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Abstract—This paper presents an evaluation of acoustic fea-
ture aggregation and acoustic-linguistic features combination for
valence and arousal prediction within a speech. First, acoustic
features were aggregated from chunk-based processing for story-
based processing. We evaluated mean and maximum aggregation
methods for those acoustic features and compared the results with
the baseline, which used majority voting aggregation. Second, the
extracted acoustic features are combined with linguistic features
for predicting valence and arousal categories: low, medium, or
high. The unimodal result using acoustic features aggregation
showed an improvement over the baseline majority voting on
development partition for the same acoustic feature set. The
bimodal results (by combining acoustic and linguistic information
at the feature level) improved both development and test scores
over the official baseline. This combination of acoustic-linguistic
information targeted speech-based applications where acoustic
and linguistic features can be extracted from the sole speech
modality.

Index Terms—valence, arousal, affective computing, feature
aggregation, feature fusion

I. INTRODUCTION

Predicting valence and arousal is important since many
affective analyses can be performed by analyzing these two
attributes. Russel [1] showed categorical emotion could be
mapped in valence-arousal space. Kensinger [2] argued that
valence and arousal affect memory and attention. An emo-
tional arousal event triggers the activation of endogenous
memory modulating systems [3]. Costanzi et al. found that
valence and arousal effect visuospatial working memory [4].
An interplay between valence and arousal enhances spatial
memory performance.

A challenge for predicting valence and arousal categories
was run to improve the unweighted average recall (UAR)
from the official baselines [5]. In the elderly emotion sub-
challenge (ESC), the participants were invited to predict both
valence and arousal categories (low, medium, or high) given
the speech chunks from story-based instances. This paper is
a participation report on this elderly emotion sub-challenge.
The manual and automatic speech transcriptions were also
provided by the organizer. The official baselines are provided
for test partition from three acoustic feature sets and one

linguistic feature sets with different parameters. Although
the organizer combined several features to fuse the different
modalities, the highest UAR score came from an acoustic
feature set for arousal and a linguistic feature set for valence
prediction. Details of the challenge, including the dataset, can
be found in [5].

The provided baseline method for predicting valence and
arousal used majority voting from the output of chunk-based
predictions for a story-based prediction. A story was divided
into 5-second chunks for feature extraction. Predictions from
all chunks were aggregated by majority voting to obtain a
final prediction for a story/instance. Besides the UAR still
low, this approach has difficulty when combining acoustic and
linguistic information at feature fusion. We aim to overcome
this limitation by aggregating acoustic feature at the input step
for combination with linguistic features.

In this experiment, we instead proposed to aggregate acous-
tic input features for further acoustic-linguistic combination.
Acoustic features from all chunks in a single story were
aggregated by either mean or maximum value. This approach
enables us to fuse acoustic and linguistic features for pre-
dicting valence and arousal categories from speech. Since
linguistic features can be extracted from speech via a speech-
to-text system, it is reasonable to combine those acoustic and
linguistic features without the addition of information from
other modalities. The target application of this approach is
speech-based technology like voice assistant applications.

Although combining acoustic and linguistic information is
not new, to best of our knowledge, no research reported on the
use of acoustic feature aggregation for acoustic-linguistic fea-
ture fusion. While others have performed information fusion
at network level [6], [7], this paper reports acoustic-linguistic
information fusion at the feature level. Combining information
at the feature level requires one-step processing only while
combining information at the decision level requires two-
step processing. Since the dataset used here is small, using
one type of feature set (e.g., acoustics feature only) may
limit information from which valence and arousal can be
extracted. Using acoustic feature aggregation for acoustic-



linguistic feature fusion, we improved the official baseline
scores on test partition from a single feature prediction.

We briefly described the dataset and features used to pro-
duce the results in this paper. A modified method from the
baseline is explained along with its results. Finally, we extend
the discussion in this paper to observe the mismatch between
development and test scores given in the baseline. A future
study is needed to tackle the limitation of current reported
results, including the results in this paper.

