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Abstract

A new two-stage combination bit generator, named TM3w, that has cryptographic fea-
tures is constructed, analyzed, and implemented. The first stage of the generator consists
of sub-generators formed by combining outputs of three lagged Fibonacci recurrences us-
ing mixed operators that do not satisfy the distributive and associative rules of group
algebra. The Fibonacci recurrences are defined by the primitive trinomials of the form
2" 4x% 4+1mod 2, with 1 <'s; < r;—1. Values for r; are chosen such that V i # j and j—k,
r; > 1; > 1 and ged(ri, ;) = ged(rj, i) = 1. The second stage concatenates outputs of
the sub-generators to give a combined output for the entire generator. For a computer
whose wordlength is w, the generator outputs 3 x w bits at every iteration. The initial
states of the Fibonacci recurrences are derived from a seed vector and from each other
by a scheme that performs bit rotation, bit omission, and incremental modulo addition
operations. This scheme is efficient in attaining cryptographic properties of Confusion
and Diffusion. The combination generator passes all statistical tests for randomness to
which it is subjected. Implementation of this generator is done for w = 32 on a 64-bit
processor using multithreaded programming with the aim being to attain concurrency
on a uniprocessor machine. The application programming interfaces used are those of
the POSIX threads library; other thread libraries exist. Consequently the implementa-
tion is portable to machines with POSIX-compliant operating systems only. The threads
performing computations use named UNIX pipes called FIFOs (first in, first out) for inter-
process communication. The unresolvable problems of contention for mutexes by threads
due to the absence of a guranteed order in which mutex locks are acquired; program
deadlock due to threads trying to acquire mutex locks that they are already holding; and
the absence of time-slicing mechanism in the POSIX API, complicate the task of attain-
ing concurrency on a uniprocessor quite significantly. The author recommends additional
features to the POSIX API to address the aforementioned problems. This combination
generator attains a minimum period in the order of 10°! and the maximum period in the
order of 10%7, sufficient for most cryptographic applications. Lastly, no known attack is
computationally feasible against the TM3w generator.
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Chapter 1

A Review of Current Random
Number Generators

4

To quote Marsaglia: “...a pseudo random number generator (RNG) is much like sex, when
it’s good it’s wonderful, and when it’s bad it’s still pretty good”[20]. Sadly many of the
traditional random number generators are not good enough especially when it comes to
cryptographic applications such as digital signature schemes, session key generation by
key distribution centers or principals in a network, reciprocal authentication schemes as
in TCP’s three-way handshake, and the generation of large prime numbers. In general,
random number generators produce a sequence of elements by means of a linear or non-
linear transformation on some algebraic structure.

Necessary requirements placed on RNG’s in order to ensure that their output is random.
Two criteria that are used to validate that a sequence of numbers is random are uniform
distribution and statistical independence. The first criterion means that the frequency of
occurence of each of the numbers in a sequence should be approximately the same. The
second criterion means that values forming a sequence should not be somehow correlated.
Well-defined tests exist for determining that a sequence of numbers matches a partic-
ular statistical distribution such as a uniform distribution. However there are no such
tests to determine statistical independence. Rather, a number of tests can be applied to
demonstrate that a sequence does not exhibit dependence. Such tests are applied until
the confidence that independence exists is sufficiently strong.

A number of methods for generating random sequences have been developed over the
years. The methods which have been dominant are outlined in the following sections.

1.1 Congruential Generators

1.1.1 Linear Congruential Generators

A pseudorandom number generator that has received much attention is the linear congru-
ential generator which was introduced by D.H. Lemmer in 1949[17]. This generator uses
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a transformation
Xnpi1 = (aX, +¢) mod m, n>0

where m > 0 is called the modulus, 0 < a < m is the multiplier, 0 < ¢ < m is the
increment, and 0 < X, < m is the starting value. This generator is called a maximal
period generator if its period is m. This type of generator was broken by, among others,
Joan Boyar[5] and thus cannot be used for cryptography as it is predictable.

1.1.2 Polynomial Congruential Generators
Linear congruential generators have been generalized to quadratic generators
X, = (aX?_, +bX,_1 +c) mod m
and cubic generators
X, = (aX} | +bX? | +cX, 1+d) modm

H. Krawczyk[18] and others[13] have extended Boyar’s work to break any polynomial
congruential generator. The evidence is that congruential generators are not useful for

cryptography.

1.2 Feedback Shift Registers

A feedback shift register is made up of two parts: a shift register and a feedback function.
The shift register is a sequence of bits. Each time a bit is needed, all of the bits in the
shift register are shifted one bit to the right. The new left-most bit is computed as a
function of the other bits in the register. The output of the shift register is one bit. If
the number of elements in a binary vector is n then we have an n-bit shift register. The
maximum possible period of a such a register is 2" — 1.

The feedback function can be linear or nonlinear. When this function is linear, it can sim-
ply be the XOR of certain bits in the register, the list of which is called a tap sequence.
For linear feedback shift registers, sequential bits are linear. Also, large random numbers
generated from sequential bits of this sequence are highly correlated. By the Berlekamp-
Massey algorithm[21] the feedback function, when not known, can be determined from
only 2n output bits of the generator. Nonlinear feedback shift registers with sparse feed-
back polynomials facilitate correlation attacks, and dense feedback polynomials are ineffi-
cient. The preceeding considerations make feedback shift registers per se weak candidates
for fast bit generation.

1.3 Lagged Fibonacci Generators

A Fibonacci series satisfies a linear recurrence

Fn:Fn—1+Fn—2
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A Fibonacci random number is a generalized recurrence of the form
X, =Xp_aop Xp_pop Xpu_cop... op Xy_m mod 2

where op is any of addition, subtraction, multiplication, or the exclusive-or operations.
The values s and r are called lags, hence lagged Fibonacci generator. The initial state of
this generator is an array of w-bit words: X, X5,..., X,,. This initial state is the key.
The period of this generator will be 2" — 1 if the coefficients are such that the polynomial

2+’ ™ (1.1)

is a primitive polynomial®.

1.4 Combination Generators

There are many possible variations of combining simple generators. These are described
in the subsections below.

1.4.1 Combining by Shuffling

Given two pseudo-random sequences X = (z¢,z1,...) and Y = (yo, 41, ... ), a buffer V" of
size , say, B is filled using the sequence X. The sequence Y is used to generate indices
into the buffer. If the index is j then the generator returns V[j| and replaces V[j] by
the next number in the X sequence. In other words, one generator is used to shuffle the
output of another generator. However, according to Knuth[17], shuffling methods have
an inherent defect in that they change only the order of the generated numbers, not the
numbers themselves.

1.4.2 Bit mixing

Here elements of two or more sequences are combined using some logical or arithmetic
operation. If, for instance, we have sequences X = (xg,z1,...) and Y = (yo,v1,...),
these can be combined such that elements r; of the resulting sequence are of the form r; =
x; op y;, where op is some suitable operation. Empirical studies suggest that combining
two or more simple generators in this fashion provides a composite generator with better
randomness than the component generators.

Pike

This is a combination generator based on Fibonacci recurrences and created by Ross
Anderson|[2]. It uses three additive generators whose relations are

32
a; = Q;_55 + Q;j_924 mod 2

1Defined later
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a; = Qi—57 + Q;—7 mod 232

32
a; = @;_58 + A;j_19 mod 2

A keystream word is generated by observing the addition carry bits. If all three agree
(all are 0 or all are 1), then all the three generators are clocked. If they do not, only the
two generators that agree are clocked. The carry bits are saved for next time. The final
output is the XOR of the three generators.

1.4.3 Combining by Shrinking

With this method one sequence is used to “shrink” another sequence. Given two pseudo-
random sequences (zg,x1,...) and (yo,%1,...), Z;,y; € GF(2), suppose y; = 1 for
i = So,S1,.... A sequence (zy,z1,...) is defined to be the subsequence (xy,,z,,...)
of (xg,21,...). In other words, one sequence of bits (y;) is used to decide whether to
“accept” or “reject” elements of another sequence (z;). Combining two generators by
shrinking is slower than combining the sequences by, say, @ but is less amenable to math-
ematical analysis.

Mush

Mush is a mutual shrinking generator which uses the two additive generators

32
a; = Q;_55 + Q;j_924 mod 2

a; = Q;_52 + Qi _19 mod 232

If the carry bit of the first generator is set, the second generator is clocked. If the carry
bit of the second genearator is set, the first generator is clocked. The final output is the
XOR of of the outputs of the two generaors. To the author’s knowledge, this algorithm
and Pike have not been broken as yet.



Chapter 2

The TM3w Bit Generator

This chapter is the beginning of the description of a new combination random bit gener-
ator designed and implemented by the author. The preceeding letters in the name of this
algorithm (TM3w) are the same as those in the author’s name. The latter part (3w) is
indicative of the fact that this algorithm outputs 3 x w bits, where w is the word length of
a particular computer. This means theoretically that the length of the algorithm output is
determined by the length of the CPU registers of the hardware on which it is running. For
this work a 32-bit computer was used in the implementation. The analysis and statistical
tests carried out later are based on the output of 96 bits per algorithm cycle.

It is emphasized that this generator is fundamentally a cryptographic algorithm, to dis-
tinguish it from some of the traditional generators described in chapter 1. As such, it is
important that its outputs be unpredictable to an attacker even when he knows the full
details of the algorithm except the initial seed material.

For completeness and correct perspective, the mathematical theory underlying the design
of our algorithm is oulined in the beginning subsection of the section below. Sections
following the first then go into great details about the workings of the algorithm and its
properties.

2.1 Fibonacci Generators

The core component of the combination generator which we propose consists of three
additive lagged Fibonacci generators. The lags of these generators are powers of an
indeterminate in a trinomial called a primitive trinomial.

2.1.1 Primitive Polynomials

A polynomial P(z) is irreducible if it cannot be expressed as a product of two or more
other polynomials whose degree is less than that of P(z). Otherwise, such a polynomial
is called reducible.

Definition. A polynomial P(z) of degree r > 1 is primitive if P(z) is irreducible and
1) #1 mod P(z) for 0 < j <2" —1.
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The primitive trinomials used in constructing our generators are over a finite field GF(2).!
These primitive trinomials (as they contain only three terms) have the general form z" +
x® 4+ 1. For our construction they are

2+t

.’I/Al +ZU3 + 1
and
P+ 41

To test if an irreducible polynomial of degree r is primitive, the factorization of 2" — 1 is
needed. Algorithms exist for such testing.

The above three trinomials were chosen so that

(i) their degrees are pairwise relatively prime.

(ii) the pairwise difference in their degrees is the same.

To this author’s knowledge, a primitive trinomial of the highest known degree is

3021877 | 11010202 | 4
discovered by Brent et al.[8] in August 2000.

2.1.2 Recurrences

Our construction uses the following Fibonacci recurrences which are based on primitive
trinomials in the preceeding section. The first recurrence is

Ay = (Ai_g7 + Ai_5) mod 2% (2.1)
which will be initialized with an array of integers {Ay, A1,..., Ass}. The second recur-
rence is

B; = (B;_41 + B;_3) mod 2% (2.2)
with the initialization array of integers { By, By, ... , By }. The third and last recurrence
is

C; = (Ci_ss + Ai_y) mod 2% (2.3)
Its intializing array will be {Cy, C1, ... ,Cs}. The modulus used is 232 because the im-

plementation is done in the C programming language with the data model ILP32. The
algorithm itself would work without modification on a 16-bit or a 64-bit machine. What’s
important is that data and arithmetic operators be represented in single precision.

