utilized.  

 



26 

 

1.5.2. Catalyst for OCM 

Since the first reports by Keller and Bhasin [65] as well as by Hinsen and Baerns 

[66] in early 1980s, around 2300 publications have been published about OCM in 

literature. As reported in Ref. [60], about 50% of the publications was made in the first 

decade of the 30 years history of OCM, and then quickly lost attention after that. This 

is because no catalyst was found to meet an industrial target (C2 yield higher than 30% 

using non-diluted reaction feeds and single pass reactor) [67]. Nevertheless, from 2000 

to 2005, due to the newly discovery of huge reserves shale gas as well as due to the 

forecasted shortage of oil reserves, the OCM comes again as a hot topic. The 

Kondratenko group listed the recent progress of OCM catalysts, and depicted the 

published data on C2 selectivity against methane conversion obtained over various 

catalysts under various reaction conditions [47]. They pointed out only four data points 

could achieve over 30% C2 yield, however, all the four data points came from either a 

special reactor or an unstable catalyst, i.e. practically infeasible [60]. 

A numerous number of catalysts with and without supports have been evaluated 

for the OCM reaction with the target to explore active and stable catalysts. Table 1.1 

shows the overview of the best-known performant catalysts, together with the reported 

values of the C2 yield, the C2 selectivity, temperature, CH4/O2, and lifetime. Note that 

direct comparison among the catalysts is not straightforward because various reactor 

configurations and reaction conditions were used among different research groups [68-

71]. 

Table 1.1. List of best-known OCM catalysts.  

Catalyst 
Temperature 

(°C) 

CH4/O2/diluent 

(mol/mol/mol) 

C2 yield 

(%) 

C2 selectivity 

(%) 

Lifetime 

(h) 

Eu2O3 [69] 725 6.7:1:0 17.7 72.4 n.d. 

Ce/La2O3 [69] 775 4–5:1:0 22.3 66 n.d. 

Li/MgO [70] 750 4:01:00 19 65 <100 

La–Ce/MgO  [69] 850 4–5:1:0 16.1 72.4 >10 
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Mn–Na2WO4/SiO2 

[71,72] 
800/850 various 20 80 >100 

 

The Mn–Na2WO4/SiO2 system was an excellent catalyst in terms of high 

activity and good stability. It was also called the highest effective catalyst in literature 

from a review of  Lunsford [62]. Other systems that have comparable activity show the 

lack of stability, or not reported. The optimum temperature is about 800°C is for most 

of the catalysts. Diluting reactant with an inert gas (He, Ar, or N2) show better 

performance as gas-phase reactions are contributed less. 

 

1.5.3. Catalysts informatics studies for OCM 

Following the rise of catalysts informatics, Zavyalova et al. made statistical 

analysis of literature OCM data collected from 343 references and amounting to 1800 

data points. Their aim was to find out optimal compositions of catalysts in terms of the 

C2 yield [68]. Statistics analysis using various parameters such as the composition, 

process conditions, and the fabrication method withdrew hints for catalyst design, like 

“combining Mg or La with Cl positively affects the C2 yield”. This study was next 

followed by the report by Kondratenko et al., which was based on a neural network of 

a radial basis function (RBF) type and a traditional quadratic response surface to find 

out the optimum OCM catalysts [72]. They found that the RBF model provided higher 

accuracy more often than the quadratic response surface model. They also encountered 

a great difficulty in predicting catalysts from literature data due to the sparsity of the 

data: The catalysts were prepared based on different methods, and their performance 

was evaluated in different reaction conditions. To deal with these problems, the authors 

decided to ignore variation in the reaction and synthesis conditions, and instead to 
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consider only the catalyst composition. Another efforts on the implementation of 

catalyst informatics were reported by Takahashi et al. Based on the 1800 literature data 

and random forest classification, they predicted 56 undiscovered OCM catalysts 

expected to achieve the C2 yield over 30% at their respective optimum conditions (yet 

not experimentally validated) [32]. They also noted that the literature data is quite noisy 

and not consistent in terms of the exerimental setup and its methodology, the type of 

catalysts, etc. Hence the implementation of regression was found to be nearly 

impossible.  

The above-reviewed works are regarded the best representatives of the studies 

of the catalysts informatics for practical catalysis, such as OCM. It is seen that most of 

such catalyst informatics studies employed datasets acquired from literature: They 

suffer from severe scarcity, inconsistency, and human biases, which prevent the 

implementation of catalyst informatics as well as the prediction of breakthrough 

catalysts thereby. Thus, I conclude that the creation of systematic and bias-free datasets 

is the most important first step for the implementation of catalysts informatics. 

 

1.6. Purpose of the Present Research 

Catalyst informatics has emerged as an attractive field, which expects to bring 

irreversible change in the research and development of materials science. While the 

data mining and analysis tools have been well-developed, the implementation of 

catalysts informatics is bottlenecked by the lack of systematic and bias datasets.  In this 

thesis, I set my focus on breaking-through this bottleneck and exploiting the true 

potential of catalyst informatics based on the acquisition of a systematic and bias-free 

dataset with high-throughput experimentation. The concept was proven by taking the 
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OCM reaction as a case study, which is a long researched reaction toward yet 

unsuccessful industrialization.  

The first step to achieve my ultimate purpose is to develop the high-throughput 

screening (HTS) instrument for the evaluation of OCM catalysts. In Chapter 2, I 

successfully developed such a instrument, which enables to produce a systematic 

dataset with the capacity up to 4300 data/day under a parametric space of materials and 

process conditions in a fully automated fashion. It was proven that the HTS instrument 

can provide a machine-learnable dataset consisting of over 12,000 data points in a few 

days, and such a dataset is indeed very powerful to extract the knowledge about 

catalysis and performance improvement.  

In Chapter 3, I investigated a hypothesis that was derived from catalyst 

informatics in Chapter 2. In detail, factors affecting the OCM performance of supported 

Mn‒Na2WO4 were clarified based on the high-throughput screening and multilateral 

characterization.  

In Chapter 4, I demonstrated a non-empirical exploration of new catalysts for 

OCM reaction with the aid of random sampling of a huge materials space and catalyst 

informatics. Here, 300 M1‒M2‒M3/Support catalysts were prepared and evaluated for 

the OCM reaction. Thus obtained bias-free dataset was deeply analyzed to successfully 

extract generalized rules of combinatorial catalyst design.  

Based on all of the above-explained researches and achievements, I believe the 

thesis made a critical progress in the field of catalyst informatics.  
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Chapter 2 

High-throughput experimentation and catalyst informatics for 

oxidative coupling of methane
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Abstract: The presence of a dataset that covers a parametric space of materials and 

process conditions in a process-consistent manner is essential for the realization of 

catalyst informatics. Here, an important piece of progress is demonstrated for oxidative 

coupling of methane. A high-throughput screening instrument is developed for enabling 

an automatic performance evaluation of 20 catalysts in 216 reaction conditions. This 

affords an OCM dataset comprised of 12708 data points for 59 catalysts in three 

successive operations. Based on a variety of data visualization analysis, important 

insights on catalysis and catalyst design are successfully extracted. In particular, 

simultaneous optimization of the catalyst and reactor design is found to be essential for 

improving the C2 yield. The consistent dataset allows the accurate prediction of the C2 

yield with the aid of non-linear supervised machine learning.  

Keywords: High-throughput experimentation, Catalyst informatics, Oxidative 

coupling of methane, Machine learning, Data visualization 
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2.1. Introduction 

Materials informatics (MI) is one rising area of materials science. It applies 

data-oriented approaches with expectation to bring irreversible change in the research 

and development of materials science [1–3]. The prerequisite of MI is the presence of 

a proper dataset in terms of consistency, distribution, and size [2]. Once such a dataset 

is prepared, an appropriate learning method is selected from the toolbox [4,5]. 

Tremendous efforts made in this emerging field of study have highlighted key 

challenges specific to materials. In particular, the most important challenge is on the 

data themselves [6]. Despite the growing accumulation of materials data in literature, 

the availability of proper datasets is often limited. This is partly because many materials 

properties are process dependent (e.g. mechanical properties of polymers, activities of 

catalysts), while researchers employ their own protocols and conditions. Another 

difficulty derives from the complicated structures of materials [7]. Properties of solid 

materials depend not only on their chemical structure but also on structures/morphology 

of different scales such as higher-order structures of polymers, grain boundaries, pores 

of inorganic materials, etc [8]. This multivariate dependence has been often neglected 

in conventional x,y structure-performance studies, where potentially important but un-

focused features are even un-reported. These problems likely do not affect conclusions 

in individual literature, but when collected, can result in an inconsistent and sparse 

dataset. 

The problem of process dependence is maximized when MI is employed in the 

development of catalysts, i.e. integral component of chemical processes. Here, the 

problem is briefly illustrated by taking oxidative coupling of methane (OCM) as an 

example. The OCM is an important class of reactions in terms of the abundance of 

methane and its direct upgrading without mediating syngas. A wide variety of catalysts 
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have been explored to address a conversion-selectivity tradeoff that arises from the poor 

reactivity of methane with respect to desired products [9,10]. In 2011, Zavyalova et al. 

collected 1870 OCM literature data of the past three decades [11], which assessed both 

positive and negative aspects of catalyst informatics. The negative aspects are seen to 

relate to the dataset directly. First, the dataset size is insufficient with respect to the 

parametric space (a multidimensional space spanned by catalyst features and process 

conditions). Second, past research has more or less focused on a few to several catalyst 

systems such as Mn-Na2WO4/SiO2, Li/MgO, and La-Sr/CaO. This concentration, 

together with the deviation of process windows among different catalyst systems, leads 

to heavily biased sampling [12]. Third, differences in reactor design and temperature 

protocol among literature can introduce deviation in the resultant performance even 

when the same catalyst is employed. The total heat balance becomes impactful for 

largely exothermic/endothermic reactions and when a few-percentage improvement is 

regarded significant. For example, the best-of-literature C2 yield of the Mn-

Na2WO4/SiO2 OCM catalyst varied from 16.0 to 26.4% in a typical fixed-bed reactor 

configuration [11,13,14]. Lastly, desire for positive data has resulted in the burial of an 

enormous quantity of so-called poor data, which can potentially provide good insights 

for researchers as well as machines [12,15]. In a recent publication, a negative impact 

of such anthropogenic biases is discussed. The anthropogenic biases make data 

distribution highly disproportionate, and this leads to the prediction outcome inferior to 

random sampling in the amine-templated synthesis of crystalline metal oxides [16]. To 

be important, the research field of OCM is regarded rather saturated and therefore the 

dataset problem is believed to be common in other catalysis. On the basis of the above 

discussions, high-throughput experimentation is proposed as a key issue of catalyst 

informatics to produce a proper catalyst dataset on-demand under unified process 
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conditions [17,18]. In this chapter, I report an important piece of progress for the 

implementation of catalyst informatics, which includes: 

i) Development of a high-throughput screening (HTS) instrument: The 

instrument realizes automatic performance evaluation of 20 catalysts at a series of 

predefined conditions in fixed-bed reactors. This affords a few thousand catalyst data 

per day in a process-consistent manner.  

ii) Creation of an OCM dataset: A consistent OCM dataset (12708 data) was 

produced for Mn-Na2WO4/SiO2-type catalysts. The catalysts varied in the elements of 

active phases, support type, and chemical composition. The performance of 59 catalysts 

(including reference materials) was evaluated at different feed compositions, contact 

times, and temperatures.  

iii) Open database: The above-mentioned dataset is uploaded in a web platform 

"Catalyst Acquisition by Data Science (CADS)" for shared usage [19].  

iv) Machine learning: It signified the importance of a consistent dataset for 

achieving reliable prediction. A model based on random forest regression accurately 

described the dependence of the C2 yield on reaction conditions via interpolation filling 

.  
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2.2. Experimental and analytical details 

2.2.1. Catalyst library 

Table 2.1 shows the catalyst library used in this chapter. Among the 59 entries, 

40 were derived from Mn-Na2WO4/SiO2, one of the most effective catalysts for OCM. 

They are represented in the form of M1-M21-2M3O4/support. M1 was picked up from 

a wide range of transition metal and lanthanide elements; M2 and M3 came from 

commercially available tungstates or molybdates; supports were selected from 

commonly used materials. The metal loadings to a unit gram of a support were fixed at 

0.371 mmol for M1, 0.370 or 0.185 mmol for M2 (depending on the valence), and 0.185 

mmol for M3. These correspond to the optimum composition for Mn-Na2WO4/SiO2 in 

literature [20–22]. The remaining 19 entries are reference samples, which include blank 

(no catalyst material), bare supports, and samples that lack one or two metallic 

components from Mn-Na2WO4/SiO2.  

The catalysts were prepared based on a co-impregnation method [20,21]. 1.0 g 

of a support was impregnated with 4–5 mL of an aqueous solution of specified metal 

precursors at 50 °C for 6 hours. After vacuum drying at 110 °C, the product was 

calcined at 1000 °C under air for 3 hours to yield a catalyst. When a water-sensitive 

metal alkoxide was employed, the impregnation was sequentially performed in the 

order of an aqueous solution of a tungstate and an ethanol solution of a metal alkoxide. 

The obtained catalysts were thoroughly ground before any usage. The catalyst 

preparation was appropriately parallelized with the aids of a parallel hot stirrer (Reacti-

Therm, Thermo Scientific) and a centrifugal evaporator (CVE-3100, Eyela). 20 

catalysts were produced in one batch. The samples were characterized by X-ray 
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diffraction (XRD) and scanning electron microscopy (SEM). These results are 

shown in Figures 2.1 and 2.2. 
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Figure 2.1. SEM images of catalyst samples. The scale bars are applied to individual 

columns. Micrographs were acquired on JCM-6000Plus NeoScope operated at an 

acceleration voltage of 15 kV. 
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Figure 2.2. XRD patterns of catalyst samples (except bare supports). The XRD patterns 

were recorded on Rigaku SMARTLAB using Cu Kα (1.5418 Å) radiation. A step scan 

mode was employed in the 2θ range of 5–90° at the step size of 0.008°.  
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Table 2.1. List of catalysts. 
Catalyst name Precursor Supporta M1b M2b M3b 

Mn-Na2WO4/BN Mn(NO3)2·6H2O, Na2WO4 BN Mn (40) Na (40) W (20) 

Mn-Na2WO4/MgO Mn(NO3)2·6H2O, Na2WO4 MgO Mn (40) Na (40) W (20) 

Mn-Na2WO4/Al2O3 Mn(NO3)2·6H2O, Na2WO4 Al2O3 Mn (40) Na (40) W (20) 

Mn-Na2WO4/SiO2 Mn(NO3)2·6H2O, Na2WO4 SiO2 Mn (40) Na (40) W (20) 

Mn-Na2WO4/SiC Mn(NO3)2·6H2O, Na2WO4 SiC Mn (40) Na (40) W (20) 

Mn-Na2WO4/SiCnf Mn(NO3)2·6H2O, Na2WO4 SiCnf Mn (40) Na (40) W (20) 

Mn-Na2WO4/BEA Mn(NO3)2·6H2O, Na2WO4 BEA Mn (40) Na (40) W (20) 

Mn-Na2WO4/ZSM-5 Mn(NO3)2·6H2O, Na2WO4 ZSM-5 Mn (40) Na (40) W (20) 

Mn-Na2WO4/TiO2 Mn(NO3)2·6H2O, Na2WO4 TiO2 Mn (40) Na (40) W (20) 

Mn-Na2WO4/ZrO2 Mn(NO3)2·6H2O, Na2WO4 ZrO2 Mn (40) Na (40) W (20) 

Mn-Na2WO4/Nb2O5 Mn(NO3)2·6H2O, Na2WO4 Nb2O5 Mn (40) Na (40) W (20) 

Mn-Na2WO4/CeO2 Mn(NO3)2·6H2O, Na2WO4 CeO2 Mn (40) Na (40) W (20) 

Mn-Li2WO4/SiO2 Mn(NO3)2·6H2O, Li2WO4 SiO2 Mn (40) Li (40) W (20) 

Mn-MgWO4/SiO2 Mn(NO3)2·6H2O, MgWO4 SiO2 Mn (50) Mg (25) W (25) 

Mn-K2WO4/SiO2 Mn(NO3)2·6H2O, K2WO4 SiO2 Mn (40) K (40) W (20) 

Mn-CaWO4/SiO2 Mn(NO3)2·6H2O, CaWO4 SiO2 Mn (50) Ca (25) W (25) 

Mn-SrWO4/SiO2 Mn(NO3)2·6H2O, SrWO4 SiO2 Mn (50) Sr (25) W (25) 

Mn-BaWO4/SiO2 Mn(NO3)2·6H2O, BaWO4 SiO2 Mn (50) Ba (25) W (25) 

Mn-Li2MoO4/SiO2 Mn(NO3)2·6H2O, Li2MoO4 SiO2 Mn (40) Li (40) Mo (20) 

Mn-Na2MoO4/SiO2 Mn(NO3)2·6H2O, Na2MoO4 SiO2 Mn (40) Na (40) Mo (20) 

Mn-K2MoO4/SiO2 Mn(NO3)2·6H2O, K2MoO4 SiO2 Mn (40) K (40) Mo (20) 

Mn-FeMoO4/SiO2 Mn(NO3)2·6H2O, FeMoO4 SiO2 Mn (50) Fe (25) Mo (25) 

Mn-ZnMoO4/SiO2 Mn(NO3)2·6H2O, ZnMoO4 SiO2 Mn (50) Zn (25) Mo (25) 

Ti-Na2WO4/SiO2 Ti(OiPr)4, Na2WO4 SiO2 Ti (40) Na (40) W (20) 

V-Na2WO4/SiO2 VOSO4·xH2O (x=3-5), Na2WO4 SiO2 V (40) Na (40) W (20) 

Fe-Na2WO4/SiO2 Fe(NO3)3·9H2O, Na2WO4 SiO2 Fe (40) Na (40) W (20) 

Co-Na2WO4/SiO2 Co(NO3)2·6H2O, Na2WO4 SiO2 Co (40) Na (40) W (20) 

Ni-Na2WO4/SiO2 Ni(NO3)2·6H2O, Na2WO4 SiO2 Ni (40) Na (40) W (20) 

Cu-Na2WO4/SiO2 Cu(NO3)2·5H2O, Na2WO4 SiO2 Cu (40) Na (40) W (20) 

Zn-Na2WO4/SiO2 Zn(NO3)2·6H2O, Na2WO4 SiO2 Zn (40) Na (40) W (20) 

Y-Na2WO4/SiO2 Y(NO3)3·6H2O, Na2WO4 SiO2 Y (40) Na (40) W (20) 

Zr-Na2WO4/SiO2 ZrO(NO3)2·2H2O, Na2WO4 SiO2 Zr (40) Na (40) W (20) 