II. RELATED WORK AND CONTRIBUTION

Recognizing valence from speech can be performed using
acoustic features, linguistic features, or a combination of both.
Combining acoustic and linguistic information for speech
emotion recognition can be cast into two groups, early and
late fusion. In the early fusion, either features or classifiers
(e.g., networks) are fused at the input level. In the late fusion,
the outputs of classifiers are combined at the decision level.

Yang and Hirscherberg [8] combined raw waveform and
spectrogram of speech to recognize continuous degrees of
valance and arousal via deep neural networks (DNN). The
paper reported that combining both information from speech
provides further improvement to the performance from a
single input. Although obtained high concordance correlation
coefficient (CCC) score for arousal, the CCC score on valence
is low which is common on acoustic-only dimensional speech
emotion recognition.

In [9], the authors used feature fusion to combine acoustic
and linguistic information for real-time affect recognition in
a mobile application. The authors concatenated 89 acoustic
features with seven linguistic features and reported improve-
ments in predicting six basic emotions over unimodal features.
The highest reported performance was obtained using Logistic
Model Tree.

In [6], [10], a combination of acoustic and linguistic infor-
mation was performed at the networks/classifiers level. Both
papers proposed recurrent-based networks concatenation with
the attention layer. Both papers also reported performance
improvements obtained by bimodal networks over unimodal
networks. While paper [10] evaluated the combined acoustic-
linguistic networks on a single dataset, the authors of [6]
evaluated the bimodal networks on several datasets with a
different number of emotion categories.

Griol et al. combined speech and linguistic emotion classifi-
cation at decision level [11]. The paper reported an evaluation
of three different decision fusion: majority voting, classifica-
tion scores, and Borda count. The result revealed that Borda
count provided the best results. A fusion strategy beyond the
decision level was proposed by Tian et al. [12]. The paper
proposed a hierarchical fusion to incorporate features at dif-
ferent levels of its knowledge-inspired structure. This model is
close to the feature fusion approach with a multi-layer strategy.
Different layers received inputs from different features and the
previous layers. The authors reported improvement using the
proposed method over early and late fusion methods on two
emotional datasets.

TABLE I
NUMBER OF INSTANCES AND CHUNKS IN EACH PARTITION

Partition # Stories (text) # Chunks (audio)
Train 87 2496
Dev 87 2466
Test 87 2816
Total 261 7778

Our proposed approach differs from the previous ones by
the nature of the dataset. Our target is predicting valence
and arousal categories, while the previous research aimed at
predicting emotion categories. For processing audio and text,
it is sound to process text on story-based processing while the
audio on chunk-based processing. Text data, with respect to
text feature, is relatively smaller than audio data in size for the
same utterance. Hence, processing acoustic feature on chunk-
based processing, as given by the dataset, is more relevant
than processing audio on a whole story.

In summary, the contributions of this paper can be divided
into the following two parts:

1) aggregation of chunk-based acoustic features for story-
based valence and arousal predictions and

2) acoustic-linguistic feature fusion from different levels of
processing methods.

We evaluated the performance of the unimodal acoustic feature
aggregation against the reference paper [5]. Our proposed
solution by aggregating acoustic features at chunk-based
processing enable us to concatenate acoustic and linguistic
feature. This feature fusion, although already developed by
others, differs from the previous research where audio and text
are processed at the same level, i.e., per utterance, while we
processed both at different levels (chunk vs. utterance/story).

III. DATASET AND FEATURES

A. Dataset

Although the baseline paper [5] provided an overview of the
dataset, we briefly described it again to emphasize the problem
we would like to solve.

Table I shows the number of instances/stories and chunks in
all partition. The labels are given per each story. The baseline
paper used majority vote method over predictions by acoustic
features to aggregate the results, i.e., converting from chunks
to a story. While this method is widely used to aggregate
different classification methods, we proposed to aggregate at
the feature extraction level. The goal of aggregating acoustic
features after chunk-based feature extraction is to have the
same (stories) number with the linguistic feature for feature
concatenation. In other words, we want both acoustic and
linguistic features to have the same number of n-dimensional
vector for each story.