In the following discussion, the generators in equations (2.1), (2.2), and (2.3) will be
referred to as generators A, B, and C' respectively.

LGalois field of order 2.
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2.2 Creating Generator Initial States

The initial states of the generators in the preceeding section are arrays containing 32-bit
integers. These arrays are derived from a seed vector, which is derived from a secret value
which the user provides. The arrays differ from each other by a circular bit rotation of the
array elements. We require that the seed vector (SV) be as long as the vector representing
the initial state of a generator whose primitive trinomial has the highest degree.

The highest such degree is 47 and therefore the seed vector will be of the form

SV: (ko,kl,... ,k‘46) (24)

where Vi = 0 : 46, k; is a 32-bit array element. Before using this seed vector to create the
initial states of generators, a bit rotation is performed on it as shown below:

{ka,kll, R 7k{16} = {k‘g,k‘l, R ,k‘46} <<< 20 (25)

The symbol <<< is used to denote bit rotation. The value 20 is the number of positions
by which bits in the array are shifted cyclically. This value is obtained from adding the
lags of the generator A and then subtracting the word length, i.e., (47 +5) — 32 = 20.
The initial state of the generator A is obtained by the assignment,

{Ag, Ay, .o Agg) = {kb KL Wk, . w8 kDY (2.6)

Here & denotes integer addition modulo 232
The initial state of generator B is then derived from that of generator A in the following
manner. First we rotate bits in the array that is A’s intial state,

{AB,AII, ,Aﬁm} - {A[];Al;--- ,A46} < <L 12 (27)

Here too the value 12 is obtained from adding the lags of generator B and subtracting
the word length, i.e., (41 4+ 3) — 32 = 12. Since the array for B’s initial state consists of
41 elements, elements A}, to A4 are discarded so that we get

{BO,Bl,... ,B40} = {AB,AE)H;'AII, ,H‘J;lgoA;} (28)

as the initial state of generator B.
The initial state of generator C' is derived from that of generator B by a similar process.
We perform bit rotation on the initial state of B thus:

{By,Bi,... By} ={Bo,Bi,...,By} <<<5 (2.9)

where, as above, the value 5 is simply (35 + 2) — 32. To get the intial state of C' from the
preceeding equation, we discard elements Bj, to B), inclusive. Then generator C' has

{Cy,Ch, ... ,Cay} ={B},Byw By, ... Wit B} (2.10)

as its initial state.
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2.2.1 Test Input Data

We illustrate the workings of the initializing scheme outlined above using actual 32-bit
integer values. The tests for randomness performed in the next chapter will be based on
the outputs resulting from the data input used here. The 7-bit ASCII characters stored
in 8-bit char data type are used as user input. The input is an arbitrary string of 16
hezadecimal digits: TETB6F646635325D.

From this intial value we construct the seed vector which must contain 47 x 32 = 1504
bits or 188 8-bit characters. The number of bits in the seed vector is determined by the
longest lag and the word length. Constructing the seed vector consists of concatenating a

string of eight characters (input by the user) with itself [1£2] times, resulting in a string

with 192 characters. This is more for implementation convenience, as described in chapter
4, than part of the algorithm specification. The seed vector is then given by

SV = {TETB6F64,6635325D,7TE7TB6F64,6635325D,
TETB6F64,6635325D, TETB6F'64,6635325D,
TETB6F64,6635325D, TETB6F64,6635325D,
TETB6F64,6635325D, TETB6F'64,6635325D,
TETB6F64,6635325D, TETB6F'64,6635325D,
TETB6F64,6635325D, TETB6F64,6635325d,
TETB6F64,6635325D, TETB6F'64,6635325D,
TETB6F64,6635325D, TETB6F64,6635325D,
TETB6F64,6635325D, TETB6F64,6635325D,
TETB6F64,6635325D, TETB6F'64,6635325D,
TETB6F64,6635325D, TETB6F64,6635325D,
TETB6F64,6635325D, TETB6F64}

Vector elements are similar because we simply concatenated a string of 32 hexadecimal
digits (8 characters).
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Performing bit rotation using equation (2.5) gives

(kL K,... K} = {F6466353,25D7E7B6, F6466353,25D7ETH6,
F6466353, 25D7E7B6, F6466353, 25DTETB6,
F6466353, 25D7E7B6, F6466353, 25DTETB6,
F6466353, 25D7E7B6, F6466353, 25DTETB6,
F6466353, 25D7E7B6, F6466353, 25DTETB6,
F6466353, F6466353, 25D7E7B6, F6466353,
F6466353, 25D7E7B6, F6466353, 25DTETB6,
F6466353, 25D7E7B6, F6466353, 25DTETB6,
F6466353, 25D7E7B6, F6466353, 25DTETB6,
F6466353, 25D7E7B6, F6466353, 25 DTETB6,
F6466353, 25D7E7B6, F6466353, 25DTETB6,
F6466353, 25D7E7B6, F6466353}

By equation (2.6) we find the initial state of generator A to be

{Ag, Ay, ..., Ay} = {353B653B, BOAOA0AO, E5DC05D B, 61414140,
967C' A67B, 11E1E1E0, 471 DAT1 B, (2828280,
F7TBDETBB, 73232320, A85E885B, 23C3C3C0,
58 FF28F B, D4646460, 099 FC99B, DF F25348,
D738BB9B, FD10A351, F35706 A4, 019EEE5 A,
0F7551AD, 354D3963, 2B939C B6, 516 B846C,
ATB1ET7BF,6D89C F75,63D032C8, 89A81 ATE,
BFEETDD1, A5C66587,9C0CC8D A, C1EAB090,
B82B13E3, DE02F B99, DA495EEC, F A2146 A2,
FO67TA9F5,163F91AB, 0C85FAFE, 325D DC BA4,
28444007, 4AETC27BD, 44C28B10, 6 A9AT2C6,
60E0D619,86 BSBDCF, TCF F2122}
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By equations (2.7) and (2.8) we find the initial state of generator B to be

{By,Bi,... By} = {663531C1,4AE5C2ET,95CB866A,5F2C A952,
8EC2FE97,3C DAB341,511B9A48, E3DDE0BS3,
DCD5597C, 54483149, 31F03C34, 8£13 4623,
506C4270, 91403 £21, 38496C20, 50C D F993,
E987B964, F3BC D899, 642718 B2, 530C BI A9,
A8278CF D, 7TBBDBF B6, B58924CC, 6 DC F E94T,
8C4BEO1F, 29433657, 206 F BEF6, AE1TAAF 4,
95F4C550, FCAD3F10, C8DAEB2E, 13E3F6 B0,
(5223490, FADBD1D4,8AC AA176,9F34D07C,
19D421DF, 12EED2AT7, 723EB5CC, 5009 F'856,
940A6D3D}

The initial state of generator C' is the computed using equations (2.9) and (2.10) giving

{Co,Cy,...,Cst = {C6A63829,235E951B, DCCF6266,C2648C BT,
0ACA5F9E, 355ACTCS8, 58C E10E4, DASA2T5F,
23556 F9,6B3B8COF, A93312A0,6BBT7DT0A,
79402510, A147E943, ASDEADAE, 5F9DDFC B,
78950C69, F0301F95, 751335DF, D6AA6B14,
DBIC0AC3, 35540199, 36789826, A07T5C417,
29F1CTF7,CEFE92DC, 5CF671B1,1F EBD043,
DESATA62,682C5C7 B, 8389C'23D, 00089855,
A44F2A73, 3FC96504,991D93D7}

2.3 Combination Generators

Random bit generation consists of recursion using generators A, B, and C' and the initial
states specified in the section above. For the TM3w design, the outputs of our three
Fibonacci generators are in turn used as inputs to another set of three generators. First,
we let {Ax} be the sequence of words produced by generator A, Vk > 46; { B} is sequence
produced by generator B, VI > 40; and {C,,} the sequence produced by generator C,
Vm > 34. Then the three 32-bit output words W, ;, Wy ;, and W3 ; are generated using
the equations,

Wgyj - ((Bl @ Cm) %) Bl+1) EB Ak (212)
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Wi = ((Cn © A) & Cpyr) ® By (2.13)

where the operators ®, W, and @ denote integer multiplication modulo 232, integer addition
modulo 232, and exclusive-or respectively. To initialize these combination generators we
use the ordered pairs, {Ass, As7}, {Bao, Bu}, and {Cs4,Cs5}. To compute the 32-bit
words using the equations (2.11) to (2.13), we need to have outputs from generators A,
B, and C' available for ready use. This would necessitate precomputing a table such as
the following.

| &4 A | BB B | G Gy |
A  Asr | B Ba | Ca Css
Ayr A | Bu Bap | O35 Csg
Agg Ay | Byy Byz | O3 Cyy
Ay Asg | Bz By | C3r Csg

Table 2.1: Precomputing inputs

But as will be seen in section 2.5, Fibonacci generators have fairly large periods, and
this makes precumputing a table such as the above infeasible because of large memory
space required to store it. This problem is addressed in Chapter 5, “Implementing the
Algorithm”.

2.4 Algorithm Analysis

This section describes the quantitative behaviour of our algorithm which is a reflection of
its performance characteristics. We quantify this behaviour in terms of computing time
represented by bit operations the algorithm has to perform to complete its task.

We will perform a worst case analysis since it gives an upper bound on the running time
of the algorithm and thus produces a performance quarantee. We then know that for any
input the running time of the algorithm will not exceed the determined bound.

Our algorithm consists of three subalgorithms: Initialization, Recurrences, Compound
generators. We will analyze these in turn.

2.4.1 Initialization Phase

This is the subalgorithm by which generator intial states are derived from the seed vec-
tor. The dominant operations here are bit rotations, modulo additions, and assignment
instructions.

A byte contains eight bits; if n; with ¢ = A, B, (' is the total number of bits in the re-
spective arrays, then for each rotation (n;/8) + 1 shifts are performed to the left. We
let B4, BB, and B¢ be the number bits rotated to the left in the creation of initial states
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for generators A, B, and C respectively. Then the running time of this subalgorithm to
perform bit rotation is

O(maz(nafa, neBr,ncbec)) = O(nfa)

since, in this case, n 84 > ngfp > ncBc. The runtime complexity for the bit rotation
is therefore bounded by the largest product of the length of the array and number of bits
rotated.

Modulo addition and assignment operations are carried out in equations (2.6), (2.8), and
(2.10). We let ¢; be an upper bound on the time required by the i* computation step.
The table below lists such steps and times taken by each.

‘ Step Cost Times ‘
fori + 1tondo cy n
sum < sum + k'[i] Co Z}Ll(j +1)
sum mod 23? see below
Ali] < sum C4 n

Table 2.2: Computation steps

In row 2 the time required to perform addition varies because the number of operands
increases with the indexing variable. In row 3, let the dividend (sum) have k& bits and the
divisor have [ bits. If £ > [ then it takes O(kl) to obtain the quotient and the remainder.
Otherwise if £ < [ the quotient is zero and the remainder is all the k-bit number. The
worst-case running time 7" for modulo additions and assignments is obtained by adding
the products of the cost and times columns, thus
n
T(n)=cn+c Y (j+1) +can + O(kl)
j=1

This simplifies to

n(n+1)

T = cm—i—cZT

By the maximum rule ? the worst-case running time is then

T = O(max(n®, kl))

+ cqn + O(kl)

2.4.2 Recurrences

Here we are adding two integers of the same size (32 bits) and then taking the modulos.
For analysis, let each integer be k bits long. Adding them requires £ bit operations,
resulting in a sum with £ or £ + 1 bits. Let the modulus have [ bits. The running time
T is given by

T =k + O(kl) € O(kl)
?O(f(n) + g(n)) = O(max(f(n), g(n)))
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2.4.3 Combination Generators

The combination generators in equations (2.11) to (2.13) perform modulo multiplication,
modulo addition, and XOR operations in this order. For each generator, multiplication
and taking a modulus will have a complexity

O(maz(k*, kl))

assuming that multiplicants each have k bits and the modulus has [ bits. Adding and
then taking a modulus will require

k+ O(kl) € O(kl)

The XOR operation will take time O(k).