Mo-Na2WO4/SiO2 (NH4)2MoO4, Na2WO4 SiO2 Mo (40) Na (40) W (20) 

Pd-Na2WO4/SiO2 Pd(OAc)2, Na2WO4 SiO2 Pd (40) Na (40) W (20) 

La-Na2WO4/SiO2 La(NO3)3, Na2WO4 SiO2 La (40) Na (40) W (20) 

Ce-Na2WO4/SiO2 Ce(NO3)3·6H2O, Na2WO4 SiO2 Ce (40) Na (40) W (20) 

Nd-Na2WO4/SiO2 Nd(NO3)3·6H2O, Na2WO4 SiO2 Nd (40) Na (40) W (20) 

Eu-Na2WO4/SiO2 Eu(NO3)3·5H2O, Na2WO4 SiO2 Eu (40) Na (40) W (20) 

Tb-Na2WO4/SiO2 Tb(NO3)3·5H2O, Na2WO4 SiO2 Tb (40) Na (40) W (20) 

Hf-Na2WO4/SiO2 Hf(OEt)4, Na2WO4 SiO2 Hf (40) Na (40) W (20) 

Blank      

BN  BN    
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MgO  MgO    

Al2O3  Al2O3    

SiO2  SiO2    

SiC  SiC    

SiCnf  SiCnf    

BEA  BEA    

ZSM-5  ZSM-5    

TiO2  TiO2    

ZrO2  ZrO2    

Nb2O5  Nb2O5    

CeO2  CeO2    

Na2WO4/SiO2 Na2WO4 SiO2  Na (67) W (33) 

Mn-WOx/SiO2 
Mn(NO3)2·6H2O, 

(NH4)10H2(W2O7)6 
SiO2 Mn (67)  W (33) 

Mn-MoOx/SiO2 Mn(NO3)2·6H2O, (NH4)2MoO4 SiO2 Mn (67)  Mo (33) 

Mn-Na/SiO2 Mn(NO3)2·6H2O, NaNO3 SiO2 Mn (50) Na (50)  

WOx/SiO2 (NH4)10H2(W2O7)6 SiO2   W (100) 

Na/SiO2 NaNO3 SiO2  Na (100)  
a Boron nitride (BN, 5.2 m2/g, Wako Pure Chemical Industries, Ltd.), magnesium oxide (MgO, 5.5 m2/g, Kanto 

Chemical Co., Inc.), aluminum oxide (γ-Al2O3, 150 m2/g, Sumitomo Chemical Industry Co., Ltd.), silica gel (SiO2, 

650 m2/g, 60N, Kanto Chemical Co., Inc.), silicon carbide (SiC, 1.5 m2/g, Sigma-Aldrich), silicon carbide nanofiber 

(SiCnf, D < 2.5 μm, L/D ≥ 20, Sigma-Aldrich), BEA (560 m2/g, SiO2/Al2O3 = 104, zeolite HSZ-960HOA, Tosoh 

Corporation), ZSM-5 (300 m2/g, SiO2/Al2O3 = 90, zeolite JRC-Z5-90NA, Süd-Chemie Catalysts Japan), titanium 

(IV) oxide (TiO2, 17.4 m2/g, Kanto Chemical Co., Inc.), zirconium (IV) oxide (ZrO2, 3.2 m2/g, Kanto Chemical Co., 

Inc.), niobium (V) oxide (Nb2O5, 4.7 m2/g, Wako Pure Chemical Industries, Ltd.), cerium (IV) oxide (CeO2, 3.9 

m2/g, Wako Pure Chemical Industries, Ltd.). The surface area of the supports was obtained by the BET method. A 

sample was degassed at 150 °C for 10 h in vacuum prior to the N2 adsorption measurement at 77 K. 
b The values in parentheses correspond to relative atomic percentages of M1-M3. To a unit gram of a support, 0.371 

mmol of M1, 0.370 or 0.185 mmol of M2, and 0.185 mmol of M3 were immobilized. 

 

2.2.2. Instrumental 

Figure 2.3 illustrates the HTS system developed and employed in this study. 

The instrument consists of a mixed gas generator, a flow distributor, reaction tubes, an 

electric furnace, an auto-sampler, a quadrupole mass spectrometer (QMS), and an 

exhaust system. The gas generator (MU-3504, HORIBA STEC) supplies a reaction gas 

mixture of an arbitrary CH4/O2/Ar volume ratio at a specified total flow volume 

(typically 100–200 mL/min). Then, the mixture is equally split into 20 reaction tubes 

at the gas distributor. Uniform gas distribution is achieved with the aid of capillaries 

(length = 1 m, I.D. = 0.2 mm). The flow resistance is set sufficiently large so that the 

resistance from catalyst beds hardly affects the distribution (Figure 2.4a). After being 
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split into 20 fractions, the gas mixture passes through reaction tubes. A reaction tube is 

made of a quartz tube whose internal diameter changes from 4 mm in the feed side to 2 

mm in the effluent side. This design of the reaction tube assures not only the inertness 

of the reactor wall at an elevated temperature but also the suppression of undesired gas-

phase reactions in the effluent side. A specified height of catalyst powder is fixed at the 

neck position of the reaction tube with the aid of quartz wool. The reaction tubes are 

symmetrically placed in a hollow electric furnace. The furnace consists of three 

temperature zones (T1–3), each of which equips a thermocouple and ceramic heater for 

PID control. The catalyst beds are placed in the middle of the center zone, i.e. when the 

same temperature is applied for the three zones, the other two zones become a buffer to 

stabilize the temperature of the catalyst beds at the center zone. The effluent gas from 

the 20 reaction tubes is transferred to the sampling line of the auto-sampler, which is 

connected to a diaphragm pump and the inlet of the QMS (Transpector® CPM 3, 

INFICON). The auto sampling is achieved by a programmed action sequence of 

pneumatically-actuated diaphragm valves (MEGA-ONE®, Fujikin). Typically, the 

effluent gas of one reactor tube is sampled for 1.6 seconds, and the sampling line is 

cleared by evacuation for 7.0 seconds, thus corresponding to 172 seconds for one round. 

The un-sampled fraction of the effluent gas is discharged through the exhaust system. 

During the sampling, the effluent gas is continuously transferred to the QMS, and the 

mass spectra are recorded for a predetermined set of mass numbers. 12 mass spectra 

are acquired in 1.6 seconds. The mass signal intensities are converted to the relative 

pressure of individual gas species using external calibration, where scaling factors are 

obtained for a few major fragments to deal with overlapping fragments. As can be seen 

in Figure 2.4b, the relative pressure is accurately determined based on the above-

mentioned protocol. Finally, cooperation among the programmed gas generation, 
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temperature, and auto-sampling enables full automation in evaluating the performance 

of 20 catalysts for a predetermined set of reaction conditions. A safety management 

system also backups the automation. Here, it is worth noting that HTS instruments 

having more or less similar mechanic design were reported in literature [23-26], but 

these instruments were mostly used for catalyst screening at one or a few fixed 

conditions. The developed instrument enables the acquisition of a dataset that covers a 

parametric space for both catalysts and process conditions by means of parallelization 

and automation, respectively. The consistency of results among 20 channels was 

carefully confirmed using a Mn-Na2WO4/SiO2 catalyst (Figure 2.5). 

 

Figure 2.3. Illustration of the developed HTS system. 
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Figure 2.4. Validation of (a) gas distribution and (b) relative pressure determination 

in the HTS system. 
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Figure 2.5. Confirmation on the reproducibility of catalytic tests: (a,b) channel 1 and 

(c,d) channel 2 using Mn-Na2WO4/SiO2 as a catalyst. Ar_Flow/CH4_Flow/O2_Flow 

= 6/18/6 mL/mL/mL 

Figure 2.6 summarizes the programmed sequence of reaction conditions 

employed in this chapter. Once catalysts are activated at 1000 °C for 160 minutes under 

O2, the temperature is stepwise declined from 900 to 850, 800, 775, 750, and 700 °C. 

At each temperature, the total flow volume (10, 15, 20 mL/min/channel), the CH4/O2 

ratio (2, 3, 4, 6 mol/mol), and the Ar concentration (PAr = 0.15, 0.40, 0.70 atm) are 

stepwise varied. One reaction condition is held for 6–7 min, which allows 2–3 rounds 

of sampling in the same condition for acquiring the error range of observations. The 

ascending temperature protocol was not employed as it causes excessive CO and CO2 

production due to the combustion of carbon deposits. The height of the catalyst bed was 

fixed at 10 mm, leading to a contact time of 0.75, 0.50, or 0.38 seconds at the given 

total flow volumes. Combined variations in the temperature, the total flow volume, the 
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CH4/O2 ratio, and the Ar concentration lead to 216 conditions per catalyst and 4320 

observations for 20 catalysts in a single automated operation. 

 

Figure 2.6. Employed programmed sequence of reaction conditions. Note that each 

temperature step includes a program for the gas flow volume and composition. 

 

2.2.3. Data analysis 

Evaluation of 40 catalysts and 19 references under 216 conditions generated an 

OCM dataset comprised of 12708 data (36 data were lost for Na/SiO2 at 900 °C due to 

an experimental mistake). The size of the dataset is one digit larger than hundreds in 

past HTS studies [23,24] and 1870 in the literature OCM dataset [11]. Moreover, it was 

acquired in a process-consistent manner, where good and poor catalysts were equally 

evaluated under the same series of conditions. The dataset relates a catalyst to its 

performance at a specific condition. A catalyst is described by 7 features: M1-M3, 

Support, M1-M3_mol, and M1-M3_mol%. The Mx_mol corresponds to the mole of 

Mx per gram of a support, while Mx_mol% corresponds to the relative atomic 

percentage of Mx in M1+M2+M3. A condition is represented by Temp (in degree 

Celsius), Total_flow (in mL/min), Ar_flow, CH4_flow, O2_flow, CT (contact time in 
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seconds), and CH4/O2 (the molar ratio). Performance is given by CH4_conv as well as 

the yield and selectivity values for each of major products, e.g. C2H6y and C2H6s. The 

dataset is uploaded in a web platform "Catalyst Acquisition by Data Science (CADS)" 

for shared usage (Figure 2.7).[19] 

 

Figure 2.7. Snapshot of the OCM dataset uploaded in Catalyst Acquisition by Data 

Science (CADS) [19]. 

The dataset was preprocessed for data visualization and machine learning, 

where numerical variables were assigned for symbolic information such as atomic 

elements and supports. Regression models within supervised machine learning were 

used in order to predict the C2 yield and selectivity of CO, CO2, C2H4, and C2H6. In 

particular, both of linear and non-linear regression models were considered. Linear 

regression supervised machine learning, least squares linear regression (LSLR), support 

vector regression with linear kernel (SVRL), and kernel ridge (KR) while non-linear 

regression supervised machine learning, random forest regression (RFR), and support 

vector regression (SVR) with radial basis function (RBF) kernel, were implemented 

within scikit-learn [4]. Hyper parameters of KR, RFR, and SVR were also tuned. Note 

that the random state of RFR was fixed at the highest score in cross validation. C and 
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gamma in SVR were optimized and set to 10 and 0.01, respectively. Accuracy of the 

trained machine learning models was evaluated through cross validation, where the data 

was randomly split into 20% test and 80% trained data. The average scores of 10 

randomly split test and trained data were taken and evaluated. All the data analysis was 

implemented under the guidance and supervision of Dr. Keisuke Takahashi, Hokkaido 

University, Japan.  
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2.3. Results and discussion 

2.3.1. High-throughput experimentation and OCM dataset 

A total of 12708 data points were obtained by executing three automated 

operations with the HTS instrument. This data is much larger in volume than the 

literature data of past 30 years [11]. Moreover, the performance of 59 catalyst entries 

including references was uniformly evaluated in each condition. A variety of qualitative 

tendencies are manifested by three-dimensional representation of the whole data based 

on scatter plots. For example, Figure 2.8a demonstrates the relationship between the 

CH4 conversion and C2 selectivity with the C2 yield depicted in the color axis. The 

limitation of the C2 yield caused by the tradeoff between the CH4 conversion and C2 

selectivity is well known, but more clear trends are observed with the acquired dataset: 

Distribution of the CH4 conversion and the C2 selectivity limits the C2 yield below 20–

21%. The main factor of this restriction can be explained by analyzing the relationship 

between by-products and the C2 yield. In Figure 2.8b, data points having high C2 yield 

are distributed in a region of the CO selectivity of 0–40% and the CO2 selectivity of 

10–50%. Hence, the more fundamental problem is the formation of CO2. Note that CO2 

production has an adverse effect on both the conversion and selectivity in a sense that 

it consumes the largest amount of O2 per CH4. This is further confirmed by the 

distribution of data points along reaction conditions. For example, CH4 conversion is 

obviously dependent on the amount of O2 (Figure 2.8c), where the upper limit of the 

CH4 conversion is determined by the scarcity of O2 due to undesired over-oxidation 

which consumes extra O2. Temperature is also an important parameter (Figure 2.8d). 

High temperature favors high conversion and low selectivity due to the occurrence of 

over-oxidation. Although low temperature is preferred for high selectivity, the catalyst 

is not sufficiently active for the main reaction. Therefore, the middle range of 
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temperature is found to be suitable in terms of the tradeoff. In this way, the catalyst big 

data acquired by high-throughput experimentation is very powerful for quick overview 

of the general behavior of the catalytic reaction. 

 

Figure 2.8. Visualization of 12708 data points based on scatter plots. (a) CH4 

conversion vs. C2 selectivity and (b) CO selectivity vs. CO2 selectivity with the C2 yield 

indicated by color. Distribution of data points in terms of (c) the CH4/O2 ratio and (d) 

temperature.  

Now, the dataset is subdivided to compare the performance of different 

catalysts. In past HTS research, the performance of OCM catalysts was measured at 

one or a few fixed condition [23,26]. Meanwhile, the dataset obtained here provides the 

performance of 59 catalysts over a sufficiently wide range of reaction conditions. One 

obvious profit of such a dataset is that the potential of different catalysts is fairly 

evaluated at respective sweet spots. Thus, the best C2 yields of individual catalysts 
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(among 216 conditions) are compared in Figure 2.9. The corresponding conditions are 

listed in Table 2.2. Comparison is made in terms of supports, M2,3 metals, and M1 

metals based on the formula of M1-M21-2M3O4/support. In Figure 2.9a, bare supports 

hardly promoted the C2 production as compared to blank, i.e. the gas-phase reaction 

between CH4 and O2. Improvement over the gas-phase reaction was attained by 

depositing Mn-Na2WO4 as the active phase, where the extent of the improvement was 

observed to be sensitive to the supports. In Figure 2.9b, the best C2 yields are compared 

on the removal or the replacement of M2,3 metals in Mn-M21-2M3O4/SiO2. The 

removal of M2 or the utilization of non-alkali metals as M2 (except Mg) led to a 

dramatic deterioration in the C2 yield. Meanwhile, the replacement of Na by other alkali 

metals or the replacement of W by Mo caused moderate deterioration. Figure 2.9c 

reports the alternation of M3. It was found that Mn and Ti are the only metals that can 

enhance the C2 yield, i.e. other metals gave more or less deteriorated C2 yields when 

compared to that of Na2WO4/SiO2. It should be mentioned that Ti-Na2WO4/SiO2 was 

never reported before at the best of my knowledge.  

 

Figure 2.9. Best C2 yield of individual catalysts: (a) Mn-Na2WO4/support, (b) Mn-

M21-2M3O4/SiO2, and (c) M1-Na2WO4/SiO2. 
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Table 2.2. List of the conditions corresponding to the best C2 yield for individual 

catalysts. 

Name 
Temp 

(°C) 

Total flow 

(mL/min) 

CH4/O2 ratio 

(mol/mol) 

PAr 

(atm) 

CH4 conversion 

(%) 

C2 yield 

(%) 

Mn-Na2WO4/BN 800 15 3 0.15 20.8 7.8 

Mn-Na2WO4/MgO 800 15 3 0.7 22.5 9.3 

Mn-Na2WO4/Al2O3 750 20 3 0.15 22.7 8.1 

Mn-Na2WO4/SiO2 800 15 2 0.7 43.5 21 

Mn-Na2WO4/SiC 800 15 3 0.7 31.5 19.6 

Mn-Na2WO4/SiCnf 800 20 2 0.7 41.1 19.2 

Mn-Na2WO4/BEA 800 20 3 0.7 28.4 15.6 

Mn-Na2WO4/ZSM-5 800 20 3 0.7 30.9 19.9 

Mn-Na2WO4/TiO2 750 20 2 0.7 41.7 18.3 

Mn-Na2WO4/ZrO2 800 20 4 0.7 20.6 11.2 

Mn-Na2WO4/Nb2O5 800 20 3 0.15 23.8 8.3 

Mn-Na2WO4/CeO2 775 10 2 0.7 38.8 18 

Mn-Li2WO4/SiO2 800 15 2 0.7 42.5 18.8 

Mn-MgWO4/SiO2 775 15 2 0.7 38.3 16.1 

Mn-K2WO4/SiO2 775 10 2 0.7 39.4 18.6 

Mn-CaWO4/SiO2 850 20 4 0.7 21.3 8.5 

Mn-SrWO4/SiO2 850 20 4 0.7 24 10.7 

Mn-BaWO4/SiO2 850 20 6 0.7 16.6 10.2 

Mn-Li2MoO4/SiO2 800 20 2 0.7 38.9 14 

Mn-Na2MoO4/SiO2 775 15 2 0.7 36.4 15.4 

Mn-K2MoO4/SiO2 800 20 3 0.7 26.9 16.6 

Mn-FeMoO4/SiO2 850 20 6 0.7 18.5 12.6 

Mn-ZnMoO4/SiO2 850 15 7 0.7 20 13 

Ti-Na2WO4/SiO2 800 10 2 0.7 43.5 20.2 

V-Na2WO4/SiO2 775 15 2 0.4 30.2 8.6 

Fe-Na2WO4/SiO2 800 10 2 0.7 38.4 15.2 

Co-Na2WO4/SiO2 850 20 3 0.7 30.5 16.1 

Ni-Na2WO4/SiO2 800 15 2 0.7 39.4 17.7 

Cu-Na2WO4/SiO2 800 20 2 0.4 32.2 9.1 

Zn-Na2WO4/SiO2 850 20 2 0.7 38.4 12.6 

Y-Na2WO4/SiO2 850 15 3 0.7 25.2 12.6 

Zr-Na2WO4/SiO2 800 10 2 0.7 37.2 13.9 

Mo-Na2WO4/SiO2 800 15 2 0.7 30.5 11 

Pd-Na2WO4/SiO2 800 10 2 0.7 36.8 15.5 

La-Na2WO4/SiO2 850 20 3 0.7 30.7 15.4 

Ce-Na2WO4/SiO2 800 10 2 0.7 40.3 16.8 

Nd-Na2WO4/SiO2 850 20 3 0.7 30.2 15.9 

Eu-Na2WO4/SiO2 850 20 2 0.7 40.8 16.1 

Tb-Na2WO4/SiO2 850 20 3 0.7 29 15.8 

Hf-Na2WO4/SiO2 850 20 2 0.7 39.3 16 

Blank 775 20 2 0.4 23.8 8.6 

BN 750 15 2 0.15 24.7 8.9 

MgO 750 20 2 0.4 30.7 7.5 

Al2O3 750 15 2 0.15 26.1 7.4 

SiO2 750 20 3 0.15 21.3 8.1 

SiC 775 20 2 0.15 31.8 8.6 

SiCnf 900 20 6 0.15 17.6 6.2 

BEA 775 20 2 0.15 30.6 7.3 

ZSM-5 750 20 2 0.4 25.4 7.9 

TiO2 850 20 3 0.15 23.1 7.6 

ZrO2 750 20 2 0.15 32.3 8.1 

Nb2O5 700 10 2 0.4 21 7.7 

CeO2 775 20 3 0.15 21.4 8.8 

Na2WO4/SiO2 800 15 2 0.7 40.7 18.7 

Mn-WOx/SiO2 850 15 7 0.7 15.9 9.9 

Mn-MoOx/SiO2 850 20 3 0.15 21.6 6.9 

Mn-Na/SiO2 850 20 2 0.7 37.3 9.7 

WOx/SiO2 775 20 2 0.4 20.7 7.2 

Na/SiO2 750 15 2 0.15 22.1 8.2 
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In Figure 2.9, I reached a known conclusion that Mn-Na2WO4/SiO2 is the best 