The label on the dataset is given on both alphabetic and
numeric symbols, i.e., low (’L’ or ’0’), medium (’M’ or ’1’),
and high (’H’ or ’2’). We used alphabetic labels as given in
the baseline paper. Note that the number of chunks is different
for each story; for instance, there are 34 chunks in the first
story and 46 chunks in the second story.



B. Acoustic and Linguistic Features

We used acoustic and linguistic features provided by the
organizer of The INTERSPEECH 2020 Computational Par-
alinguistic Challenge (ComParE). The evaluated acoustic fea-
tures are ComParE, openXBOW, DeepSpectrum, and auDeep.
The evaluated linguistic features (LinguistIc Feature Extractor,
LIFE) are GMax, BLAtt, BLAtt + POS, and fused of those
linguistic features. These features were extracted by using
deep-learning based linguistic feature extractor. The resulted
linguistic feature is 512-dimensional in size for each story.
While we kept linguistic features as explained in the baseline
paper [5], we added a set of acoustic features based on
LibROSA toolkit [13] to list of acoustic features.

We extracted seven types of acoustic features from Li-
bROSA features extractor: MFCCs (40 coefficients), chroma
(12), mel-spectrogram (128), spectral contrast (7), tonal cen-
troid (6), deltas of MFCCs (40), and deltas-deltas of MFCCs
(40). This feature set is adopted from [7]. In total, there are
273 features on each frame. Paper [14] found that Mean+Std
of GeMAPS [15] performed better than extended GeMAPS
(eGeMAPS) and Bag-of-audio-words (BoAW) of GeMAPS.
Hence, we extract Mean+Std from previous 273 LLDs re-
sulting 546-dimensional functional features. Along with the
aforementioned acoustic features, we evaluated both acoustic-
only and acoustic-linguistic prediction of valence and arousal.
We use simple aggregation methods, i.e., mean and maximum
values of chunks’ features, to determine the acoustic feature
of story-based instances. Those features are concatenated with
linguistic features in bimodal valence and arousal prediction.

IV. METHODS

In this section, we describe our method to obtain the
results. First, we introduce unimodal processing using acoustic
features only with feature aggregation method. Second, we
show how acoustic and linguistic features are fused and fed
to the SVM classifier.

A. Unimodal Acoustic Features Aggregation

In this unimodal valence and arousal prediction, the input
feature is acoustic. Acoustic features are extracted on frame-
based processing as defined in [5]. For the LibROSA fea-
ture set, we applied the default settings, i.e., 2048 samples
window size and 512 samples hop size. These features were
standardized by removing mean and scaling to unit variance.
The feature x is normalized according to

z =
x− µ

σ
, (1)

where µ is the mean value of training samples and σ is
standard deviation of training samples. The implementation of
this normalization, along with SVM part, is performed using
scikit-learn toolkit [16].

We evaluated two aggregation methods, mean and maximum
values, over chunks to get feature for each story. Figure 1
shows our unimodal approach by aggregating acoustic features
from chunks to stories. In mean aggregation, we averaged
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Fig. 1. Block diagram of acoustic features aggregation.
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Fig. 2. Acoustic-linguistic feature concatenation with SVM.

the values of each column vector of acoustic features for
the same stories. In maximum aggregation, we chose the
highest column vector value of acoustic features for each
chunk on the same stories. By using those methods, each
story has a same n-dimensional feature vector depend on
extracted acoustic features, for instances, LibROSA with 546-
dimensional (Mean+Std), ComParE with 6373-dimensional,
and BoAW-125 with a 250-dimensional feature vector. Those
feature vectors are fed into SVM to obtain valence and arousal
categories.