2.5 Lags and Periods

It is well known that Lagged Fibonacci generators based on primitive trinomials of the
form 2™ + 2% + 1, m > k have maximal period (2*~1)(2™ — 1), where w is the length of
a computer word. We let p; = (2 1)(2™ —1),i = A, B, C be the periods of our three
generators respectively. Values of these periods are tabulated below, where the computer
word length w = 32.

‘ Fibonacci recurrence ‘ Period ‘
Az' = (AZ',47 + Ai,5) mod 232 3.022 x 1023
B; = (Bi_41 + Bi_3) mod 232 | 4.722 x 10*
Ci = (Ci_35 + Ci_g) mod 232 | 7.379 x 10"

Table 2.3: Periods of Fibonacci recurrences

For our generators the values of m; = 47,41, 35 are pairwise relatively prime. This implies
that the periods p; are also pairwise relatively prime. Using a basic identity concerning
the greatest common divisor (ged) and the least common multiple (Icm) of two integers y
and z,

y -z =ged(y,z)-lem(y, z), y,2>0

it can be shown that the combination generators in equations (2.11) to (2.13) have the
periods as shown in the table below.

Substituting the values for p; in the expressions in the right column of the above table will
indicate that each combination generator has the longest and shortest possible periods.
For instance the generator in row 1 has a period p; = (247 — 1)2(24! — 1)(23° — 1) (2*»—1)
which is an upper bound on this period for a fixed w. The lower bound on this period
is p = (27 — 1)%(2* — 1)(2% — 1). This is true for the other two generators. For a
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‘ Combination generator ‘ Period ‘

(A © B) & A1) @ Ci | PapBPC

((BZQCm) L‘HBH_I) @Ak PAPZBPC

((Crn © Ap) W Chii1) ® B | papspe

Table 2.4: Periods of Combination generators

‘ Combination generator ‘ Min ‘ Max
((Ak O) Bl) %) Ak—i—l) D Cm 1.5 % 1051 3.2 X 1088
(Bi®Cp) W Bry1) ® Ag | 2.3 x10% | 5.0 x 10%
(Cpp ® Ap) WCpny1) ® By | 3.7 x 10%7 | 7.8 x 10%

Table 2.5: Minimum and Maximum periods

32-bit machine, approximate values for shortest and longest periods of our combination

generators are shown in the following table.

A comparison of values in tables 2.3 and 2.5 show that there is a significant improvement
in terms of periods between the simple Fibonacci generators and their combinations. For
most cryptographic applications the periods shown in the preceeding table should be

sufficient.



Chapter 3

Bitwise Behaviour of the TM3w
(GGenerator

3.1 Outputs and Randomness

For a pseudo-random number generator to be cryptographically secure, there exists nec-
essary and sufficient conditions that must be satisfied. These conditions are that such a
generators must:

e pass all statistical tests for randomness

e provide cryptographic security

Cryptographic security simply means that the generator produces a sequence of numbers
that cannot be predicted even if an attacker knows the full details of the algorithm except
the seed vector.

In this chapter we will subject the output of our algorithm to a battery of statistical tests
to see if our sequence possess the necessary atrributes that a truly random sequence would
exhibit. For the initial states derived in chapter 2, the following table gives a sample out-
put sequence of the three Fibonacci generators.

We then substitute values in table 3.1 into the equations (2.11), (2.12), and (2.13) to
compute the final outputs. These outputs will then be subjected to five standard tests to
determine their randomness. These tests are:

e Frequency test (mono-bit test)

e Serial test (two-bit test)

e Poker test

e Runs test

e Autocorrelation test

The outcome of each of the tests above is probabilistic and not definite. This means
that a positive outcome simply gives us more confidence in the randomness of a sequence
without giving the guarantee that the sequence will pass any additional tests. Passing
the above tests is therefore a necessary but not sufficient condition for sequences to be
considered random.

The following table shows a subset of the outputs produced by our combination genera-

15
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‘ generator A ‘ generator B ‘ generator C ‘

3BOSEEG3 | D873E78D | 066F9D2D
86B8BDCF | 9AEFBB3D | BC7C28F2
73458475 29D5F3A7 | E33EFF93
BEF553E1 | 37A090DF | TEEOB5A9
AB821A87 | 29B2B9D9 | T7E035F31
S8F63CFTE | 66AAAGES | B43B7D71
D15A023D | 88BC2B27 | D6D17015
E3BEB099 | 0D909A87 | 88C5A4D0
25B4E358 | 48DFFDD1 | B906C6FE
B44B91B4 | DD045CD0 | F40130DF
1241A9FE | 3F80D6BB | 6239D99E
TAOFC473 | D6F3A3F4 | 5FBI907E9
82BAD622 | 2D709F40 | DB7T9FEBA

Table 3.1: Fibonacci generators sample output

tors. The randomness tests are based on this sample.

L Wy [ Wy | Wy
DADG4130 | 7245A564 | 079R9BS6
BE57C27B | 4B7B0665 | 9E5E20D4
864DDB3A | 15FAC69E | 95217E7C
035C34A7 | 01E556B1 | EBC7BCTF
BSE40E2F | EE40080B | 12854365
D328097B | 91D3FEFB | B83D139C
CE3EBDIC | 4A64DOF1 | 2E902A5B
257036F1 | BDE23687 | 6F53A8F6
9855AAD7 | 7081B718 | 1745DDC9
B249FE272 | 40C33B76 | 79BF2FFE

Table 3.2: Combination generators sample output

Our algorithm is a random bit generator and as such we are interested in the statistical
independence and lack of bias between binary digits. Each row in table 3.2 contains 96
bits and the ten row are concatenated to form a string containg 960 bits like,

11011010110101100100000100110000...... 01111001101111110010111111111110

The goal here is simply to show that our random bit generator satisfies conditions for
randomness as imposed by the tests.



3.1 Outputs and Randomness 17

3.1.1 Frequency Test

This test determines whether the number of 0’s and 1’s in a sequence are approximately
the same, as would be the case for a random sequence. The statistic used is

(no — "1)2
n

X1:

where ny and n, denote the number of 0’s ans 1’s respectively, and n = ng+n;. The above
statistic approximately follows a x? distribution ! with 1 degree of freedom if n > 10. For
the output sequence in table 3.2 ng = 474, n; = 489, the significance level a = 0.025, the
threshold x, = 5.0239. The statistic X; = 0.15 .

3.1.2 Serial Test

This test determines whether the number of occurences of 00, 01, 10, and 11 as subse-
quences of the sample output sequence are approximately the same, as would be the case
for a random sequence. As for the frequency test, ny and n; denote the numbers of 0’s
and 1’s in the output sequence respectively. Furthermore, let ngyg, ng1, 719, and ny; denote
the occurences of 00, 01, 10, and 11 in this sequence. The subsequences are allowed to
overlap and therefore ngy + 19y + n19 + n1; = (n — 1). The statistic used is

4 2
Xy = ——(ngo +ngy + g +111) — —(ng +n7) +1
This statistic approximately follows a x? distribution with 2 degrees of freedom if n > 21.
For table 3.2 output, ngg = 227, ngy = 227, nyp = 231, and ny; = 274; ng = 474 and
n, = 486. The significance level is @ = 0.025 and the threshold value x, = 7.3778. The
statistic Xy = 6.420 .

3.1.3 Poker Test
A positive integer m is chosen such that | 2] > 5-(2™); let k = |2 |. This test determines

n n
m m
whether the subsequence of length m each appear approximately the same number of
times in the output sequence, as would be expected for a random sequence. The statistics

used is

This statistic follows a y? distribution with 2™ — 1 degrees of freedom. For our output
sample, m = 5, k = 192, and Zf’il n? = 1317. The significance level o = 0.025 and the
threshold value z, = 48.2319. The statistic X3 = 27.5 .

Isee Appendix A
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3.1.4 Runs Test

The runs test determines whether the number of runs? of various lengths in the output
sequence is as expected for a random sequence. The expected number of gaps (a run of
0’s) or blocks (a run of 1’s) in a random sequence of length n is ¢; = (n — 1 +1)/2""2. In
defining a statistic to be used, let k be the largest integer 7 for which e; > 5. Also, let B;
and G; be the number of blocks and gaps, respectively, of length 7 in the output sequence
for each 7,1 < i < k. The statistic used is

k

X4 _ Z (Bz ; 6i)2 I Z (Gz ; 6i)2

i=1 b

This statistic follows a x? distribution with 2k — 2 degrees of freedom. For the sample
output sequence the significance level @ = 0.025 and the threshold value x, = 17.5345.
The statistic X4, = 12.187 .

3.1.5 Autocorrelation Test

The autocorrelation test checks for correlations between a sequence and its non-cyclic
shifted versions. Let d be a fixed integer, 1 < d < |[n/2|. The number of bits in the
original sequence not equal to their d-shifts is A(d) = Z?:_Od_l Si ® Siyq, where @ denotes

the XOR operator. For this test the statistic is

n—d
2

X5 =2(A(d) — )/Vn —d

This statistic follows a standard normal distribution if n —d > 10. For our sample output
sequence, the significance level a = 0.025 and the thrshold z, = 2.2950. The statistic
X5 =0.2740 .

3.2 Randomness tests results

Except for the Xj5 statistic, which has a standard normal distribution, all the other statis-
tics have a x? distribution with varying degrees of freedom (DOF) as can be seen in the
next table. This table summarizes the outcomes of all the tests outlined in the previous
subsections.

For all the tests the significance level was set at v = 0.025. For a statistic in each row of
the table, a comparison of the values under the columns denoted Stat Value (value of a
statistic from a test) and Threshold (A value for which P(X > z,) = «) shows that in
all cases, values in the former column are less than those in the latter. For any particular
statistic, this is a necessary condition for a sequence to pass a test asscociated with that
statistic. The last column shows the outcome of each test.

2A run of a sequence is subsequence consisting of consecutive 0’s and 1’s which is neither preceeded
nor succeeded by the same symbol [].
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‘ Statistic ‘ Stat Value ‘ Threshold ‘ DOF ‘ Outcome ‘

X 0.2042 5.0239 1 Pass
X5 6.4200 7.3778 2 Pass
X3 27.500 48.232 31 Pass
Xy 12.187 17.535 8 Pass
X5 0.2740 2.295 - Pass

Table 3.3: Randomness tests results

From table 3.3 it is clear that our sample output sequence satisfies conditions for random-
ness as specified by the tests. As noted earlier, while passing all the tests for randomness
is not a guarantee that the sequence was produced by a random bit generator, it does
give us more confidence in the randomness of the sequence.