OCM catalyst among M1-M21-2M3O4/support, and its modification hardly improves 

the C2 yield. Here, the validity of the observed tendencies is discussed based on past 

literature. The excellence of Mn-Na2WO4/SiO2 has been ascribed to the synergistic 

combination of Mn-Na-W-Si [22,27]. The active site of this catalyst is tetrahedral 

WO4
2- [27,28]. It goes up and down between W6+ and W5+/4+ in the catalytic cycle 

involving homolytic dissociation of CH4 and subsequent oxidation [22]. The primary 

role of Na or other alkali metal is at the stabilization of the tetrahedral WO4
2– against 

octahedral one [29,30]. Mn of Mn2O3 mediates the O spillover to aid the recovery to 

W6+ [14,22,27,31]. Such cooperation of the two redox cycles at W and Mn promotes 

the OCM. The support exerts its influence by stabilizing tetrahedral WO4
2–, where the 

cristobalite phase of SiO2 is believed to be important [31,32]. The second role of Na is 

to facilitate the formation of the cristobalite phase at lower temperature, e.g. 800 C, 

below typical calcination temperature [22,31–33]. Hence, the observed deterioration in 

performance due to the modification of Mn-Na2WO4/SiO2 would be ascribed to a 

possibility that the modification caused a negative influence on the said mechanisms 

otherwise opposed the formation of the desired active phase. For instance, the poor 

performance of Mn-Na2WO4 on Al2O3, MgO, or ZrO2 was attributed to the fact that 

these supports mediate the formation of poorly crystalline or undesired mixed oxides 

instead of preferred oxides [34]. Phase transition to α-cristobalite and the formation of 

the preferred oxides by high-temperature calcination were reported for catalysts 

supported on Si-based materials other than SiO2 such as SiC and TS-1 zeolite [35,36]. 

The results of Figure 2.9a successfully discriminates these good and poor supports. Ji 

et al. studied the effect of substitution of Na in Mn-Na2WO4/SiO2 with Li, K, Ba, Ca, 

Fe, Co, Ni, or Al, where the best performance was obtained for Na and K followed by 
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Li [29], which is consistent with Figure 2.9b. The deterioration in performance caused 

by the substitution of Na with alkaline earth or transition metals is ascribed to the 

inability of these metals to induce the low-temperature α-cristobalite formation as well 

as the formation of a significant amount of octahedral WO6 in the form of MnWO4 [14]. 

Anions of strong acid other than the best WO4
2-

 such as MoO4
2-, SO4

2-, PO4
3- have an 

ability to stabilize Mn2O3 on the catalysts, thus yielding reasonable OCM performance 

[14,22]. Finally, in relation to the earlier explained cooperative redox mechanism, 

Malekzadeh et al. found a correlation between the electrical conductivity and the C2 

yield for M1-Na2WO4/SiO2 [31]. The C2 yield followed the order of V < Zn < Fe < Co 

<< Mn, showing agreement with the results of Figure 2.9c.  

The dataset is also useful for discussing the process dependence of catalysts. 

Figure 2.10 compares the performance of the 40 catalysts and 19 reference materials at 

three representative conditions. The CH4 conversion and C2 selectivity are represented 

after being normalized to the corresponding values of Mn-Na2WO4/SiO2 at the 

respective conditions. Among the three conditions, the best C2 yield (20.88%) was 

obtained by Mn-Na2WO4/SiO2 at 800 °C and the CH4/O2 ratio of 2 (Figure 2.10a). 

Indeed, the literature data for this catalyst has been reported around similar conditions 

[37]. Lower performance of the other catalysts is associated with both/either lower 

conversion and/or lower selectivity, while some catalysts showed comparable C2 yields 

in the following two cases. i) Catalysts with comparable or even higher conversion: 

Mn-M22WO4/SiO2 (M2 = alkaline metal other than Na) and Mn-Na2WO4/Si-based 

supports (SiC, ZSM-5); ii) Catalysts with comparable C2 selectivity: M1-Na2WO4/SiO2 

(M1 = none, Ti, Ni, Co). Interestingly, some M1 metals such as Nd, Eu, Hf, and Tb 

exhibited relatively high C2 selectivity (though the conversion was low).  
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The performance ranking for the catalysts greatly differed when the O2 

concentration was reduced at the same temperature, i.e. 800 °C and the CH4/O2 ratio of 

4 (Figure 2.10b). Mn-Na2WO4/SiO2 was no longer the best catalyst at this condition 

(C2y = only 14.75%). Higher C2 yields were obtained for Mn-Na2WO4 when 

immobilized on specific supports such as ZSM-5 (C2y = 19.40%), SiC (C2y = 17.17%), 

CeO2 (C2y = 16.84%), and BEA (C2y = 15.44%). Mn-K2WO4/SiO2 (16.46%) was also 

a reasonable catalyst. Based on the comparison at the two conditions, an important 

suggestion is derived: Mn-Na2WO4/SiO2 has an ability to retain high C2 selectivity at a 

higher O2 concentration, but the conversion sharply drops at a lower concentration. On 

the other hand, the performant catalysts at the CH4/O2 ratio of 4 correspond to the 

catalysts which are less C2 selective but relatively good in the conversion at the CH4/O2 

ratio of 2. It is considered that the high activity of these catalysts could be effectively 

utilized to enhance the C2 yield when operated at a milder condition (in other words, 

these catalysts tend to lose the C2 selectivity at a more severe condition). This idea is 

further confirmed in Figure 2.10c by lowering the temperature to 750 °C at the CH4/O2 

ratio of 4. A few catalysts having high activity were definitely advantageous at this 

condition: Mn-Na2WO4 supported on ZSM-5 (C2y = 18.76%), SiC (C2y = 16.17%), 

and BEA (C2y = 14.64%) in contrast to 5.14% for Mn-Na2WO4/SiO2. Thus, analysis 

of the dataset proves that the performance of Mn-Na2WO4 is sensitive to the 

modification of Si-based supports in terms of the low-temperature activation of CH4 

and the selectivity tolerance against a high O2 concentration. This finding is plausibly 

related to a past report, where Mn-Na2WO4/SBA-15 was superior to Mn-Na2WO4/SiO2 

at the condition of 750 °C and the CH4/O2 ratio of 4 [38]. However, including this 

example, the performance of OCM catalysts had been mostly compared at one 

condition in literature. To be important, the above-explained aspects which are useful 
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for catalyst design could be derived only by comparing the performance of different 

catalysts at multiple conditions. 
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Figure 2.10. Process dependence of catalyst performance at (Temp, CH4/O2) = (a) (800 

°C, 2 mol/mol), (b) (800 °C, 4 mol/mol), and (c) (750 °C, 4 mol/mol). The total flow 

volume and the partial pressure of Ar are set at 20 mL/min and 0.70 atm, respectively. 

The CH4 conversion and the C2 selectivity are normalized to those of Mn-Na2WO4/SiO2 

at the identical conditions: (CH4_conv, C2s) = (35.96%, 58.06%) at (800 °C, 2 

mol/mol), (21.22%, 69.51%) at (800 °C, 4 mol/mol), and (7.88%, 65.23%) at (750 °C, 

4 mol/mol).  

It was earlier seen that the limited C2 yield mainly comes from the CO2 by-

production (Figure 2.8b). Meanwhile, the electric furnace of the HTS instrument 

consists of three temperature zones (T1: inlet, T2: catalyst bed, T3: outlet). The three 

temperatures can be independently set if the temperature difference of neighboring 

zones does not exceed 100 C. In an attempt to optimize the three temperatures, I found 

that the C2 yield was improved when T1,3 (especially T1) were lowered with respect to 

T2 (Figure 2.11). This fact suggests that the C2 yield is sensitive to the suppression of 
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non-selective oxidation in the gas phase [9,10,36] and may explain why the literature 

data is largely distributed among different groups.  

 

 

Figure 2.11. Dependence of the C2 yield on the temperature protocol. T2 was fixed at 

800 C, while T1 and T3 were independently varied. The C2 yield was optimized in 

terms of the total flow (Q), the Ar pressure (PAr) and the CH4/O2 ratio using Mn-

Na2WO4/SiO2 as the catalyst.  

According to the above result, the performance of selected 20 catalysts was re-

evaluated in 216 conditions, where T1,3 was set equal to T2−100 C. The results are 

summarized in Figure 2.12a. By suppressing the gas-phase reaction, the upper boundary 

line of the C2 yield shifted from ca. 21% to ca. 26% (Figure 2.12a). The best C2 yield 

was updated from 21.03% for Mn-Na2WO4/SiO2 to 25.84% for Mn-Na2WO4/SiC. The 

best C2 yield is compared between the original isothermal and new non-isothermal 

conditions for individual catalysts (Figure 2.12b). One can see that the new condition 
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does not necessarily upgrade all the catalysts, and the presence of Mn is essential for 

the upgrade. Indeed, lower temperature of the inlet (T1) likely reduces the CH4 

conversion by suppressing the initial radical formation (CH3•) [22,39]. The C2 yield 

would not be improved unless the CH4 conversion was maintained and/or the 

deterioration was overcome by the C2 selectivity. The role of Mn was investigated by 

comparing scatter plots in the absence and presence of Mn (Figure 2.13), where the data 

points are restricted over 10% of the C2 yield for visibility. Without Mn, high C2 yield 

was obtained over the CH4 conversion of 40% for the isothermal condition, while data 

points of high C2 yield were concentrated in a region of the CH4 conversion of 36–39% 

and the C2 selectivity of 51–54% for the non-isothermal condition. The improvement 

in the C2 selectivity was thus compensated by lower CH4 conversion in the absence of 

Mn. The deterioration of CH4 conversion in the non-isothermal condition was hardly 

observed in the presence of Mn. In this case, data points of high C2 yield were 

distributed around the CH4 conversion of 38–44% and the C2 selectivity of 55–60%. It 

is clear that Mn promotes the activation of CH4 as well as its selective oxidation. Lastly, 

the best C2 yields of top 6 catalysts were identified in a very narrow range (18.80–

21.03%) in the isothermal condition, and the use of the non-isothermal condition 

expanded the span to 20.05–25.84%. The suppression of the gas-phase reaction raised 

the impact of the catalyst design, and this in turn dictated the importance of 

simultaneous optimization of the catalyst and reactor design in OCM.  
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Figure 2.12. Comparison between two temperature protocols: (a) Scatter plot and (b) 

best C2 yield of individual catalysts.  

 

Figure 2.13. Role of Mn in OCM. Scatter plots are compared in the (a) absence and 

(b) presence of Mn for two temperature protocols, where the data points are limited 

based on the C2 yield > 10%. The circled areas provide relatively high C2 yield in the 

non-isothermal temperature protocol.  

 

2.3.2. Machine learning 

Linear and non-linear regression analysis was implemented for predicting the 

C2 yield and the selectivity of CO, CO2, C2H4, and C2H6. 11 descriptors were employed 

for each model: 7 features related to the catalyst design (M1_atom_number, 

M2_atom_number, M3_atom_number, Support_ID, M1_mol, M2_mol, M3_mol) and 

4 features related to experimental process conditions (Temp, Ar_flow, CH4_flow, 

O2_flow). Here, the goal of the machine learning is to reveal how catalyst design and 

process conditions affect the yield and the selectivity of OCM. The cross validation 

scores for predicting the C2 yield and the selectivity of CO, CO2, C2H4, and C2H6 using 

the 11 descriptors are collected in Table 2.3. It was demonstrated that the C2 yield can 
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be well predicted using RFR with a cross validation score of 0.88 and moderately 

predicted with SVR, leading one to consider that the prediction of the C2 yield is a non-

linear matter. True and predicted C2 yields using RFR are visualized in Figure 2.14. 

Here, the test data is well predicted, whereas any of the regression models are unable 

to do so when implemented on literature OCM data collected from the past 30 years 

[11,12]. The importance of 11 descriptors for predicting the C2 yield in RFR is 

summarized in Figure 2.14. The importance was determined by reviewing the generated 

decision trees in order to determine descriptor prominence and frequency throughout 

the decision process. It was found to be consistent with experimental observations.  

 

 

Table 2.3. Cross validation scores for predicting the C2 yield and the selectivity of CO, 

CO2, C2H4, and C2H6 using 11 descriptors and 5 different machine learnings. 

Objective 

variable 
LSLR SVRL KR RFRa SVRb 

C2y 0.16 −0.15 0.16 0.88 0.66 

COs  0.55 0.21 0.45 0.84 0.72 

CO2s 0.09 −0.68 −0.01 0.8 0.22 

C2H4s 0.24 −1.38 0.22 0.7 0.5 

C2H6s 0.59 −0.37 0.2 0.79 0.7 
a The number of trees were set to 100. 
b C and gamma were optimized and set to 10 and 0.01, respectively. 
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Figure 2.14. True and predicted C2 yields using RFR and the importance of 

corresponding 11 descriptors in RFR. 

 

The scarcity of poor data constitutes one of the major problems of literature data 

for machine learning. Here, additional random forest regression was performed, where 

poor data corresponding to the C2 yield below 10% were omitted during training. As 

seen in Figure 2.15, the omission of poor data during the training process results in 

overly optimistic or otherwise largely inaccurate predictions. 

 

Figure 2.15. True and predicted C2 yields using RFR when poor data (C2 yield < 10%) 

is omitted during training. The score for the test set is −3.49. It must be noted that poor 

data cannot be predicted when only good data are used for the training.  

The OCM data generated by the high-throughput experimentation produced a 

highly dispersed and consistent dataset, thereby resulting in the ability to apply 

regression models. The selectivity of CO, CO2, C2H4, and C2H6 was also predicted 

using RFR and SVR with the same 11 descriptors, as shown in Table 2.3. Overall, RFR 

resulted in a higher cross validation score when compared to SVR. More importantly, 
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one can see that the selectivity of CO and C2H6 exhibited a higher score than that of 

CO2 and C2H4, particularly for the results produced using SVR. This suggests that the 

catalyst and process conditions more directly affect the selectivity of CO and C2H6. On 

the other hand, the selectivity of CO2 and C2H4 could be considered to be more involved 

with other factors. From this, machine learning implied the order of reactions, where 

CO and C2H6 has a more direct relation with the initial conditions while CO2 and C2H4 

are more indirectly affected by such conditions. This implication likely agrees with the 

proposed OCM reaction mechanism reported using microkinetic analysis: C2H6 is 

produced by CH3•, followed by dehydrogenation to form C2H4 [39].  

The power of machine learning lies in interpolation filling using a trained 

machine. Here, trained RFR with 11 descriptors are used to map out how the C2 yield 

changes by experimental process conditions. Figure 2.16a is the surface plot of the 

CH4/O2 ratio and temperature against the C2 yield, where the 24 actual data points are 

extracted for Mn-Na2WO4/SiO2 at the total flow (Q) of 20 mL/min and the Ar pressure 

of 0.40 atm. Figure 2.16a shows a discreetness of data points, meaning that the optimum 

CH4/O2 ratio and temperature remain inaccurately determined for maximizing the C2 

yield. Then, interpolation filling of experimental conditions was performed using RFR 

that was trained for a full set of data. As shown in Figure 2.16b, the interpolation filling 

made the surface plot much smoother. The accuracy of the interpolation filling was 

primarily assured in Figure 2.14, and further validated by comparing the surface plot 

with 15 data points acquired from separate experiments for the same catalyst [40], 

where the newly added data points clearly matched with the trends given by RFR. 

Similar interpolation filling of how the flow of Ar, CH4, and O2 impacts the C2 yield is 

performed for Mn-Na2WO4/SiO2 at 800 C. The predicted scatter plot of the flow of the 

three gases against the C2 yield displays the sensitivity of the C2 yield to the flow of Ar 
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and O2 (Figure 2.17). Higher Ar flow (i.e. shorter contact and more dilution) and an 

optimal O2 flow range between 2 and 3 are found to be preferred. Data science provides 

a means of unveiling trends within data which can then act as guides and provide hints 

when attempting to design catalysts. Figure 2.18 shows the predicted performance of 

M1-Na2WO4/SiO2 catalysts, where the atomic number of M1 is varied from 22 to 72 

with the exception of non-metals. The C2 yield is predicted along the temperature while 

the other conditions are fixed as (Q, CH4/O2, PAr) = (20 mL/min, 2 mol/mol, 0.40 atm). 

Mn is found to exhibit the highest C2 yield at 800 C, which is in accordance to the 

original data. Interestingly, heavy elements, lanthanoids in particular, are predicted to 

result in a high C2 yield at a higher temperature. These results suggest that the 

combination of high-throughput experimentation and machine learning allows for the 

prediction of catalysts and process conditions simultaneously. 

