JAIST Repository

https://dspace.jaist.ac.jp/

K Robust and Cryptographically Secure
Bit Generation

Author(s) Mpho, Tjabane

Citation

Issue Date 2003-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl . handle.net/ 101019/ 1703

Rights

Description Supervisor: Hong Shen, ooopoono, 00

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Robust and Cryptographically Secure Pseudo-Random Bit
Generation

Mpho Tjabane (110060)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 14, 2003

Keywords: Randomness, Bit generation, Concurrency, Threads.

1 Introduction

The security of cryptographic systems often depends on the generation of sequences of un-
predictable numbers. A distinct requirement that is necessary but not sufficient for such a
sequence is randomness. Two criteria that are used to validate that a sequence is random
are a uniform distribution and statistical independence. The first criteria means that the
frequency of occurence of each of the numbers in the sequence should be approximately
the same. The second criteria means that values in the sequence should not be correlated.
A number of statistical tests can be carried out on numbers of a sequence to determine
if they match a particular distribution; however, there are no such tests for determining
independence. Statistical independence in a sequence implies the unpredictability of its
elements.

In software we often want to generate random sequences using deterministic algorithms.
Deterministic here means that a machine will give the same output every time it is fed the
same input. As deterministic machines, computers cannot generate random data without
somehow computing it. This situation is very different from randomness generated by
natural phenomena. Because a computer cannot generate “true” randomness, the data
which it generates is called pseudo-random.

The focus of this research is designing a determistic algorithm that can produce pseudo-
random output according to a number of statistical tests designed for this purpose. Statis-
tics of such tests reveal the structure or a lack thereof within data items.

2 Research Objectives

A number of different pseudo-random number generators have been designed over the
years. Most, if not all, of these algorithms were designed for implementation on serial
(uniprocessor) computers. Today there exist multiprocessor computers and computers
connected by LANs (local area networks) . The main aim of this research is to show how
algorithm design has to evolve in order to take advantage of available technologies. In

Copyright © 2003 by Mpho Tjabane

particular, the research will:

& Reveal the design of random bit generator algorithms that are computationally infea-
sible to predict and have high bit throughput.

#® Investigate efficient ways (of implementing such algorithms) that fully utilize present
day hardware specifications, e.g. fully exploiting entire CPU registers.

& Perform comparisons of the cryptographic strength of the algorithms against that of
their implementations.

Investigate how parallelism in the algorithms can facilitate concurrent implementations
on uniprocessor computers.

& Reveal limitations in implementations of the POSIX thread standard that complicate
the task of scheduling multiple threads in cases where a parallel algorithm reduces to a
parallel producer-consumer problem.

3 The TM3w Bit Generator

For purposes of reference, the algorithm constructed is named TM3w.? This bit generator
is based on Fibonacci recurrences of the form

X, = Xoy, + Xy, mod 2% (1)
where { Xy, ..., X, } are initializing values, and w is a computer word length. The values r;
and s; are chosen such that 27 4+ 2% +1 mod 2 is a primitive polynomial, and V 7 # j # k,
ged(ri, ;) = ged(rj,ry) = 1, and r; > r; > 1. This ordering is necessary for the

initialization scheme. Generators defined by equation (1) have a period p = 2= (2" —1).
The random word generator constructed is driven by three additive generators as follows

A = (A, 47 + A, 5) mod 2%, n > 47 (2)
where
" + 2% + 1 (mod 2) (3)
is a defining primitive polynomial. The second generator is
B, = (By_a1 + By,_3) mod 2°%, n > 41 (4)
with a primitive polynomial
' + 2% +1 (mod 2) (5)
The third and last generator is
Cp = (Cp 35+ C, 3) mod 2**, n > 35 (6)

with a defining primitive polynomial

¥ +2* +1 (mod 2) (7)

2The Author’s initials. 3w alludes to the fact that on a computer with a wordlength of w, the algorithm output is 3 x w
bits.