3.3 Vector Components Correlations

In this section we consider variations in the dependencies between the seed vector, the
initial states of the driving generators, and the final outputs. These variations are quan-
tified in terms of the correlation coefficient. When an increase in one set of values is
accompanied by an increase in another set of values, the two sets are said to be di-
rectly (or positively) correlated. When one increases and other decrease, they are in-
versely (or negatively) correlated. In addition, quantities may be highly correlated or
only slightly correlated; these are called thr degrees of correlation. Given two samples
spaces X = (x1,T9,... ,xy) and Y = (y1, 9o, ... ,yn), The correlation coefficient r between
X and Y is given by the equation

R )
Vi @ - D - 9)

where
n
1
T =— T;
n 4
1=1
and
n
1
Yy=—- Yi
n 4
=1

are the means or average values of the two sample spaces.
The correlation coefficient r is such that:

& If there is no correlation, r = 0.

& If there is perfect linear correlation r = £1.
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&  cannot be numerically greater than 1.

No conditions were placed on the seed vector other than that it should be of the same size
as the vector representing the initial state of generator A. So at times all the components
of this vector may all be even. An undesirable side effect of this might be the propagation
of powers of 2 throughout the initializing phase. We want the seed vector, the initial
states, and the final outputs, to be pairwise uncorrelated as this complicates attempts to
estimate the seed vector from intermediate states or outputs.

‘ Transition ‘ Correlation coefficient ‘
Seed Vector < initial state A 0
initial state A <> initial state B 0
initial state B < initial state C 0

Table 3.4: Pairwise correlations coefficients

The coefficient values on the right column in the preceeding table indicate the upsence
of any correlations between the vector integer components of the quantities on the left
colummn. This is an indication that our initializing scheme is effective in destroying
any dependencies between components of the respective vectors. From the preceeding
discussion it is cleat that our algorithm is succesful in dissipating any statistical structure
between the inputs, the intermediate stages, and the final output. This is in favour of its
cryptographic strength.



Chapter 4

The Security of TM3w

4.1 Generating Functions

In chapter 2 three Fibonacci recurrences were used for our sub-generators. These were
Ai = (AZ',47—|—AZ',5) mod 232, Bl = (Bi,41+Bi,3) mod 232, and Cl = (Oi,35+ci,2) m0d232,
respectively. In this chapter is demonstrated the infeasibility of predicting these generators
in the absence of the knowledge about their initial conditions.

Given a sequence (a,) = (ag,ar,as,...) of numbers, the generating function for this
sequence is defined to be the power series

o0
G(z) = Zarz’" =ag+ a7 +asr® + ...
r=0

The following theorems, stated without proof, formulates the techniques relevant to this
chapter used in algebraic manipulations of generating functions.

Theorem 1 Let G(z) and H(z) be generating functions for the sequences (a,) and (b,)
respectively.

(i) Addition. For any numbers « and 3, aG(z) + BH(z) is the generating function for
the sequence (¢, ), where

¢ = aa, + 61)7‘7 V’I“,
(ii) Multiplication. G(z)H(z) is the generating for the sequence (¢, ), where
¢y = agby + arb_1 + agb,_o + ...+ ar_1by + a,by, Vr;

The sequence (¢,) is called the convolution of the sequences (a,) and (b,).
(iii) Shifting. 2™ G(z), m € N, is the generating function for the sequence (¢, ), where

- 0 1fo<r<m-1
" Ar—m ZfTZm,

Theorem 2 (1+ 2)" = 1+nz+@22+_” = Y0 (1) 2"

The second result is called the Binomial theorem.

21
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4.1.1 Recurrences and Generating Functions
Consider the recurrence used as the first sub-generator,
Aj=Aj 41+ Ajs

232 removed for brevity. This can be expressed as

with mod
Aj—Aj 47— A 5=0
By theorem 1, the sequence A; has the generating function
G(z) =ap+ a1z + a2+ ... +a,2" + ...
The sequence —A;_47 has the generating function
—2YG(2) = —Apz* — Ajx®® — . — Ap_ga" — ...

For the sequence —A;_5 the generating function is

—2PG(2) = —Ap2® — A% — A" — = AT —
By taking the sum of the three generating functions, we have

(1 — Z5 — 247)G(Z) = AU + Alz + A222 .ot (A5 — A0)2’5 + ...
+ (An - An,5 - An,47)2n + ...

For all n > 47, A, — A,,_5 — A,_47 = 0, by the recurrence relation. Therefore

(1-2°—2")G(2) = Ag+ Az + Ay2?
+ (A5 — Ag) + (Ag — A1) + ...

After simplifying and tidying, we arrive at the result

46 j
Zj:o A2
(1— 25 — 247T)

G(z) = (4.1)

The values A; are the initial conditions for the recurrence relation. The denominator

1_Z5_Z47

is the characteristic polynomial of the sequence (A;). The solutions of the characteristic
polynomial are called the characteristic roots.

Lemma 1 Let vy,7vs,...,7 be distinct roots of the characteristic polynomial, then the
solution of a general recurrence relation coxy, + c1Tp_1 + ...+ CXp_p =0 is

Ty = X1(7)" + Xo(72)" + ...+ X ()"

The X;’s are constants.
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The generating function of the second sub-generator B; = Bj_4; — B;_3 is found to be

40 ;
_ > =0 Bi7

1 — 23 — z41

H(z) (4.2)
The B;’s are the initial conditions. Similarly for the third sub-generator, its generating
functions is given by

234:0 Oij
The denominators of the latter generating functions are also the characteristic polynomials
of the sequences (B;) and (C}) respectively, and they are insoluble in the set of integers.

4.1.2 Extracting coefficients

By lemma 1 the solution to the recurrence relation for the sequence (A;)
An = A1(1)" + A2(12)" + - + A (a7) (4.4)

where the v;’s are the characteristic roots of the equation 1 — 25 — 27 = 0 In the set of
integers Z the characterisic polynomial for the sequence (A;) is irreducible, hence the 7;’s
are indeterminate.

An alternative approach is to use a result from the theory of complex variables called
Cauchy’s integral, by which any desired coefficient of the generating function can be
extracted. Such a coefficient is expressed in terms of a contour integral thus

1 G(2) .
A, = — dz, i*=-1 4.5
270 ﬁr ot 75 (4.5)
if G(z) converges for z = 2y and 0 < 7 < |2|
Substituting (4.1) into (4.5) yields
46 ;
A, = 204, dz (4.6)

= o (1 — 25 — 24T)nt1 7

|z[=r

if G(z) converges for some z = zy and 0 < r < |z|. The generating function G(z) has
a singularity whenever the characteristic polynomial (1 — 2° — 2z7) has roots. In both
equations (4.4) and (4.6) the initial value (Ao, A;,..., A4s) are required to carry ou the
computations. By a similar calculation, the n'" terms of sequences (B;) and (C}) are

40 ;
1 Bzl
= 2= B, dz, (4.7)
27i (1 — 23 — z41)zntl

B,

|z|=r
and

34 ;
- 1 D=0 5%

T o jer (1 — 22 — 23%)2n 1

dz (4.8)
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respectively. For the latter two equations as well initial conditions are required to get the
n' term of the sequences. By inspection, the characteristic polynomials in (4.6) to (4.8)
do not have integer roots; their complex roots, if they have, are not trivial to find.

There exist 232 distinct 32-bit integers. As an example, consider the equation (4.4) or
(4.6); an exhaustive search for the correct combination of such 32-bit integers requires

that the attacker tries all
2% — L > 10393
47 (232 — 47)147!

This includes the number of combinations where all the initial values are even. If the
attacker wants the combinations so that not all the initial values are even, he has to try

27‘(11)—1) (27‘ - 1)

where r is the lag and w is the computer word length. In this case r = 47 and w = 32
and therefore the total number of all such combinations is

247><31(247 o 1) > 10452

In both cases the attacker has to try on average 50% of all the possible combination. To
appreciate the above numbers, if their attacker has a CPU that can try 10*° combination
in 1ps (1 microsecond), such a CPU will finish its task in about 10" years! These number
suggest that exhaustive search of the initial states is computationally infeasible.

4.2 Mixed Operators

In the prceeding sections it was shown that an exhaustive search on Fibonacci generators
is infeasible. To this infeasibility another complication is added in the form of combining
output from the sub-generators using algebraic operators with the properties as below.
Using these operators the algorithm is able to capture properties that define good cryp-
tographic behaviour:

&Bit omission. In the initialization phase, bits are discarded as the initial state of one
generator is derived from that of another. This omission of bits means that uncertainty
is added regarding the original bit pattern of the seed vector.

& Difussion. By using modulo addition and modulo multiplication, we are able to dissi-
pate the statistical structure of the seed vector into the long long-range statistics of the
generator outputs. That is, the value of each digit of the seed vector affects the values
of many generator output digits. Likewise the the value of each generator output digit is
affected by many digit values of the seed vector.

& Confusion. By using outputs of the three Fibonacci generators for each combination
generator, we succeed in making the relationship between the statistics of the final out-
puts and the seed vector as complex as possible.

Our algorithm attains the latter two properties by using the three operators (4, @, and
®) that do not satisfy the ordinary laws of group algebra. These operators are such that:
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& No pair of the three operatots satisfy a distributive law, i.e.

TH(yO2) # (zWy) O (z42)
TOY®z2)#(20Y) D (r0O2)

@ (ywz2) # (r0y)W(r O 2)

& No pair of the three operators satisfy an associative law, i.e.

rH(yO2) #(2Wy) Oz
O y®2)#F(20y) B2

T® (yWz) # (DY) W2

Using operators that have the properties as above in combination provides for a complex
transformation of the input data into the output data. This should make attempting to
predict the algorithm output infeasible.

4.3 Other Primitive Trinomials

Lemma 2 If a polynomial p(x) is a primitive polynomial, then so is x™p(1/x)

By applying this lemma to the primitive trinomials in the previous section, we can deduce
that 247 + 242 +1, 2™ + 2% 4+ 1, and 23 + 233 + 1 are also primitive trinomials modulo 2.
If we keep the word length at 32 bits, defining our recurrences in terms of these primitive
trinomials would result in more bit rotations during the initialization phase and possibly
a much improved mixing of the individual bits. The periods of such recurrences would
remain unchanged as they only depend on the longer lag, which remains unchanged, and
the word length. The time to initialize the recurrences would also remain unchanged.

A number of researchers have been discovering primitive trinomials of extremely large
degrees. Based on the information avalable to this author at the time of writing, two
trinomials with large degrees are

3021377 361604
+ +1

T T

and

1'3021377 +1‘1010202 41
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At the time that the source paper was written, the search for the third trinomial
L0972593 | s 4 g

was continuing, with the value of s still unknown. A quick calculation reveals that the
recurrence defined by the foregoing trinomials would have a period in the order of 101682401
Clearly recurrences with such long lags are slow to initialize and, although the periods are
extremely long, this does not enhance the security in any meaningful way. In fact because
of a large number of intial values required, a brute force attack, assuming the existence of
combinations with all values positive, is reduced in terms of effort compared to the values
calculated previously. Brute force effort is greatest in the case where initializing words
are not all even. For such long lags, our intializing scheme would be inefficient.

4.4 TM3w Initialization

The algorithm used in the initializing phase of the TM3w generator exhibits properties
considered in this section. These properties differ markedly from those of message authen-
ticating codes (MAC) and hash functions. With MACs and hash functions, the input can
be of any length, but the output has a fized length. For instance the hash algorithm MD-5
takes input of arbitrary length and output 128-bit message digest. The SHA-1 algorithm
takes any input up to 2%* bits and output a 160-bit message digest. RIPEMD-160 also
takes input of any length and produces output 160 bits long. There are others with a
similar property.