 

Figure 2.16. Surface plot of the CH4/O2 ratio and temperature against the C2 yield for 

Mn-Na2WO4/SiO2: (a) Actual data points, (b) interpolation filling by RFR, and (c) 

validation with separate experimental data points. Color bar indicates the C2 yield 

(C2y) in %.  
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Figure 2.17. Predicted scatter plot of the flow of Ar, CH4, and O2 against the C2 yield 

for Mn-Na2WO4/SiO2 at 800 °C. Color bar indicates the C2 yield (C2y) in %. 
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Figure 2.18. Predicted C2 yield for M1-Na2WO4/SiO2 catalysts at different 

temperatures. Color bar indicates the C2 yield (C2y) in %.  
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2.4. Conclusions 

The presence of a catalyst dataset that covers a parametric space of materials 

and process conditions in a process-consistent manner is essential for the realization of 

catalyst informatics. In this chapter, a HTS instrument was developed and exploited for 

preparing such a dataset for OCM catalysis. The instrument enables an automatic 

performance evaluation of 20 catalysts at a series of predefined conditions in fixed bed 

reactors, affording a dataset comprised of 12708 data for 59 catalysts. Thus far, the 

performance of OCM catalysts has been compared at one or a few fixed conditions 

within literature reports. This has resulted in ambiguity regarding whether a catalyst 

itself is superior or the catalyst is more suited to the employed condition. Importantly, 

OCM catalysts are sensitive to process conditions owing to competition between the 

activation of inert CH4 and excessive oxidation, while different catalysts have their own 

sweet spots for peak performance. In this sense, I successfully demonstrated the 

usefulness of a dataset that covers a parametric space in terms of both catalysts and 

process conditions for overviewing the catalysis itself based on scatter plots, 

understanding process dependence of individual catalysts, and eventually acquiring 

how to improve catalysts and processes in a cooperative manner. Important findings 

are summarized below.  

i) The restriction of C2 yield comes from the tradeoff between the CH4 

conversion and C2 selectivity, where the by-production of CO2 is most 

detrimental. 

ii) The comparison of the best C2 yield among different catalysts has confirmed 

the superiority of a synergetic combination among Mn-Na-W-Si. 
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iii) The OCM reaction is generally sensitive to the process conditions, and catalyst 

design has a great impact on the process dependence. In particular, the 

modification of Si-based support affects the performance of Mn-Na2WO4 in 

terms of the low-temperature activation of CH4 and the selectivity tolerance 

against high O2 concentration. 

iv) The combination of support modification for activity improvement and 

suppression of the gas phase reaction based on non-isothermal temperature 

control was found to be promising for upgrading the supported Mn-Na2WO4 

system.  

v) Combining the HTS data and regression in machine learning, accurate 

prediction of the C2 yield becomes achievable via interpolation filling. The 

non-linear nature of the model suggests intrinsic complexity of OCM reaction.  

vi) The supervised machine learning regression model was successfully 

implemented using the consistent HTS data, where previous efforts had failed 

when applied towards 1869 OCM data gathered from literature [12]. 

Based on all given demonstrations and achievements, I believe that the present 

contribution constitutes an importance piece of progress towards the implementation of 

catalyst informatics. 
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Chapter 3 

Factors to influence low-temperature performance of supported Mn–

Na2WO4 in oxidative coupling of methane 
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Abstract: The oxidative coupling of methane is an effective approach for directly 

upgrading methane to valuable products. Among known OCM catalysts, Mn–

Na2WO4/SiO2 is a promising candidate for an industrial application with superior 

catalytic performance and high stability. In the last chapter, I had found that the 

performance of Mn–Na2WO4 significantly depends on the choice of support materials. 

Here, a variety of Mn–Na2WO4 catalysts were prepared using different Si-based 

materials as supports. The OCM performance of these catalysts was evaluated by a 

high-throughput screening instrument that had been developed in the last chapter. The 

relationship between the catalyst performance and the choice of support materials was 

studied in detail on the basis of characterization using Raman spectroscopy, X-ray 

diffraction, elemental mapping, and X-ray photospectroscopy. 

Keywords: Oxidative coupling of methane, Mn–Na2WO4, support materials, high-

throughput screening, characterization. 
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3.1. Introduction 

Owing to the enormous proven reverses of natural gas and the depleting reserves 

of crude oil, research interests have been focused on the development of technology 

towards selective conversion of methane into more valuable products [1,2]. Currently, 

methane is industrially transformed into methanol or higher hydrocarbons through 

stream reforming (to form a mixture of CO and H2), followed by the Fisher-Tropsch 

process [3]. However, this transformation consists of multiple energy intensive 

processes [1,3]. Thus, one-step or direct conversion of methane to ethylene, methanol, 

and formaldehyde has been desired [3]. Among them, the oxidative coupling of 

methane (OCM) into C2 products has been intensively studied over three decades [4]. 

The major challenge of this reaction arises from the fact that methane, comprised solely 

of weakly polarized C-H bonds, is extremely stable [5]. The C-H bond activation of 

methane requires a relatively high temperature as well as oxygen-rich atmosphere, 

resulting in undesired side reactions (e.g. complete combustion) [5,6]. This 

encompasses a tradeoff between the conversion and selectivity as an intrinsic nature of 

OCM and the main reason of unsuccessful industrialization. Hence, the development 

of novel OCM catalysts with a special emphasis on the conversion-selectivity tradeoff 

is an emerging task. 

In an endeavor to find performant OCM catalysts, a number of catalysts have 

been reported in the past three decades. However, few catalysts could fulfill the C2 yield 

over 30% (criteria for industrialization) in a fixed-bed reactor configuration [4]. So far, 

the best OCM catalysts could give 30–50% of the methane conversion and 40–80% of 

the C2 selectivity, resulting in the C2 yield from 18 to 25% [4,7]. Li/MgO, one of the 

most studied catalysts, tends to lose its activity in just a few hours on stream [8]. Mn–

Na2WO4/SiO2 is one of a few promising catalysts for OCM due to its good C2 selectivity 
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and high stability [9]. Attempts to improve the performance of this ternary system have 

been hardly successful [9-11]. For example, substituion of Mn by other redox-active 

elements [12], substituion of Na by other alkaline or alkaline earth elements [9], 

replacement of WO4
2– by other Lewis acidic anions [13], and utilization of other 

support materials [11,14] were found to lower the C2 yield in most of cases, except 

when unusual conditions for Mn–Na2WO4/SiO2 were adopted [5,15]. In chapter 2, I 

developed a high-throughput screening (HTS) instrument that automates the 

performance evaluation of 20 catalysts placed in parallel fixed-bed reactors at a 

predefined set of reaction conditions. The instrument was used to evaluate 40 catalysts 

that were derived from Mn–Na2WO4/SiO2 [16]. In agreement with previous literature, 

any substitution did not largely upgrade the best C2 yield of individual catalysts from 

that of Mn–Na2WO4/SiO2. Contrary, by testing the catalysts in a wide range of 

conditions, it was newly found that the choice of supports largely changes the response 

of Mn–Na2WO4 to different reaction conditions, especially, in terms of low-

temperature methane activation and C2 selectivity tolerance to harsh conditions, i.e. two 

most important properties for coping with the conversion-selectivity tradeoff.  

In this chapter, I report a subsequent research: Mn–Na2WO4 catalysts supported 

on 20 different Si-based materials were tested in a wide range of conditions using the 

above-mentioned HTS instrument. Their responses to the reaction conditions and the 

origin of different responses were studied with the aid of Raman spectroscopy, X-ray 

diffraction, elemental mapping based on scanning electron microscopy, and X-ray 

photoelectron spectroscopy. The mechanism of good activity at low temperature of 

some Si-based supports will elucidated, which promise a better performance for Mn–

Na-W-Si system toward the industrial target.  
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3.2. Experimental 

3.2.1. Materials 

Metal precursors, manganese (II) nitrate (Wako) and sodium tungstate (Sigma-

Aldrich), were used as received. In the last chapter, it was found that some types of Si-

based supports showed superior performance under milder conditions. In order to 

explore better Si-based supports for the Mn–Na2WO4 as well as to obtain a mechanistic 

insight, several types of supports were selected here with variations in the pore size and 

shape, the amount of impurity (aluminum or titanium), the cation type, and the surface 

area. These supports are listed in Table 3.1. They were supplied from Tosoh 

Corporation, Japan Reference Catalyst (JRC) Committee of the Catalysis Society of 

Japan, ACS Material, Kanto Chemical Corporation, and Sigma-Aldrich. 

Table 3.1. List of supports 

Type Name Trade name 
Pore size Si/Al(Ti)a 

Cation type 
SBET

b 

(Å) (mol/mol) (m2/g) 

Al-Si zeolite BEA(25) JRC-Z-HB25 6.5 25 H+ 494 

 BEA(28) HSZ-930NHA 6.5 28 NH4
+ 590 

 BEA(41) HSZ-940NHA 6.5 41 NH4
+ 580 

 BEA(42.2) HSZ-941HOA 6.5 42.2 H+ 520 

 BEA(104) HSZ-960HOA 6.5 104 H+ 560 

 BEA(150) JRC-HB150 6.5 150 H+ 607 

 BEA(440) HSZ-980HOA 6.5 440 H+ 500 

 BEA(1700) HSZ-990HOA 6.5 1700 H+ 470 

 ZSM(22.5) HSZ-820NHA 5.8 22.5 NH4
+ 510 

 ZSM(23.9) HSZ-822HOA 5.8 23.9 H+ 330 

 ZSM(37) HSZ-840HOA 5.8 37 H+ 330 

 ZSM(39) HSZ-840NHA 5.8 39 NH4
+ 330 

 ZSM(90) JRC-Z5-90NA 5.8 90 Na+ 300 

 ZSM(1880) HSZ-891HOA 5.8 1880 H+ 310 

 ZSM(2120) HSZ-890HOA 5.8 2120 H+ 310 

Ti-Si zeolite TS-1 TS-1 5.0 80 n.a. 420 

Mesoporous silica SBA-15 SBA-15 60 n.a. n.a. >550 

 MCM-41 MCM-41 45 n.a. n.a. 1000 

Silica gel SiO2 60N 60 n.a. n.a. 650 

Silicon carbine SiC SiC n.a. n.a. n.a. 1.5 
a,b

 The information of Si/Al ratio and surface area are taken from producers, where information from 

SiC was measured.  
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3.2.2. Catalyst preparation 

The catalysts were prepared based on a co-impregnation method. A support 

powder (1.0 g) was impregnated with an aqueous solution (4–5 mL) containing 

Mn(NO3)2·6H2O (0.345 mmol) and Na2WO4·2H2O (0.269 mmol) at 50 °C in 6 hours. 

The product was dried at 110 °C, followed by calcination at 1000 °C for 3 hours. The 

theoretical amounts of the active components were 5.0 wt% for Na2WO4 and 2.0 wt% 

for Mn to the support.  

 

3.2.3. Catalyst test 

The OCM performance of catalysts was evaluated based on the high-throughput 

screening (HTS) instrument, which had been developed in the last chapter [16]. The 

instrument consists of a mixed gas generator, a flow distributor system, 20 reaction 

tubes, an electric furnace, an autosampler, and a quadrupole mass spectrometer (QMS). 

The gas mixer provides a gas mixture of CH4/O2/Ar with the desired gas composition. 

The gas mixture is equally divided into 20 portions, and transferred to 20 reaction tubes 

made of quartz. A catalyst bed of 10 mm in height is set in the middle of each reaction 

tube with the aid of quartz wool. The 20 reaction tubes are placed symmetrically in a 

hollow electric furnace. The furnace consists of three temperature zones (T1–3). Here, 

the temperature of the middle zone (T2) was set 100 °C higher than the temperature of 

the upstream and downstream zones (T1,3) in order to suppress less selective gas-phase 

reaction [16]. Effluent gas which comes out from the 20 reaction tubes is sequentially 

transferred to the sampling line, and then analyzed by QMS. The programmed sequence 

of reaction conditions is shown in Figure 3.1. The temperature was varied from 900 to 

850, 800, 750, and 700 °C, and at each temperature, the total flow volume (Q = 10, 15, 
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and 20 mL/min/channel), the CH4/O2 ratio (2, 4, and 6 mol/mol), and the Ar 

concentration (PAr = 0.15, 0.40, 0.70 atm) were stepwise varied. The OCM performance 

of 20 catalysts was thus evaluated at 135 conditions in an automated fashion.  

 

Figure 3.1. Employed programmed sequence of reaction conditions. Note that each 

temperature step includes a program for the gas flow volume and composition. 

 

3.2.4. Catalyst characterization 

Selected catalysts were characterized by several techniques. Raman spectra of 

the catalysts were recorded on a Laser Raman spectrometer (NRS-4100, JASCO) with 

a 532 nm laser. A polynomial method was used for background subtraction. Powder X-

ray diffraction was performed (CuKα radiation, λ = 0.154 nm) on a SmartLab (Rigaku) 

X-ray diffractometer. The diffraction patterns were collected in the 2θ range of 5–40° 

with a step size of 0.008°. The surface morphology and elemental distribution of the 

catalysts were studied by scanning electron microscopy with energy dispersive X-ray 

spectroscopy (SEM-EDS). A small amount of a sample powder was placed on a carbon 

tape. The measurements were performed on a tabletop microscope (Hitachi TM 

3030Plus, 15 kV) equipped with an EDS detector. The near surface chemical analysis 

was performed based on X-ray photoelectron spectroscopy (XPS, Kratos AXIS-Ultra 

DLD) using monochromatic Al-Kα radiation. The pass energy of the concentric 



91 
 

hemispherical analyzer was set at 40 eV. A narrow scan was recorded in 240 s with a 

step increment of 0.1 eV and repeated at least 5 times for each element. Powder samples 

were loaded on a sample holder through double-sided adhesive copper tape. The 

binding energies (BE) were calibrated using the C1s peak of surface hydrocarbons at 

285.0 eV as the internal reference.  
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3.3. Results and discussion 

3.3.1 Catalytic test 

The OCM performance of 20 catalysts, comprising of Mn–Na2WO4 supported 

on different Si-based supports, were evaluated in 135 reaction conditions. The obtained 

2700 data are represented in a scatter plot, where the relationship between the CH4 

conversion and the C2 selectivity is displayed with the corresponding C2 yield depicted 

in the color axis to understand a general behavior of catalyst performance (Figure 3.2). 

There was a boundary of limiting the CH4 conversion and C2 yield. The maximum CH4 

conversion and C2 yield were respectively recorded at 47% and 25.6%, while the C2 

selectivity varied from 0 to 100%, which results in C2 yield varied from 0-25 %. 

 

Figure 3.2. Visualization of 2700 data points based on a scatter plot for the CH4 

conversion and C2 selectivity. The C2 yield as their product is indicated by the color.  

 

Next, I compare the impact of different Si-based supports on the OCM 

performance of the catalysts. For this, the color axis of the scatter plot in Figure 3.2 was 
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changed to various features of the supports, and then the Si/Al ratio was identified as 

the most impactful feature. This is shown in Figure 3.3a. It can be seen that the upper 

boundary of the C2 yield becomes less than 10% for the supports having the Si/Al ratio 

lower than 50. The best C2 yield of individual catalysts was compared in Figure 3.3b, 

and relevant data are listed in Table 3.2. These again confirmed the negative influence 

of using Al-rich zeolites as support materials. All of the catalysts using pure silica 

supports (SBA-15, MCM-41, SiO2) and SiC exhibited high performance: 43–47% CH4 

conversion, 53–57% C2 selectivity, and 24.3–25.6% C2 yield, in agreement with the 

literature data [9-11,16], TS-1, a titanium-silicate zeolite, could also be a good support 

(23.4% C2 yield) [5]. On the contrary, the performance of catalysts using aluminum 

silicate zeolites was greatly different, especially in relation to the variation in the Si/Al 

ratio. The performance became comparable to that of the pure silica when high-silica 

zeolites were employed, while the C2 yield became less than 10% for Al-rich zeolites. 

Figure 3.3. Catalyst performance among Mn–Na-W/Si-based supports with their 

impurity a) Scatter plot of all data with color map depicted Si/Al ratio, b) best C2 yield 

of all catalysts. 
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Table 3.2. List of data corresponding to the best C2 yield for individual catalysts.  

Sample 
C2 yield 

(%) 

CH4 conv. 

(%) 

C2 sel. 

(%) 

Temp. 

(°C) 

Q 

(mL/min) 

CH4/O2 

(mol/mol) 

PAr 

(atm) 

ZSM(22.5) 8.7 33 26.4 800 20 2 0.4 

ZSM(23.9) 8.5 27.6 30.9 800 20 2 0.7 

BEA(25) 8.4 33.1 25.4 800 20 2 0.15 

BEA(28) 8.3 31.5 26.3 800 20 2 0.4 

ZSM(37) 7.4 34.5 21.5 800 20 2 0.15 

ZSM(39) 8.3 26.3 31.6 800 20 2 0.7 

BEA(41) 7.3 32.5 22.3 800 20 2 0.7 

BEA(42.2) 8.6 30.5 28.2 800 20 2 0.4 

ZSM(90) 23.1 44.6 51.9 800 20 2 0.7 

BEA(104) 12.6 37.3 33.9 800 20 2 0.7 

BEA(150) 22.6 43.3 52 800 20 2 0.7 

BEA(440) 23.5 44.6 52.6 800 20 2 0.7 

BEA(1700) 22.6 44.8 50.6 800 20 2 0.7 

ZSM(1880) 24.4 45.1 54.2 800 20 2 0.7 

ZSM(2120) 24.6 46.8 52.6 800 20 2 0.7 

TS-1 23.4 43.9 53.3 800 20 2 0.7 

SBA-15 25.6 46.2 55.4 800 20 2 0.7 

MCM-41 25.0 47 53.2 800 20 2 0.7 

SiC 24.3 43.5 55.9 800 20 2 0.7 

SiO2 24.6 43.2 56.9 800 15 2 0.7 
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Figure 3.4. Variation of the C2 yield in response to the temperature and the CH4/O2 

ratio.  

 

In general, SiO2 is believed as the best support for Mn–Na2WO4. A potential 

explanation is that the cristbalite phase of SiO2, formed at a calcination temperature in 

the presence of Na+, strongly stabilizes tetrahedral WO4
2– as active species [12,13,17]. 

On the other hand, in Chapter 2, I found that the choice of Si-based supports greatly 

affected the response of the catalysts to the variation of reaction conditions, especially 

when the conditions were deviated off the best conditions [16,18]. This differentiated 

the ability of catalysts in terms of low-temperature methane activation as well as C2 

selectivity tolerance to harsh conditions.  

Accordingly, the performance of the catalysts with the best C2 yield over 20% 

was compared at different temperatures and CH4/O2 ratios (Figure 3.4). At 800 °C and 
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the CH4/O2 ratio of 2, corresponding to the best conditions for all the good catalysts, 

the C2 yield was not largely different among the catalysts (22-25.5%). However, the 

difference among the catalysts largely expanded when the reaction conditions were 

deviated from the optimum ones: 9–16% at (750 °C, CH4/O2=2), 6–13% at (750 °C, 

CH4/O2 =4), and 22–25.5% at (800 °C, CH4/O2 =2). Further deviation rather reduced 

the difference, as all the catalysts were basically not performant in these conditions. To 

comprehend the different behaviors of the catalysts at deviated conditions, the C2 yield 

is broken down into the CH4 conversion and the C2 selectivity, as depicted in Figure 

3.5. 

