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Abstract

In this information society, the amount of data is rapidly increasing, especially in the
field of Astronomy, Twitter, Youtube, and Genomics. In these four fields, storage for
genomics is increasing the most, and the way to process it fast has been one of the big
tasks for a long time. There are so many DNA sequences that people have to work on.
One of the genome analysis that people have to face is to find the function of DNA
from a DNA sequence. Recently, Machine Learning has been used to find the function
of DNA from a DNA sequence. However, training a machine learning model for DNA
sequences takes much time due to the size of the dataset. Besides, since DNA sequences
are represented by four types of the base, which are Adenine, Guanine, Thymine, and
Cytosine, it can be represented by the bit-width of two. FPGA has a substantial ad-
vantage of processing these kinds of string operations because FPGA can construct a
dedicated state machine. Also, FPGA can be a useful resource for processing fast by
pipelining.

In addition, more and more companies are using cloud services such as AWS for
their acceleration. Since cloud users always have to consider the trade-off between
execution time and cloud instance usage fee, it is necessary to optimize these two things
depending on each cloud user.

In this paper, we propose the following two ideas.

• Mutli-FPGA Implementation

• Cloud Optimization under Give Costs

We tried to accelerate a deep learning model called DanQ using FPGAs. It is said
that FPGA is sufficient for data such as genomics data because DNA sequence can be
represented by 1 bit and does not require a large bit-width for processing. We mainly
focused on a BiLSTM layer, which is the most time-consuming part of the DanQmodel.
We quantized the parameters of the BiLSTM layer to the bit width of 16 in order to
implement on FPGA without losing the training accuracy. We also implemented the
BiLSTM layer to multiple FPGAs to obtain a better execution time. As a result, we
could accelerate the DanQ model by using a single FPGA by 1.05x compared to our
CPU implementation. Besides, our implementation on 8 FPGAs gets 2.87x faster than
the dual FPGA implementation and 6.00x faster than the CPU implementation.

Also, our implementations can change the resource size during the execution to
optimize the execution time or cloud instance usage fee depending on the users’ needs.
Comparing a case of using 8 FPGAs for all time and a case in which we optimized the
number of FPGAs during the training with our model, we obtained the result that we
can save the cloud usage fee for 56.28% by only taking 16.00% extra time.
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Chapter 1

Introduction

1.1 Research Background
In this Information era, the amount of data is increasing rapidly in the society.

Especially, The amount of information in the field of astronomy, twitter, youtube,
genomics is massive. It is getting easier and easier for people to upload anything they
have in the internet and that leads to a huge increase of data in the society. Among these
field, the amount of increasing data from genomics which increases with 2-40(EB) per
year are the highest followed byYoutubewhich increases 1-2(EB) per year [1]. Recently,
deep learning has proved its potential in graphic processing such as segmentation and
motion estimation, and speech recognition. Moreover, it is also used in genomics and
showed results with high accuracy. However, as we mentioned above, the amount of
genome data is massive and that makes the training time very long.

Moreover, there are so many situation for users who use cloud services for accelera-
tion. They sometimes want to finish the training fast no matter how much it cost, while
some other time they might want to save the usage fee even if the training time is very
long. Therefore, it is a task to optimize the training time depending on the users needs
by changing the size of resources that are used for the acceleration during the training.

1.2 Research Purpose
The purpose of this research is to accelerate a training of a deep learning for

genome data by implementing on multi-FPGA. The main focus of our research is an
optimization using AWS EC2 F1 instance in AWS cloud service which has multiple
FPGA. By changing the size of instances, we can optimize the training time as well as
instance usage fee depending on a user’s needs.

1



1.3 Audience
The audience of this research is people who are familiar with DNA sequence

such as researchers and investigators. In addition, people who are interested in deep
learning or hardware implementation would be the audience. This paper will state
Convolutional Neural Network (CNN) as well as Recurrent Neural Network (RNN),
and their implementations on one or more hardwares.

1.4 Contribution
There are so many advantages using FPGA in terms of flexibility and power effi-

ciency. Therefore, we can estimate that training time of the deep learning model will
be faster by implementing on FPGA. In addition, in case of using instances from cloud
service, we can optimize the training time and instance usage fee depending on a user’s
needs by changing the instance size during the training. Hence, this research makes a
contribution to users who use cloud services as acceleration.

1.5 Motivation
A process using bigdata leads to huge processing time and many researchers have

been working on it. Especially, it is hard to accelerate the process when it is a com-
plex application. However, there is a chance to accelerate the training time by doing
distributed training using multiple devices such as FPGAs. Moreover, some companies
are relying on cloud services for their acceleration and there is always a discussion of
the trade-off between the size of the resources and the usage fee. Thus, it is worth
optimizing the training time and the instance usage fee for each users.

1.6 Paper Goals
Training a deep neural network (DNN) for DNA sequence takes a lot of time due

to the size of the dataset. Thus, it is one of the big task to process the massive data
in genomics efficiently. In our approach, we accelerated the training by using multiple
FPGAs. Also, we provide cloud users an optimized training method by changing the
size of the instance during the training depending on the instance fee which fluctuates
in the daytime and the nighttime. Therefore, Our goals of this paper are accelerating
the training using multiple FPGAs and the optimization of training time and the cloud
instance usage fee by changing the size of the instance during the training.

1.7 Organization
This paper is mainly organized as 7 chapters. Following chapters are Background,

Related Works, Multi-FPGA Implementation, Cloud Optimization, Conclusion and
Future Works, and Acknowledgment. In the chapter of Background, we explain the

2



basic idea of neural network such as CNN and RNN. The NNmodel using genome data
as well as the related research are explained in the next chapter. Our two proposed ideas
of this paper are mentioned in Chapter 4 and 5, respectively. In each two chapters, we
indicate the proposed idea and the evaluation. We conclude this paper and state our
future plans in Chapter 6.
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Chapter 2

Background

2.1 Introduction
In this chapter, we explain basic ideas of neural network (NN) which is used mainly

for this research. There are so many types and techniques in NN. The explanation below
shows one of them.

2.2 Neural Network
2.2.1 Feedforward Neural Network

Feedforward neural network (FNN) is one of simplest andmost used neural networks
(NN), which is consisted of many compute units in each layer. It has forward process
and backward process and a NN which has many layers is called deep neural network
(DNN). In the forward process, activation, which is a input of a layer, is multiply-
accumulated with weights. Let G be the input to a layer, and let F be its weight. An
example of a output of the layer H with the bias 1 can be shown below:

H = F1G1 + F2G2 + F3G3 + 1. (2.1)

This equation is an example of three inputs to a unit. After this process, activation
function is applied and final output of each unit is shown in the equation, where 5 ()
represent a activation function.

I = 5 (H) (2.2)

The main reason for applying an activation function is to make it easier to train and
to gain high accuracy. Some activation functions make the outputs from each layers as
nonlinear value to improve the expressiveness, while some other activation functions
prevent outputs of a layer becoming too large values and try to make them 0, which
leads to efficient training.

There are many variety of functions that are used for activation function. For
instance, here is a activation function called Sigmoid function as shown in Equation

4



2.3, which has been used for long time. However, there is a big problem that value
of gradient become zero in the back propagation phase, specially when the NN has so
many layers. This problem is known as Vanishing Gradient Problem. It is more likely
to happen when we choose the Sigmoid function as an activation function. This is
because the output of the derivative of Sigmoid function has 0.25 as maximum value
and the value of gradient is going to be smaller and smaller if we pile up these kind of
layers.

H = 1/(1 + 4G?(−G)) (2.3)

Nowadays, the most popular activation function is called Rectified Linear Unit
(ReLU) as shown in Equation 2.4, which outputs 0 for the negative inputs and outputs
the inputs for the positive inputs. This is introduced not only for solving the Vanishing
Gradient Problem but also to have better processing time by making the activation
sparse to compute more simply.

H =

{
G (G ≥ 0)
0 (G < 0) (2.4)

Figure 2.1 shows the comparison between Sigmoid function and ReLU function. It
is easier to understand that the outputs for Sigmoid function have 0 for minimum value
and 1 for maximum value. On the other hand, ReLU function has so many 0 values for
the outputs and has no maximum value, while the minimum value and the maximum
value for its derivative are 0 and 1, respectively.

Figure 2.1: Examples of activation functions
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NN consists of multiple layers which have multiple units. The training is processed
by optimizing these weights to have smaller loss. The loss is generated by a loss function
such as binary cross-entropy:

;>BB = −C [8];>6(>DC [8]) − (1 − C [8]);>6(1 − >DC [8]), (2.5)

where C represents the correct output and >DC represents the real output, with each
elements of 8.

In the backward process, which is also called backward propagation, there are two
parameters called gradient and error. From the last layer, derivatives of each function
in each layer are computed by the chain rule of calculus to the first layer. The parameter
that goes from last layer to the first layer is called an error. At the same time, the back
propagation compute the parameter called an gradient which is used for updating the
weight in each layers.

There aremany algorithms for updating theweightswhichwe call them an optimizer.
One of the famous optimizer is Stochastic Gradient Descent (SGD). SGD is used to
perform learning using the gradient which is obtained in backward propagation phase.
Therefore, the weights are decreased or increased depending on the gradient and the
degree of it is determined by learning rate which we decide in advance. The equation
is shown in Equation 2.6.

,C+1 = ,C − U(X! (,C ))/(X,C ) (2.6)

Where suffix of weight represents the time and the U represents the learning rate.
If the learning rate is too big, it is difficult to get the best weight values. On the other
hand, if the learning rate is too small, it takes so mush time to get the best weight
values. (X! (,))/(X,) is differentiate of loss function by the weight, which represents
the gradient.