The beauty of our initializing algorithm is that its output is variable depending only on
the degree of a primitive trinomial defining a particular recurrence. In addition, our ini-
tializing algorithm is a:

#& One-to-many function. The domain consists of one vector of fixed length and the
range consists of many vectors of variable lengths.

For the following discussion let’s say the function defining our initializing algorithm is
TM3w_init(). Then

TM3w_init(v) = {fo(vo), f1(v1), fa(v2), ..., fu(va)} (4.9)

where f; defines (bit) operations carried out at the " stage according to the primitive
polynomial 2" + x% 4 1. At each stage the vector v; is computed from the preceeding
vector v;_1 by an equation of the form

Vit1 = fir1(fi(vi)), fori = O0ton (4.10)

when ¢ = 0, f; is simply a bit rotation and v; is the seed vector. The primitive trinomials
defining the recurrences are chosen such that if

4% 41, withi =1ton
is a set of primitive trinomials then

T >Te>T3> ... >T,
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and
TN —Ty=T9o—T3=...=7Tp_1— Ty = constant
and also
ged(ry, ) = ged(ra,r3) = ... = ged(rp_1,ry) =1

where ged(r;, ;) is the greatest common divisor of the two integer values r; and ;. Since
all the longer lags of the recurrences are pairwise relatively prime, then each recurrence
contributes its maximum period to the combination generator.

#® One-way function. The n'* stage initial state is computable by

U = falfuifaalo fi(v1))..))) (4.11)

Within each stage there is reduction by modulus operations and from one stage to the
next there is bit omission. This means that inverting equation (4.11), which generalizes
(4.10), is infeasible since the attacker would not know which bits are omitted.

The two properties of one-to-manyness and one-wayness enhance significantly the security
of the TM3w generator. The both imply that even if an attacker has access to one of the
initial states he is unlikely to succed in infering other states from the one he has. Also he
will be unsuccesful in trying to work backwards to the seed vector.

4.5 Combination Generators

Combining a number of generators by some suitable operators certainly provides for com-
posite sequences with better randomness properties. In this section an analysis of the
combination generators is done using some results from section (4.1). We need to see how
much information about the sequences produced by the combination generators can be
found deduced. This is important from the security point of view. From section (4.2)
we saw that the algebraic operators used in the combination generators do not satisfy
the distributive and associative rules of group algebra. This is a serious limitation on
an attempt to study the behaviour of these combination generators using the generating
functions of the component generators. A simplifying assumption is that the operators
used are ordinary addition and multiplication. This assumption is necessary here for a
further analysis. Again we will consider only one out of the three combination generators,
and then make inferences regarding the other two generators. From equation (2.11), the
first combination generators is given by

Wi, = (A4 © B)) W Ap1) @ Cyy

Substituting the recurrence relations for A,, B,, and C), in the above relationship and
replacing modulo operations with ordinary addition and multiplication gives

Win = (An—arBn-s + An—arBn_3 + AnsBp_s1 + An5Bp_3) + Anyr) +C (4.12)
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As can be seen, the recurrence of (4.12) is non-linear and this makes analysis much more
difficult. Let K(z) be the generating function of the sequence defined by equation (4.12),
then

K(z)= i Win2" (4.13)

Substituting equation (4.12) into (4.13) gives

o0

K(Z) - Z(((Anfél’Tanéll + An747Bn73 + Anf5Bn741 + An75Bn73) + An+1) + On)zn
n=0

(4.14)

It should be clear from the equation above that in the upsence of initial conditions for
the constituent recurrences, and the difficulty of solving their characteristic polynomials,
obtaining the value of W), by the Cauchy integral
1 K
W, = — () g, 2= (4.15)

. Y
21 Jjg=p 2"

is computationally infeasible. So the only hope for the attacker is to attempt to break
either the initialization algorithm, or the constituent Fibonacci generators. If we let M(z)
and N(z) to be the generating functions of the other two combination generators, Ws,,
and W3 ,,, then the n' term of each sequence will be expressed by

M(z) = Z(((an410n735 + By 01Ch—9 + B, 3C,, 35+ B, _3C,,_2) + Bpy1) + A,)2"
n=0
(4.16)
and
N(z) = Z(((Cn—%An—M + CpossAn_s + CpoAn_47 + Cr2A,_3) + Cpy1) + By) 2"
n=0
(4.17)

For the latter two equations also, intial conditions to Fibonacci recurrences are required
to obtain expressions for the n'* terms. Since these initial conditions are not available to
the attacker, using methods such as ewuation (4.15) to do estimates will be infeasible.

In this chapter it was shown mathematically that at least the TM3w generator is
comptationally secure. The effort to do exhaustive search of the initial conditions is just
too great to discourage even the most committed of “hackers”. As yet it is not obvious
(to this author) how an efficient mathematical attack can be carried out.



Chapter 5

Implementing the Algorithm

This chapter describes the implementation of the various components of the combination
generator algorithm. Figure 4.1 is a flow diagram outlining the sequence of execution
of the various algorithm stages. The algorithm itself is language independent, but the
implementation was done in the the C programming language. The code has been tested
on machines running SunOS 5.7 and IBM AIX. These two operating systems have a
UNIX flavour, and as is well known C and UNIX have a symbiotic relationship. The
implementation code is described from the user interface to the final output generating
functions. However, this is not production code; hence the aim is demonstrating how
different components are implemented and what their outputs are. Difficulties due to
limitations imposed by the programming language are noted as well as approaches around
them.

The entire algorithm primarily consists of three sub-algorithms. The first sub-algorithm
is the initialization phase for the Fibonacci recurrences. The second sub-algorithm is
the Fibonacci recurrences themselves. The third sub-algorithm is the three combination
generators.

5.1 User Interface

5.1.1 Password to Seed Vector

The user of this bit generator is required to enter a (secret) password from the standard
input stream device (keyboard). The password should be no more or no less than eight
characters. It is this password from which the seed vector is formed.

Every character on the keyboard has an ASCII encoding, which is a decimal or hexadeci-
mal digit by which the character is represented within the computer. Each such digit has a
binary representation consisting of seven bits, however each character is stored in an eight
bits byte. We saw in chapter 2 (eqn (2.4)) that the seed vector has as many components as
the longest lag of the Fibonacci recurrence, which is 47 in this case. Our implementation
is on a 32-bit computer and therefore the seed vector consists of 47 x 32 = 1504 bits. This
is 188 single-byte characters. A user-specified string of 8 characters is the concatenated

29
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Rt h 2
Password

User Interface

init state A \
init state B \

A 4 A 4

init state C

recurrence A recurrence B recurrence C

A 4 A 4

[ rec A output] [ rec B output] [ rec Coutput]
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1st _gener at or 2nd_gener at or 3rd_gener at or _y

Figure 5.1: Program execution sequence

uauoduoy [e 1S

Juuoaue) 9 | [ Jeg



5.1 User Interface 31

with itself [$3] = 24 times, resulting in a string with a total of 192 characters. Details
like bounds checking, of which much will be said later, and input prompts will be left out
for brevity and clarity. Only portions of the programs encapsulating relevant functionality
are included and described.

#define NUM 24
void main() {

char xtempo, *ptr, *xbuffer;

int j;

tempo = (char *)malloc(sizeof(char) * 8);

buffer = (char *)malloc(strlen(tempo) * NUM + 1);

while ( *(ptr = gets(buffer)) != NULL)
strcpy(tempo, buffer);

for (j = 0; j < NUM; j++)
strcat(buffer, tempo);

When this program is run, it requests a string of 8 characters and outputs the same
string concatenated NU M times. From the characters in this string, we form an array of
32-bit integers by concatenating the ASCII hexadecimal digits of every four consecutive
characters. This we do by first initializing a two dimensional array by the (NUM x 2) x 4
characters from the concatenated string. We end up with an array with 48 rows and 4
columns.

void stringtoint(char *string) {
const int ROW = 47;
const int COL = 4;
char *ptr, array[ROW][COL];
int i, j, k;
ptr = string;
for (i = 0; i < ROW; i++) {
for (j = 0; j < COL; j++)
while (k < strlen(string))
array[i] [j]1 = ptrlk++]

}/*end for (i = ...) loop*/
}

Each row of array has four characters. Each character’s ASCII decimal representation is
converted into a 7-bit binary string. The resulting strings are stored in an array as shown
in the figure 4.1. The following code converts an integer to its binary representation.

void int_to_bits(char leta) {
int dividend, quotient = O,
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const int divisor = 2;
char remainder[7];

dividend = (int) leta;

for (j = 0; j <7; j++) {
if (dividend >= divisor){
quotient = dividend/base;
*(remainder + j) = dividend % divisor;
dividend = quotient;
}
else {
*(remainder + j) = dividend;
}
} /*end for(...) loopx*/

¥

Each character is first typecast into its decimal representation and this decimal is con-
verted to a binary string. This is made necessary by the upsence of a hexadecimal data
type in C, in which case 8 hexadecimal digits would be concatenated to form a 32 bit
integer. By a well known binary to decimal conversion formula

rararararardrd \irarardrdrardrd \irdrardrdrardrd Vrdrarardrarare

\/

A

32 bits

Figure 5.2: String of 32 bits

n—1
Z Xz2l - X() + X12 + X222 + ...+ Xn_12n_1

i=0
a 32 bit integer is then constructed. This formula is implemented as

int bits_to_int(void) {
int i, num, sum = O;
const int size = 47;
unsigned long seedvector[size];
int bitarray([32] = { ....}; /*bit string initialization*/

for (i = 0; i < 32; i++){
num = bitarray[i] * (unsigned)pow(2,i);
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sum += num,

for (j = 0; j < size; j++){
seedvector[j] = sum;

}
}/*end for (i = ...)x*/
}

The 32-bit integers formed from the password are then used to initialize the seed vector.
Because of the concatenation of 8 character strings with themselves, components of the
seed vector are basically two integers alternating with each other. The concatenation of
the same string with itself is done so that the user does not have to input 192 ASCII
characters. From the point of view of security, the scheme adopted for the user interface
weak makes for a weak link. The ASCII character chart contains a total of 256 characters,
printable and non printable. If 8 characters are chosen out of 128 printable characters,
an attack by exhaustive search will have a work factor of

12 128!
8y o128 > 1.4 x 10"
8 (128 — 8)!8!

If the entire 256 ASCII characters are used as the alphabet, performing exhaustive search

has a work factor of
I
20) L2560 g g
8 (256 — 8)!8!

If the user had to input all the 192 characters to form the 48 32-bit integers, the work
factor for exhaustive search would be

2 !
o6) _ 256 > 1.9 x 10%!
192 (256 — 192)!192!

The last option has the highest work factor and thus good for security, but it is clearly
inconvenient from the human user’s point of view.

