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Abstract
This paper proposes a hierarchical latent embedding structure
for Vector Quantized Variational Autoencoder (VQVAE) to im-
prove the performance of the non-parallel voice conversion
(NPVC) model. Previous studies on NPVC based on vanilla
VQVAE use a single codebook to encode the linguistic infor-
mation at a fixed temporal scale. However, the linguistic struc-
ture contains different semantic levels (e.g., phoneme, sylla-
ble, word) that span at various temporal scales. Therefore, the
converted speech may contain unnatural pronunciations which
can degrade the naturalness of speech. To tackle this problem,
we propose to use the hierarchical latent embedding structure
which comprises several vector quantization blocks operating
at different temporal scales. When trained with a multi-speaker
database, our proposed model can encode the voice character-
istics into the speaker embedding vector, which can be used
in one-shot learning settings. Results from objective and sub-
jective tests indicate that our proposed model outperforms the
conventional VQVAE based model in both intra-lingual and
cross-lingual conversion tasks. The official results from Voice
Conversion Challenge 2020 reveal that our proposed model
achieved the highest naturalness performance among autoen-
coder based models in both tasks. Our implementation is being
made available at 1.
Index Terms: Voice Conversion Challenge 2020, cross-lingual,
variational auoencoder, hierarchical structure.

1. Introduction
Voice conversion (VC) is a subset of voice transformation
method for altering speaker characteristics while preserving the
linguistic information [1]. Conventionally, VC can be seen as
a mapping problem between source waveform and target wave-
form [2]. This perspective requires learning a mapping function
using parallel training data, in which the source and target wave-
form shares the same linguistic information. However, parallel
training data cannot be collected in some situations such as in
cross-lingual VC. Therefore, VC methods for non-parallel data
are increasingly gaining more attention in recent years.

One of the straightforward methods for non-parallel VC
(NPVC) is to concatenate speech recognition (ASR) with text-
to-speech (TTS) model [3, 4, 5]. These methods often achieve
the highest performance with highly natural converted speech
[6]. However, both the ASR and TTS models must be trained
on an enormous amount of transcribed speech data, which is
often very expensive to construct. This constraint limits the ap-
plicability of the ASR-TTS approach in a practical situation.

In contrast, NPVC based on deep generative model such
as Generative Adversarial Network (GAN) and Variational
Autoencoder (VAE) can be trained without transcribed data.

1Our implementation: https://github.com/tuanvu92/VCC2020
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Figure 1: Conventional VQVAE-based VC.

Therefore, this type of NPVC model can be easily constructed
from scratch using vastly available of untranscribed speech,
thus reducing the development cost. With the recent advances of
deep generative model, state-of-art GAN based VC [7, 8, 9] and
VAE based VC [10, 11] have narrowed down the performance
gap with ASR-TTS approaches. Although GANs come with
a nice theoretical justification that the generated data should
match the distribution of true data, it is widely known that the
adversarial training is fragile and unstable. Moreover, while
there are many studies on GAN-based VC, neither of them give
strong evidence that the data distribution learned by Discrimina-
tor corresponds to human speech perception. In contrast, VAE
can be easily trained. However, the VAE often suffers from
the posterior collapse problem caused by Kullback-Leibler di-
vergence (KLD) [12], which reduces the useful information re-
ceived by the decoder for speech reconstruction.

A recently proposed Vector Quantized VAE (VQVAE) [13]
model with discrete latent space avoids the posterior collapse
problem by not optimizing the KLD but learning the categori-
cal prior instead. Since linguistic information can be regarded
as categorical data, discrete latent space is suitable to represent
linguistic information. The VQVAE has been successfully ap-
plied in various speech processing tasks [14, 15, 16]. However,
the linguistic information conveys different levels of semantic
structure that spans at different temporal scales (e.g phonemes,
syllables). Therefore, a single vector quantizer operating at a
fixed temporal scale is inefficient to capture various levels of
semantic structure, hence reducing the naturalness of converted
speech. To tackle this problem, we propose the hierarchical la-
tent embedding VQVAE (HLE-VQVAE) to capture the linguis-
tic information at various temporal scales. As shown in the next
sections, the proposed scheme can improve the performance of
VC system and provide highly natural converted speech for both
intra-lingual and cross-lingual tasks.