To change the learning rate during the training, new optimizer called Adagrad was
introduced by John Duchi, Elad Hazan, and Yoram Singer [6]. This optimizer has a
new parameter ℎ to change the learning rate as shown in Equation 2.7. This parameter
ℎ keeps and remembers the last gradient in order to know the appropriate learning rate.
The update equation is shown in Equation 2.8.

ℎC+1 = ℎC + (X! (,C ))/(X,C ) (2.7)

,C+1 = ,C − U(1/(
√
ℎC+1)) (X! (,C ))/(X,C ) (2.8)
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The biggest advantage of using Adagrad is that the learning rate changes depending
on the progress of training. However, learning rate can only be decreased and cannot
be increased.

There is an improved optimizer for Adagrad called RMSprop which is introduced
by Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky [9]. This is introduced to
overcome the problem in Adagrad that learning rate decreases rapidly. Equation 2.10
shows the update equation for RMSprop.

�C = W�C−1 + (1 − W) (X! (,C ))/(X,C )2 (2.9)

,C+1 = ,C − U(1/(
√
�C + n)) (X! (,C ))/(X,C ) (2.10)

2.2.2 Convolutional Neural Network
The Convolutional Neural Network (CNN) is a FNN which consists of one or more

sets of Convolutional layer and Pooling layer. In general, CNN also has Full-connected
layers which we mentioned above. CNN is trained by optimizing the weight using back
propagation like FNN and is often used for image recognition. The main difference
between CNN and FNN is that CNN has specific connections between units in adjacent
layers, while FNN has all connections between units in adjacent layers. The processes
of convolution and pooling is the main part of CNN. In convolutional process, it can
extract features from the inputs such as images by using the locality of the inputs. For
instance, a pixel in a image has relativity with adjacent pixels to a certain extent. CNN
can extract feature using these locality. Let H is the output of convolutional layer and I
is the input to the layer, which we call it feature map. The equation of this process is
shown below:

H8 9< =

 −1∑
:=0

�−1∑
?=0

�−1∑
@=0

I
(;−1)
8+?, 9+@,:ℎ?@:< + 18 9< (2.11)

Here, ℎ is a filter sized � × �, which is also called weights, and 1 is a bias.  
represents the number of channels of, ×, image and the filter. I and H are inputs and
outputs, respectively, with a layer number ;. The suffixes 8, 9 , < and ?, @, : represent
the positions of a pixel of output and each filter, respectively. Figure 2.2 shows an
overview of the convolution process.
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Figure 2.2: The Overview of a Convolutional Layer

When the inputs for the CNN are time series, a process of one dimension con-
volutions is usually applied which we call it 1-D CNN. What we mentioned above is
for convolutional process for two dimensions. In 1-D CNN, which is also used in our
research, has a one dimension of filter instead of two dimensions. The inputs can be
considered as an array and the filter slides horizontally over the inputs to get outputs,
just like a version of two dimensions.

Pooling layer is often used right after the convolutional layer. In this process, this
layer outputs the average or maximum value from the inputs window. The window size
is determined by each pooling layer. This layer is used to get robustness for the change
of the position of each input value. Since the size of the feature map gets smaller, the
amount of calculation also decreases by using the Pooling layer.

2.2.3 Recurrent Neural Network
Recurrent Neural Network (RNN) is a NN which is specialized to the time series

input data. It remembers the past inputs and outputs data using these past inputs.
Simple RNN has a problem that requires huge memory to remember all the past inputs.
Therefore, there is a improved RNN called Long Short-Term Memory (LSTM) [11]
which decides to remember the inputs or not in order to solve the Vanishing Gradient
Problem and Exploding Gradient Problem [2]. In order to do that, LSTM has three
different gates: Output gate, Forget gate and Input gate. It also has a cell called memory
cell which memorize inputs. The overview of LSTM cell is shown in Figure 2.3

8



Figure 2.3: The Overview of a LSTM Cell

Here, f represents the Sigmoid function and, �, �, �, $ represents gates and a
cell. Also, G, ℎ, 2 in the Figure 2.3 represent inputs, outputs from the past and outputs
of memory cell, respectively. Their suffixes indicate the time of time series input data.
The equation of each gates and a memory cell is shown below, where 2C represents
outputs of memory cell and ℎC represents a hidden state at the time of C.

5C = f(, 5 [ℎC−1, GC ] + 1 5 ) (2.12)

8C = f(,8 [ℎC−1, GC ] + 18) (2.13)

6C = C0=ℎ(,6 [ℎC−1, GC ] + 16) (2.14)

2C = f( 5C2C−1 + 8C ∗ 6C ) (2.15)

>C = f(,> [ℎC−1, GC ] + 1>) (2.16)

ℎC = >C ∗ C0=ℎ(2C ) (2.17)

Figure 2.4 shows the overview of a LSTM layer. Each LSTM block represent a
process that we mentioned above. Outputs of an LSTM block is inputs for the next
LSTM block and this is an architecture, which has a better performance for time series
input data, that is completely different with an architecture of Convolutional layer.

9



Figure 2.4: The Overview of a LSTM layer

There is a layer called Bidirectional Long Short-Term Memory (BiLSTM) which
has two LSTMs which reads the inputs in different way. One LSTM reads the input
from past to present which is a normal LSTM, while the other LSTM reads the input
from present to past. Since the outputs of these two LSTM are concatenated, the size
of outputs of BiLSTM layer is as double as that of the normal unidirectional LSTM.
Figure 2.5 shows an overview of the BiLSTM layer with an example of inputs whose
size is four (GC , GC+1, GC+2, GC+3).

In this example, since the size of inputs is four, the size of the outputs is eight. The
biggest advantage of using the BiLSTM other than normal unidirectional LSTM is that
the training accuracy increases by not only reading from the past to the present but also
the present to the past. A normal unidirectional LSTM can only remember and take
account of past inputs. However, on the other hand, BiLSTM layer can remember and
take account of past and future inputs. Thus, taking future inputs into consideration
leads to higher training accuracy comparing to an unidirectional LSTM.

There is also an improved LSTM called a Gated Recurrent Units (GRU). It has less
gates than an LSTM which leads to fewer calculation and smaller memory utilization.
There are two gates called Update gate and Reset gate. The Update gate acts similar to
forget and input gate of an LSTM which make a decision of whether an input should be
remembered or not. The Reset gate is a gate that is used to decide how far of the input
should be forgotten.
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Figure 2.5: The Overview of Bidirectional LSTM layer

2.2.4 Techniques for Training the Model
There are much research that improve the training for deep learning. One of the

techniques for prevent overfitting is regularization such as Weight Decay. Overfitting is
likely to happen when the value of weights are too large. To avoid the weights to have
large value, squared !2 norm of the weights is added to the loss function. The equation
is shown in Equation 2.18, where � and ! represents a criterion and loss function with
weight F, respectively.

� (F) = ! (F) + _F) F (2.18)

Here, _ indicates a hyper parameter that controls strength of regularization. By
having this idea of adding squared !2 norm to the loss function, a criterion � is going to
be increased when the weights become larger. Therefore, it is possible not to have too
large values of weights and this regularization leads to prevent the overfitting. Another
known techniques for overfitting is a technique called Dropout, which is introduced by
Srivastava et al. in 2014 [10]. This is a technique that some units are removed randomly
from the network for only the training. This means no more activations for removed
units propagate to next units. Using this technique, the training does not strongly
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depends on the training data and this leads to a high generalization performance. In
the inference phase, units are not removed and all the units propagate their activations.
However, the activations are multiplied by the dropout ratio, which is a ratio of removed
units in the training phase. Figure 2.6 shows an example of standard hidden layers which
has four units in each layers and Figure 2.7 shows the hidden layers after applying the
Dropout.

Figure 2.6: A Standard Neural Network

Figure 2.7: Neural Network after applying Dropout

Weight Decay does not work well when a model become very complicated. How-
ever, the dropout works well even when a model is huge and complicated.

2.3 Field Programmable Gate Array
Field Programmable Gate Array (FPGA) is one of the Programmable Logic Device

(PLD) to freely realize a logic circuit. It consists of three parts: logic block, I/O block,
and switch block. Basic Logic Element (BLE) is a fundamental element in a logic
block which consists of Look-Up Table (LUT) and Flip Flop (FF). LUT can realize a
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combination circuit by keeping a truth table of a desired function in less memory. FF is
a memory cell of 1 bit used as a memory cell of a sequential circuit. Figure 2.8 shows
an overview of the most popular configuration of an FPGA.

Figure 2.8: The overview of FPGA

Since it is difficult and time-consuming for wiring in terms of multiplication using
LUT, a hardware block calledDigital Signal Processing (DSP) block has been introduced
which is specialized in complex process such as multiplication. Some of the FPGAs
such as Xilinx Alveo U200 acceleration cards have regions called Super Logic Region
(SLR). An SLR is an FPGA die slice and includes: LUTs, Registers, I/O Components,
Gigabit Transceivers, Block Memory, and DSP Blocks. In addition, not only the
BRAM but also the URAM can be used for implementation to Xilinx FPGA. Basically,
the URAM has more capacity than the BRAM, and an FPGA that has the URAM such
as Xilinx UltraScale+ device has an advantage that it has a large capacity in on-chip
memory compared to the other FPGA which does not have the URAM, which leads to
being able to implement larger size of an application easily.

2.4 High Level Synthesis
HighLevel Synthesis (HLS) is to generatingHardwareDescriptionLanguage (HDL)

from high-level language such as C/C++ and java by using a designated compiler.
Thus, it is unnecessary to code using HDL which requires high knowledge of hardware
structure and design. Moreover, it is said that productivity of using HDL and high-level
language is so much different. It is is much easier for developers to code using high-

13



level language in terms of that they do not have to describe it precisely because HLS
compiler does that instead of the developers. In addition, when we develop using HDL,
the HDL design is strongly depends on the hardware that we implement which leads to
poor portability while HLS design has rich portability thanks to the HLS compiler.