 



97 
 

 

Figure 3.5. Process dependence of catalyst performance: (a) (Temp, CH4/O2) = (a) 

(800 °C, 2 mol/mol), (b) (750 °C, 2 mol/mol), (c) (750 °C, 4 mol/mol), and (d) (800 °C, 

2 mol/mol). The total flow volume and the partial pressure of Ar are fixed at 20 mL/min 

and 0.70 atm, respectively.  
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As can be seen in Figure 3.5a, Mn–Na2WO4 showed consistent performance at 

800 °C and CH4/O2 = 2 when immobilized on silica-rich supports (SBA-15, MCM-41, 

ZSM(2120), ZSM(1880), ZSM(90), BEA(440), BEA(150), SiO2 and, SiC). The CH4 

conversion of 40‒50% and the C2 selectivity of 50‒60% resulted in the C2 yield of 22‒

25.6% C2 yield. Such high performance of Mn–Na2WO4 at similar conditions was 

reported in many literature reports [4,10,16]. On the other hand, the deviation of process 

conditions from the optimum ones increased the deviation of the performance among 

these catalysts: a great difference when the temperature decreases to 750 °C with 

CH4/O2 ratio of 2. At this milder condition, the performance among the performant 

catalysts were decrease sharply because of the trade-off between conversion and 

selectivity; but their variation was comparable among Si-based supports. The 

mesoporous sillica (MCM-41, SBA-15) and BEA(1700) exhibited the highest CH4 

conversion. Non-ordered structured like SiC and SiO2 showed the least activity. In 

general, BEA-type zeolite support showed higher CH4 conversion compared to ZSM-

typed zeolite, while ZSM keep much higher C2 selectivity. Top 4 catalysts with the 

highest C2 yields were obtained for Mn–Na2WO4 when cooperated in supports such as 

SBA-15 (15.93%), MCM-41 (15.72%), TS-1 (15.17%), and BEA(1700) (14.96%), 

which were able to keep reasonable high CH4 conversion and C2 selectivity. Such 

observation was further validated at milder condition by an increase at the CH4/O2 ratio 

of 4 at 750 °C in Figure 3.4c. At this condition, methane activation becomes more 

difficult, catalysts which exhibited better CH4 conversion at CH4/O2 ratio of 2 are 

obviously advantageous toward C2 yield at high CH4/O2 ratio. However, under harsh 

condition (850 °C and CH4/O2=2), SiO2 give the highest C2 yield. The highest C2 yield 

might come from the kept high C2 yield, while the CH4 conversion appeared not much 

deviated among catalysts supports. Therefore, characterization should be conducted for 
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clarifying the origin of difference between catalysts activity among Mn–Na2WO4/Si-

based catalysts. 

 

3.3.2. Catalyst characterization 

In order to clarify the origin of different performance of Mn–Na2WO4 supported 

on various Si-based supports, catalysts were characterized by several techniques. First, 

Raman spectroscopy was employed to investigate the structure of catalysts. The spectra 

of the catalysts are shown in Figure 3.6. Mn–Na2WO4/SiO2 is regarded as the most 

standard catalyst. Its spectrum exhibits two bands at 960 and 926 cm−1 due to the 

tetrahedral WO4
2‒, and strong band at 409 cm−1 ascribed to α-cristobalite and the exist 

of Mn2O3 peak in some catalyts. The co-existence of tetrahedral WO4
2‒, Mn2O3, and 

SiO2 in the α-cristobalite form is believed as the prerequisite for obtaining highly 

selective Mn–Na2WO4 catalysts [13,17,19,20]. The main active site of this catalyst is 

tetrahedral WO4
2‒, which undergoes a catalytic redox cycle between W6+ and W5+/4+ 

based on the homolytic dissociation of CH4 and subsequent oxidation [9,13,16]. Hence, 

it was considered that Si-based supports being able to form tetrahedral WO4
2‒ Mn2O3, 

and α-cristobalite would afford the performance comparable to that of Mn–

Na2WO4/SiO2. This hypothesis was confirmed by cross-referencing between the 

catalytic performance in Table 3.2 and the Raman spectra in Figure 3.6: The catalysts 

which exhibited the best C2 yield over 20% satisfied the prerequisite. On the other hand, 

any Si-based supports, which mediate the formation of undesired mixed oxides instead 

of preferred oxides, would result in poor performance [9,10,17]. Indeed, the poor 

catalysts possessed a band at around 890 cm−1 for octahedral tungstate [21], while the 

bands of the tetrahedral WO4
2‒ and α-cristobalite almost completely vanished. In the 
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case of Al-rich zeolites, no peak of Al was observed in the spectra. The high-

temperature calcination melts zeolites. The Al atoms are distributed in the resultant 

SiO2, thus restricting the formation of α-cristobalite [9,10,17]. Besides, acidic Al sites 

binds ethylene for its combustion [17].  

Figure 3.6. Raman spectra of Mn–Na2WO4 catalysts prepared using different Si-based 

supports. Na2WO4 (▼), α‒cristobalite (●), MnWO4 (▲), Mn2O3 (), and MnTiO3 

MnTiO3 (✧), Si-C (Δ). 

 

The XRD spectra further confirmed the phase difference among the catalysts 

(Figure 3.7). It is clear that the XRD patterns among good catalysts shared similar 

features arising from the co-existence of Na2WO4, Mn2O3 and α-cristobalite phase 

[14,22,23]. A minor presence of MnWO4 was observed in some catalysts (SiC, TS-1, 

and SBA-15). In addition, besides of Na2WO4, Mn2O3 and α-cristobalite, there are 
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several peak of SiC at 33, 36, 38° [24,25]. The crystallite sizes of Na2WO4 and Mn2O3 

calculated based on the Scherrer equation were found to be in agreement with literature 

results [26]. The poor catalysts showed poor crystallinity (as seen from noisy XRD 

patterns) and contained the undesired mixed oxides (MnWO4, NaWO3, and Mn2O3). 

Likewise, the Raman and XRD results afforded a consistent picture: The formation of 

tetrahedral WO4
2‒, as the main active phase, premises the formation of α-cristobalite, 

otherwise it forms non-selective mixed oxide phases. Mn–Na2WO4/TS-1 is exceptional 

catalyst: there is the peak of interaction between Ti and Mn, which peak of MnTiO3 

shown in XRD and Raman analysis. In the literature, it could be found that the addition 

of Ti accelerate the generation of oxygen spillover from Mn2O3 to the Na2WO4, thus 

increasing the performance of Mn–Na2WO4.  
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Figure 3.7. XRD patterns of Mn–Na2WO4 catalysts prepared using different Si-based 

supports. Na2WO4 (▼), Tridymite (■),α-cristobalite (●), MnWO4 (▲), Mn2O3 (), 

NaWO3 (∇). 

 

The good and poor catalysts were clearly differentiated based on the phase 

structure of oxides. Next, I attempted to understand the difference among the good 

catalysts. It was suspected that the different performance of the catalysts at mild 

conditions could originate from different surface properties, such as the morphology, 

the dispersion of the active phase, and the surface composition. Accordingly, SEM–

EDS measurements were performed for selected catalysts with the best C2 yield over 

20% (Figure 3.8). 
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Figure 3.8. SEM and EDS results for selected Mn–Na2WO4 catalysts with the best C2 

yield over 20%. Scale bar indicated 5 μm.  

 

The EDS mapping results in Figure 3.8 reveals that SiO2- and SiC-supported 

catalysts possess an inhomogeneous distribution of the active metals. In particular, the 

SiO2-supported catalyst exhibited a local enrichment of Mn, while the Na and W special 

distribution was inhomogeneous for the SiC-supported catalyst. Contrary, the EDS 

results for catalysts based on ordered-porous supports (BEA(1700), TS-1, SBA-15) 

showed a homogeneous dispersion of all the three active elements.. Their morphology 

also looked similar with each other. . 
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Cross-referencing the results for catalytic activity at 750 °C (Figures 3.5b,c) and 

the EDS results (Figure 3.8) suggests that the catalytic activity at a lower temperature 

is correlated with the uniform distribution of active elements throughout the surfaces 

of the supports. Supports with irregular pores exhibited a less uniform distribution of 

the active elements and thus poorer performance compared to supports with ordered 

pores (SBA-15 or high-silica zeolites). Metal precursors dispersed better in the ordered 

pores of zeolites or mesoporous silica during the impregnation. This leads to a uniform 

distribution of active elements after the calcination. Better dispersion of active elements 

results in more accessible sites which is believe to be important to enable low-

temperature activation of CH4. 

Table 3.3. Near-surface composition for selected Mn–Na2WO4 catalysts with the best 

C2 yield over 20%.a 

Support O(1s)(MOx) O(1s)(SiO2) Si(2p) W(4f7/2) Na(1s) Mn(2p) 

BE %a BE %a BE %a BE %a BE %a BE %a 

BEA (150) 529.9 2.9 532.3 59.5 103 32.3 35.3 0.9 1072 4.1 641.5 0.2 

BEA (440) 530.2 4.2 532.4 55.7 103.2 34.5 35.4 1.1 1072 4.2 641.7 0.4 

BEA 

(1700) 

530 5.0 532.4 55.1 103.2 35 35.4 1.1 1072 3.4 641.6 0.3 

ZSM (90) 529.8 2.9 532.1 59.2 102.7 29.9 35 0.9 1072 6.7 641.5 0.4 

ZSM 

(2120) 

530.2 4.4 532.5 56.3 103.2 34.7 35.3 0.9 1072 3.1 641.8 0.4 

ZSM 

(1880) 

530.2 4.9 532.6 56.3 103.4 34 35.5 1.0 1071 3.4 642 0.4 

SBA-15 530.1 5.0 532.4 53.5 103.3 36.6 35.5 1.3 1071 3.3 641.9 0.3 

TS-1 530.1 6.9 532.3 53.5 103.2 33.5 35.4 1.0 1072 4.7 641.7 0.4 

SiO2 530 3.9 532.6 58.5 103.2 33.4 35.1 0.7 1072 2.8 641.9 0.6 
a Loading: 2% Mn, 5% Na2WO4.

. 

 

Among the ordered porous supports, mesoporous silica (SBA-15) gave a higher 

activity compared to that of BEA and ZSM at a lower temperature. As their morphology 

and dispersion of active elements looked quite identical, the surface composition of the 

catalysts was examined based on XPS. Table 3.3 compares the near-surface 

concentration of the metals (Na, Mn, and W) for selected catalysts with the best C2 
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yield over 20%. It is clear that the surface was enriched in Na for all the catalysts, and 

its near-surface concentration was much higher than those of W and Mn when 

compared to the theoretical composition. Apparently, during the high-temperature 

calcination, light elements like Na is easily migrated from the inner parts of the catalysts 

to the near-surface area, resulting in the observed near-surface enrichment in Na. On 

the other hand, the SBA-15-supported catalyst had the highest near-surface 

concentration of W (1.3%a), followed by BEA (1.1%a) and ZSM (0.9–1.0%a), which 

is highly consistent with the order of CH4 conversion of these catalysts at 750 °C. This 

fact together with SEM-EDS results suggests that the number of tetrahedral WO4
2‒ 

active sites available is the most important for the low-temperature CH4 activation. The 

higher concentration of W on the near surface of the SBA-15-supported catalyst 

compared to the ZSM- and BEA-supported catalysts could be attributed to the pore size 

of the support itself. The large pore size of SBA-15 plausibly leads to more uniform 

impregnation of the metal precursor. The higher CH4 conversion of BEA than ZSM 

zeolite further confirmed the advantage of the larger pore size on the dispersion of W.  
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3.4. Conclusion 

In this chapter, the OCM performance of Mn–Na2WO4 catalysts supported on 

various Si-based supports were thoroughly investigated in order to discover the origin 

of their different performance. It was found that the pure or high silica supports were 

suitable to immobilize Mn–Na2WO4 When such supports were employed, the catalysts 

exhibited similar performance at 800 °C. However, at a lower temperature, mesoporous 

silica, SBA-15, appeared to be most promising in terms of their ability to maintain the 

catalytic performance. Through a series of characterization, it was elucidated that the 

large and ordered pores of SBA-15 is essential for improving the dispersion of 

tetrahedral WO2
‒ active sites macroscopically over particles and microscopically newer 

the surface. The OCM reaction suffers from an intrinsic tradeoff between the CH4 

conversion and C2 selectivity, which becomes severer at a higher temperature. The 

structure-performance relationship clarified here is directly useful for developing 

catalysts operatable at a lower temperature.  
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Chapter 4 

Learning catalyst design based on bias-free dataset  

for oxidative coupling of methane 
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Abstract: The discovery of synergistic multicomponent catalysts has been hardly achieved 

without preknowledge-driven try-and-error cycles. Here, I generated 300 M1–M2–M3/Support 

catalysts based on random sampling of a huge materials space, and evaluated their performance 

in the oxidative coupling of methane using a high-throughput screening instrument. Thus 

acquired catalyst big data was used to derive a guideline of combinatorial catalyst design. It 

was proven that the catalyst performance was determined by the performance of constituent 

combinations, not by the inclusion of specific elements. Novel synergistic combinations were 

identified, and the catalyst design was successfully generalized based on the decision tree 

regression analysis. 

Keywords: Oxidative coupling of methane, High-throughput experimentation, Catalyst 

informatics, Decision tree, Catalyst design. 
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4.1. Introduction  

The history evidences serendipity as one of the major drivers in the field of catalysis 

[1-4]. In particular, the design of solid catalysts often premises synergistic combinations of 

multiple components. A combination can be synergistic by many causes, e.g. when two 

components have complementary or cooperative roles in multi-step catalysis [5-10], when an 

auxiliary component promotes/sustains the function of the main component [11-13], when 

multiple entities create one specific structure on surfaces [14-18], and so on [19-22]. The 

plurality of causes in turn makes estimation difficult: Expected synergy in one aspect does not 

necessarily give practical synergy when the combination is negative in other unaccounted 

aspects [23]. Exploitation of synergistic combinations is essential for the design of performant 

solid catalysts, but they are hardly predictable. This is why serendipity in try and error still 

occupies an irreplaceable role. Along with the rise of materials informatics, data science 

approaches are extensively applied in the field of catalysis [24]. Since performance prediction 

of solid catalysts requests a model to learn combinatorial effects, catalyst informatics would 

bring breakthrough on the empirical nature of catalyst development.  

Upgrading methane without mediating syngas attracts great attention due to the 

increasing availability of natural gas [25]. Oxidative coupling of methane (OCM) indicates the 

conversion of methane into C2 products, especially in the presence of molecular oxygen. The 

OCM is featured with a persistent conversion-selectivity tradeoff caused by the inertness of 

methane with respect to the desired C2 products [26]. Nonetheless, a wide variety of catalysts 

are known to improve the C2 yield as compared to the non-catalytic free radical process. 

Zavyalova et al. reported a pioneering work on the application of catalyst informatics in OCM 

[27]. They applied the analysis of variance to 1870 data that were collected from literature. 

Thus identified synergistic combinations (such as Na–La, Na–Mn, and Ba–Sr) were in line 

with the understanding of experimentalists. More recently, an elegant meta-analysis approach 
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was presented by Schmack et al. [28]. Physicochemically interpretable hypotheses were 

translated into machine-learnable descriptors with the aid of textbook knowledge. They were 

evaluated on the literature dataset, and eventually gave a physicochemically interpretable 

model that relates the catalyst composition with the C2 yield. The model successfully proposed 

the importance of combining carbonate- and oxide-forming elements. On the other hand, as 

was stated by the same authors, the model would be negatively affected by inconsistency of 

catalyst evaluation processes among literature. Anthropogenic biases present in the literature 

dataset would be also an important risk as a model learns such biases [29].  

In Chapter 2, a high-throughput screening (HTS) instrument was successfully 

developed for automatic performance evaluation of 20 catalysts at a predefined set of reaction 

conditions in a fixed-bed configuration [30]. Here, the same HTS instrument was used to 

acquire a bias-free and process-consistent OCM dataset. 300 M1–M2–M3/Support catalysts 

were prepared, where the four components were randomly selected from a library. Their 

performance in OCM was evaluated at 135 conditions. The obtained dataset was analyzed with 

the aim to uncover hidden guidelines behind combinatorial catalyst design.  
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4.2. Materials and methods 

4.2.1. Materials 

Metal precursors used in this work were LiNO3, NaNO3, Mg(NO3)2, KNO3, 

Ca(NO3)2·4H2O, Ti(OiPr)4, VOSO4·xH2O (x = 3–5), Mn(NO3)2·6H2O, Fe(NO3)3·9H2O, 

Co(NO3)2·6H2O, Ni(NO3)2·6H2O, Cu(NO3)2·3H2O, Zn(NO3)2·6H2O, Sr(NO3)2, 

Y(NO3)3·6H2O, ZrO(NO3)2·xH2O (x = 2), (NH4)6Mo7O24·4H2O, Pd(OAc)2, CsNO3, Ba(NO3)2, 

La(NO3)3·6H2O, Ce(NO3)3·6H2O, Nd(NO3)3·6H2O, Eu(NO3)3·5H2O, Tb(NO3)3·5H2O, 

Hf(OEt)4, and (NH4)10H2(W2O7)6. They were purchased from either of Sigma–Aldrich, Kanto 

Chemical, Wako Pure Chemical Industries, and Alfa-Aesar. The following solid powders were 

used as supports or as support precursors: Magnesium oxide (MgO, 5.5 m2/g, Kanto Chemical), 

aluminum oxide (γ-Al2O3, 150 m2/g, Sumitomo Chemical Industry), silica gel (SiO2, 650 m2/g, 

60N, Kanto Chemical), calcium hydroxide (Ca(OH)2, 3.0 m2/g, Wako Pure Chemical 

Industries), titanium(IV) oxide (TiO2, 17.4 m2/g, anatase, Kanto Chemical), zirconium(IV) 

oxide (ZrO2, 3.2 m2/g, Kanto Chemical), barium hydroxide (Ba(OH)2·8H2O, 1.1 m2/g, Wako 

Pure Chemical Industries), lanthanum(III) oxide (La2O3, 8.3 m2/g, Wako Pure Chemical 

Industries), and cerium(IV) oxide (CeO2, 3.9 m2/g, Wako Pure Chemical Industries). The 

specific surface area of the supports was determined by the Brunauer–Emmett–Teller (BET) 

method for the nitrogen adsorption isotherm at 77 K. 