B. Bimodal Acoustic-Linguistic Feature Fusion

Since the goal of the feature aggregation is to have the
same dimension (n × 1) for both acoustic and linguistic
features, it is easy to concatenate both features to improve
valence and arousal prediction. Figure 2 shows our approach
on acoustic-linguistic features fusion. Two feature sets are
stacked horizontally to build the new feature vector for the
input of the SVM classifier.

Given a set of acoustic-linguistic features pair (xa and xl)
with valence and arousal category labels (’L’, ’M’, ’H’), the
task of SVM is to classify whether a given feature set belongs
to a category of valence and arousal. This classification task
is performed using support vector classification (SVC) in
scikit-learn toolkit [16] with a linear SVC kernel, 106 of



maximum iteration, and optimized complexities (C) values in
the range [10−6, 101] with 101 step size. For data balancing,
imbalanced-learn toolkit was used [17]. The other parameters
are left as default. The SVC classification is performed sepa-
rately to predict valence and arousal categories for the same
feature set.

V. RESULTS AND DISCUSSION

We presented our results in three different analysis:
unimodal acoustic features aggregation, bimodal acoustic-
linguistic feature fusion, and development-test results mis-
match.

A. Acoustic Features Aggregation Results

Since the modality of speech emotion recognition is the
acoustic signal, the important feature is the acoustic features
sets. We evaluated 13 acoustic feature sets derived from five
feature extraction toolkits (listed in Section II). Table II shows
the result of those feature sets with mean and maximum
aggregation methods from chunks to stories in comparison
with reference [5].

Although the results in Table II are from development
partition, we can see that the UAR scores obtained by acoustic
feature aggregation methods are higher than reference in over-
all feature sets. Hence, we believed a similar pattern would be
observed in the test partition. Given limited trials for scoring
test partition, we choose not to include this unimodal acoustic
feature aggregation method for predicting final valence and
prediction scores. Instead, we combined acoustic-linguistic
feature concatenation, based on acoustic feature aggregation,
to score the test partition for final valence and arousal pre-
diction. This result suggests that the input feature aggregation
method obtained higher performance (UAR) than the output
aggregation method with majority voting.

In comparing mean vs. maximum aggregation methods,
we found that mean aggregation lead to higher UAR score
than maximum aggregation in development partition. This
finding, however, is not incorporated for the combination
of acoustic-linguistic feature concatenation. The choice of
maximum acoustic feature aggregation for combination with
linguistic features is intuited by the insight that in groups of
audio chunks, i.e., in a single-story, the emotion within that
story maybe represented by the highest value of the acoustic
feature, for instance, the highest fundamental frequency in
groups of chunks represent the actual the emotion behind
it. Another reason for choosing maximum aggregation for
acoustic-linguistic feature concatenation is development-test
mismatch result explained in section 4.3.

El Ayadi et al. [18] listed some issues in feature extraction
for speech emotion recognition systems. One of the issues
is whether it is necessary to combine the acoustic feature
with other types of features such as linguistic. Since linguistic
features can be extracted from speech via speech-to-text tech-
nology, it is feasible to evaluate the contribution of linguistic
features for future real-time implementation.

TABLE II
UAR RESULTS ON DEVELOPMENT SET: UNIMODAL ACOUSTIC FEATURES

AGGREGATION VS. REFERENCE [5]

Features Baseline [5] Mean Agg. Max Agg.
V A V A V A

LibROSA - - 45.1 38.3 42.7 39.7
ComParE 33.3 39.1 43.4 42.7 45.3 37.0
BoAW-125 38.9 42.0 44.6 45.7 44.6 40.1
BoAW-250 33.3 40.5 43.0 40.8 39.6 37.6
BoAW-500 38.9 41.0 42.6 41.0 42.9 37.9
BoAW-1000 38.7 30.5 43.5 41.5 40.2 39.8
BoAW-2000 40.6 39.7 41.9 44.8 43.4 40.1
ResNet50 31.6 35.0 36.5 36.7 37.1 39.0
AuDeep-30 35.4 36.2 38.4 42.1 42.8 35.6
AuDeep-45 36.7 34.9 39.5 40.5 39.3 33.3
AuDeep-60 35.1 41.6 43.4 42.1 40.7 41.4
AuDeep-75 32.7 40.4 41.9 44.4 40.9 43.3
AuDeep-fused 29.2 36.3 43.6 39.5 42.2 39.3