As we mentioned in Chapter 3, the paper [15] showed a result that there are no
so much difference in execution time between a design using HLS tools and a design
using HDL. Therefore, we decided to use HLS tools to increase the productivity for the
implementation and focus on the optimization.

2.5 Summary
In this Chapter, we introduced the basic mechanism of NN, including CNN and

RNN. CNN and RNN are the most important parts of our target model DanQ. Also, we
explained the basic knowledge about FPGA as well as the HLS which is used for an
FPGA implementation. These knowledge are needed for not only my research but also
for related works that are explained in the next chapter.
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Chapter 3

Related Works

3.1 Introduction
Since there are huge data in genomics aswementioned inChapter 1, DNA sequences

that people have to analyze are numerous. Thus, many researchers have been working
on it for long time. One of the genomic analysis that people are working on is identifying
functional effect of non-coding variants from a DNA sequence. A problem that people
have to face is how people can process the huge DNA sequence efficiently. We introduce
two research that tried to solve the problem using deep learning.

In addition, there are some papers about an implementation of deep learning on
FPGAs. An FPGA can perform greater than a GPU or a CPU in terms of their execu-
tion time and power efficiency depending on how they implemented. We introduce the
paper in detail.

Moreover, there are increasing number of researchers and companies who are using
cloud service to process their application. Using cloud service has big advantages that
their resources have scalability and flexibility. Also, developers do not have to care
about the maintenance as well as the security of the system. There are some researches
about a deep learning using this advantage of cloud service. One of them is mentioned
below.

Also, many cloud users always have to consider about the trade-off between the
public cloud usage fee and the completion time. In this Chapter, we also introduce
about the scheduling methods in order to gain the optimized cloud usage fee as well as
the optimized completion time for each cloud users.

3.2 DeepSEA: CNN model for genomics data
In order to find the chromatin effects from DNA sequence, CNN model called

DeepSEA was proposed by Jian Zhou and Olga G Troyanskaya [17]. The overview of
DeepSEA is shown in figure 3.1.
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Figure 3.1: The Overview of a DeepSEA model

The size of the inputs to this model is 4∗1000which represents the length of 1000 of
DNA sequence and its output size is 919 which is the binary data representing the 919
predicted chromatin features. Input is binary data and is represented by one hot vector,
with the columns corresponding to the 4 different base, which are adenine (A), guanine
(G), thymin(T) and cytosine (C). Main parts of this model are 3 1d-convolutional layers
which extract the pattern from the DNA sequence. After each convolutional layer, it
has ReLU which all negative activations is output as zero. It also has two max pooling
layer which outputs maximum value in each windows. Three dropout layers regularize
the data to prevent over-training and increase the training efficiency. At Last, two
full-connected layer summarize the data and sigmoid layer outputs the prediction.
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3.3 DanQ: Hybrid model for genoimcs data
Improvedmodel called DanQ is proposed yDaniel Quang andXiaohui Xie [14].The

model has improved in accuracy compare to the DeepSEA. The overview of DanQ is
shown in figure 3.2.

Figure 3.2: The Overview of DanQ model

The biggest difference between DeepSEA and DanQ is whether it has RNN or not.
DanQ is a hybrid neural network including both CNN and RNN.It has one convolutional
layer and one RNN layer instead of having 3 convolutional layers like DeepSEA. For
RNN layer, Bidirectional LSTM layer is used which has two LSTMs which read the
inputs from past to present and from present to past. By adding RNN layer to the model,
the model can not only capture the feature of the DNA sequence by convolutional layer
but also remember the past input by RNN which leads to higher accuracy. The loss and
accuracy of the DanQ is shown in Table 3.1 with that of DeepSEA. Theses results are
obtained from the training for 60 epochs with the dataset of 4,400,000, where one input
is a DNA sequence which has a length of 1000.
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Table 3.1: Loss and Accuracy for models
model Loss Accuracy
DeepSEA 0.0551 98.20%
DanQ 0.0539 98.23%

3.4 RNN Implementation on FPGA
It is said that deep learning, especially Recurrent Neural Network (RNN), is well-

suited to FPGA implementation. This is because a RNN has the recurrent nature that
can be easy for FPGA to parallelize and can be difficult for a CPU and a GPU. This
paper [4] introduces the implementation of LSTM, which is a popular RNN, on FPGA
because the GPU can not process enough in parallel due to the sequential component
of the RNN. In their implementation, they separated the LSTM computation into three
part, while sub processes in each three process are executed in parallel. Their results
outperform the CPU implementation and the GPU implementation in terms of the
execution time and the power efficiency. This results indicate that there are potential for
the FPGA to accelerate deep learning than the GPU. Moreover, it also has an advantage
of the power efficiency.

3.5 Multi-FPGA Implementation
When the size of the model increases, it gets more difficult to implement on single

FPGA due to the limit of the on-chip memory. Also, when the datasets is too large,
it takes huge time to finish the training on a single FPGA. Therefore it is necessary to
implement on multiple FPGAs for a large model. Hence, many researchers have been
working on a method of the implementation on multiple FPGAs. For instance, Dongup
Kwon, Suyeon Hur et al. had introduced strategies of partitioning a large RNN model
in order to accelerate the model using multiple FPGAs [12]. One of their strategies for
partitioning is layer-wise partitioning. This strategy is for a model with a multiple layers
of RNN. They also introduced a strategy called Row-wise partitioning which is used
a single layer of RNN. The results show that Row-wise partitioning outperforms other
simple partitioning methods such as Input-wise partitioning and Gate-wise partitioning.
According to this paper, their strategies have great results in terms of the speedup of
the inference time.

There is another research about the acceleration and load balancing of Convolutional
Neural Network (CNN) using multiple FPGAs which is focused on training [8]. In this
paper, it is explained that there are two types of methods for the implementation on
multiple FPGAs: Data Parallelism andModel Parallelism. Data Parallelism is a method
that duplicate the model in order to implement on multiple FPGAs, and separate the
dataset into multiple groups so that large part of the dataset is process in parallel. It has
a merit that can be processed in parallel with high-level, however, it has demerit that it
requires a large on-chip memory. On the other hand, model parallelism is a method to
divide the model into small part and implement that parts on each FPGA. Thus, each
executions can be pipelined with the layers which leads to the better execution time.
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Although it requires only small on-chip memory, the number of data transfer between
the FPGAs is large which might be the bottleneck for the whole execution.

3.6 High Level Synthesis
High Level Synthesis (HLS) tools are widely known and used for a FPGA imple-

mentation rather than using Hardware Description Language (HDL). This is because
the productivity and the scalability using HLS outperform HDL design flows. On the
other hand, however, an accuracy of an application which is implemented by HLS
tools are not very high as an implementation using HDL due to the overhead which is
created when translating High Level Language (HLL) such as C/C++ to HDL. There is
a paper which compares HLS design and HDL design for image processing [15]. This
paper shows the result that HLS design has almost same pipeline length and utilization
of used multipliers and slices as HDL design. Moreover, although there is an over-
head for translating HLL to HDL which increases critical-path delays and needs extra
sub-optimal design, the core frequency for HLS design and HDL design are relatively
similar, which are 382 MHz and 428 MHz, respectively. From the result that HLS
design does not let the frequency huge decrease compared to the HDL design, we think
that we are able enough to use HLS tools to implement an application on FPGAs in
terms of the execution time.

3.7 Virtualization and Cloud
The main difference between the virtualization and the cloud is that virtualization

is a technique of dividing the function of server and network logically, while cloud is a
service which users can freely use without preparing a software or data on-site. There
is a virtualization research whose approach is to integrate virtualized FPGA-based
hardware accelerators into commercial scale cloud computing systems [3]. Stuart
Byma, J. Gregory Steffan, etc. have introduced a framework for multiple FPGAs in the
generic cloud resources with OpenStack (open source cloud software) which enables
users to use the same command for booting the regular Virtual Machine. According
to this paper, their virtualization and abstraction reduced the design iteration time and
the design complexity, and led to a better performance for the FPGA cloud compute
resources than for virtual machines.

3.8 Research of FPGA using Cloud Service
Many companies such as Amazon, Google, Microsoft, Alibaba etc. are providing

their own cloud services, which are Amazon Web Service (AWS), Google Cloud Plat-
form (GCP), Azure, Alibaba Cloud, respectively, to people in the world. Each cloud
services has computer system resources and often used for data storage (cloud storage).
However, recently, they are also used for the acceleration for an application using de-
vices such as CPU, GPU, FPGA, etc. on cloud. For example, AWS has instances with
FPGAs called AWS EC2 F1 instance which are used for an acceleration.
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There is a research about reducing energy consumption of CNN application using
cloud multi-FPGA platform [16]. Multi-FPGA platform is often used for data center
applications such as Deep Neural Network (DNN), big data processing, which can be
easily parallelized. This is because the workloads of data center applications are not
stable and vary each time which can usually leads to the waste of resources and power
consumption. Cloud platform can optimize the use of the resources as well as the power
consumption, and this paper introduced methods that how the instances are paralleled
in each kernels. It also indicated a way to allocate to the FPGAs, and their method gives
the number of FPGAs whose power are on and their clock frequencies. They discussed
using the profile reports of FPGA from Xilinx SDAccel and AWS EC2 F1.x16large
instance with Xilinx UltraScale+ FPGAs. They proposed a method to obtain the con-
figuration bitstreams which are optimized by power efficiency for multiple FPGAs, and
got results of better power consumption compared to their fastest implementation.