4.2.2. Catalyst library 

The catalyst library was created by preparing 300 catalysts. Table 4.1 summarizes the 

composition, the best performance, and the corresponding conditions for the 300 catalysts. The 

catalysts were expressed in the form of M1–M2–M3/Support. The three active elements (M1–

M3) were randomly selected from either of Li, Na, Mg, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, 

Sr, Y, Zr, Mo, Pd, Cs, Ba, La, Ce, Nd, Eu, Tb, Hf, W, and “none”, where repetitive selection 

of the same element was allowed. They were combined with a support which was randomly 
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picked up from either of MgO, Al2O3, SiO2, CaO, TiO2, ZrO2, BaO, La2O3, and CeO2. Note 

that CaO and BaO were obtained from the corresponding hydroxides by calcination. Three-

combinations with repetitions from 28 elements (including none) and 9 supports correspond to 

a total of 36,540 catalysts. Three hundreds among 36,540 might not be sufficient to find all the 

important trends present in the entire parametric space. However, the 300 catalysts correspond 

to sampling of respective elements and supports at least 20 times (Figure 4.1). Moreover, a 

majority of the catalysts have never been reported in literature. 

The catalysts were prepared according to the method described in Chapter 2 [30]. The 

loading of individual elements was fixed at 0.37 mmol to a unit gram of a support. Remarkably, 

the loading was duplicated when the same element was doubly selected; no metal precursor 

was added when "none" was selected; and so on. A support powder was impregnated with a 

solution of selected metal precursors at 50 °C for 6 h. The resultant solid was vacuum dried, 

and subjected to calcination at 1000 °C under air for 3 h. Twenty catalysts were produced in 

one experiment with the aids of a parallel hot stirrer (Reacti-Therm, Thermo Scientific) and a 

centrifugal evaporator (CVE-3100, Eyela).  

Table 4.1. Catalyst library. The composition, the best performance, and the corresponding 

conditions are shown.a,b,c 

No M1 M2 M3 Suppor

t 

C2 

yield 

(%) 

CH4 

convers

ion (%) 

C2 

selectivi

ty (%) 

CH4/O2 

(mol/mol) 

Temp. 

(°C) 

Total 

flow 

(mL/

min) 

PAr 

(atm) 

1 Li K Mn MgO 8.2 29.0 28.3 2 800 10 0.15 

2 Li Fe Tb MgO 4.7 24.7 19.1 2 850 10 0.4 

3 Li Fe Hf MgO 2.5 28.1 8.8 2 900 10 0.15 

4 Na Na none MgO 7.4 34.0 21.7 2 850 20 0.15 

5 Na Ni Y MgO 1.0 24.6 4.1 6 750 20 0.7 

6 Na Ce Tb MgO 3.8 32.1 11.9 6 900 20 0.15 

7 Na Tb Hf MgO 8.6 30.9 27.7 2 800 20 0.15 

8 Na Eu Hf MgO 16.6 35.6 46.7 2 750 10 0.15 

9 Mg Ca Zn MgO 2.1 24.0 8.9 4 850 15 0.15 

10 Mg Mn none MgO 7.9 27.1 29.0 2 850 20 0.15 

11 Mg Zn Eu MgO 15.5 40.9 37.9 2 700 20 0.15 

12 Mg Nd none MgO 9.5 35.5 26.8 2 850 20 0.7 

13 Ca Zr La MgO 16.1 33.8 47.6 2 750 20 0.15 

14 Ti Ni Cs MgO 1.6 33.2 4.8 2 800 20 0.4 
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15 Ti V Ba MgO 8.2 37.7 21.8 2 900 15 0.7 

16 V Fe Ni MgO 7.6 34.3 22.0 2 800 15 0.15 

17 V Mo Pd MgO 0.7 26.5 2.6 6 900 15 0.7 

18 V Tb W MgO 6.7 33.6 19.9 2 850 15 0.15 

19 Fe Y Nd MgO 3.6 21.5 16.9 2 800 20 0.15 

20 Fe Zr none MgO 7.1 37.8 18.7 2 850 20 0.15 

21 Fe Ce Tb MgO 6.2 25.0 25.0 2 800 10 0.15 

22 Fe La Hf MgO 6.5 29.3 22.2 2 850 15 0.15 

23 Co Zn Sr MgO 1.0 31.0 3.2 6 850 20 0.15 

24 Co Zn Tb MgO 5.7 36.6 15.6 2 900 20 0.15 

25 Co Y Hf MgO 7.0 26.6 26.4 2 700 20 0.15 

26 Ni Y Tb MgO 5.6 18.3 30.7 4 900 20 0.7 

27 Y La Ce MgO 12.1 37.8 32.1 2 700 20 0.15 

28 Mo Cs La MgO 8.5 31.8 26.8 2 850 20 0.4 

29 Mo Ce Tb MgO 7.3 33.2 22.0 2 800 20 0.15 

30 Li Mg Hf Al2O3 3.2 40.4 7.9 2 850 15 0.15 

31 Li Ca Mn Al2O3 7.2 38.4 18.8 2 850 20 0.15 

32 Li Ti La Al2O3 15.5 37.4 41.4 2 850 15 0.7 

33 Li Fe none Al2O3 9.2 32.2 28.4 2 850 10 0.7 

34 Li Hf none Al2O3 4.9 35.2 14.0 2 900 20 0.4 

35 Na K Hf Al2O3 8.2 32.0 25.7 2 850 10 0.4 

36 Na Ti Cu Al2O3 11.5 20.7 55.9 4 850 20 0.4 

37 Na Mn Ni Al2O3 1.2 26.6 4.5 6 850 20 0.7 

38 Na Co Ni Al2O3 7.8 28.5 27.2 2 800 10 0.15 

39 Na Co none Al2O3 9.3 35.7 26.2 2 850 10 0.7 

40 Na Cu Ce Al2O3 3.2 27.4 11.5 2 900 10 0.15 

41 Mg Mn Cs Al2O3 8.6 32.8 26.2 2 900 20 0.7 

42 Mg Co Ba Al2O3 2.7 26.9 10.0 2 900 10 0.15 

43 Mg La Nd Al2O3 8.2 37.7 21.6 2 850 20 0.15 

44 K Mn Ni Al2O3 1.5 26.4 5.8 6 900 15 0.7 

45 K Co Cs Al2O3 9.3 34.2 27.4 2 850 15 0.7 

46 K Y Hf Al2O3 10.8 20.5 52.4 4 850 15 0.7 

47 K La W Al2O3 4.7 24.0 19.7 2 800 20 0.4 

48 Ti Mn Y Al2O3 10.4 32.4 32.2 2 850 20 0.15 

49 Ti Fe Mo Al2O3 9.4 36.8 25.5 2 850 20 0.4 

50 Ti Cs La Al2O3 7.6 30.7 24.9 2 800 20 0.4 

51 V Cu Ba Al2O3 1.8 37.7 4.7 2 900 20 0.15 

52 Fe Pd Nd Al2O3 11.6 20.3 57.3 4 850 20 0.15 

53 Fe Ba none Al2O3 4.9 33.0 14.7 2 850 20 0.15 

54 Fe La W Al2O3 2.7 36.3 7.5 2 850 20 0.15 

55 Co Ni Zr Al2O3 1.3 32.3 4.1 2 900 20 0.15 

56 Co Zn Nd Al2O3 10.2 36.1 28.3 2 850 20 0.4 

57 Co Y Tb Al2O3 5.9 35.8 16.5 2 800 20 0.15 

58 Ni Cu Zr Al2O3 1.6 37.8 4.2 4 750 20 0.7 

59 Ni Zn La Al2O3 1.0 25.5 3.8 6 750 10 0.7 

60 Cu Y Ce Al2O3 1.7 20.0 8.4 6 900 20 0.15 

61 Zn Pd Cs Al2O3 2.0 26.9 7.6 6 850 15 0.7 

62 Sr Pd none Al2O3 9.1 21.0 43.1 4 850 10 0.15 

63 Y Pd Ba Al2O3 9.4 33.6 27.9 2 850 20 0.4 

64 Zr Cs La Al2O3 9.3 31.2 29.7 2 850 15 0.7 

65 Ba La W Al2O3 3.5 22.5 15.6 2 800 20 0.4 

66 Li K Co SiO2 10.4 30.3 34.4 2 850 10 0.7 

67 Li Fe W SiO2 6.5 36.9 17.7 2 900 20 0.4 

68 Li Ni none SiO2 8.1 34.9 23.3 2 850 20 0.4 

69 Li Nd Tb SiO2 8.4 26.4 31.8 2 850 20 0.4 

70 Li Ni Hf SiO2 11.2 33.1 33.7 2 850 20 0.4 

71 Na Sr Mo SiO2 12.9 36.6 35.2 2 850 10 0.7 

72 Na Ce Tb SiO2 8.9 26.8 33.3 2 850 20 0.4 

73 Mg V Pd SiO2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

74 Mg Cu Sr SiO2 7.3 27.1 27.0 2 800 10 0.15 
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75 Mg Zn Eu SiO2 7.6 43.2 17.6 2 850 20 0.15 

76 K Mn La SiO2 8.1 36.5 22.2 2 850 20 0.4 

77 K Zr Tb SiO2 7.7 15.3 50.4 4 900 20 0.15 

78 Ca Ti Cu SiO2 9.7 34.4 28.2 2 900 20 0.7 

79 Ti Sr La SiO2 8.4 29.3 28.7 2 850 20 0.15 

80 Ti Mo Nd SiO2 4.5 30.8 14.8 6 900 20 0.15 

81 V Pd Nd SiO2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

82 V Cs Nd SiO2 8.0 31.1 25.8 2 850 20 0.15 

83 Mn Fe Cu SiO2 7.4 34.6 21.3 2 850 20 0.15 

84 Mn Zn Sr SiO2 10.4 31.8 32.7 2 900 20 0.7 

85 Co Ni Cu SiO2 6.1 33.9 18.1 2 850 20 0.4 

86 Co Y Nd SiO2 8.7 23.5 37.1 2 800 20 0.15 

87 Ni W none SiO2 0.7 2.2 30.2 2 700 15 0.7 

88 Ni Ce Nd SiO2 8.3 26.9 30.9 2 850 10 0.7 

89 Cu La Tb SiO2 3.9 37.0 10.5 2 900 20 0.4 

90 Cu none none SiO2 8.1 34.3 23.6 2 800 10 0.15 

91 Zn Sr Pd SiO2 1.2 43.5 2.8 2 850 20 0.7 

92 Zr Cs Cs SiO2 2.5 18.0 13.8 6 900 15 0.15 

93 Mo Ba none SiO2 8.5 32.8 25.9 2 850 20 0.4 

94 Cs Ba Ce SiO2 7.8 23.2 33.6 2 850 15 0.7 

95 Li V Eu CaO 13.6 36.6 37.2 2 850 20 0.7 

96 Li Co Mo CaO 4.8 25.4 18.9 2 750 10 0.15 

97 Li Cu Cs CaO 5.6 31.0 18.1 2 900 20 0.15 

98 Na Mg Hf CaO 14.3 33.6 42.5 2 750 15 0.4 

99 Na Ti Ce CaO 11.9 31.6 37.6 2 700 20 0.15 

100 Na Mn La CaO 6.7 33.3 20.2 2 800 20 0.15 

101 Na Cu Hf CaO 4.2 25.6 16.3 2 800 20 0.15 

102 Mg Co Ce CaO 8.0 33.5 23.9 2 800 20 0.15 

103 Mg Cu Eu CaO 4.6 37.7 12.2 2 900 20 0.15 

104 Mg Sr Y CaO 14.4 35.6 40.5 2 800 20 0.4 

105 Mg Sr Ba CaO 17.4 39.6 44.1 2 800 20 0.7 

106 Mg Zr Hf CaO 15.9 36.6 43.6 2 750 20 0.15 

107 K Sr Y CaO 9.9 33.2 29.8 2 700 15 0.4 

108 K Y Eu CaO 13.1 40.4 32.3 2 750 20 0.15 

109 Ca Mn none CaO 7.6 28.4 26.6 2 850 15 0.15 

110 Ca Nd Tb CaO 7.2 38.4 18.8 2 850 20 0.15 

111 Ti Fe Sr CaO 10.3 31.2 32.9 2 700 20 0.15 

112 Ti Zn Tb CaO 12.5 36.1 34.6 2 700 20 0.15 

113 Ti Cs Ce CaO 15.4 33.2 46.3 2 700 15 0.15 

114 V Pd W CaO 0.7 30.8 2.4 6 900 10 0.7 

115 V Ce Hf CaO 12.3 31.1 39.4 2 750 15 0.15 

116 Mn Tb Hf CaO 8.9 27.9 31.8 2 800 10 0.15 

117 Mn Fe Hf CaO 7.7 24.5 31.4 2 800 15 0.15 

118 Fe Y Tb CaO 9.4 30.4 30.8 2 750 10 0.15 

119 Fe Ba Ce CaO 11.6 37.6 30.9 2 750 20 0.15 

120 Co Cu Nd CaO 3.2 34.4 9.3 2 900 10 0.15 

121 Sr Cs La CaO 8.0 17.2 46.3 4 750 20 0.15 

122 Sr Pd W CaO 1.0 33.4 3.0 6 900 15 0.7 

123 Y Mo Nd CaO 13.2 40.7 32.5 2 800 20 0.4 

124 Ba Eu none CaO 17.0 42.8 39.6 2 750 20 0.15 

125 Li Ti V TiO2 8.4 34.2 24.5 2 850 20 0.15 

126 Li Fe Ce TiO2 11.6 38.2 30.3 2 900 20 0.7 

127 Li Zn Pd TiO2 7.5 35.5 21.1 2 850 20 0.15 

128 Na Fe Pd TiO2 2.1 33.7 6.2 2 850 20 0.15 

129 Na Co Pd TiO2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

130 Mg Mn Ce TiO2 14.2 37.4 38.0 2 850 15 0.7 

131 Mg Sr Tb TiO2 10.3 36.4 28.4 2 900 20 0.7 

132 Mg Ti La TiO2 12.0 32.5 37.0 2 850 15 0.7 

133 Ca V Y TiO2 8.6 29.1 29.5 2 800 20 0.4 

134 Ti Zn La TiO2 10.4 28.5 36.4 2 800 20 0.4 
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135 Ti Zr Ce TiO2 15.2 38.4 39.6 2 800 20 0.4 