TABLE III
RESULT OF BIMODAL VALENCE AND AROUSAL PREDICTION ON

DEVELOPMENT AND TEST PARTITION: OFFICIAL BASELINES VS. OURS.

Features Dev Test
Acoustic Linguistic V A V A
ResNet50 [5] - 31.6 35.0 40.3 50.4
- BLAtt [5] 49.2 40.6 49.0 44.0
LibROSA Gmax 58.2 34.6 40.5 34.8
ResNet50 Gmax 58.2 51.0 40.9 50.4
ResNet50 BLAtt 47.6 52.5 56.3 46.4
BoAW-250 BLAtt 58.2 44.4 49.0 47.4

Table III shows our results on using acoustic-linguistic fea-
ture concatenation for valence and arousal category prediction
on development and test partitions. We improved the UAR
score on development partition from 49.2 to 58.2 for valence
and from 40.6 to 52.5 for arousal. On test partition, we
improved the UAR scores from 49.8 to 56.3 for valence and
from 49.0 to 50.4 for arousal. Although the gain was small, we
showed that bimodal acoustic-linguistic feature concatenation
improved the UAR scores of valence and arousal in most
combinations of acoustic-linguistic feature pairs. Table III
shows that evidence on both development and test partitions.

B. Development-Test Mismatch

We observed a mismatch between development and test
results. In Table 2 of the reference paper [5], the best score for
the feature set in the development partition is different from
the best score in test partition. For instance, the best UAR
score in development partition in majority voting (shown in
Table II of this paper) is LIFE-fused for valence and BoAW-
2000 for arousal. In test partition, LIFE-BLAtt obtained the
highest UAR score for valence while the low-development-
score ResNet50 obtained the highest UAR score for arousal.
One of the possible reasons for this result is the data splitting
portion for training/dev/test given in the baseline paper, i.e.,
87/87/87. Since the portion of training/dev/test is also a param-
eter in machine learning, in this case SVM, we re-evaluated
the development score with a splitting of 80%/20% for train-
ing/dev partition. We concatenated training and development
partition provided by the ComParE Challenge organizer. We



used 80% of that concatenation data for training and the rest
20% for development score. However, the results still showed
a mismatch between development and test scores although the
gap is smaller than in reference development score. Another
possible reason for that mismatch is the small size of data that
cannot be solved except by adding more data.

Given this mismatch, we did not use the highest score
of the development partition for testing our method and
features. Instead, we relied on the previous test results for
testing our acoustic-linguistic feature combination. The same
reason also applies to choose maximum aggregation over mean
aggregation.

VI. CONCLUSIONS

We presented an evaluation of acoustic features aggregation
for acoustic-linguistic feature concatenation. Two aggregation
methods are evaluated, i.e., mean and maximum aggregation.
Our results suggest that using input feature aggregation in
unimodal acoustic valence and arousal prediction is better
than using output-based aggregation using majority voting.
This result may be intuitively explained that the processing
inputs is more informative than processing outputs. Apart from
that benefit, using acoustic feature aggregation enables us to
combine acoustic and linguistic features on a story or instance-
based processing. The results by combining acoustic-linguistic
features are higher than the results by using unimodal acoustic
features, both from the official baseline and our acoustic
features aggregation.

We observed a mismatch between development and test
scores. This problem is a merit study for future research.
Current method shows difficulties to determine which method
performs better (from the development scores). There is a
need for an approach to guarantee that the best method in
development partition is also the best method in the test
partition.
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