The initial states of the three generators are arrays containing 32-bit words. These arrays
are derived from the initial key provided by the user and differ from each other by a bit
rotation and omission of array elements. This key is as long as the initial state of the
generator with the highest power of its primitive polynomial. For instance in this case,
powers of primitive polynomials in equations (4), (6), and (8) are {47,5},{41,3} and
{35, 2} respectively, and the binary operation is addition modulo 232. The initial states
are then derived as follows :

key: {ko,kl,...,k45} (8)

where Vi = 0 : 46, k; is a 32-bit array element. The initial state for the first generator is
created as follows, first

{k‘s,kll, .. -;k{l(}} = {k‘g,k‘l, .. .,k46} <<< 20 (9)

the value 20 is obtained from (47 + 5) — 32. Here, the symbol jjj denotes denotes circular
bit rotation. Equation (8) shows bit rotation of an entire array. After this rotation the
initial state of generator A is obtained by the assignment

{Ag, Ay, .. Ay} = {kb Ky WK, ... Wit K} (10)

where W denotes integer addition modulo 232, The initial state of generator B is obtained
from that of the first generator by the following process, first

{AB,AII,,AZIG} = {AO,Al,...,A46} <<< 12 (].].)

The value 12 is (41 4+ 3) — 32. The array in equation (9) is then reduced by discarding
elements A, to Als and the following assignment made

{Bo,Bl,...,B40} = {AS,ASH‘JAII,,H‘nggOA;} (12)

In equations (8), (10) and below, bit rotation simply results in a different bit pattern. For
generator C, the process is

{B;,Bi,...,Bi} ={Boy,By,...,By} <<<5 (13)

where the value 5 is (35+2) — 32. Array elements Bj; to B}, are then discarded to obtain
the initial state by,

{Cy,Ch,...,Cs}y = {B}),Byw B,,... . w3 B} (14)

The use of incremental modular addition, bit rotation, and bit omission adds to the
difficulty of predicting this generator.

3.1 Random word generation

The process of word generation consists of iteration using equations (1), (3), and (5) and
the initial states (9), (11), and (13) above. In addition, in order to attain confusion,
the outputs from the equations above are further passed through equations (14) to (16)
below.Let < Ay > be the sequence of words by generator A, < B; > be the sequence of
words by generator B, and < (), > be the sequence of words by generator C, for all k,

[, and m. Then three 32-bit output words W, W;,, and W, 3 are generated using the
equations,

Wi = (A © B)) W A1) © Oy (15)
Wia = ((B1®© Cp) W Biy1) © Ay, (16)
Wiz = ((Cpn © Ay) W Cinya) ® By (17)

where ®, W, and @ denote integer multiplication modulo 232, integer addition modulo 232,
and exclusive-or respectively. Lower bounds on the indexing variables j, k, [, and m are
j >0,k >46,1 > 40, and m > 34 respectively. The following ordered pairs are required
to initialize the above combination generators; { A4, As7}, {Buao, Ba1}, and {Cs4, Cs5}.
Exhaustive search estimates show that the work factor for predicting both the intermediate
and the final generators is prohibitively huge.

4 Concurrency

In the implementation of TM3w, equations (2), (4), and (6) together with equations (14),
(15), and (16) define a producer-consumer problem with three producers and three con-
sumers. Each producer gets input that is the output of each of the three producers. When
implementing this configuration on a uniprocessor, all the players involved must share
two computation resources: CPU time and memory. This gives rise to a synchronization
problem in order to ensure that all get a chance to run. FEach producer or consumer
is implemented as a thread® which then access resources according to some controlling
mechanisms. The controlling mechanisms provided by the POSIX standard are mutexes
(mutual exclusions) and condition variables. These mechanisms allow manipulation of
shared data by threads without interference from other threads.

5 Conclusions

From the work carried out, what emerges is that the proposed random bit generator is
efficient in terms of high throughput, and it is cryptographically secure in terms of the
work factor required to predict its output.

What also emerged is that the pursuit for concurrency on a uniprocessor machine results
in an implementation that is not portable. This is because application programming
interfaces that provide the means to concurrency are tied to particular operating systems.
Although there exist four thread APIs, only two (Solaris and POSIX) have significant
similarities. Even so, porting from one to the other requires a good knowledge of both.
The upsence of a 64-bit data type in the C programming language prevents single precision
computations on 64-bit processors. The type unsigned long which is 32 bits long results
in a 96-bit output. If a 64-bit data type was defined, the output would be 192 bits. A big
difference.

3A thread is defined as a single flow of control within a process.