5.2 Initial States

The most basic unit of computer data storage is the bit. To derive the intial states of the
three Fibonacci subgenerators from the seed vector and from each other, it is necessary
to carry out a number of operations at the bit level. The C bitwise operators can be used
only with integral types: char, int, and long. The initializing scheme oulined in chapter 2
requires that bits be rotated so that the left-most bit in an array can be moved to a right-
most position, or vice versa. In this regard the C bitwise operators are inadequate. Three
functions that together provide bit rotation were adapted from [ref]. These functions carry
out bitwise operations on buffers containing any number of bits. They are get_bit(): it
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gets the state of a bit at a particular position in a bit string, set_bit(): it sets the state
of a bit at a given position in the buffer to a specified bit value, 1bit_rot () rotates the
bits in a buffer to the left a specified number of positions. 1bit_rot() begins by saving
the leftmost bit of the leftmost byte and then shifting the each byte one bit to the left.
As each byte is shifted, the rightmost bit of the preceeding byte is set to the bit shifted
of the left of the current byte. Once the last byte is shifted, its rightmost bit is set to the
bit shifted off the first byte. This process is repeated as many times as the number of bits
to be rotated. Bit rotation to the left is performed by the operation,

void 1lbit_rot(unsigned char *buffer, int size, int count){
int firstbit, lastbit, i, j;

if (size > 0){
for (j = 0; j > count; j++){
for (i = 0; 1 < (size/8); i++){
lastbit = get_bit(&buffer[i], 0);
if (1 == 0){
firstbit = lastbit;
}
else {
set_bit(&buffer[i-1], 7, lastbit);
buffer[i] = buffer[i] << 1;
}
set_bit(buffer, size-1, firstbit);
+
+
+

The 1bit_rot function rotates the bits within buffer, containing size bits, to the left
count bits. After the operation, the leftmost count bits become the count rightmost bits
in the buffer, and all other bits are shifted accordingly. Setting the bits is done by,

void set_bit(unsigned char *buffer, int pos, int state){

unsigned char mask;
int i;

mask = 0x80;
for (1 = 0; i < (pos % 8); i++)
mask = mask >> 1;

if (state)
buffer [pos/8]
else
buffer[pos/8]

buffer[pos/8] | mask;

buffer[pos/8] & (“mask)
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¥

This operation sets the state of a bit in position pos of the buffer to a state specified by
state using a mask. The leftmost position in the buffer is 0. The state will be 1 or 0.
Getting the state of a bit at a particular position is done by,

int get_bit(const unsigned buffer, int pos){

unsigned char mask;

int 1i;

mask = 0x80;

for (i = 0; i < (pos % 8); i++)
mask = mask >> 1;

return (((mask & buffer[(int)pos /8)]) == mask) ? 1 : 0);
}

The above operation gets the state of a bit in buffer by determining in which byte the
desired bit resides, and then using a mask to get a specific bit from that byte. The bit
set to 1 in mask determines which bit will be read from the byte. A loop is used to shift
this bit into a proper position. A desired bit is fetched by indexing to the appropriate
byte in buffer and applying a mask. In all the following the constant MOD is defined as
(unsigned)pow(2, 32), where pow() is a function from header math.h file. The function
below computes the initial state of the first Fibonacci generator.

#define SIZE_1 47
unsigned long *init_state_of_1(unsigned long *seedvec, int n){

int i;
unsigned long sum = O0;
unsigned long state_1[SIZE_1];

state_1 = seedvec;

if (n < SIZE_1 || n > SIZE_1){
exit(1);

}

else {
lbit_rot(seedvec, SIZE_1 *x 32, 20);

for (i = 0; i < SIZE_1; i++){
sum = (sum % MOD + state_1[i] % MOD) % MOD;
state_1[i] = sum;

}
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3

return state_1;

}

This function implements equation (2.6) from chapter2 by taking the seed vector and
performing incremental modulo addition operations on its components. It is passed a
pointer to the seed vector and an integer to do the bound checking. Bit are rotated by
(47 + 5) — 32 = 20 positions. The bound checking is also done by using a property of
modulo addition

(a4+b) modn=(a modn 4+ b modn) modn

Dealing with integers whose bit representation uses the entire computer word length calls
for defensive programming; single precision computations are enforced and possible buffer
overflows are prevented. In a similar manner, the initial state for the second Fibonacci
generator is computed by the function,

#tdefine SIZE_2 41
unsigned long *init_state_of_2(unsigned long *state_1, int n){

int i;
unsigned long sum = O0;
unsigned long state_2[SIZE_2];

state_2 = state_1;

if (n < SIZE_2 || n > SIZE_2){
exit(1);

}

else {
1bit_rot(seedvec, SIZE_2 * 32, 12);

for (1 = 0; 1 < SIZE_2; i++){
sum = (sum % MOD + state_2[i] % MOD) % MOD;
state_2[i] = sum;
+
+

return state_2;

¥

This send function takes the initial state of the first sub-generator, perform a bit rotation
by (41 + 3) — 32 positions, discards vector elements 41 to 46 from the previous state, and
then perform incremental modulo addition on the remain 41 vector elements. The same
bounds checking as before is done here too. For the third and last sub-generator, the
process is repeated as below,
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#tdefine size_3 35
unsigned long *init_state_of_3(unsigned long *state_2, int n){

int i;
unsigned long sum = O0;
unsigned long state_3[SIZE_3];

state_3 = state_2;

if (n < SIZE_3 || n > SIZE_3){
exit(1);

}

else {
lbit_rot(seedvec, SIZE_3 * 32, 5);

for (1 = 0; 1 < SIZE_1; i++){
sum = (sum % MOD + state_3[i] % MOD) % MOD;
state_3[i] = sum;
+
+

return state_3;

¥

This last function implements equation (2.10) by rotating bits from the second state, and
then discards vector components 35 to 40 before rotating bits by (35 + 2) — 32 positions.
The outputs from the preceeding three functions form inputs to the recurrences described
in the next section.

5.3 Fibonacci Recurrences

The recurrences of equations (2.1) to (2.3) are implemented each as a cyclic list. For
each implementation, we start with an array of dimension r (longer lag) and two indices
i, j with memory locations X[1], X[2], ..., X[r] initially set to values x, 1,2z, o,... X,
respectively, 7 = r and j = s. Then a new element in the sequence is obtained by

X(@) = X@)+X0)
output X (i)
1 = 1—1;9fi=0theni=r
j = j3g—=14f j=0then j=r
The pseudo code doing the above is the same for all the Fibonacci recurrence and therefore

it is shown for only one of the generators.
For any recurrence the sequence is generated thus,
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#tdefine LISTSIZE
#tdefine MAXLAG
#tdefine MINLAG

void fibgen_1(const unsigned long *state){
int i, j, r, s;

unsigned long output, recur[LISTSIZE];

for (i = 0, j = LISTSIZE; i < LISTSIZE; i++, j—-){

recur[j] = *(state + 1i);
}
r = MAXLAG; s = MINLAG;
while(1){
*(recur + r) = ((x(recur + r)¥%MOD) + (*(recur + s)%MOD))%MOD;
output = (recur + r);
r —=1;
if (r == 0) {r == MAXLAG}
s —=1;
if (s == 0) {s == MAXLAG}
+
+

Excluding the programs, the cyclic lists for the recurrences (2.1) to (2.3) require only 188
bytes, 164 bytes, and 140 bytes of memory respectively.

5.4 Combination Generators

The three combination generators in equations (2.11) to (2.13) inclusive form the backbone
of the TM3w pseudo-random bit generator. For each 32-bit integer, a function defining
each combination generator takes three parameters. Since these functions are similar in
form but not substance, code for only one such functions defining the first combination
generator is shown below.

long wordl_generator(unsigned long *fibl, unsigned long *fib2,
unsigned long *fib3){
unsigned long wordl, A_O, A_1, B, C;

*fibl 7 MOD;

*(fib2 + 1) % MOD;

fib2 7 MOD;

*fib3 % MOD;

wordl = ((A_O * B) + A_1) ~ C;
return wordl;

QW = =
N = O
I
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The parameters passed to these functions are the return values of the Fibonacci recur-
rences described previously. For the generator to output 96 bits, these combination gen-
erator functions must return, or appear to return, the results of their computations si-
multaneously. This is the subject of the next chapter: concurrency.



Chapter 6

TM3w Program Concurrency

Software that performs non-trivial tasks is complex. In designing an application, consid-
eration of the following three issues help in the management of complexity. Identifying
the core problem to be solved, choosing the programming language in which to implement
the solution, and Programming for the hardware on which the program will run. The
first two considerations have already been addressed in the previous chapters. The latter
consideration is the subject of the current chapter.

Computer hardware comes in two flavours: sequential and parallel. In the former, com-
puter instructions are executed in sequence, and in the latter they are executed simul-
taneously. A sequential computer is driven by a single processor, it is therefore called a
uniprocessor. A parallel computer can have many processors on board, hence the term
multiprocessor. On the other hand, by a parallel computer we could be referring to
uniprocessors connected together by a network such as a LAN. The concept of parallelism
is therefore meaningful only in the context of multiprocessors or networked uniprocessors.
Parallelism means that two or more processes or threads actually run at the same time on
different CPUs. Parallelism is attained through parallel programming. On networked com-
puters, parallel programming requires a computing language and a coordination language.
The former allows computation and manipulation of data, the latter allows creation of
simultaneous activities and their communication and control. For uniprocessors, a mean-
ingful concept is concurrency. Concurrency means that two or more processes (threads)
can be in the middle of executing code at the same time. They may or may not be actually
executing at the same time, but they are in the middle of it (i.e, one started executing, it
was interrupted, and the other one started) .

For the TM3w algorithm, the programming is done for a uniprocessor. The goal here is
attaining concurrency.

6.1 Shared Address Space

As seen in the last section of chapter 5, the C functions defining the combination genera-
tors require three parameters to be passed. Each parameter takes a value that is returned
by each of the three Fibonacci generators, and the are countably infinite values return.

40
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As a procedural language, C does not allow an infinite sequence of values to be returned
from the functions. Indeed it does not allow a return from within an infinite loop. Three
C language constructs, break, continue, and return cannot be used to accomplish re-
turning infinitely many values from a particular function. It would have been convenient
if these constructs allowed breaking and then later continuing from the same point.

As shown in figure 6.1, the three combination generator functions need to access values
which they share. In other words they all have to see the same memory. The prob-

ALKl Alk+1] Bl BlI+1] an q mr1]

Figure 6.1: Accessing shared data

lem is, how can the functions, denoted Wordl, Word2, and Word3 in the figure, have
equal access to same memory locations without evoking segmentation faults. These are
run-time errors resulting from programs attempting to access memory not allocated to
them and core dumping with a segmentation violation error message. These violations
are sometimes called bus errors and often result from an improper usage of pointers. For
this reason, the solution where three Fibonacci generators are called from within each
combination generator function makes for a bad solution.

6.2 Producer-Consumer Problem

The problem of figure 6.1 is a synchronization problem: how to control access of reads
and writes to buffers. Figure 6.2 is a refined version of 6.1 and shows what is commonly
referred to as producer-consumer problem. In this case three producers are creating data
items that are processed by three consumers. For our implementation, both the consumers
and producers will be threads.! The data items are passed between the producers and
consumers using some type of IPC (interprocess communication).

For the problem of figure 6.2, the form of IPC used is the named pipe or FIFO (first in,
first out). This is a special type of a UNIX pipe that has a pathname associated with

'POSIX.1c defines a threads as: “A single flow of control within a process. Each thread has its
own thread ID, scheduling priority and policy, errno value, thread-specific key/value bindings, and the
required system resources to support flow of control. Anything whose address may be determined by a
thread ... shall be accessible to all threads in the same process”
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it and that can be used for IPC between unrelated processes. A FIFO is half-duplex,
meaning that it provides for a one-way flow of data only. The three FIFOs for IPC are
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Thread 1
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recurrence
Thread 1

FI FO
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Thread 2
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recurrence
Thread 2
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recurrence
Thread 3
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Figure 6.2: Producer-Consumer problem

created by a function whose prototype is

int mkfifo(const char *pathname, mode_t mode),

where pathname is a normal Unix pathname, which is the name of the FIFO. The three
FIFOs are created in a similar manner. The code below show the creation of the first
FIFO.