3.9 Research of Scheduling methods using Cloud Ser-
vice

Many researchers have been working on how to minimize the execution time as well
as the costs for using public cloud resources.
Stanislaw Deniziak and Slawomir Bak introduced a scheduling method to minimize
the cost of resource usage and to minimize the latency of all activated applications [5].
Their method is for a HHPCaaS (heterogeneous HPSCaaS) clouds and they managed
to reduce the costs by over 50% compared to the classical approach by sharing the
resource between the applications.
Yihong Gao, Huadong Ma, Haito Zhang, Xiangqi Kong and Wangyang Wei consid-
ered the concurrency optimized task scheduling problem [7]. They proposed a delay
constrained scheduling approach, which they use a approach to achieve the deadline,
minimize the total costs for using the public cloud resource and minimize the total exe-
cution time that the cost can purchase, and a resource constrained scheduling approach,
which they use a method to minimize the latest completion time and make sure the total
costs for using the public cloud resource is lower and worthy. According to the results
of these two approaches, their approaches can significantly improve the efficiency and
simultaneously spend lower cost. Specially, the resource constrained scheduling ap-
proach got the lowest completion time while spending lower cost to achieve the goal.
There is another research using more complex model than a model we use in this paper.
Sifei Lu, Xiaorong Li, Long Wang, Henry Kasim, Henry Palit, Terence Hung, Erika
Fille Tupas Legara and Gary Lee used EC2 spot instances from AWS which fluctuate
dynamically [13]. They proposed a dynamic resource provisioning solution to running
large scalable application with hybrid instances includes both spot and on-demand in-
stances. They used the on-demand instances for high priority tasks and used the spot
instances for the normal computation tasks. Their method takes the dynamic pricing
of cloud instances into consideration and it reduces the cost for using public cloud
resources tolerates the failures for running large-scale applications. They used 1000
AWS EC2 instances and they obtained that their method achieved 23.3% cost savings
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compared with the method using only on-demand instances, while the total completion
time only increase 5.3% with backup fault tolerance policy.

3.10 Summary
In this chapter, we introduced researches about the FPGA implementation of DNN,

including CNN and RNN. Also, we introduced a research about HLS in order to show
HLS tools is efficient and does not lose the accuracy so much compared to HDL
implementations. Moreover, we showed researches about using a cloud service as well
as the virtualization. In addition, we also introduced three research about scheduling
method for reducing the cloud usage fee as well as the execution time. As the vital part,
We have introduced the related works that worked on estimating the function of DNA
from the DNA sequences. These two deep learning model, DeepSEA and DanQ, have
a great result of accuracy for estimation. Although DanQ has the more accuracy than
DeepSEA, there is a problem that it takes massive time for training. Thus, in this paper,
we propose a method to approach a solution to the problem.
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Chapter 4

Multi-FPGA Implementation

4.1 Introduction
In this chapter, we introduce our proposed method and the implementation on

multiple FPGAs. By separating the process on multiple FPGAs the way they can
process individually, we can obtain faster training time.
We also indicate the result we obtained by implementing the DanQ model on FPGAs.
We show three different implementations that are implemented on single FPGA, dual
FPGA and 8 FPGAs. The details are explained in the following sections.

4.2 Target Model
The target model we chose is the DanQ model shown in Figure 3.2. The output

feature map size, the input feature map size and the filter size of each layer are shown in
Table 4.1. DanQ is a hybrid model with CNN and RNN. Although it has an outstanding
performance in accuracy, its training time is enormous.

Table 4.1: The Size of Feature Map of Input and Output of each layer
Name of the Layer Input Map Size Output Map Size Filter Size
Convolutional Layer 1000 × 4 975 × 320 4 × 320 × 26
ReLU Layer 975 × 320 975 × 320 -
Max Pooling Layer 975 × 320 75 × 320 -
Dropout Layer 75 × 320 75 × 320 -
BiLSTM Layer 75 × 320 75 × 640 320 × 320 × 4 × 2 × 2
Dropout Layer 75 × 640 75 × 640 -
Full-connected Layer 75 × 640 925 75 × 640 × 925
ReLU Layer 925 925 -
Full-connected Layer 925 919 925 × 919
Sigmoid Layer 919 919 -
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4.3 Proposed Method for FPGA Implementation
There is much research about Genome analysis using FPGA. FPGA has an advan-

tage of processing small bit-width like DNA sequence, which can be represented as 2
bit for bit-width. As we mentioned in Chapter 3, the training for DanQ [14] requires a
huge dataset of 4,440,000, with each one represents the DNA sequence whose length
is 1000. According to the paper [14], the training for one epoch requires almost one
hour. Therefore, we think it is sufficient to distribute the huge data to multiple FPGA,
which can lead to the training acceleration. Moreover, we focused on the BiLSTM layer,
which consumes about 48% of the whole training time. BiLSTM is time-consuming
because there are two LSTM to process. Also, a BiLSTM layer is relatively easy to
divide the process which leads to the availability of parallel processing. By dividing
these two BiLSTM process into two parts, the processing time can be decreased: the
LSTM which reads the input forward is implemented on an FPGA while the other
LSTM which reads the input backward is implemented on another FPGA. In addition,
we process the BiLSTM layer in parallel using 8 FPGAs by dividing each LSTM layers
into 4 parts independently.

4.4 The Experimental Environment for AWS
For implementing our application on FPGA, we used an instance from Amazon

Web Service, and the detail of the instance is shown in Table 4.2.

Table 4.2: The detail of Xilinx UltraScale+ VU9P
VU9P

System Logic Cells (K) 2,586
CLB Flip-Flops (K) 2,364
CLB LUTs (K) 1,182
Max. Dist. RAM (Mb) 36.1
Total Block RAM (Mb) 75.9
URAM (Mb) 270
DSP slices 6,840
Peak INT8 DSP(TOP/s) 21.3
PCIe Gen3 x16 6
Max. Single-Ended HD I/Os 832
GTY 32.75Gb/s Transceivers 120

The F1 Instance is a compute instance with FPGA, which we can program to create
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custom hardware accelerations for our application. Xilinx UltraScale+ VU9P FPGA is
on the F1 Instance, and the main advantages are described below:

• High-density device fabricated in a 16nm process

• 2.5 million logic cells

• More than 6800 DSP engines

• Four DDR4 channels

• Bandwidth 48 GB/s

• Massive I/O transfers

• Massive parallelism

One of the big difference to other FPGA such as Intel FPGA is an on-chip memory
on the device. For Xilinx UltraScale+ FPGAs, there are not only Block RandomAccess
Memory (BRAM) but also the Ultra Random Access Memory (URAM). The URAM
is a new block memory for Xilinx UltraScale+ family and has totally 500 MB on-chip
storage at the maximum. One block for the URAM is much bigger than that of BRAM.
Hence, it is suitable for relatively large variables to store in the URAM and it is not
a smart way to use the URAM for many small variables. Thus, a better design for an
implementation is to store large variables on the URAM and store small variables on
the BRAM.

In AWS, there are three types of F1 Instances, and the details of them are shown in
Table 4.3. Each instance has one or more FPGAs, and the on-demand price for using
an instance increases as the size of the instance gets large.

Table 4.3: Types of F1 Instances

Name FPGAs vCPUs
Instance
Memory
(GiB)

SSD
Storage
(GB)

On-Demand
Price/hr

f1.2xlarge 1 8 122 470 $ 1.65
f1.4xlarge 2 16 244 940 & 3.30
f1.16xlarge 8 64 976 4 × 940 $ 13.20
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We mainly used SDAccel and Vivado HLS as a tool to do my experiment. SDAccel
is an Integrated Development Environment (IDE) for the implementation on actual
FPGA. Vivado HLS is a tool for generating Register Transfer Level (RTL) codes from
C/C++ codes using High-Level Synthesis (HLS).

Table 4.4: Detail of Used Tools
Tools Detail
SDAccel 2019.1 Integratd Development Environment for FPGA Implementation
Vivado HLS 2019.1 High-Level Synthesis tool for generating RTL from C/C++

Table 4.5: Specifications of Resources
Resources Specification
CPU Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
FPGA Xilinx UltraScale+ VU9P

4.5 Implementation
In order to implement DanQ model in Figure 3.2, which I mentioned in chapter 3,

on FPGA using HLS, I programmed the model by C++ without using a framework for
deep learning.

4.5.1 Quantization
We have five parameters that can be quantized: weight, activation, gradient, error

and temporary values, which is used for RMSprop. It is obvious that the more bit-width
the parameters have, the more range of values they can represent. Thus, it is more
likely to have better training if these parameters have a larger bit-width. However, it is
not easy to know the most appropriate bit-width for each of them to have the highest
training accuracy. Therefore, in this paper, we decided to have these five parameters the
same bit-width of 16, which satisfy the limit of hardware utilization in on-chip memory
in FPGA.

4.5.2 Hardware Utilization
We first analyzed the hardware utilization for the BiLSTM layer by getting an HLS

report fromHardware emulation in SDAccel environment, which checks the correctness
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of the logic generated for the compute units and tests the functionality of the logic that
will be executed on the FPGA.

The table4.6 shows the estimation of hardware utilization of BRAM, DSP Block,
FF, LUT and URAM for Xilinx UltraScale+ VU9P from the hardware emulation of
Vivado HLS. Here, Utilization SLR represents a percentage of utilization in one SLR.
Since there are 3 SLRs in Xilinx UltraScale+ VU9P, we can accept until 300% of
utilization SLR by dividing the kernel into three kernels. In our implementations, we
used URAM blocks for weights and gradients and used BRAM blocks for the other
parameters such as activations and Errors.

Table 4.6: Hardware Utilization of single FPGA implementation
BRAM DSP FF LUT URAM

Utilization (%) 101 9 6 10 83
Utilization SLR(%) 303 28 20 31 250

According to the table 4.6, the utilization of BRAM is 101%, which is exceeding the
capacity of BRAM in Xilinx UltraScale+ VU9P. Therefore, we need the quantization to
decrease the size of parameters such as weight and activation to make BRAMutilization
smaller than the maximum utilization of Xilinx UltraScale+ VU9P.