2. Baseline method
2.1. Vector Quantized Variational Autoencoder based Voice
Conversion

The VQVAE can be regarded as a communication systems, in
which the input feature vector x is compacted into latent vector
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z by a non-linear transformation (encoder). The latent vector z
is then quantized to discrete variable q based on its distance to
pseudo-vectors in the codebook ek, k ∈ 1...K.

q = ek where k = argmin
k

‖z− ej‖ (1)

Finally, the decoder reconstructs the input vector from the dis-
crete latent vector q and one-hot speaker embedding sm of the
source speaker. The latent codebook is updated simultaneously
with other parameters of the model during training process. Due
to the use of argmin function in quantization process, the com-
putation graph is disconnected and the model cannot be trained
with back-propagation. Therefore, straight-through reparame-
terization trick [13] is used to avoid this problem:

z = Enc(x)

q = Quantize(z)
qst = z + sg(q− z)
xdec = Dec(qst , sm)

(2)

where xdec is the reconstructed feature vector, qst is straight-
through variable from which gradient is copied to z, Enc(·)
is the encoder function, Dec(·) is the decoder function,
Quantize(·) is quantization function, and sg(·) is the stop-
gradient operator. The model parameters are obtained by mini-
mizing the following objective function:

LVQVAE = ‖x− xdec)‖22 + ‖z− sg(q)‖
2
2 +

β ‖sg(z)− q‖22
(3)

where ‖x− xdec)‖22 is the reconstruction loss, ‖z− sg(q)‖22 is
the quantization loss, ‖sg(z)− q‖22 is the codebook loss, and β
is a hyper-parameter to control the reluctance to change of the
codebook loss.

At the inference step, providing the source mel-cepstrum
and the speaker embedding of target speaker, the model outputs
the converted mel-cepstrum containing the target voice charac-
teristics. The overview of conventional VQVAE based VC is
shown in Fig. 1.

3. Proposed method
In this section, the VQVAE model with hierarchical latent em-
bedding structure (HLE-VQVAE) is proposed. Following this,
we also describe our method to adapt the intra-lingual VC
model for cross-lingual VC task.

3.1. Hierarchical Latent Embedding VQVAE

In conventional VQVAE, input data are encoded to latent em-
bedding variable at a fixed temporal scale. However, the seman-
tic structure of speech contains different levels that span across
different temporal scale. Inspired by the work of [17] on im-
age generation, a hierarchical structure is used to better capture
different information at different temporal scales.

The overview of our proposed model with 3 stages of hier-
archical structure is shown in Fig. 2. Each stage consists of an
encoder network, a quantizer and a decoder network. At stage
n, the encoder downsamples its input and the decoder upsam-
ples its input by the same factor. Except for the top encoder,
each encoder output is split along channel dimension into 2
parts: the latent variable zn and hidden variable un. The la-
tent variable zn is then discretized to qn, while hidden variable
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Figure 2: Diagram of our submitted 3-stage HLE-VQVAE.
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Figure 3: Stacks of non-causal dilated Wavenet-like structure in
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un is passed to the next encoder. On the decoder side, the dis-
crete latent variable of the current stage is concatenated with the
decoded hidden variable vn from previous stage before passing
through the decoder network. Similar to vanilla VQVAE based
VC, each decoder in the proposed model is conditioned by the
same speaker embedding sm.

At the training phase, providing the mel-cepstral sequence
with speaker embedding of source speaker, the model is trained
to minimize the following objective functions:
LHLE-VQVAE = ‖x− xdec)‖22 +

N∑

n=1

(
‖zn − sg(qn)‖22 + β ‖sg(zn)− qn‖22

)
(4)

where N is the number of hierarchical stage, β is set to 0.25 in
our study.

3.2. Learnable speaker embedding

One-hot speaker embedding has the drawback that the number
of speaker embedding is fixed by the dimension of the one-hot
vector. Follow the study [18], our proposed model uses learn-
able speaker embeddings which are jointly optimized with other
models parameters during the training phase by using back-
propagation. The speaker index is used to select the correspond-
ing speaker embedding in speaker codebook.

3.3. Cross-lingual adaptation

The advantage of our VC scheme is that only the target speaker
embedding is needed to mimic the voice characteristics of the
target. To obtain the target speaker embedding of foreign lan-
guage, the latent codebook from the pretrained intra-lingual
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model and the random-initialized speaker embedding are fine-
tuned on the target data. After the target speaker embedding
is obtained, the model generates converted mel-cepstrum using
the similar inference step described in Section 2.1.

4. Experiments
In this section, we describe the results of the objective and sub-
jective measurements to explain our model selection for Voice
Conversion Challenge 2020 (VCC2020). Then we show the of-
ficial results of the VCC2020 to demonstrate the performance
of our submitted system. To conveniently compared the models
that we tested, we name the models as follows:

• VQVAE: vanilla VQVAE model with 1 stage of quanti-
zation.

