JAIST Repository

https://dspace.jaist.ac.jp/

19/ 1705

Title O00O0O0d0OCaf eOBJOOOOOOODODOOOO
Author(s) oo, 00

Citation

Issue Date 2003-03

Type Thesis or Dissertation
Text version aut hor

URL http://hdl.handle.net/ 101
Rights

Description Supervisor: oo 04, ooooooo

gg

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



The Design and Implementation of an Extensible
Preprocessor for CafeOBJ

Yoshiyuki Asaba (110002)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 14, 2003

Keywords: CafeOBJ, preprocessor, module, extension, policy.

1 Background and Purpose

The purpose of this work is to support the description of specifications
in CafeOBJ by extending the CafeOBJ syntax. CafeOBJ is an algebraic
specification language which has the powerful module system and the type
system. Although CafeOBJ has high expressive power, the description of
specifications in CafeOBJ may become complex. Such complexity may
have a bad influence on readability and maintainability of specifications,
which we cannot ignore. One of the solutions is to extend the CafeOBJ
syntax itself. By extending it, we can expect to reduce the complexity.
Unfortunately, the current CafeOBJ system does not have an extension
mechanism of the CafeOBJ syntax. From the reason, CafeOBJ users can-
not extend the CafeOBJ syntax easily. However, CafeOBJ users want such
an extension mechanism. Moreover, in the description of extensions of the
CafeOBJ syntax, it should be realized as independent modules. This mod-
ularization achieves the extension of the CafeOBJ syntax in incremental
way. Here, we have to solve conflicts between extension syntaxes. In this
work, we aim to realize an extension mechanism of the CafeOBJ syntax
in easy and incremental way without conflicting between the extension
syntaxes.

Copyright © 2003 by Yoshiyuki Asaba



2 Owur Approaches

In this work, the extension mechanism of the CafeOBJ syntax is realized
as follows:

e the pseudo-extension of the CafeOBJ syntax by a preprocessor.

It is difficult to extend the current CafeOBJ system itself. Thus, we
try to realize pseudo-extensions of the CafeOBJ syntax by a preprocessor.
Concretely, CafeOBJ users define the extension of the CafeOBJ syntax
by using the preprocessor. The preprocessor translates from the exten-
sion syntaxes into CafeOBJ code. Namely, the extension of the CafeOBJ
syntax is equal to the extension of the preprocessor. Therefore, we need
to make the architecture of the preprocessor extensible. To realize such a
preprocessor, we adopt the following approaches:

e modularization of an extension syntax and its translation rule into
CafeOBJ code (called extension module),

e the description of extension modules in CafeOBJ,

e usage policies of extension modules.

Firstly, an extension syntax and its translation rule are encapsulated as
an independent module. However, because of the convenience of the de-
scription, extension modules can include one or more extension syntaxes
and their translation rules. An advantage of this modularization is to im-
prove reusability and maintainability of extension syntaxes. Secondly, by
using CafeOBJ as the description language of extension modules, CafeOBJ
users can realize the pseudo-extension of the CafeOBJ syntax in CafeOBJ.
They can also use the CafeOBJ’s powerful module system. In this work,
the preprocessor consists of many extension modules, and we can add ex-
tension modules to the preprocessor incrementally. However, we need to
solve above problem that means conflicts between extension syntaxes. It
is conflicts of names of extension syntaxes in extension modules. In this
work, the preprocessor solve conflicts by specifying translation rules as
usage policies of extension modules. Then, we introduce the concept of a



context such as a block in a program. The preprocessor avoids conflicts be-
tween extension modules through the usage policies. Preprocessor’s users
describe a policy that is separated from extension modules and specifica-
tions including extension syntaxes. Consequently, by changing a policy, the
preprocessor can change flexibly a meaning (translation rule) of extension
syntaxes without changing extension modules and specifications including
them.

In this work, we realize the preprocessor as follows. It has a basic module
that defines the information of the CafeOBJ syntax. Preprocessor’s users
describe extension modules and extend the preprocessor by using them.
It has also a system that controls extension modules. We call it module
control system. This system solves conflicts between extension syntaxes
according to the usage policies.

3 Espresso: An Implementation of the Preprocessor

We have designed and implemented the preprocessor based on our ap-
proaches. We call it Espresso. Firstly, we have implemented the basic
module as the core system of Espresso in CafeOBJ. It has a CafeOBJ
parser and library functions to support the development of extension mod-
ules. Then we have implemented the module control system of Espresso
in Ruby that is a script language. The module control system needs to
interpret usage policies of extension modules. Thus, we have designed and
implemented a simple description language for the policies.

Secondly, we have described some examples by using Espresso and ex-
perimented the pseudo-extension of the CafeOBJ syntax actually. One
example is based on a specification of a bank account system. We have
written it in pure CafeOBJ at first. Then we have extracted complex parts
of the description from it, and we have extended the CafeOBJ syntax to
make the description simple. In this example, we have defined two exten-
sion modules. One is an extension module including syntaxes for declaring
multiple predicates at a time; the other is an extension module including
ones for declaring equations written state transition of CafeOBJ projection
operations only. These modules have been added to Espresso, then we have
revised the specification of the bank account system by using these syn-



taxes. As the result, we have confirmed that the code size of revised version
of the specification have become about a half size of the code of previous
version (written in pure CafeOBJ). Moreover, we have caused a conflict of
extension syntaxes intentionally in this example. We have confirmed that
Espresso have avoided the conflict appropriately.

4 Conclusion

In this work, we proposed a mechanism to realize a pseudo-extension of
the CafeOBJ syntax easily & incrementally and developed an extensible
preprocessor named Espresso. Espresso avoided conflicts between exten-
sion syntaxes according to usage policies of extension modules. Then, by
introducing the concept of a context into Espresso, Espresso users can
change flexibly translation rules of extension syntaxes. Moreover, we real-
ized pseudo-extensions of the CafeOBJ syntax in CafeOBJ. We have also
experimented extensions of the CafeOBJ syntax by using Espresso. These
syntax extensions were realized by using the specification of a bank account
system in pure CafeOBJ only at first. Then we have revised the specifica-
tion of the bank account system by using these syntaxes. We showed the
effectiveness of syntax extensions by using Espresso.

The following are our future work. We describe many examples by using
Espresso. We experiment to incorporate a lot of extension modules into
Espresso, and we consider limitations of our approaches. Moreover, we
plan to improve the design and implementation of the current Espresso
according to the results of the experiment.