Table 4.7 shows the estimation of hardware utilization from the hardware emulation
of Vivado HLS after the uniform quantization. In this research, we quantized the
parameters such as weights, activations, gradients and errors to the bit-width of 16 in
order to satisfy the requirement of harware utilization of Xilinx UltraScale+ VU9P.
We decided the bit-width of 16 from the perspective of the hardware usage. We found
out that we could not implement the model using the parameters with the fixed-point
number of 32 bits because of the hardware limitation. Thus, we chose to quantize the
parameters to the fixed-point number of 16 bits.

Table 4.7: Hardware Utilization of single FPGA implementation
BRAM DSP FF LUT URAM

Utilization (%) 53 3 10 24 83
Utilization SLR(%) 160 11 31 72 250
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According to this Table 4.7, BRAMutilization is 53%, which is under the maximum
BRAM capacity for Xilinx UltraScale+ VU9P.

4.5.3 Implementation for Single FPGA
Algorithm 1 shows the algorithm of the host implementation for a single FPGA.

We have two times of booting the kernel for both forward and backward processes,
shown in Line 6 − 9 and Line 16 − 19, respectively. We call standard OpenCL API
to interact with the FPGA-accelerated functions. OpenCL is a framework for writing
programs for FPGAs. The loss calculation is executed in the host to output the loss
value, which is shown inline 13. Line 24 represents the updating process of weights
using the parameter ℎ, which is used for the optimizer RMSprop [9].

Algorithm 2 shows the algorithm of kernel implementation. We used a switch
statement to process two types of processes: forward process and backward process.
These processes are shown inline 5 and 10. Line 13 represents the updating process of
weights in kernel, which is the same as the updating process in the host.

4.5.4 Implementation for Dual FPGA
We propose a method to implement the BiLSTM layer on dual FPGA which is

shown in Figure 4.1.
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Algorithm 1 �>BC �<?;4<4=C0C8>= >= (8=6;4 �%��
1: for 2>D=C ← 1 to 4?>2ℎB + 1 do
2: for 8C ← 1 to =>D<14A > 5 8C4A0C8>=B do
3: 8=?DC = ;>0330C0(30C0B4C_8=)
4: 2>AA42C_>DC?DC = ;>0330C0(30C0B4C_0=B)
5: 30C0G = ?A4382C1(8=?DC, 1D 5 5 4A)
6: $�!_���� (4AA, 2; :: �><<0=3&D4D4@_ 5 >AF0A3 (2>=C4GC, 34E824,

�!_&*�*�_%'$��!�#�_�#��!�,&4AA))
7: $�!_���� (4AA, 4AA = @_ 5 >AF0A3.4=@D4D4"86A0C4"4<$1 942CB

(30C0G, 0))
8: $�!_���� (4AA, 4AA = @_ 5 >AF0A3.4=@D4D4)0B: (:4A=4;))
9: $�!_���� (4AA, 4AA = @_ 5 >AF0A3.4=@D4D4"86A0C4"4<$1 942CB

(30C0H, �!_"��'�)�_"�"_$����)_�$()))
10: @_ 5 >AF0A3. 5 8=8Bℎ()
11: 1D 5 5 4AG = 30C0H

12: 30C0G = ?A4382C2(1D 5 5 4AG, 1D 5 5 4AH)
13: ; = ;>BB. 5 >AF0A3 (1D 5 5 4AH, 2>AA42C_>DC?DC)
14: 3>DC = ;>BB.102:F0A3 (1)
15: 3>DC = 6A0384=C1(3>DC, 1D 5 5 4AH)
16: $�!_���� (4AA, 2; :: �><<0=3&D4D4@_102:F0A3 (2>=C4GC, 34E824,

�!_&*�*�_%'$��!�#�_�#��!�,&4AA))
17: $�!_���� (4AA, 4AA = @_102:F0A3.4=@D4D4"86A0C4"4<$1 942CB

(3>DC, 0))
18: $�!_���� (4AA, 4AA = @_102:F0A3.4=@D4D4)0B: (:4A=4;))
19: $�!_���� (4AA, 4AA = @_102:F0A3.4=@D4D4"86A0C4"4<$1 942CB

(3>DC_>DC?DC, �!_"��'�)�_"�"_$����)_�$()))
20: @_102:F0A3. 5 8=8Bℎ()
21: 1D 5 5 4A> = 3>DC_>DC?DC
22: 5 8=0; = 6A0384=C2(1D 5 5 4A>)
23: if count==100 then
24: F486ℎC = D?30C4(6A03B, ℎ)
25: 6A03B = 0
26: end if
27: end for
28: end for
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Algorithm 2  4A=4; �<?;4<4=C0C8>=
switch (\)

2: case 5 :
// Forward Process in Kernel

4: :4A=4;G = 30C0G

:4A=4;H = ?A4382C_:4A=4; (:4A=4;G)
6: 30C0H = :4A=4;H

case 1:
8: // Backward Process in Kernel

:4A=4;3 = 3>DC

10: :4A=4;3 = 102:F0A3_:4A=4; (:4A=4;3)
3>DC_>DC?DC = :4A=4;3

12: F486ℎCB_�8!()" = D?30C4(6A03B_�8!()", ℎ_�8!()")
6A03B_�8!()" = 0

14: end switch

Figure 4.1: The overview Double-FPGA Implementation
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Algorithm 3 shows the algorithm of the host implementation for dual FPGA. The
difference between the single FPGA implementation shown in Algorithm 1 and dual
FPGA implementation shown inAlgorithm3 is that dual FPGA implementation requires
two different CommandQueue for two different FPGAs, which are shown in Line 2 and
Line 3. We created two inputs that both values of inputs are different orders and send
them to the FPGAs, respectively. After the executions on both FPGAs are finished, the
host receives the two different outputs from the two FPGAs and concatenates them in
the correct order, as shown in Line 23. In the backward process phase, the host sends
two different errors to the FPGAs, where an error sent to an FPGA has to correspond to
the activation, which is output from the same FPGA, and then the FPGAs send errors
back to the host. In the end, the host sums up the error sent from both FPGAs and
continues the backward process, which are shown in Line 40 and Line 41.

4.5.5 Implementation for 8 FPGAs
We proposed the implementation methods of BiLSTM on 8 FPGAs. We took

the row-wise partitioning strategy introduced by [12] into consideration. The way we
separated the BiLSTM into two parts, as mentioned above, is also used in this imple-
mentation. The vital part of this idea is that we divide the activation into four blocks in
order to proceed in parallel, which we call it Block-wise Implementation shown in 4.2.
These processes can be processed independently so that this block-wise implementation
can outperform other implementation in terms of the execution time.
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Algorithm 3 �>BC �<?;4<4=C0C8>= >= �D0; �%��
1: for 3 ← 1 to 34E824_2>D=C do
2: $�!_���� (4AA , @_ 5 >AF0A3 [3 ] = 2; :: �><<0=3&D4D4

(2>=C4GC [3 ], 34E824 [3 ], �!_&*�*�_%'$�� !� #�_�# ��!�,&4AA ))
3: $�!_���� (4AA , @_102:F0A3 [3 ] = 2; :: �><<0=3&D4D4

(2>=C4GC [3 ], 34E824 [3 ], �!_&*�*�_%'$�� !� #�_�# ��!�,&4AA ))
4: end for
5: for 2>D=C ← 1 to 4?>2ℎB + 1 do
6: for 8C ← 1 to =>D<14A > 5 8C4A0C8>=B do
7: 8=?DC = ;>0330C0 (30C0B4C_8=)
8: 2>AA42C_>DC ?DC = ;>0330C0 (30C0B4C_0=B)
9: 30C0G = ?A4382C1(8=?DC, 1D 5 5 4A )
10: $�!_���� (4AA , 2; :: �><<0=3&D4D4@_ 5 >AF0A3 [0]

(2>=C4GC , 34E824, �!_&*�*�_%'$�� !� #�_�# ��!�,&4AA ))
11: $�!_���� (4AA , 2; :: �><<0=3&D4D4@_ 5 >AF0A3 [1]

(2>=C4GC , 34E824, �!_&*�*�_%'$�� !� #�_�# ��!�,&4AA ))
12: $�!_���� (4AA , 4AA = @_ 5 >AF0A3 [0].4=@D4D4"86A0C4"4<$1 942CB (30C0G [0], 0))
13: $�!_���� (4AA , 4AA = @_ 5 >AF0A3 [1].4=@D4D4"86A0C4"4<$1 942CB (30C0G [1], 0))
14: $�!_���� (4AA , 4AA = @_ 5 >AF0A3 [0].4=@D4D4) 0B: (:4A=4; [0], #*!!,&4E4=CB [0]))
15: $�!_���� (4AA , 4AA = @_ 5 >AF0A3 [1].4=@D4D4) 0B: (:4A=4; [1], #*!!,&4E4=CB [1]))
16: $�!_���� (4AA , 4AA = @_ 5 >AF0A3 [0].4=@D4D4"86A0C4"4<$1 942CB

(30C0H [0], �!_"��'�) �_"�"_$����) _�$() ))
17: $�!_���� (4AA , 4AA = @_ 5 >AF0A3 [1].4=@D4D4"86A0C4"4<$1 942CB

(30C0H [1], �!_"��'�) �_"�"_$����) _�$() ))
18: for auto queue : q_forward do
19: $�!_���� (4AA , 4AA = @D4D4. 5 ;DBℎ ()
20: $�!_���� (4AA , 4AA = @D4D4. 5 8=8Bℎ ()
21: end for
22: @_ 5 >AF0A3. 5 8=8Bℎ ()
23: 1D 5 5 4A G = 30C0H // datay is concatenated with datay[0] and datay[1]
24: 30C0G = ?A4382C2(1D 5 5 4A G, 1D 5 5 4A H)
25: ; = ;>BB. 5 >AF0A3 (1D 5 5 4A H, 2>AA42C_>DC ?DC)
26: 3>DC = ;>BB.102:F0A3 (1)
27: 3>DC = 6A0384=C1(3>DC, 1D 5 5 4A H)
28: $�!_���� (4AA , 2; :: �><<0=3&D4D4@_102:F0A3 [0]