• HLE-VQVAE-2: the proposed HLE-VQVAE model
with 2 stage of quantization.

• HLE-VQVAE-3: the proposed HLE-VQVAE model
with 3 stage of quantization.

4.1. Dataset

The VCC2020 training set consists of 4 source English speak-
ers, 4 target English speakers, and 2 target speakers of each for-
eign language (Finnish, German, and Mandarin). Each speaker
in the VCC2020 training set utters a sentence set consisting of
70 sentences. Besides, a subset of the CSTR VCTK dataset [19]
containing all utterances from the first 100 speakers was used in
combination with the VCC2020 training set to train the models.
We directly used VCC2020 evaluation data for testing.

In the pre-processing step, the audio file is down-sampled
to 24 kHz and normalized to [−1.0, 1.0] range. Then, an 80-
dimension mel-spectrogram is extracted using the Short-time
Fourier Transform (STFT) and mel-filterbank. The window
length of STFT is set to 2048 and the hop-length is 300. The
mel-spectrum is transformed into mel-cepstrum by applying In-
verse Discrete Fourier Transform on the log-magnitude mel-
spectrum. To reconstruct the waveform, we used the Parallel
WaveGAN vocoder [20] which has been trained on the VCTK
dataset for 1000k iterations.

4.2. Implementation details

For the proposed model, the downsampling and upsampling fac-
tors for each encoder and decoder are set to 2. The codebook at
each stage contains 128 atoms of 32 dimensions. The encoder
and decoder are implemented by stacking multiple non-causal
dilated WaveNet-like structures [21] as shown in Fig. 3.

For the baseline model, we implemented a vanilla VQVAE
model with a similar encoder and decoder structure as the pro-
posed model. As the baseline model has 1 stage, the feature
vector is downsampled by the factor of 2 before quantized us-
ing a codebook containing 256 atoms of 64 dimensions.

The dimension of speaker embedding in all models is 16.
The model parameters were optimized using Adam [22] with
learning rate of 0.0005 and gradually reduced to 0.0002 after
10 epochs. For intra-lingual task, all models were trained with
200 epochs with batch size 32. For cross-lingual adaptation, all
models are fine-tuned with 1000 epochs for each target speaker.

4.3. Visualization of Speaker Embedding

Principle component analysis (PCA) is used to visualize the
learned speaker embedding. As shown in Fig. 4, it can be seen

Table 1: Comparison of RMSE between target and converted
logarithmic MS averaged over all mel channels and modulation
frequencies. Smallest RMSE value is highlighted in bold.

Method VQVAE HLE-VQVAE-2 HLE-VQVAE-3

Intra-lingual Same-gender 0.267 0.258 0.238
Cross-gender 0.313 0.302 0.280

Cross-lingual Same-gender 0.431 0.477 0.472
Cross-gender 0.434 0.414 0.430

Average 0.375 0.364 0.359
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Figure 4: 2D PCA visualization of learned speaker embedding
by HLE-VQVAE-3 model from VCC2020 dataset (VCC2020)
and VCTK dataset (VCTK male and VCTK female). The hori-
zontal and vertical axes are the first and second principal com-
ponents, respectively.

that the speakers are well clusterized by genders. This indi-
cates that the speaker embedding can encode meaningful voice
characteristics of the speakers without any additional speaker
information.

4.4. Objective test

The modulation spectrum (MS) of the parameter temporal tra-
jectory is one of the well-known metrics to measure the quality
of synthetic speech [23]. The MS of converted mel-cepstrum
is measured by taking Discrete Fourier transformation on each
cepstral sequence. Then, root-mean-squared errors (RMSEs)
between the logarithmic MS of target natural speech and con-
verted speech from different models are calculated. It should be
expected that the lower the RMSEs, the better quality of con-
verted speech. We measure the RMSEs on all the converted
utterances and average across all mel channels and modulation
frequencies. The results shown in Table 1 indicate that the mel-
spectral sequences obtained from our proposed models are clos-
est to the target speaker in terms of MS. In particular, the HLE-
VQVAE-3 outperformed the HLE-VQVAE-2 in most cases ex-
cept for cross-lingual and cross-gender VC.