136 Ti Cs W TiO2 16.6 37.8 43.8 2 750 20 0.4 

137 Ti Y Ce TiO2 1.3 24.0 5.5 2 800 10 0.15 

138 V Co La TiO2 8.1 30.8 26.4 2 800 10 0.15 

139 V Co Ce TiO2 5.5 30.8 17.8 2 700 10 0.15 

140 V Ni Zn TiO2 6.1 30.1 20.3 2 800 10 0.15 

141 V Pd none TiO2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

142 Mn Fe Nd TiO2 9.4 30.4 31.0 2 750 20 0.4 

143 Mn Cu Sr TiO2 8.2 26.6 30.7 4 850 20 0.15 

144 Mn Nd W TiO2 7.9 37.0 21.4 2 900 20 0.4 

145 Fe Fe Ni TiO2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

146 Fe Cu Sr TiO2 8.2 39.6 20.7 2 850 20 0.15 

147 Fe Zn W TiO2 15.4 31.3 49.2 4 850 20 0.15 

148 Fe Sr Mo TiO2 8.3 31.2 26.4 2 800 10 0.15 

149 Co Sr Hf TiO2 13.7 37.3 36.8 2 800 20 0.15 

150 Ni Zn La TiO2 2.1 14.9 14.3 4 750 10 0.7 

151 Ni Ce W TiO2 9.2 30.4 30.3 2 750 10 0.15 

152 Ni Mo Eu TiO2 4.2 25.4 16.5 2 850 20 0.7 

153 Cu Zr Tb TiO2 7.4 37.8 19.6 2 850 20 0.15 

154 Cu Mo Ce TiO2 15.3 38.7 39.5 2 800 20 0.4 

155 Cu La Tb TiO2 10.3 32.5 31.7 2 850 20 0.4 

156 Cu Eu Eu TiO2 5.9 35.8 16.5 2 800 20 0.15 

157 Zn Zn Nd TiO2 11.4 19.0 59.9 4 850 20 0.15 

158 Zn Zr Tb TiO2 12.9 34.4 37.6 2 850 10 0.7 

159 Zn Tb Hf TiO2 11.0 30.4 36.2 2 850 15 0.7 

160 Y Cs Ce TiO2 12.4 39.1 31.8 2 850 20 0.4 

161 Y Nd Tb TiO2 8.7 38.4 22.6 2 850 20 0.15 

162 Mo Ba Ce TiO2 15.4 41.3 37.4 2 850 10 0.7 

163 Mo Ce Nd TiO2 7.0 31.9 21.9 2 900 20 0.7 

164 Mo Ce W TiO2 8.7 34.4 25.4 2 850 20 0.15 

165 Cs Ba Eu TiO2 13.3 39.3 33.9 2 800 20 0.15 

166 La Ce W TiO2 12.5 40.4 31.0 2 850 20 0.15 

167 Ce Nd Tb TiO2 10.8 34.9 31.0 2 800 15 0.4 

168 Li Ca Ca ZrO2 1.3 36.4 3.7 2 850 20 0.15 

169 Li Mo Nd ZrO2 16.7 38.3 43.5 2 700 20 0.4 

170 Li Ba Nd ZrO2 1.1 27.9 4.1 4 900 20 0.7 

171 Li La Eu ZrO2 6.3 31.3 20.1 2 800 20 0.15 

172 Li La W ZrO2 13.6 40.1 34.0 2 850 20 0.7 

173 Li Co Y ZrO2 2.2 26.0 8.5 2 750 10 0.15 

174 Li Tb none ZrO2 6.0 36.8 16.3 2 900 20 0.15 

175 Li K Mn ZrO2 10.7 38.0 28.1 2 750 15 0.15 

176 Na Ba Nd ZrO2 10.5 31.2 33.8 2 750 10 0.15 

177 Na Eu W ZrO2 18.2 40.8 44.6 2 850 20 0.7 

178 Na V Mo ZrO2 8.2 31.5 26.1 2 800 10 0.15 

179 Na K none ZrO2 6.4 38.7 16.6 2 750 20 0.15 

180 Mg V Hf ZrO2 3.2 33.7 9.4 2 850 20 0.15 

181 Mg Zr W ZrO2 9.6 26.8 35.9 2 850 10 0.7 

182 K Ba Nd ZrO2 8.5 29.1 29.2 2 700 20 0.4 

183 K Mn Zn ZrO2 6.2 36.9 16.8 2 750 20 0.15 

184 K Mn Ce ZrO2 6.6 25.6 25.8 2 800 10 0.15 

185 K Pd Hf ZrO2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

186 Ca V Cu ZrO2 7.0 26.8 26.2 2 800 10 0.15 

187 Ca Ni Cu ZrO2 6.3 35.6 17.8 2 750 20 0.15 

188 Ca Sr Zr ZrO2 10.4 33.6 31.1 2 700 20 0.4 

189 Ca Cu Hf ZrO2 1.9 31.5 6.1 2 800 20 0.15 

190 V Mn W ZrO2 7.8 34.1 23.0 2 850 20 0.15 

191 Mn Ba none ZrO2 5.4 27.1 20.1 2 750 15 0.15 

192 Mn Tb Hf ZrO2 1.4 46.7 3.0 2 850 10 0.7 

193 Mn Fe Nd ZrO2 4.7 34.2 13.8 2 850 20 0.4 

194 Fe Cu Zr ZrO2 6.1 36.2 16.9 2 850 20 0.15 



119 
 

195 Co Ce Nd ZrO2 1.2 25.9 4.7 6 800 15 0.7 

196 Co Sr Ba ZrO2 4.9 12.3 39.7 6 900 20 0.7 

197 Ni Cs Ba ZrO2 1.2 39.6 2.9 2 700 20 0.4 

198 Ni Ba Hf ZrO2 1.3 22.0 6.0 6 850 15 0.4 

199 Ni Y Eu ZrO2 1.0 25.9 3.9 6 800 20 0.7 

200 Zn La Ce ZrO2 3.4 35.0 9.8 2 900 20 0.15 

201 Y Mo Nd ZrO2 7.4 30.1 24.5 2 800 15 0.15 

202 Pd Cs Ba ZrO2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

203 La Eu W ZrO2 4.8 36.7 13.1 2 850 20 0.4 

204 Li Mg Zr BaO 18.6 38.6 48.2 2 800 20 0.7 

205 Li Co Zn BaO 6.2 32.7 19.0 2 900 20 0.7 

206 Li Co Nd BaO 7.1 17.8 39.9 4 900 20 0.15 

207 Li Co Eu BaO 13.8 34.3 40.1 2 800 15 0.15 

208 Li Zr Cs BaO 16.4 36.6 44.9 2 850 20 0.7 

209 Na Ca Mn BaO 9.0 28.5 31.7 2 800 20 0.4 

210 Na Fe Ce BaO 9.3 33.0 28.2 2 850 20 0.4 

211 Mg K Y BaO 17.0 37.2 45.6 2 850 20 0.7 

212 Mg V Mn BaO 10.2 32.6 31.3 2 750 20 0.15 

213 Mg Mn Ni BaO 8.7 30.0 29.1 2 850 20 0.7 

214 Mg Pd none BaO 0.8 45.3 1.8 6 900 15 0.7 

215 Mg Ni W BaO 9.6 24.9 38.6 2 850 20 0.7 

216 K Ca Zr BaO 13.7 36.6 37.3 2 850 20 0.7 

217 K V Mo BaO 18.5 32.9 56.3 2 850 20 0.7 

218 K Zr La BaO 17.5 37.3 47.0 2 800 15 0.7 

219 Ca Mn Mo BaO 10.3 32.5 31.7 2 850 20 0.4 

220 Ca Y Zr BaO 11.0 38.3 28.6 2 800 20 0.4 

221 Ca W none BaO 6.2 20.9 29.7 2 800 15 0.4 

222 V Mn Cu BaO 9.9 34.2 29.1 2 850 15 0.15 

223 V Fe none BaO 13.9 29.4 47.1 4 850 20 0.15 

224 V Zr Eu BaO 12.9 36.2 35.6 2 900 20 0.7 

225 Mn Y Hf BaO 6.1 17.2 35.5 4 900 15 0.15 

226 Fe Ba La BaO 14.1 34.6 40.8 2 850 20 0.7 

227 Co Zn Zr BaO 12.4 36.2 34.4 2 900 20 0.7 

228 Zn Hf none BaO 16.9 36.6 46.0 2 850 20 0.7 

229 Sr Mo none BaO 21.2 37.0 57.4 2 850 20 0.7 

230 Sr Ba Hf BaO 10.6 35.9 29.6 2 850 20 0.7 

231 Mo Cs W BaO 20.2 43.2 46.7 2 850 20 0.7 

232 Ce Nd Hf BaO 15.2 35.4 43.0 2 800 20 0.15 

233 Li Fe Ba La2O3 15.2 35.5 43.0 2 700 10 0.15 

234 Li Y Eu La2O3 15.4 35.9 42.8 2 700 15 0.15 

235 Li Ba La La2O3 15.0 37.8 39.6 2 750 20 0.4 

236 Li Nd Tb La2O3 10.3 30.6 33.8 2 700 10 0.15 

237 Na Ca none La2O3 15.4 33.5 45.9 2 700 20 0.15 

238 Na Fe Tb La2O3 7.5 31.7 23.6 2 850 10 0.15 

239 Na Pd W La2O3 1.3 37.5 3.5 4 900 15 0.7 

240 Mg K Fe La2O3 11.1 19.7 56.3 4 750 20 0.15 

241 Mg Ca Nd La2O3 16.2 39.1 41.3 2 750 20 0.4 

242 K Co Ce La2O3 2.4 24.4 9.7 2 800 15 0.15 

243 K Cu none La2O3 7.5 38.4 19.6 2 850 20 0.15 

244 K none none La2O3 7.9 29.4 27.0 2 800 10 0.15 

245 Ca Mn Sr La2O3 10.6 32.0 33.2 2 700 20 0.15 

246 Ca Fe Tb La2O3 12.3 32.3 38.0 2 750 10 0.15 

247 Ca Pd Tb La2O3 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

248 Ti Co Cu La2O3 1.3 18.3 7.1 6 900 20 0.15 

249 Ti Co Pd La2O3 0.6 40.6 1.5 2 700 20 0.4 

250 Ti Zr Ba La2O3 4.1 33.1 12.4 2 700 20 0.15 

251 Ti Ni Hf La2O3 9.6 36.4 26.4 2 900 20 0.7 

252 V Fe Mo La2O3 7.7 34.2 22.5 2 800 20 0.15 

253 V Mo none La2O3 14.9 41.5 35.8 2 900 20 0.7 

254 V La W La2O3 14.1 34.6 40.8 2 850 20 0.7 
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255 V Ce Nd La2O3 8.4 30.6 27.3 2 700 20 0.15 

256 Mn Sr Mo La2O3 10.8 29.3 36.9 2 700 15 0.15 

257 Fe Cu Zr La2O3 4.9 33.0 14.7 2 850 20 0.15 

258 Fe Nd Tb La2O3 13.4 32.3 41.5 2 700 10 0.15 

259 Ni Hf none La2O3 0.9 41.2 2.2 2 750 20 0.4 

260 Cu Mo Pd La2O3 0.5 28.2 1.8 6 900 20 0.7 

261 Cu La W La2O3 8.2 37.7 21.6 2 850 20 0.15 

262 Zn Y none La2O3 15.1 40.9 36.9 2 750 20 0.15 

263 Zn Zr Cs La2O3 12.2 38.0 32.1 2 750 20 0.15 

264 Sr Y Ce La2O3 14.8 37.1 39.9 2 700 15 0.15 

265 Mo Cs Tb La2O3 13.3 30.1 44.2 2 700 10 0.15 

266 Pd Ce Tb La2O3 1.1 30.8 3.6 6 900 10 0.7 

267 Ba Ce Hf La2O3 13.9 39.4 35.4 2 750 20 0.15 

268 La Tb none La2O3 7.8 29.9 26.2 2 750 20 0.15 

269 Tb Hf W La2O3 15.2 41.7 36.5 2 750 20 0.15 

270 Na K V CeO2 6.6 34.3 19.4 2 850 20 0.15 

271 Na V Y CeO2 7.3 38.3 19.1 2 850 20 0.15 

272 Mg K none CeO2 8.5 28.8 29.6 2 800 10 0.15 

273 Mg Fe none CeO2 7.0 27.5 25.5 2 800 10 0.15 

274 Mg Ni Zn CeO2 1.3 26.7 4.9 6 800 20 0.15 

275 K Co Sr CeO2 6.4 32.8 19.5 2 900 20 0.4 

276 K La Ce CeO2 13.4 32.3 41.5 2 700 10 0.15 

277 K Ce Eu CeO2 5.1 34.4 14.8 2 900 20 0.4 

278 Ti Ni Ba CeO2 4.8 36.2 13.2 2 750 15 0.7 

279 Ti Zn Pd CeO2 1.2 26.0 4.6 2 800 15 0.15 

280 V Sr W CeO2 1.7 24.6 7.0 6 850 20 0.4 

281 V Zr Nd CeO2 7.5 35.5 21.1 2 850 20 0.15 

282 V Pd W CeO2 1.6 42.9 3.7 2 800 10 0.7 

283 Mn Ni Zn CeO2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

284 Mn Ni Y CeO2 2.9 32.2 9.1 2 900 20 0.4 

285 Mn Sr La CeO2 8.6 35.0 24.7 2 850 20 0.15 

286 Mn Y Zr CeO2 6.6 26.8 24.8 2 800 10 0.15 

287 Mn Ba La CeO2 8.6 34.9 24.7 2 850 20 0.15 

288 Mn none none CeO2 4.9 28.7 17.1 2 800 20 0.15 

289 Mn Eu Hf CeO2 6.2 35.1 17.7 2 800 20 0.15 

290 Fe Zn La CeO2 3.5 24.1 14.7 2 800 10 0.15 

291 Fe Y La CeO2 5.1 25.9 19.5 2 800 10 0.15 

292 Ni Sr Nd CeO2 10.2 34.4 29.8 2 800 20 0.4 

293 Ni Nd Eu CeO2 8.3 32.1 25.9 2 900 20 0.7 

294 Zn Pd Ce CeO2 2.2 32.3 6.8 2 800 20 0.15 

295 Zn La Nd CeO2 9.2 27.9 32.9 2 750 10 0.15 

296 Sr Cs none CeO2 12.5 36.1 34.8 2 800 20 0.4 

297 Sr Ce none CeO2 10.9 33.9 32.1 2 700 20 0.15 

298 Y Zr Eu CeO2 7.2 35.6 20.2 2 850 20 0.15 

299 Mo Pd Ba CeO2 0.7 33.3 2.1 2 800 15 0.4 

300 Cs Ce Nd CeO2 5.9 30.7 19.1 2 800 15 0.15 
aThe catalyst composition is expressed in the form of M1–M2–M3/Support. The three active elements (M1–M3) 

are sorted along the atomic number. 

bThe best C2 yield of individual catalysts is reported together with the corresponding parameters. The performance 

of 9 catalysts was not determined due to sintering at the calcination temperature. The corresponding cells are filled 

with n.d. 

cThe reaction in the absence of catalysts led to the C2 yield of 10.2% with the corresponding CH4 conversion of 

29.7% and the C2 selectivity of 34.3% at the temperature of 850 °C, the CH4/O2 ratio of 2 mol/mol, the total flow 

of 20 mL/min, and PAr of 0.15 atm. 
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Figure 4.1. Frequency of appearance of individual elements and supports in 300 catalysts. 

4.2.3. Catalyst evaluation 

In Chapter 2, a HTS instrument was developed [30]. Here, a brief description of the 

instrument is given. A gas generator supplies a CH4/O2/Ar mixture with the flow volume of the 

three gases individually controlled. The mixture is equally split into 20 reaction quartz tubes 

(4 mm to 2 mm of I.D.) bearing catalyst beds. The reaction tubes are symmetrically placed in 

a hollow electric furnace with three temperature zones (T1–T3 from the feed side to the effluent 

side), where the catalyst beds are placed at the center zone. The effluent gas from the 20 tubes 

is sequentially sampled by an autosampler, and transferred to a quadruple mass spectrometer 

(QMS, Transpector CPM 3, INFICON). Mass signals are converted into the relative pressure 

of individual gases based on external calibrations. Cooperation among the programmed gas 

generation, temperature, and autosampling enables full automation in evaluating the 

performance of 20 catalysts for a predetermined set of reaction conditions. The acquisition of 

the performance of 20 catalysts at one steady-state condition typically takes 6–7 min. Further 

details are found in Chapter 2 [30], where the experimental reproducibility and consistency 

were fully demonstrated.  

The programmed sequence of reaction conditions employed in this chapter is shown in 

Figure 4.2. The catalyst bed height was fixed at 10 mm, assuming a gas hourly space velocity 
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(GHSV) as a known key descriptor in OCM [27,30]. Catalysts were first activated at 1000 °C 

for 160 min under O2. Then, the temperature was stepwise decreased from 900 to 850, 800, 

750, and 700 °C. At each temperature, the total flow volume (10, 15, 20 mL/min/channel, 

corresponding to the contact time of 0.75, 0.50, 0.38 s, respectively), the CH4/O2 ratio (2, 4, 6 

mol/mol), and the Ar concentration (PAr = 0.15, 0.40, 0.70 atm) were stepwise varied. 

Combined variations in the temperature, the total flow volume, the CH4/O2 ratio, and PAr lead 

to 135 conditions per catalyst and 2700 observations for 20 catalysts in a single automated 

operation.  

 

Figure 4.2. Programmed sequence of reaction conditions. Each temperature step includes a 

program for the gas flow. 

4.2.4. Data preprocessing 

The evaluation of 291 catalysts (9 catalysts could not be evaluated) at 135 conditions 

afforded an OCM dataset consisting of 39,285 data points. The dataset denotes the 

correspondence between the catalyst composition and the performance at individual reaction 

conditions. In cost of exploring many unreported catalysts over a wide variety of conditions, I 

found i) severe sintering of some catalysts (e.g. No. 202: Pd–Cs–Ba/ZrO2) during in-line 

calcination at 1000 °C, and ii) carbon deposition at specific conditions. These problems resulted 
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in unnaturally high CH4 conversion and/or very poor carbon balance. Such data points were 

safely excluded from any data analysis.  

4.2.5. Data analysis 

Decision tree classification was performed within the scikit-learn package of Python 

[31]. A decision tree is built by recursive partitioning. It starts from the root node (or called 

parent node) and splits into the left and right child nodes. These child nodes can then be further 

split and consequently, they become parent nodes of their resulting children nodes. Data is split 

on a feature which maximizes the information gain factor (IG) defined as follows,  

𝐼𝐺(𝐷𝑝, 𝑓) = 𝐼(𝐷𝑝) − (
𝑁𝑙𝑒𝑓𝑡

𝑁𝑝
𝐼(𝐷𝑙𝑒𝑓𝑡) +

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁𝑝
𝐼(𝐷𝑟𝑖𝑔ℎ𝑡)) 

where f is a feature to perform the split. Dp, Dleft, and Dright are the data of the parent node and 

the two child nodes, respectively. Np, Nleft, and Nright are the numbers of the samples at the 

parent node and the child nodes, respectively. I is defined as an imputity measure, which is 

used to define the homogeneity of the node. In this report, the Gini Index was used [31]. 

In this thesis, since our catalyst dataset is small, applying pruning methods on decision 

tree is not reasonable and results in derived knowledge become too general. Hence, decision 

tree was kept split until all leaf nodes were pure (dataset are completely split). The final 

conclusions will be extracted after reviewing several decision trees generated by different 

training set in order to avoid biases. 
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4.3. Results and discussions 

4.3.1. Catalyst data acquisition, visualization, and interpretation  

300 catalysts were generated based on random numbers. They were prepared, and 

evaluated using the HTS instrument. 9 catalysts (Nos. 73,81,129,141,145,185,202,247,283) 

were not evaluated due to severe sintering in the calcination step. The evaluation of the 

remaining 291 catalysts in 135 conditions afforded 39,285 data points, which are visualized 

using a scatter plot for the CH4 conversion vs. the C2 selectivity (Figure 4.3). As demonstrated 

in Chapter 2 [30], the scatter plot visualization for the entire dataset provides a facile 

description of a general behavior of catalysis. For instance, it dictates i) a conversion-selectivity 

tradeoff for determining the upper limit of the C2 yield (Figure 4.3a), and ii) the temperature 

and the CH4/O2 ratio as the two most influential conditions.  

Here, according to the scope of the study, I rather focus on a relationship between the 

composition and the OCM performance. The performance of the 291 catalysts was compared 

in terms of the best C2 yield that individual catalysts gave among the 135 conditions. The 

comparison at one fixed set of reaction conditions was not adopted as different catalysts usually 

possess their own sweet spots. Thus such comparison may find catalysts which are not actually 

very performant but just suitable for the selected set of conditions. This is especially important 

when a wide variety of catalysts are tested as in the current study. Besides, the OCM is known 

to be process-sensitive [27,32,33]. Figure 4.4 summarizes the distribution of 291 data points 

corresponding to the best C2 yield data of the 291 catalysts. The star mark represents the data 

point of the best C2 yield achieved in the absence of catalysts as a reference. It is known that 

the OCM reaction can proceed even in the absence of catalysts via a free radical mechanism in 

the gas phase [10,34]. In the current case, the catalyst-free OCM gave at best ca. 10% of the C2 

yield. Considering 10% as a standard, there were catalysts which could improve the C2 yield 

and those which deteriorated it by mediating combustion of CH4 into COx. Here, I classified 
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catalysts into three cases based on the best C2 yield: i) Positive (> 13%), ii) neutral (7–13%), 

and iii) negative (< 7%). The C2 yield range of 10 ± 3% for the classification was determined 

firstly to be symmetric with respect to the catalyst-free C2 yield of 10%, secondly to be 

sufficiently larger than the experimental error of below 1% [30], and lastly to have a sufficient 

number of catalysts in each of the three cases. The number of positive, neutral, and negative 

catalysts was 51, 134, and 106, respectively. In Figure 4.4a, it is seen that the best C2 yield of 

the 291 catalysts is distributed in the range of 0‒21%. Their average (8.3%) was found to be 

lower than 10% as the standard, while a relatively large number of catalysts were classified to 

be positive even though they were randomly picked up. The latter observation plausibly reflects 

the fact that the library contains a relatively large number of basic elements and supports (to 

be basic is one of known requirements for OCM catalysts [27,28]. When the distribution of the 

data points is seen in terms of the CH4 conversion and C2 selectivity (Figure 4.4b,c), it is clear 

that the selectivity was the reason of differentiating the best C2 yield of the catalysts. As for the 

distribution in the reaction conditions, almost all the positive catalysts attained the best C2 yield 

at the CH4/O2 ratio of 2 (Figure 4.4d). The percentage of positive catalysts increased along with 

the decrease of the reaction temperature (Figure 4.4e), while there was no noticeable trends for 

the total flow (cf. contact time) and PAr (cf. CH4 concentration) (Figure 4.4f,g). In summary, 

the distribution analysis suggests that positive catalysts are such those which can retain high 

C2 selectivity at a high O2 concentration and/or can maintain the conversion at a low 

temperature. 
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Figure 4.3. Visualization of the entire OCM dataset for 291 catalysts based on scatter plots: 

(a) CH4 conversion vs. C2 selectivity with the C2 yield indicated by the color. The distribution 

of data points in terms of (b) the temperature and (c) the CH4/O2 ratio.  
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Figure 4.4. Data distributions corresponding to the best C2 yield for 291 catalysts: (a) C2 yield, 

(b) CH4 conversion, (c) C2 selectivity, (d) CH4/O2 ratio, (e) temperature, (f) total flow, and (g) 

partial pressure of Ar (atm). The colors reflect the C2 yield. The star corresponds to the data 

point taken without catalysts.  