(2>=C4GC , 34E824, �!_&*�*�_%'$�� !� #�_�# ��!�,&4AA ))
29: $�!_���� (4AA , 2; :: �><<0=3&D4D4@_102:F0A3 [1]

(2>=C4GC , 34E824, �!_&*�*�_%'$�� !� #�_�# ��!�,&4AA ))
30: $�!_���� (4AA , 4AA = @_102:F0A3 [0].4=@D4D4"86A0C4"4<$1 942CB (3>DC [0], 0))
31: $�!_���� (4AA , 4AA = @_102:F0A3 [1].4=@D4D4"86A0C4"4<$1 942CB (3>DC [1], 0))
32: $�!_���� (4AA , 4AA = @_102:F0A [0].4=@D4D4) 0B: (:4A=4; [0]))
33: $�!_���� (4AA , 4AA = @_102:F0A [1].4=@D4D4) 0B: (:4A=4; [1]))
34: $�!_���� (4AA , 4AA = @_102:F0A3 [0].4=@D4D4"86A0C4"4<$1 942CB

(3>DC_>DC ?DC [0], �!_"��'�) �_"�"_$����) _�$() ))
35: $�!_���� (4AA , 4AA = @_102:F0A3.4=@D4D4"86A0C4"4<$1 942CB

(3>DC_>DC ?DC [1], �!_"��'�) �_"�"_$����) _�$() ))
36: for auto queue : q_backward do
37: $�!_���� (4AA , 4AA = @D4D4. 5 ;DBℎ ()
38: $�!_���� (4AA , 4AA = @D4D4. 5 8=8Bℎ ()
39: end for
40: 1D 5 5 4A> = 3>DC_>DC ?DC [0] + 3>DC_>DC ?DC [1]
41: 5 8=0; = 6A0384=C2(1D 5 5 4A>)
42: if count==100 then
43: F486ℎC = D?30C4 (6A03B, ℎ)
44: 6A03B = 0
45: end if
46: end for
47: end for
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Figure 4.2: The overview of Double-FPGA Implementation

The algorithm of this implementation, shown in Algorithm 4, is similar to that of
dual FPGA. The input is read in different directions, like dual FPGA version, to two
groups of four FPGAs, and each input is separated into four parts to input to the four
FPGAs inside its group, which are shown in Line 10 to Line 13. The backward process
is just as same as the forward process. This implementation requires eight different
CommandQueue, which are shown in Line 17 to Line 24 and Line 42 to Line 49, and
simultaneously executed after all the queues needed for the execution are set, which are
shown in Line 25 to Line 28 and Line 50 to Line 53.

4.6 Experiments
The implementation that we did is the DanQ model shown in 4.1. We focused

on the BiLSTM layer in DanQ model and implemented it on AWS EC2 F1 Instance
for training. Layers other than the BiLSTM layer are implemented on a CPU. The
overview of implementation on a CPU and an FPGA is shown in 4.3. There are four
times transfers between the CPU and the FPGA. First, there is a forward process for
four layers (convolutional layer, ReLU layer, Max Pooling layer and Drop out layer)
on the CPU and send the activation to the FPGA. When the FPGA gets the activation,
the forward process for the BiLSTM layers is executed and returns the activation to the
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Table 4.8: Comparison of execution time between CPU and FPGA

Resources
(# of FPGAs)

BiLSTM Layer (1 input) All Layers
(1 epoch)

Forward
(ms)

Backward
(ms)

Total
(ms)

Whole
Time (s)

CPU 441.635 755.445 1197.08 1278.64
Single-FPGA 387.815 750.050 1137.865 1161.16
Dual-FPGA 195.274 376.587 571.861 885.340
8 FPGAs 54.371 145.194 199.565 695.914

CPU. The CPU does the forward process for the rest of the layers (Drop out layer, Full-
connected layer, ReLU layer, Full-connected layer and Sigmoid layer) and calculate the
loss value using binary cross-entropy. After that, the backward process is executed for
the five layers (Drop out layer, Full-connected layer, ReLU layer, Full-connected layer
and Sigmoid layer) and send the error to the FPGA. The FPGA executes the backward
process for the BiLSTM layer and returns the error to the CPU to let it execute the
backward process for the four layers (convolutional layer, ReLU layer, Max Pooling
layer and Drop out layer).

We also implemented the CPU version, which implemented the whole DanQ layer
on the CPU. We compared the CPU version and the FPGA version in terms of their
execution time and their loss value.

4.7 Results
The result of comparison between the CPU version and FPGA version in terms of

their execution time and their loss are shown in Table 4.8 and Figure 4.4, respectively.
Moreover, we also compared three FPGA implemetations: Single-FPGA implementa-
tion, Dual-FPGA implementation and 8 FPGA implementation. Table 4.8 shows the
execution time of the BiLSTM layer including the transfer time between the host and
the kernel in a case of having 1 input data. This is not including the update process as
well as the transfer time of the parameters that are needed to continue the training with
a different instance. In addition, Table 4.8 also indicates the execution time of all layers
for 1 epoch which has 500 input data. This results are used in our second proposed
method that are introduced in Chapter 5.

Although the execution time for a single FPGA implementation is slightly better
than that of CPU by 1.05x, the execution time of dual-FPGA implementation is much
better than that of the CPU and that of the single-FPGA implementation. The execution
time for dual-FPGA implementation is 1.99x faster than that of the single-FPGA imple-
mentation. Moreover, the implementation for 8 FPGAs outperforms the single-FPGA
implementation and the CPU implementation by 5.70x and 6.00x, respectively, in terms
of their execution time. Also, the execution time for 8 FPGAs implementation is 2.87x
faster than that of the dual-FPGA implementation. This is because all the processes
of the BiLSTM layer are executed in parallel on multiple FPGAs which led to faster
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execution.
As shown in Figure 4.4, we obtained almost the same training loss in FPGA imple-

mentation compared to the CPU implementation even if we quantized the parameters
when we implement on FPGAs. Therefore, there is no problem for using the uniform
quantization for the model. From this result, we think that this model does not require
the large bit width because the input data are one hot vectors which can be represented
by the bit width of two.

4.8 Discussion
We noticed that the size of the DanQ model is too large to implement on a single

FPGA, so that it is hard to accelerate by a technique of data parallelism using multi-
FPGA. We obtained that we need to use a technique of model parallelism in order
to implement the whole DanQ model on FPGAs. However, this cannot be efficient
because there can be much transfer time between the FPGAs, leading to higher latency.
Therefore, we only focused on a BiLSTM layer which consumes the large part of
the whole training. We proposed the methods for dual-FPGA implementation and 8
FPGAs implementation for the BiLSTM layer, and these methods are specialized for a
single BiLSTM layer which has fewer overhead for data transfer compared to multiple
BiLSTM layers.

4.9 Summary
This chapter indicated our proposed method and the way we implemented them.

We have three implementations for three different sizes of instances. To implement the
BiLSTM layer on FPGAs, we need to use uniform quantization to the bit width of 16
in order to reduce the model size. We divided the BiLSTM layer into two parts for the
dual FPGA implementation, which we consider as two LSTM layers, and implemented
them on each FPGA. On the other hand, 8 FPGAs implementation has the same idea as
that of dual FPGA implementation but divides the LSTM layer into four parts in order
to process in parallel of 8.
We also showed the results of implementing the DanQ on FPGAs and compared them
with a CPU in terms of the execution time and the loss tendency. We could accelerate
the DanQ model by using a single FPGA by 1.05x compared to our CPU implemen-
tation without losing the training accuracy. Besides, our implementation on 8 FPGAs
gets 2.87x faster than the dual FPGA implementation and 6.00x faster than the CPU
implementation.

34



Algorithm 4 �>BC �<?;4<4=C0C8>= >= 8 �%��B
1: for 3 ← 0 to 34E824_2>D=C do
2: $�!_���� (4AA, @_ 5 >AF0A3 [3] = 2; :: �><<0=3&D4D4

(2>=C4GC [3], 34E824 [3], �!_&*�*�_%'$��!�#�_�#��!�,&4AA ) )
3: $�!_���� (4AA, @_102:F0A3 [3] = 2; :: �><<0=3&D4D4

(2>=C4GC [3], 34E824 [3], �!_&*�*�_%'$��!�#�_�#��!�,&4AA ) )
4: end for
5: for 2>D=C ← 1 to 4?>2ℎB + 1 do
6: for 8C ← 1 to =>D<14A > 5 8C4A0C8>=B + 1 do
7: 8=?DC = ;>0330C0 (30C0B4C_8=)
8: 2>AA42C_>DC ?DC = ;>0330C0 (30C0B4C_0=B)
9: 30C0G = ?A4382C1(8=?DC, 1D 5 5 4A )
10: for 3 ← 0 to 34E824_2>D=C/2 step 2 do
11: 30C0G3 [3] = 1D 5 5 4A [3 ∗ B8I4> 5 30C0G/4]
12: 30C0G3 [3 + 1] = 1D 5 5 4A [3 ∗ B8I4> 5 30C0G/4]
13: end for
14: for 3 ← 0 to 34E824_2>D=C do
15: $�!_���� (4AA, 2; :: �><<0=3&D4D4@_ 5 >AF0A3 [ [3] ]