4.5. Subjective test

We conducted the AB naturalness test and ABX similarity test
to compare the performance of 3 models. Due to time con-
straint, we only tested the converted speech between 2 source
speakers (SEF1 and SEM1) and 4 target speakers (English
speakers: TEF1 and TEM1, German speakers: TGF1 and
TGM1). Two sentences (E30001 and E30002) were selected
from each source-target pairs to form the listening test set.
Therefore, the listening test set consisted of 48 converted ut-
terance pairs (2 sentences × 8 source-target speaker pairs × 3
model pairs). As for reference stimuli in the ABX similarity
test, we randomly selected the original utterances of the target
speakers from the VCC2020 training set. There were 12 partic-
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Figure 5: Preference score of AB naturalness test. NP means
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Figure 6: Preference score of ABX speaker similarity test. NP
means no preference.

ipants with good English proficiency joined both listening tests.
Each participant rated 24 random pairs of converted utterances
for each test.

The results of the AB naturalness test are shown in Fig.
5. It can be seen that the HLE-VQVAE-3 model outperformed
the VQVAE and HLE-VQVAE-2 in terms of naturalness perfor-
mance for both intra-lingual and cross-lingual conversion. The
result of the ABX similarity test shown in Fig. 6 indicates that
the HLE-VQVAE-3 model was slightly better than the HLE-
VQVAE-2 model in cross-lingual VC. In other cases, the HLE-
VQVAE-3 significantly outperformed the HLE-VQVAE-2 and
VQVAE model. These results were also aligned with the objec-
tive measurement shown in Section 4.4.

4.6. Voice Conversion Challenge 2020 results

The VCC2020 organizers conducted 2 large-scale listening tests
to evaluate the speech naturalness and speaker similarity of con-
verted speech [24]. In the naturalness test, listeners were asked
to evaluate voice quality on a scale from 1 (Bad) to 5 (Excel-
lent). In the speaker similarity test, listeners were asked to judge
whether or not the converted and target utterances were spoken
by the same person, and then evaluate using a 4-point scale that
varies from “Different (sure)” to “Same (sure)”.

To conveniently evaluate the performance of our submitted
systems, we compare the score of our submitted system with
different types of VC models, which is named as follows:

• PPG/ASR-TTS: text-dependent models including Pho-
netic Posteriorgram VC [3], concatenation of speech
recognition (ASR) and text-to-speech (TTS) system ,
and leveraging TTS for VC methods [25]. Speech tran-
scription is required to train these types of model.

• AE: Autoencoder based models including VQVAE, Cy-

Overall Intra-lingual Cross-lingual
1
2
3
4
5

All PPG/ASR-TTS AE Submitted

Overall Intra-lingual Cross-lingual
1

2

3

4
All PPG/ASR-TTS AE Submitted

Figure 7: Average MOS score (top) and similarity score (bot-
tom) with standard deviation of English listeners from all mod-
els (All), text-dependent models (PPG/ASR-TTS), autoencoder
based models (AE), and our submitted model (Submitted).

cleVAE [26], AutoVC [27], and one-shot VC [28].
These types of VC models share the same paradigm as
our submitted model.

The results of naturalness MOS score and similarity score
are summarized in Fig. 7. In both intra-lingual VC and cross-
lingual VC tasks, the naturalness performance of our submitted
model is significantly higher than the average of autoencoder
based models and is comparable with the average of PPG/ASR-
TTS based models. In terms of similarity performance, our sub-
mitted model still achieves a higher score than the average of
autoencoder based VC in intra-lingual VC task. However, there
is a decline in similarity score of our submitted model in cross-
lingual VC task. We speculate that this might be due to the lack
of an explicit input F0 information in our VC model. Since
the mean and the variance of F0 is one of the important cues
for speaker individuality [29], the speaker embedding may en-
code the F0 statistics embedded in the mel-cepstrum. However,
since different languages may have distinctive shape of F0 con-
tour which is reflected in F0 statistics, the estimation of speaker
embedding of foreign speaker will be biased. By providing the
decoder with an explicit F0 information, the speaker embed-
ding will be freed from capturing F0 mean and variance, hence
increasing the accuracy of modeling speaker characteristics.

5. Conclusion
This paper has proposed a VC model based on VQVAE with
a hierarchical latent structure to improve the quality of con-
verted speech. We have shown that our proposed model outper-
formed the vanilla VQVAE based VC model in both objective
and subjective evaluation. Results from the official listening test
in VCC2020 shown that our submitted HLE-VQVAE-3 model
was comparable with the average performance of PPG/ASR-
TTS models and superior to other autoencoder VC models in
term of naturalness. However, there are still rooms to improve
the similarity performance of the proposed model. Since our
proposed model works purely in the acoustic domain, it can
be easily adapt to other VC tasks such as speech enhancement,
one-shot VC, etc.
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