Figure 4.5 shows the same scatter plots with those of Figure 4.3 using only the best C2 

yield data points, where the corresponding catalyst names are written as long as the space 
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allows. One can glance at elements and supports which frequently appear in positive and 

negative catalysts. For example, positive catalysts are often associated with the presence of Sr, 

Mg, Mo, and BaO, while negative catalysts often accompany Cu, Pd, Ce, Al2O3, etc. However, 

one also notices that the inclusion of specific components does not necessarily leads to positive 

or negative catalysts. For example, Ce appears in some of positive catalysts, and Mo is 

occasionally included in negative catalysts. This fact suggests that the performance is not 

determined by the presence of one specific component, but combination effects are important. 

When the scatter plot is colored based on the important reaction conditions, further information 

can be extracted. Most of positive catalysts attained the best C2 yield at the CH4/O2 ratio of 2 

(as was mentioned in Figure 4.4d). A higher CH4/O2 ratio appeared only when the catalysts 

were scarcely selective or not sufficiently selective at a lower CH4/O2 ratio (Figure 4.5b). A 

high C2 yield was rarely obtained at 900 C, as few catalysts can retain the selectivity at such 

a harsh condition (Figure 4.5c). Positive catalysts with group 6 elements tended to give the best 

C2 yield at 850 C. In particular, two entries, Sr–Mo–none/BaO and K–V–Mo/BaO, exhibited 

very high C2 selectivity at 850 C. Some of positive catalysts exhibited the best performance 

at 700 C, the employed lowest temperature. As known in literature [35,36], these catalysts 

mostly contained rare-earth elements such as Ce and La2O3. The random exploration identified 

5 catalysts whose best C2 yield exceeds 18%, which were Na–Eu–W/ZrO2, Li–Mg–Zr/BaO, 

K–V–Mo/BaO, Sr–Mo–none/BaO, Mo–Cs–W/BaO. These catalysts were never reported in 

literature.  
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Figure 4.5. Scatter plots of the best C2 yield data points for 291 catalysts. (a) The C2 yield is 

indicated in the color axis. The distribution of data points in terms of (b) the CH4/O2 ratio and 

(c) the temperature. The star corresponds to the data point taken without catalysts.  

Figure 4.6 shows the frequency of appearance of individual elements and supports in 

positive and negative catalysts. In the whole catalysts, individual components were relatively 

evenly sampled (see Figure 4.1). However, when analyzed in relation to their performance, 

some biased are seen in the frequency. Out of 51 positive catalysts, 21 catalysts used oxides of 

group 2 elements (CaO and BaO) as the support, and the other 13 used La2O3. As for the active 

elements (M1–M3), Li > (Mg, Mo, Ce, Eu) > (Ba, La, Hf) appeared relatively frequently. In 

an earlier publication by Zavyalova et al., it was reported that performant OCM catalysts in 

literature frequently contained Li > Mg > Na > Ca > La > Ba > Sr as active elements [27]. 

Indeed, Figure 4.6a finds Li and Mg as specifically positive elements, but not for the other 
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elements. The origin of this discrepancy would be explained as follows: Previous studies 

explored catalysts mainly in a way to develop serendipitously identified seeds, while the 

present study made exploration without preknowledge. For example, Na and Sr are elements 

which are included in Mn–Na2WO4/SiO2 and La–Sr/CaO as the two most famous OCM 

catalysts, but they were not frequently observed in my positive catalysts. This fact suggests that 

these two elements strictly choose combinations, otherwise I was unlucky. Among the 106 

negative catalysts, redox-active and/or acidic supports such as Al2O3, ZrO2, and CeO2 were 

frequently observed. For active elements, mid to late transition metal elements from groups 7–

12 were found as popular choice, while they rarely appeared in the positive catalysts. The 

reason to regard Mn of Mn–Na2WO4/SiO2 as a negative element must be similarly explained.  

 

Figure 4.6. Frequency of appearance of individual elements and supports in (a) positive 

catalysts (C2 yield > 13%) and (b) negative catalysts (C2 yield < 7%).  

 The data analysis for the individual components suggested the importance of 

combinations in designing good OCM catalysts. For example, Li, which is known as the most 
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positive element in literature [24,27,37], frequently appeared not only in the positive catalysts 

but also in the negative ones (Figure 4.6). Figure 4.7 shows the average performance of 

individual elements and supports, which was derived by averaging the best C2 yields of 

catalysts which contained specified components. The huge standard deviations indicate that the 

performance of individual components was quite sensitive to the remaining three components 

in the ternary system. According to these considerations, I next analyzed the performance of 

binary combinations. The best C2 yields were averaged over catalysts which contained a 

specific binary combination (A*B), and this value was compared with the averages of the best 

C2 yields of catalysts which contained only either of the components (A or B). The 291 catalysts 

are far from being sufficient to cover a huge number of potential combinations present in the 

original library, and many combinations were not included in any of the 291 catalysts. Here, 

the analysis was made for combinations whose frequency of appearance reached at least twice. 

Figure 4.8 shows the best and worst 20 binary combinations. It is obvious that the best and 

worst combinations were composed by specific elements and supports: BaO > (Zr, Cs) > (Mo, 

Ba) for the best side, and Pd >> Ni > W for the worst side. Further, when one categorizes 

different elements and supports (the cationic elements of oxides) based on the groups in the 

periodic table, rules of making positive and negative binary combinations become clear. The 

best 20 combinations were mostly explained by the combination of a 1A or 2A element with 

an element of either 2A, 4A, 6A, or lanthanoid series. The combinations between 1A, 2A, and 

lanthanoid series elements evoke well-known Li/MgO, La–Sr/CaO, CeO2–La2O3 [27,34,38], 

while the combinations between basic elements (1A, 2A) and early transition metal elements 

(3A, 4A, 6A) evoke similarly well-known Na2WO4. However, our observations were totally 

different from those of the known catalysts in terms of the choice of elements: e.g. (Cs/BaO, 

K/BaO) vs. Li/MgO, and (Cs–W, Cs–W, Mo–BaO) vs. Na–W. The findings of these novel 

combinations would not have been achieved without the truly multidimensional exploration of 
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a huge materials space. Another advantage of such exploration is at the generalization of results 

towards a catalyst design concept: The combinations between basic elements (1A, 2A) and 

early transition metal elements (3A, 4A, 6A) suggest that d0 metallic salts are effective for 

OCM. For the worst combinations, 80% of the combinations contained 9A or 10A elements. 

These elements strongly depress the performance of positive elements (1A, 2A, 4A, and 

lanthanoid series).  

 

Figure 4.7. Performance of individual elements and supports. The best C2 yields were averaged 

among catalysts containing a specific element or support. 
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Figure 4.8. (a) Best and (b) worst 20 binary combinations. The best C2 yields were averaged 

among catalysts containing a specific combination (A*B), and those containing either of the 

components (A or B). The numbers in the parentheses correspond to the frequency of 
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appearance of specific combinations in 291 catalysts. Note that the large error bars came from 

the fact that the performance was largely influenced by the choice of the other two components 

in the ternary system, and had nothing to do with the experimental error (below ±1%).  

Figure 4.9 compares the average C2 yield of a specific binary combination (A*B) with 

a synergy factor of the corresponding combination, which corresponds to the average C2 yield 

of A*B normalized by the average C2 yield of catalysts containing either of A and B. The 

synergy factor compares how performant a combination is with respect to the individual usage 

of its constituents. The highly linear correlation most clearly evidences the significance of 

choosing synergistic combinations in the design of performant OCM catalysts.  

 

Figure 4.9. Relationship between the performance of catalysts and the presence of synergestic 

combinations. The average C2 yield of catalysts with a specific combination (A*B) is compared 

with a synergy factor. The synergy factor is defined by the ratio of the average C2 yield for 

catalysts with A*B with respect to that for catalysts with either of A and B.  

4.3.2. Decision tree classification  

The results in 4.3.1 figured out two important ideas that the OCM performance of 

catalysts could be represented by combinations and that there were generalizable combination 
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rules based on the elemental groups. Here, in order to derive a general model being directly 

useful for the design of new catalysts, I made the decision tree classification. The classification 

was rendered in a way that the C2 yield of the catalysts was divided into two classes: 0–13% 

(Class 1: not positive), and higher than 13 % (Class 2: positive). Then, my target was to deduce 

the rules and heuristics that can better classify the catalysts into the two classes.
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Figure 4.10. Decision tree generated from 233 catalysts which were randomly selected from the 291 catalysts where catalyst descriptors are the 

presence/absence of specific elements in the composition. The number in square brackets indicates the number of catalysts in class 1 and 2 in each 

node. Left of a node indicates without/absence of an element, while right of a node indicates with/presence of an element. 
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Figure 4.11. Decision tree generated from 233 catalysts which were randomly selected from the 291 catalysts where catalyst descriptors are the 

presence/absence of specific elements in the composition and their group (1-12) in periodic table. The number in square brackets indicates the 

number of catalysts in class 1 and 2 in each node. Left of a node indicates without/absence of an element, while right of a node indicates 

with/presence of an element. 
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Figure 4.12. Decision tree generated from 233 catalysts which randomly selected from 291 catalysts with the same descriptors with Figure 4.11. 

Left of a node indicates without/absence of an element, while right of a node indicates with/presence of an element. 
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The test set consisted of 20 % catalysts which were randomly selected from the 

291 catalysts. In a typical procedure, catalyst descriptors like elements were labeled as 

a Boolean value for representing the absence/presence of specific elements in the 

composition. A full decision tree was created until all the leaves nodes were pure. 

Figure 4.10 showed the results of the decision tree with the accuracy of the train and 

test set equals to 1.00 and 0.74, which can derive some useful information. Decision 

tree suggested that supports (La2O3, BaO, CaO, TiO2) were generally good support for 

OCM system (contributed to 32/39 cases of positive catalysts); if not, positive catalysts 

should contain at least one element which is rare-earth metal. In addition, by seeing the 

decision tree architecture, it can be seen the high occurrence of binary combination 

among group 1, 2, and rare earth metals such as La2O3-Ba, La2O3*Tb, BaO*K, 

CaO*Mg, La*Li, or MgO*Eu. The combination of among 1A, 2A, and rare earth metals 

could be confirmed by the literature which were reported elsewhere [27,36,39]. The 

presence of combination of group 6*group 1 for positive catalysts were also observed 

as Mo*Li and W*Cs (similar to to Na*W in Mn-Na-W/SiO2) in the decision tree. 

Nevertheless, decision tree could propose only a few ternary positive combinations 

(such as La2O3*Tb*Hf, CaO*Mg*Sr). The reason of the limited knowledge extraction 

might come from the limited amount of samples compared to total possible sample 

which covers huge parametric space and the presence descriptors are currently not 

sufficient to describe the catalyst performance.  

In order to overcome this shortcoming, using more effective descriptors is one 

of the ways to generalize the catalyst rules. It is known that elements belong in the 

similar group in periodic table exhibited the similar catalyst activity. Therefore, groups 

of M1-M3 elements were utilized as descriptor besides the absence/presence of 
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elements. The new decision tree was illustrated in the Figure 4.11. Figure 4.11 showed 

the decision tree with the same train and test data with the Figure 4.10, where the 

accuracy of train and test set could be achieved at 1.00 and 0.78, meaning that all the 

leave nodes are pure. By considering the detail of the tree structure, it could be seen 

that the tree structure is basically kept where positive catalysts should contain one these 

of supports (La2O3, CaO, BaO or TiO2) or at least one rare-earth element in active 

components. Beside the similar between two tree models, it was interesting that the new 

decision tree showed shallower depth. The shallower tree depth while kept all the leave 

nodes are pure were the results of sophisticated descriptors. Some positive ternary 

descriptors could be found such as La2O3*group 2*group 1, La2O3*group 2*rare earth, 

La2O3*Rare earth*group 6, and TiO2*group 4*rare earth. To validate the results which 

are derivated from decision tree in Figure 4.11, several decision trees were plotted in 

the Figure 4.12 with different training set to confirm the new findings. It is known that 

results from decision tree are sensitive to the choice of training set. By refer different 

decision tree results, such sensitive and unstable results could be avoid before reaching 

the final conclusion.  

In literature, the decision tree has been utilized mainly for predicting the 

outcome of catalysis at different reaction conditions (temperature, contact time, reactant 

composition) and elemental composition (% mol) of only specific catalyst system by 

using literature data [40-43]. Hence, the application of machine learning model such as 

decision tree was applied for optimizing the performance of a specific type of catalyst, 

not for the dealing the. The reason is this problem may come from i) the limited sample 

numbers in literature data, ii) the bias sampling of literature between different catalyst 

systems, which results in the difficulty in correlating the catalyst performance and 

catalyst descriptors. As a natural consequence of random sampling, my dataset covers 
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a variety of catalyst compositions without anthropogenic biases. Such a dataset was 

proven to be useful in directly extracting knowledge of catalyst design through machine 

learning.  
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4.4. Conclusions 

Synergistic combinations among multiple components are the key for designing 

performant solid catalysts. However, they are hard to be generalized, which is why the 

history of catalyst developments largely relied on an empirical try-and-error 

methodology and serendipitous findings therein. In this study, I attempted to derive a 

generalized guideline of catalyst design through: i) generation of 300 M1–M2–

M3/Support catalysts based on random sampling of a huge materials space, ii) 

systematic evaluation of their performance in the oxidative coupling of methane (OCM) 

using a high-throughput screening (HTS) instrument, and iii) analysis of thus obtained 

catalyst big data. Major findings are summarized below.  

 The analysis of the data distribution suggested that performant catalysts are able to 

retain high C2 selectivity at a higher O2 concentration and/or to activate CH4 at a 

lower temperature.  

 Among the evaluated 291 catalysts, 51 and 106 catalysts were classified into 

positive and negative catalysts, which noticeably improved and deteriorated the C2 

yield with respect to the non-catalytic free radical process. The positive and 

negative catalysts individually contained specific elements and supports at 

relatively high frequency. Among these, several elements had not been regarded as 

positive in literature. Novel performant catalysts were thus identified.  

 It was evidenced that the catalyst performance was determined by the performance 

of constituent combinations, rather than the inclusion of specific elements or 

supports. It was also found that synergistic and antagonistic combinations 

individually contained combinations between specific elements and supports. The 
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rules of such combinations could be described based on the groups in the periodic 

table. This suggested general effectiveness of d0 metallic salts.  

 A guideline of combinatorial catalyst design was described based on the decision 

tree classification analysis. Positive catalyst should contains at one support among 

these support (La2O3, BaO, CaO, TiO2), or contain at least one rare-earth element. 

Some positive ternary combination: La2O3*group 2*group 1, La2O3*group 2*rare 

earth, La2O3*Rare earth*group 6, and TiO2*group 4*rare earth  

 To the end, this study successfully demonstrated the power of bias-free catalyst big 

data in finding novel catalysts as well as a catalyst design guideline. It is also 

important to state the essentiality of high-throughput experimentation and data 

science approaches for implementing such a demanding study in a realistic 

timeframe. By equipping all the essential techniques of the study, truly non-

empirical catalyst developments could be realized.  
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Chapter 5 

General conclusion
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Materials informatics is an emerging area of study, which utilizes data-driven 

approaches with the expectation to bring irreversible changes in the research and 

development of materials science. Even though many successful demonstrations of 

materials informatics have been recorded, the lack of a proper dataset is seen as the 

bottleneck of the implementation and breakthrough. While the literature data have been 

accumulated and ready to use, they suffer from an insufficient scale, non-uniformity, 

and anthropogenic biases towards good data with the burial of poor data. Moreover, 

materials properties such as catalyst performance are highly sensitive to process 

conditions, which can be varied from one literature to another literature. Therefore, 

efforts to establish a uniform and sufficient dataset have to be put in the first priority.  

In Chapter 2, I reported an attempt of applying high-throughput 

experimentation  towards the generation of catalyst big data for their usage in catalyst 

informatics using oxidative coupling of methane (OCM) as an example. I have 

successfully developed a high-throughput screening (HTS) instrument that 

automatically acquires 4320 data points for 20 separated catalysts per run in a process-

consistent manner. From our obtained dataset, several visualization tools and machine 

learning techniques were applied to successfully extract knowledge from the obtained 

dataset. It was found that the OCM reaction is generally sensitive to the process 

conditions, and catalyst design has a great impact on the process dependence. In 

particular, the modification of Si-based support affects the performance of Mn-Na2WO4 

in terms of the low-temperature activation of CH4 and the selectivity tolerance against 

high O2 concentration. 

In order to explore the origin of the low-temperature CH4 activation by the 

modification of Si-based supports, in Chapter 3, a series of Si-based supports differing 



152 
 

in the pore size, structure, and composition were employed to immobilize the Mn-Na-

W active phase. The HTS instrument was utilized to evaluate the catalytic performance 

under various reaction conditions. It was found that supports of high Si contents were 

good supports in general, while specifically at low temperature, mesoporous Si-based 

supports appeared to be most effective. By a series of characterization, it was elucidated 

that a high Si content is advantageous in forming a cristobalite phase, which is known 

to stabilize tetrahedral WO4
– active species, and the presence of mesopores is important 

for uniform dispersion of the active phase.  

In Chapter 4, I demonstrated bias-free exploration of new OCM catalysts with 

the aid of random sampling from a huge materials space, HTS, and statistical analysis. 

Here, 300 M1-M2-M3/support catalysts were prepared and evaluated. Based on 

statistical analysis, I successfully identified individual elements and their binary 

combinations which are positive for the OCM performance. The results covered not 

only with the known catalysts obtained in the past three decades but also suggested new 

interactions which have never been reported.  

I believe that the research works carried out in this thesis have clearly delivered 

the advantages of high-throughput experimentation and catalysts informatics for 

catalyst development. The same concept is widely applicable to many catalyst systems. 

Therefore, as a perspective, in the future, I would like to apply this new concept to other 

reaction to strengthen this concept. In this light, my thesis is expected to provide a new 

direction in the research and development of catalysts. 
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