(2>=C4GC [3], 34E824 [3], �!_&*�*�_%'$��!�#�_�#��!�,&4AA ) )
16: end for
17: for 3 ← 0 to 34E824_2>D=C/2 step 2 do
18: $�!_���� (4AA, 4AA = @_ 5 >AF0A3 [3].4=@D4D4"86A0C4"4<$1 942CB (30C0G3 [3], 0) )
19: $�!_���� (4AA, 4AA = @_ 5 >AF0A3 [3 + 1].4=@D4D4"86A0C4"4<$1 942CB (30C0G3 [3 + 1], 0) )
20: $�!_���� (4AA, 4AA = @_ 5 >AF0A3 [3].4=@D4D4) 0B: (:4A=4; [3], #*!!,&4E4=CB [3]) )
21: $�!_���� (4AA, 4AA = @_ 5 >AF0A3 [3 + 1].4=@D4D4) 0B: (:4A=4; [3 + 1], #*!!,&4E4=CB [3 + 1]) )
22: $�!_���� (4AA, 4AA = @_ 5 >AF0A3 [3].4=@D4D4"86A0C4"4<$1 942CB

(30C0H [3], �!_"��'�)�_"�"_$����) _�$() ) )
23: $�!_���� (4AA, 4AA = @_ 5 >AF0A3 [3 + 1].4=@D4D4"86A0C4"4<$1 942CB

(30C0H [3 + 1], �!_"��'�)�_"�"_$����) _�$() ) )
24: end for
25: for auto queue : q_forward do
26: $�!_���� (4AA, 4AA = @D4D4. 5 ;DBℎ ()
27: $�!_���� (4AA, 4AA = @D4D4. 5 8=8Bℎ ()
28: end for
29: @_ 5 >AF0A3. 5 8=8Bℎ ()
30: 1D 5 5 4AG = 30C0H

31: 1D 5 5 4AH = 102:F0A3 (1D 5 5 4AG)
32: ; = ;>BB. 5 >AF0A3 (1D 5 5 4AH, 2>AA42C_>DC ?DC )
33: 3>DC = ;>BB.102:F0A3 (1)
34: 3>DC = 6A0384=C1(3>DC, 1D 5 5 4AH)
35: for 3 ← 0 to 34E824_2>D=C/2 do
36: 3>DC3 [3] = 3>DC [3 ∗ B8I4> 5 30C0G/4]
37: 3>DC3 [3 + 1] = 3>DC [3 ∗ B8I4> 5 30C0G/4]
38: end for
39: for 3 ← 0 to 34E824_2>D=C do
40: $�!_���� (4AA, 2; :: �><<0=3&D4D4@_102:F0A3 [ [3] ]

(2>=C4GC [3], 34E824 [3], �!_&*�*�_%'$��!�#�_�#��!�,&4AA ) )
41: end for
42: for 3 ← 0 to 34E824_2>D=C/2 step 2 do
43: $�!_���� (4AA, 4AA = @_102:F0A3 [3].4=@D4D4"86A0C4"4<$1 942CB (3>DC3 [3], 0) )
44: $�!_���� (4AA, 4AA = @_102:F0A3 [3 + 1].4=@D4D4"86A0C4"4<$1 942CB (3>DC3 [3 + 1], 0) )
45: $�!_���� (4AA, 4AA = @_102:F0A3 [3].4=@D4D4) 0B: (:4A=4; [3], #*!!,&4E4=CB [3]) )
46: $�!_���� (4AA, 4AA = @_102:F0A3 [3 + 1].4=@D4D4) 0B: (:4A=4; [3 + 1], #*!!,&4E4=CB [3 + 1]) )
47: $�!_���� (4AA, 4AA = @_102:F0A3 [3].4=@D4D4"86A0C4"4<$1 942CB

(3>DC_>DC ?DC [3], �!_"��'�)�_"�"_$����) _�$() ) )
48: $�!_���� (4AA, 4AA = @_102:F0A3 [3 + 1].4=@D4D4"86A0C4"4<$1 942CB

(3>DC_>DC ?DC [3 + 1], �!_"��'�)�_"�"_$����) _�$() ) )
49: end for
50: for auto queue : q_backward do
51: $�!_���� (4AA, 4AA = @D4D4. 5 ;DBℎ ()
52: $�!_���� (4AA, 4AA = @D4D4. 5 8=8Bℎ ()
53: end for
54: 1D 5 5 4A> = 3>DC_>DC ?DC
55: 5 8=0; = 6A0384=C2(1D 5 5 4A>)
56: if count==100 then
57: F486ℎC = D?30C4 (6A03B, ℎ)
58: 6A03B = 0
59: end if
60: end for
61: end for
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Figure 4.3: The Overview of the Implementation for Single FPGA

Figure 4.4: The comparison of loss tendency between CPU version and FPGA version
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Chapter 5

Cloud Optimization

5.1 Introduction
In this chapter, we introduce our second proposed method and its evaluation. We

provide an optimized training time and cloud usage fee to each cloud user by changing
the resource size during the training depending on the cloud usage fee at that time. This
is realized by saving and loading the parameters which are needed to continue training
on a different resource.
Also, we show the results with our idea to optimize cloud resources depending on the
cloud instance usage fee at that time. We use examples of optimizing the training time
and the cloud instance usage fee with the user’s need. Research about the scheduling
methods which we showed in Chapter 3 are using CPU or heterogeneous devices. In
this paper, we propose a method of optimization using FPGAs in a public cloud with
targeting the BiLSTM layer in DanQ. The details are explained in the following sections.

5.2 Proposed Method for Cloud Optimization
Our implementation can change the instance size by saving the parameters which

are needed to continue the training, such as weights. This enables to control the training
time with the instance usage fee. Thus, the main focus of our research is to optimize
the usage fee for the cloud instance. We propose a system to optimize the usage fee
depending on the training time given by users. The usage fee fluctuates each time for
using an instance in real cloud services such as AWS. Therefore, we introduce to change
the instance size according to the usage fee at that time. Some users want to finish the
training very early, no matter how much the usage fee costs, while others want to save
the costs and can wait for a long time to finish the training. Hence, we switch the
instance size during the training depending on the instance usage fee at the time so that
we can train the model using the cloud services with the user-optimized instance usage
fee.
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5.3 A model for optimizing the instance usage fee
We define a model for optimizing the instance usage fee with the given training

time from users. When we use an instance on cloud services, the usage fee always
changes depending on the other cloud users. Basically, there is a big difference in usage
fee between day time and night time. Figure 5.1 shows an example of the fluctuation
between day and time. We discuss our optimization using this figure.

Figure 5.1: An example of the fluctuation of instance usage fee

5.4 Experiments
We used AWS as a cloud service to implement on multi-FPGA.We used an instance

called AWS EC2 F1 Instance, which has FPGAs: f1.2xlarge for single FPGA imple-
mentation, f1.4xlarge for dual FPGA implementation, and f1.16xlarge for 8 FPGAs
implementation. When we use AWS for development, we use AWS EC2 M4 Instance,
which does not have FPGAs, for debugging our program as well as software emulation
and hardware emulation. Software emulation is a CPU-based simulation that both the
kernel code and the FPGA binary code (kernel code) are compiled to run on an x86
processor. This enables developers to iterate and refine the algorithms through fast
compilation. On the other hand, Hardware emulation enables the developer to check
the correctness of the logic generated for the FPGA binary. This invokes the hardware
simulator in the environment to test the functionality of the code that will be executed
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on the FPGA Custom Logic. In addition, we build the host application and FPGA
binary using M4 Instance. At the end of using the instance, we generate an Amazon
FPGA Image (AFI) by creating an AWS FPGA binary file (*.awsxclbin) from an FPGA
binary file (*.xclbin) which is generated in the phase of building the host application
and FPGA binary. The flow of the development using AWS is shown in Figure 5.2.

Figure 5.2: The Flow of Development using AWS

After the AFI is created, we start an FPGA instance on which we run the FPGA
accelerated application. Then we copy the compiled host executable (exe) and AWS
FPGA binary file to the instance. Finally, we execute the host application using the both
compiled host executable and AWS FPGA binary file on the instance.
The overview of the HLS flow is shown in Figure 5.3.

We implemented onAWSEC2 F1 Instance called f1.4xlarge, which has two FPGAs,
and the overview of the implementation is shown in Figure 5.4 We
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Figure 5.3: The Flow of using HLS

Table 5.1: Definition of the instance fee
Resource Time Instance Usage

Fee [$]

Single-FPGA Day
Night

1.65
0.49

Dual-FPGA Day
Night

3.30
0.99

8 FPGAs Day
Night

13.20
3.96

5.5 Results
We trained the whole model of DanQ with 500 data for 150 epochs. In order to

show an example of optimization, we assume the instance usage fee as Table 5.1. For
the instance usage fee in the daytime, the costs shown in the table are exactly the same
value as the on-demand instance usage fee in AWS. On the other hand, for the instance
usage fee in the nighttime, the costs are the same as that of the spot instance in AWS,
whose costs change depends on the number of cloud users.

Figure 5.5 shows an example of using f1.2xlarge instance (single-FPGA) in AWS
with the case of fluctuation of instance usage fee shown in 5.1. When we use this
instance for the whole time, the training time is 48.38 (h), and the instance usage fee is
$ 51.79.
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Figure 5.4: The Overview of the Implementation for the Dual FPGA

Figure 5.5: An example of using single FPGA for all time

Figure 5.6 shows an example of using f1.4xlarge instance (dual-FPGA) in AWSwith
the case of fluctuation of instance usage fee shown in 5.1. When we use this instance
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for the whole time, the training time is 36.89 (h), and the instance usage fee is $ 91.96.

Figure 5.6: An example of using dual FPGA for all time

Figure 5.7 shows an example of using f1.16xlarge instance (8 FPGAs) in AWS with
the case of fluctuation of instance usage fee shown in 5.1. When we use this instance
for the whole time, the training time is 29.00 (h), and the instance usage fee is $ 271.92.