#define FIFO1 ‘/tmp/fifo.1’’

int main(){
int fif;
if (access(FIF01, F_DOK) == -1){
fif = mkfifo(FIF01, FILE_MODE) ;
if (fif '= 0){
fprintf(stderr, ‘could not create fifo %s\n’’, FIF01);
exit (EXIT_FAILURE);
+
}
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unlink (FIF01);
}

The routine access() with the F_OK constant defined as zero, tests for the existence of
a file called FIFO1. FILE_.MODE specifies the permission bits which will be modified by
the file creation mask of the process. The unlink() system call removes the FIFO after
it is used.

Our three FIFOs are created within the main() function, and exist as named files. They
can then be opened by any process, using the same open() and close functions used with
files. The open call is passed the path name of the FIFO, e.g /tmp/fifo.1, and a flag
indicating the mode in which it is to be opened .

Our implementation opens these FIFOs for writing from within secondary modules that
contain functions defining the Fibonacci generators. As mentioned previously, FIFOs are
half-duplex and therefore must be opened for writing in the 0_WRONLY mode to prevent
producer threads from reading back their output from pipes.

6.2.1 Producer and Consumer Threads

Traditionally, UNIX processes represent programs each having a single thread of control
that has sole possession of the process memory and other resources. In order to attain
concurrency in an application, a set of cooperating sequential tasks each assigned to a
specific aspect of the problem is required. The cooperating tasks are implemented by
dividing the application into multiple threads. In particular, an application is allowed to
establish concurrent threads of control within a single process. These threads of control
share process memory, file descriptors, and other resources. To attain concurrency for
the TM3w generator, the POSIX? Pthreads interface standard is used. This standard
specifies a set of thread facilities and introduces new application program interfaces in
areas like thread creation, thread synchronization, thread cancellation et cetera.

Each of the three Fibonacci recurrence routines, described in the previous chapter, is
executed by a separate thread. These threads are created using the pthread create
function from the POSIX thread library. The sample code for thread creation is,

/*include other relevant header filesx*/
#include <pthread.h>

int main() {

int resl, res2, res3;
pthread_t prodl, prod2, prod3;

/* starting producer threads*/
resl = pthread_create(&prodl, NULL, fib_recurrence_1, paraml);

2Qther thread libraries exist. See the next chapter.
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if (resl != 0){
perror(‘ ‘Producer 1 thread creation failed’’);
exit (EXIT_FAILURE) ;
}
res2 = pthread_create(&prod2, NULL, fib_recurrence_2, paraml);
if (resl != 0){
perror(‘ ‘Producer 2 thread creation failed’’);
exit (EXIT_FAILURE);
}
res3 = pthread_create(&prod3, NULL, fib_recurrence_3, paraml);
if (resl != 0){
perror(‘ ‘Producer 3 thread creation failed’’);
exit (EXIT_FAILURE);

exit (0);

The first argument of the thread creating function is a pointer pointing to a variable to
which a thread identifier is written. The identifier enable references to a particular thread.
Since no special thread attributes are needed, the next argument is set to NULL. The
final two arguments are the function that the thread should start executing, as well as the
argument to be passed to this function. When the producer threads have been created,
each of them will write to a separate FIFO. Since a FIFO is a name pipe, it can be opened
by processes other than the one that created it. In this case the FIFO will be opened
from within the modules that contain the Fibonacci recurrences.

Within the same main() function, consumer threads are started immediately after the
producer threads. This is necessary to allow the consumers to process the data as it
is being generated. Each of the consumer functions takes three parameters. therefore
in order to create threads for each, a struct must be defined whose members are the
parameters of the consumer functions. Such a structure is defined in a header file as

struct {
unsigned long *fibl;
unsigned long *fib2;
unsigned long *fib3;
X

The consumer threads are started by the code,

int wordl, word2, word3;
pthread_t consl, cons2, cons3;
struct three_args *point;

wordl = pthread_create(&consl, NULL, word_1_generator, (void
*)point) ;
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if (wordl != 0){
perror(‘ ‘Consumer 1 thread creation failed’’);
exit (EXIT_FAILURE) ;

word2 = pthread_create(&cons2, NULL, word_2_generator, (void
*)point) ;
if (word2 '= 0){
perror(‘ ‘Consumer 2 thread creation failed’’);
exit (EXIT_FAILURE);

word3 = pthread_create(&cons3, NULL, word_3_generator, (void
*)point) ;
if (word3 !'= 0){
perror(‘ ‘Consumer 3 thread creation failed’’);
exit (EXIT_FAILURE);
}

After the producer and consumer threads are created, the main thread must wait for them
by calling the pthread_join() function whose arguments are a pointer to a particular
producer or consumer function and NULL. The consumer threads must then be synchro-
nized with the producer threads to ensure that the former process only the data that have
already being stored by the latter. This is considered in the next section.

6.3 Writing and Reading a FIFO

The way the functions write() and read() behave is affected by the manner in which
a FIFO is opened. The open_flag, which is the second parameter to open(), has four
legal combinations of O0_RDONLY, O0_WRONLY, and the O_NONBLOCK flag. If a FIFO is
opened as:

#® open(const char *path, 0_RDONLY), the open call does not return until a process
open the same FIFO for writing.

#® open(const char *path, 0_RDONLY | O_NONBLOCK), then open call returns immedi-
ately, even if a FIFO had not been opened for writing by any process.

#® open(const char *path, 0_WRONLY), the open call does not return until a process
open the same FIFO for reading.

#® open(const char *path, O0_WRONLY | O_NONBLOCK), in this case open returns imme-
diately and if no process has the FIFO open for reading, an error (-1) will be returned.

For this TM3w implementation, although each producer writes to a separate FIFO, it
will be seen later that there is a level of synchronization that is still required. We open a
FIFO with a open(const char *path, O_WRONLY) which does not return until another
process open the same IPC for reading. This will help in the synchronization of consumer
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threads as will be explained in the following section. The required ordering is for producer
1 to write to the first FIFO and have a consumer thread read therefrom, then for producer
2 to write to the second FIFO and have a consumer thread read it, and lastly producer 3
writes to the third FIFO and a consumer thread reads it. The producers open and then
write to a FIFO as shown below,

t#tdefine FIFO
#tdefine BUFFER_SIZE
#tdefine MEGA

unsigned long *producer_function(){
int pipe_fd, res;
int byte_sent = 0;
unsigned long buffer [BUFFER_SIZE];

pipe_fd = open(FIF0, O_WRONLY);
if (pipe_fd != 1){
while (bytes_sent < MEGA){
res = write(pipe_fd, buffer, BUFFER_SIZE);
if (res == -1){
fprintf(stderr, ‘‘Write error on pipe’’);
exit (EXIT_FAILURE) ;
}
bytes_sent += res;
}
(void)close(pipe_£fd);
}
else {
exit (EXIT_FAILURE) ;
}

The fact that without the 0_NONBLOCK flag open() does not return from a call partially
takes care of synchronizing the producer threads. Partially because we need each producer
to write a single integer value to a buffer at a time. This means explicit synchronization
is required for producers in the form of condition variables. Before considering issues
of synchronization we need to look at how each consumer reads data from the buffer.
Each consumer must open each of the three FIFOs in the 0_RDONLY mode without the
0O_NONBLOCK option so that the call does not return until a producer writes to the buffer.
This is accomplish as below,

#define FIFO1
#define FIF02
#DEFINE FIF03
#define BUFFER_SIZE PIPE_BUF /#*defined in limits.hx*/
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unsigned long bufferl[BUFFER_SIZE];
unsigned long buffer2[BUFFER_SIZE];
unsigned long buffer3[BUFFER_SIZE];

void consumer_function(){
int pipe_fdl, pipe_fd2, pipe_£d3;
int resl, res2, res3;
int bytes_read = 0;

memset (bufferl, 0, sizeof(bufferl));
memset (buffer2, 0, sizeof(buffer?2));
memset (buffer3, 0, sizeof(buffer3));

pipe_fdl = open(FIFO1, O_RDONLY);

pipe_fd2 = open(FIF02, O_RDONLY);

pipe_fd3 = open(FIF03, 0O_RDONLY);
if (pipe_fdl != -1 && pipe_fd2 != -1 && pipe_fd3 !'= 1){
do {

resl = read(pipe_fdl, buffer, BUFFER_SIZE);
bytes_read += res;
res2 = read(pipe_fd2, buffer2, BUFFER_SIZE);
bytes_read2 += res2;
resl = read(pipe_fd3, buffer3, BUFFER_SIZE);
bytes_read3 += res3;

} while (resl > 0 && res2 > 0 && res3 > 0);

close(pipe_£fdl);

close(pipe_£d2);

close(pipe_£d3);

+

else {

exit (EXIT_FAILURE);

3

The code above shows that each consumer will read a data item from each of the FIFOs.
Reading when the three ANDed conditions are satisfied mean that calls to open() will
return immediately since producers will have written to the buffers. A single mutex lock
can then be used to lock the area where the reads are carried out. Condition variables are
always associated with a mutexes. Typically mutex provides exclusive access to shared
data . Each of our producers has exclusive access to each of the FIFOs. In this case a
producer thread will lock the mutex and then use a condition variable to wait for some
condition (e.g., buffer not full) to become true. After writing to a buffer, the thread will
use another condition variable to signal that it has caused some other condition (e.g.,
buffer not empty) to become true, and then unlock the mutex.
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6.4 Synchronization

6.4.1 Producer to Consumer

Mutexes are for locking and condition variables are for waiting. Both these mechanisms
are required for synchronizing producers and consumers of the TM3w generator. For
condition variables, POSIX implements the following APIs:

pthread cond wait (pthread cond t *cptr, pthread mutex_t *mptr ), and

pthread cond_signal (pthread cond t *cptr).

The three producer threads write to three buffers from which a single consumer thread
reads. For each of the producer threads and a consumer thread, use of the bounded buffers
need to be coordinated. Between each producer and a consumer two condition variables
(non-empty and non-full) and a mutex are defined. The mutex protects the buffer and its
attributes which are, count of unconsumed characters, producer’s index, and consumer’s
index. For each of the three producers the execution cycle is as follows:

1. Produce a data item.

2. Lock the mutex.

3. Check the condition that the count of unconsumed data items in the buffer is less than
the number of slots in the buffer. If the condition is false, wait on the condition variable
non-full and then repeat the check upon return from the wait. When the condition is
true, go to 4.During a wait on the condition variable, a mutex is unlocked.

4. Put a data item in the buffer, and increment both the producer’s index into the buffer
and the count of unconsumed data items in the buffer.

5. If the count of unconsumed data items is noe equal to one, inform the consumer by
signaling via the condition variable non-empty. If the signal was blocked on non-empty,
this should unblock it.

6. Unlock the mutex.

For the consumers the execution cycle is as follows:
1. Lock the mutex.
2. Check to see if the counter of data items ready for processing to be nonzero.
3. If the value is zero, pthread_cond wait () is called to put a thread to sleep.
4. The mutex is unlocked and the thread is put to sleep until some other thread calls
pthread_cond_signal for this condition variable.
5. Before returning, pthread_cond _wait () locks the mutex.
6. When pthread cond wait() returns, a data item is processed and the counter is
decremented.