Figure 5.7: An example of using 8 FPGAs for all time

Figure 5.8 shows an example of changing the instance between f1.2xlarge and
f1.4xlarge with the case of fluctuation of instance usage fee shown in 5.1. When we use
the f1.2xlarge at daytime and f1.4xlarge at nighttime, the training time is 42.591 (h),
and the instance usage fee is $ 58.01.
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Figure 5.8: An example of optimizing the resource size between single FPGA and dual
FPGA

Figure 5.9 shows an example of changing the instance between f1.2xlarge and
f1.16xlarge with the case of fluctuation of instance usage fee shown in 5.1. When we
use the f1.2xlarge at daytime and f1.16xlarge at nighttime, the training time is 38.61
(h), and the instance usage fee is $ 77.66.

Figure 5.9: An example of optimizing the resource size between single FPGA and 8
FPGAs

Figure 5.10 shows an example of changing the instance between f1.4xlarge and
f1.16xlarge with the case of fluctuation of instance usage fee shown in 5.1. When we
use the f1.4xlarge at daytime and f1.16xlarge at nighttime, the training time is 33.63
(h), and the instance usage fee is $ 118.89.

According to the Figure 5.5, Figure 5.6 and Figure 5.7, there is a trade-off between
the training time instance usage fee. When we use an f1.2xlarge for the whole time, the
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Figure 5.10: An example of optimizing the resource size between dual FPGA and 8
FPGAs

instance fee is very cheap, while the training time is huge. When we use an f1.4xlarge
for the whole training, the training time is reduced while the instance usage fee is
relatively high. When we use an f1.16xlarge, which is the biggest resource in AWS, for
the whole training, the training time is reduced very much while the instance usage fee
is very high. These results indicate that as we try to reduce the cloud usage fee, the
training time definitely increase.
However, our method can optimize this trade-off. By changing the size of the instance
during the training depending on the instance usage fee at that time, we can control the
training time as well as the instance usage fee. Figure 5.8, Figure 5.9 and Figure 5.10
show examples of changing the instance depending on day time and night time. We use
a small resource for the daytime, whose instance is expensive than that of the nighttime,
and use a large resource for nighttime. By doing this optimization, we can reduce the
training time as well as the cloud instance usage fee. The overhead time for changing
the size of the instance is only a few minutes (AWS).

Figure 5.2 shows the results of training DanQ using our definitions. Basically, when
cloud users use the same resource until their applications finish, the cloud instance usage
fee or the execution time is very high. However, using our system, which can change the
size of the resource during the execution, we can provide each user the most optimized
execution time or the cloud instance usage fee. As shown in Table 5.2, although the
fastest execution is using the largest resources, which takes 29.00 hours, we can reduce
the amount of instance usage fee by more than half of it by only taking 4.63 extra hours,
which can be a great optimization for some cloud users who can wait for 33.63 hours
and want to save the instance usage fee.

5.6 Discussion
For the optimizationwementioned above, themodel we assumed is not the only case

we have an advantage for changing the size of resources during the training. Suppose
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Table 5.2: The Result of Instance Usage Fee with the Training Time

Training Time [h] Instance Usage
Fee [$]

All Single-FPGA 48.38 51.79
All Dual-FPGA 36.89 91.96
All 8 FPGAs 29.00 271.92
Day: Single-FPGA
Night: Dual-FPGA 42.59 58.01

Day: Single-FPGA
Night: 8 FPGAs 38.61 77.66

Day: Dual-FPGA
Night: 8 FPGAs 33.63 118.89

a cloud user wants to accelerate a larger application that needs few months to execute.
In that case, our optimization has more advantages of providing an appropriate training
time as well as an appropriate cloud usage fee for the user.

5.7 Summary
In this chapter, we showed our optimization method using examples of changing the

instance size during the training. As the results, comparing a case of using 8 FPGAs
for all time and a case in which we optimized the number of FPGAs during the training
with our model, we obtained the result that we can save the cloud usage fee for 56.28%
by only taking 16.00% extra time.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion
6.1.1 FPGA Implementation

There is a big task for improving the training time for deep learning, especially
in the field of genomics. There are huge datasets of DNA sequences to estimate the
chromatin effect.
Therefore, it is necessary to accelerate the training time, and we proposed a method of
using an FPGA. We focused on BiLSTM Layer and implemented it on AWS EC2 F1
Instances.
As a result, we could accelerate the DanQ model by using a single FPGA by 1.05x
compared to our CPU implementation. Besides, our implementation on 8 FPGAs
gets 2.87x faster than the dual FPGA implementation and 6.00x faster than the CPU
implementation.

6.1.2 Cloud Optimization
There are so many cloud users who concern the trade-off between the cloud usage

fee and the execution time. This is because the cloud usage fee always changes each
time.
Therefore, changing the instance size during the training depending on the cloud usage
fee at that time leads to a better result in terms of the training time and the cloud instance
usage fee.
Comparing a case of using 8 FPGAs for all time and a case in which we optimized the
number of FPGAs during the training with our model, we obtained the result that we
can save the cloud usage fee for 56.28% by only taking 16.00% extra time. Therefore,
we can optimize the training time as well as the instance usage fee depending on the
user’s needs.
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6.2 Future work
We consider that we can use more FPGAs to accelerate the training time. In this

paper, we only focused on the BiLSTM layer. However, we can implement the whole
model by using at least 4 FPGAs. We will use a technique of model parallelism to
implement the whole model and use a technique of data parallelism to accelerate the
training time. Moreover, we will use the advantage of cloud service. We will use
multiple FPGA instances to dynamically optimize the training time, depending on the
user’s needs. We will change the number of instances during the training by using MPI
or OpenMP, and we will provide the users the most optimized instance fee for the model
training. We also want to focus on scheduling methods which can provide us the most
efficient size of the resources at each time by estimating the future usage fee of cloud
services using deep learning.
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Appendix A

Implementation Alveo U200

A.1 TheExperimentalEnvironment ofXilinxAlveoU200
We implementedDanQ onXilinxAlveoU200Data Accelerator Card (AlveoU200).

This FPGA is used for a data center so that it has large capacity of on-chip memory.
The experiment environment is shown in Table A.1.

Table A.1: Hardware Utilization of BiLSTM
BRAM DSP FF LUT

Utilization(%) 2892 1 1 2
Utilization SLR(%) 8676 3 3 6

The detail information of Alveo (U200) is shown in Table A.2.

Table A.2: Information about Xilinx Alveo U200
off-chip memory (DDR) 64GB
Bandwidth for off-chip memory 77GB/s
PCI Express Gen 3 × 16
LookUp Table (LUT) 892,000
On-chip memory (BRAM, Register) 2,364KB
DSP slices 6,840
Maximum Power consumption 225W
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The detail of PC server and the software that I used for implementing on Alveo
U200 is shown in Table A.3.

Table A.3: Information about Experiment PC
OS CentOS 7.7
Memory 64GB/s
CPU AMD Ryzen 7 3700X
SDAccel 2019.1
Vivado HLS 2019.1

Wemainly used SDAccel andVivadoHLS as a tool to domy experiment. SDAccel is
a Integrated Development Environment (IDE) for the implementation for actual FPGA.
Vivado HLS is a tool for generating Register Transfer Level (RTL) codes from C/C++
codes using High Level Synthesis (HLS).

A.1.1 Hardware Utilization
We first analyzed the hardware utilization for the BiLSTM layer by getting an HLS

report fromHardware emulation in SDAccel environment, which checks the correctness
of the logic generated for the compute units and tests the functionality of the logic that
will be executed on the FPGA.The tableA.4 shows the estimation of hardware utilization
of BRAM, DSP Block, FF and LUT using Xilinx Alveo U200. Here, Utilization SLR
represents a percentage of utilization in one SLR. Since there are 3 SLRs in Alveo
U200, we can accept until 300% of utilization SLR by dividing the kernel into three
kernels.

Table A.4: Hardware Utilization of BiLSTM layer
BRAM DSP FF LUT

Utilization(%) 244 9 11 18%
Utilization SLR(%) 732 28 33 55%

According to the table A.4, the utilization of BRAM is 244%, which is exceeding
the capacity of BRAM in Alveo U200. Therefore, we need quantization to decrease
the size of parameters such as weight, activation, gradient and error to make BRAM
utilization smaller than the maximum utilization of Alveo U200.
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Table A.5 shows the estimation of hardware utilization of other layers except for the
BiLSTM Layer.

Table A.5: Hardware Utilization of all layers except BiLSTM
BRAM DSP FF LUT

Utilization(%) 2892 1 1 2%
Utilization SLR(%) 8676 3 3 6%

According to this table, BRAM utilization is 2892% and totally exceeding the
maximum utilization of Alveo U200. The reason for this is that two full-connected
layers at the end of DanQ model are consuming most of the BRAM utilization. This is
because all units in the full-connected layer have connections to all the adjacent units,
making the size of parameters much larger than other layers.

A.1.2 Execution Time
Table A.6 shows the comparison of the execution time between the implementation

on Xilinx Alveo U200 and others.

Table A.6: Comparison of Execution Time for one Input for BiLSTM
Forward (ms) Backward (ms) Total (ms)

CPU 441.635 755.445 1197.08
single-FPGA(Alveo U200) 207.239 310.478 517.717
single-FPGA(AWS) 388.165 750.068 1138.233
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Appendix B

Comparison with GPU

We also implemented all layers of DanQ on P100 GPU using Pytorch as a deep
learning framework. The results are shown in Table B.1.

Table B.1: Comparison of Execution Time for one Input for BiLSTM
Forward (ms) Backward (ms) Total (ms)

GPU (P100) 7.324 9.434 16.758
CPU 441.635 755.445 1197.08
single-FPGA(AWS) 388.165 750.068 1138.233
8 FPGAs(AWS) 41.077 109.055 150.132

As the results, the execution time for using GPU outperforms others. It is very
difficult to accelerate the whole DanQ using single FPGA compared to single GPU.
This is not only because the GPU using the a deep learning framework are very much
optimized, but also because the hardware utilization that is needed to implement DanQ
on FPGA is large.
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