6.4.2 Consumer to Consumer

Each consumer requires access to the three FIFOs shared by all the consumers. As already
mentioned, a consumer will lock the critical area, process the data, and then release the
mutex for the next consumer thread to use it. Figure 6.3 is a sequence which would ensure
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Figure 6.3: Threads interleaving execution on a uniprocessor

that each consumer thread gets a chance to access and process data in the shared memory
area. Assuming that there is a guaranteed order in which locks are acquired, each thread
will:

1. Lock the mutex.

2. Handle buffer attributes.

3. Perform a computation and return result.

4. Release the mutex lock.

All the preceeding sections are a description of the intended functionality for a concur-
rent implementation. The observed functionality diverges significantly from the expected
as explained in the next section.

6.5 Unresolved Problems

The intended functionality of the proram was to perform computations in a concurrent
manner on a uniprocessor machine and output results an infinite number of times as
computed by threads in the order: thread 1, thread2, thread 3. The problem is that
there is no guaranteed order in which mutex locks are acquired. On its own, each of
the combination generator outputs a countably infinite sequence of 32-bit integers. The
attempt here was to make each generator output one integer, and then pass control to
the next generator thread in a circular fashion starting with generator 1 to generator 3.

& Because each generator computes consecutive values in a very small time, as each thread
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releases a mutex lock a small amount of time passes before it has to reacquire it again.
This results in a thread that was holding the lock, reacquiring it again and preventing
other threads from acquiring the lock. This is because nothing blocks the thread holding
the lock, and so it continues to run from the time it releases the lock until it reacquires
the same lock. In this way no other thread gets to run. POSIX, whose APIs were used
here, does not have a concurrency setting feature like Solaris.

& Given that there is no guaranteed order for acquiring mutex locks, how to implement
POSIX’s priority scheduling policies to solve this problem.

& POSIX thread library provides no time-slice mechanism for scheduling threads. This
is similar to the first point in that if a single thread is active on the CPU and does not
block, it can run indefinately.

The producer-consumer problem with three on each side and in which each consumer
is fed on the output of all the producers was only partially solved. The implementation
worked if all producers fed a single consumer at a time, and the program deadlocks if all
producers are in the cycle. This is clearly due to failure to properly time and synchronize
the producer threads.



Chapter 7

Portability of the Implementation

The term portability refers to the ease with which a program’s source code can be moved
from one computing platform to the other. This chapter outlines factors that affect the
portability of the TM3w algorithm’s C implementation. The kinds of portability that are
of relevance in this regard are:

& Hardware portability.

& Operating system portability.

& Compiler portability.

From the discussion that follow it will be seen that the implementation for the TM3w
algorithm requires significant changes for portability between, say, a PC, a UNIX work-
station, and a Macintosh. But for all UNIX type operating systems running on 32-bit or
64-bit platforms, the implementation should be easily portable.

7.1 Hardware

The programs for the TM3w generator were developed on two workstations, one driven by
a 32-bit Ultra SPARC IIi processor and running Solaris, the other driven by a POWERS3-II
processor and running AIX. Computations performed by the algorithm are single preci-
sion and during bit rotations a lot of bit setting and bit getting is carried out. The 4
bytes (32 bits) word length in both machines is convenient. Figure 7.1 shows two ways in
which byte storage is accomplished in memory for different processor architectures. For
little-endian storage, the least significant bits (LSBs) of variables are stored at the lowest
addresses. For big-endian the most significant bits (MSBs) of variables are stored in the
lowest addresses. On both machines host byte ordering is big-endian. This is significant
because in all the cases of parameter passing to functions, pointers are used. For the
same seed vector, different host byte orderings imply different generator initial states.
The functions defining each of the combination generators has the parameters in its argu-
ment list. The pthread_create() function takes as one of its arguments, a function with
only one parameter in its argument list. In order to create threads to execute consumer
routines, a structure was defined whose members are the three arguments of the consumer
functions. For instance the prototype for one of the functions is

ol
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Figure 7.1: Byte order for a 32-bit integer

void word_1_generator(unsigned long *fibl, unsigned long *fib2,
unsigned long *fib3);

and the prototype for the function pthread_create() without the attributes parameter
is

int pthread_create(pthread_t #*thread, NULL, void
* (xsome_function) (void *), void *arg);

As explained in chapter 6, a structure is created to hold the argument list of the word_1_generator
function, say

struct three_args {
unsigned long *fibl;
unsigned long *fib2;
unsigned long *fib3;
X

On both the SPARC IIi 650 MHz and the POWE3-II 450MHz a word is 64 bits. However
when a pointer to the above structure is set up, its size does vary between the two pro-
cessors, possibly because of how the compilers add padding bytes between the members
of the structure.

Since word alignment is an important factor in the portability of structures, no assump-
tions were made about whether this alignment could be the same for both processors or
not.

7.2 Operating System

On the SPARC IIi the operating system is Solaris (SVR 4.0) and on the PowerPC it is
ATX-5. Both these operating systems are compliant with the X/Open and POSIX stan-
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dards. To this end they both have thread support and provide the pipe() and mkfifo ()
functions.

Regarding threads, there exist four threading libraries: POSIX, Solaris, OS/2, and Win-
dows NT. The SVR 4.0 has both the Solaris and POSIX thread libraries as part of the
normal system library. AIX has a POSIX threads library. The application program-
ming interfaces (APIs) of Solaris and POSIX have a number of differences. The most
relevant for the TM3w implementation is that Solaries is able to set and get a level
of concurrency whereas POSIX has priority scheduling. For a multithreaded applica-
tion the Solaris API, thr_setconcurrency(), tells the system how many threads to run
concurrently. A call to this function gives each of the multiple threads a chance to exe-
cute. POSIX does not implement thr_setconcurrency but has scheduling policies. With
these, the priority of a thread can be set and retrieved from an attribute object by the
pthread attr_setschedparam() and pthread attr_getschedparam() respectively. For
the consumer threads of figure 6.2 , there are two policies from which to choose to do
thread scheduling. These are SCHED_FIFO and SCHED_RR. The SCHED_FIFO defines
a first in, first out scheduler. Each priority that can be assigned to a thread is associated
with a FIFO queue. As each thread becomes runnable, it is added to the associated
priority queue. As the thread in a given priority moves to the head of the queue, it is
scheduled on the next available processor.

The SCHED_RR policy defines a round-robin scheduling algorithm. The round-robin
policy is similar to the SCHED_FIFO policy, except for the addition of a time quota as-
sociated with each thread. As the thread for a given priority is running, if its time quota
is used up, it is put back on the tail of the associated queue.

When writing to a FIFO, the size thereof is an important consideration. Both systems
impose a limit on how much data can be in a FIFO at any one time. This limit is the
#define PIPE_BUF found in the header file limits.h. On Solaris this constant is 5120 bytes,
and on AIX it is 32768 bytes. Both systems define the constant POSIX_PIPE_BUF as
512 bytes. The system guarantees that writes of PIPE_BUF or fewer bytes on a FIFO
that has been opened O_WRONLY will either write all or none of the bytes.

Although Solaris and POSIX are virtually similar, moving from one API to the other
presents difficulties to the programmer who is not thorougly familiar with one or the
other. As far as this author could tell, the Windows 2000 and Windows XP operating
systems do not implement the POSIX API.

7.3 Compiler

Compilers present on the systems used in the development of code are the ANSI compiler
cc and the GNU compiler gcc. Both compilers are available on Solaris and only the latter
is available on AIX. The compilation enviroment that meets the ISO (International Orga-
nization for Standardization) C language stand defines the preprocessor symbol STDC_.
For the ANSI compiler this preprocessor symbol is defined as 1. For the GNU compiler
the following bit of code is added to enable standard C compilation.

#ifdef _STDC_
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int some_function(parameters) ;
#else

int some_function();
#endif

The code written is meant to be compliant with the POSIX and X/Open standards. For
this reason the symbol XOPEN_SOURCE is defined before including any header files.
This definition is meant to modify the behaviour of the included files to bring them in
line with the X/Open standard. In chapter 2 it was mentioned that the algorithm is
data size neutral, i.e. words can be 16, 32, or 64 bits. This is in theory. In practice
the C programming language does not provide a mechanism for adding new fundamental
data types. For 64-bit addressing and integer arithmetic capabilities, the mappings of
the existing data types have to be changed or new data types have to be added to the
language. The ISO/IEC 9899 (1990) Programming Languages - left the definition of
short, int, long int, and pointer delibarately vague to avoid artificially constraining
hardware architectures. Both the ANSI and GNU compilers on the machines used by the
author use the ILP32 data model in which

sizeof (int) = sizeof (long) = sizeof (pointer)

Thus for both the ANSI and GNU compilers, TM3w’s single precision computations are
performed based on the ILP32 programming model. The extra 32 bits of data space on
the 64-bit processors appear to be wasted.

Lastly, the password to seed vector conversion does not assume any ASCII encoding.
Characters on a particular machine are converted to their decimal or hexadecimal equiva-
lents based on the encoding used by that machine. The (implicit) requirement is that the
size of the character’s value cannot be larger than the size of the char type. So that in
an 8-bit system, 255 is the maximum value that can be stored in a single char variable.
The next requirement is that each character must be represented by a positive number.
Therefore the portable characters within the ASCII character set are those from 1 to 127.
The extended characters are not guaranteed to be portable because the signed char has
only 127 positive values.



Appendix A

Test Distributions

Test Distributions

Definition.A random variable is a mapping from a sample space to the values space.

If this mapping assumes a finite number of different values in an interval (or in several
distinct intervals), it is called discrete, otherwise it is continuous. With each value that a
discrete random variable assumes, say X = xy, is associated a probability, say P(X = xy),
and denoted by p(z), k=0,1,2,... .

Definition. The quantities py(x) are jointly called the probability function of the random
variable X.

The distribution function is then determined from the probability function by the equation

Fx(z) = px(j)
Jj<z
For a continuous random variable, the interval may be unbounded. In this case the
distribution function becomes

Fy(z) = / et

Definition.The function fx(z) is called a probability density function.
Definition.The solution z = z,, of the equation Fx(z) = 1 — « is called the a-percentile
of the random variable X.

The normal distribution
Definition.A continuous random variable X has a normal distribution with mean p and
variance o if its probability density function is defined by

fz) =

1 _(z=p)?
€ 202

oV 2w

When z = 0 and 0? = 1 the random variable X is said to have a standard normal
distribution. Let the a-percentile of a standard normal distribution be denoted as z,.
Then the area under the density function to the right of z, is equal to «, that is,

P(X >z, =«

95
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Below is a table of selected percentiles of the standard normal distribution.

« | 0.0005 | 0.001 | 0.005 | 0.01 | 0.025 | 0.05 | 0.10
To | 3.29 3.09 | 258 | 233 | 1.96 | 1.64 | 1.28

The x? distribution

Definition.A continuous random variable X has a x? distribution with v degrees of
freedom if its probability density function is defined by

1 v/2)—1_,—x/2
i) = | TR e 0 < <o,
0, x < 0.

where I' is the gamma function.! The y? distribution is nonsymmetric and its shape

depends only on the number of degrees of freedom v. Below is a table of selected percentiles
for the y? distribution.

0.100 0.050 0.025 0.010 0.005 0.001

1 27055 | 3.8415 | 5.0239 | 6.6349 | 7.8794 | 10.8276
4.6052 | 5.9915 | 7.3778 | 9.2103 | 10.5966 | 13.8155
8 || 13.3616 | 15.5073 | 17.5345 | 20.0902 | 21.9550 | 26.1245
31 || 41.4212 | 44.9853 | 48.2319 | 52.1914 | 55.0027 | 61.0983

'The gamma function is defined by I'(t) = [ '~ te~*dz, for t ; 0.
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