
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Automated Penetration Testing Using Deep

Reinforcement Learning

Author(s) 胡，振国

Citation

Issue Date 2021-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/17095

Rights

Description
Supervisor: Razvan Beuran, 先端科学技術研究科, 修

士(情報科学)

Master’s Thesis

Automated Penetration Testing Using Deep Reinforcement Learning

HU Zhenguo

Supervisor Assoc. Prof. Razvan Beuran
Main Examiner Assoc. Prof. Razvan Beuran

Examiners Prof. Yasuo Tan
Assoc. Prof. Yuto Lim
Assoc. Prof. Ken-ichi Chinen

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

March, 2021

Abstract

Penetration testing is a new network security technology developed in re-
cent years, which has great practical application for computer network and
security. It is a security testing and evaluation method that uses hacker
techniques and methods to discover the security vulnerabilities of the target
machine. By following this process, one can gain control of the system, access
the confidential data, and discover the possible security risks that may affect
the continued operation of the business. The ethical hackers, which are called
pentesters, will conduct an in-depth security detection of the target network
to find out the vulnerable links, and use various realistic attack methods to
detect the possible vulnerabilities.

The biggest difference between penetration testing and hacker intrusion
is that penetration testing is authorized by the customer. It uses controllable
and non-destructive methods to find weaknesses in the target and network
equipment, helps managers to know the problems located in their own net-
work, and provides security suggestions to help improve the security of their
system. However, currently penetration testing is performed mostly manu-
ally and relies mostly on the pentesters’ experience, and there are no tools to
intelligently analyze the network situation and discover the potential attack
paths in a network system.

In order to solve this problem, many researchers try to find some methods
that mimick the penetration testing process to discover the attack paths. One
of the representative methods is called PDDL, which means Planning Domain
Definition Language. It uses planning algorithms, such as graph planning
and partial-order planning, to convert attack paths into PDDL expressions.
But these methods do not perform well in the discovery of potential paths,
and the degree of automation is not high. Another representative method
is FF-Replan, which is a dynamic reprogramming algorithm that decom-
poses the probabilistic programming problem. The algorithm transforms the
non-deterministic programming problem into a deterministic programming
problem, then uses the FF (Fast Forward) programming algorithm to achieve
automated attack path planning.

However, these methods have some shortages, as they need to delete non-
deterministic information for planning, and have difficulties in dealing with
path finding problems with multiple uncertain attack paths. For this reason,
we present another method by which we reinforcement learning techniques
into the field of cybersecurity, and use the powerful analysis capabilities of the
neural networks to automatically plan the attack paths. Since reinforcement

learning does not require data to have precise labels, it is very suitable for
attack path analysis.

In this thesis, we propose an automated penetration testing framework
named AutoPentest-DRL, which we designed and implemented to address the
shortcomings mentioned so far. The key idea is to employ deep reinforcement
learning (DRL) to plan the attack path, and employ other penetration tools
to automate the process of penetration testing. To realize this goal, we built
a DQN Decision Engine to select the correct attack path according to net-
work and vulnerability information. The input for the decision engine is the
matrix representation of the attack tree, and the output is the most feasible
attack path. We also employ a topology generator to create enough network
topologies in order to increase the model’s adaptability. Furthermore, the
Depth-First Search (DFS) algorithm is used to simplify the input matrix.
In this way, the AutoPentest-DRL can automatically give the corresponding
attack path according to the input network information.

In order to make it possible to conduct penetration testing in a real net-
work environment, we adopted Nmap to retrieve the necessary information
by scanning the real network environment. The information of vulnerabili-
ties is extracted from the scanning report of Nmap, and is combined with the
network topology data in order to send them to the DQN Decision Engine.
Penetration tools such as Metasploit have also been integrated in order to to
execute automated attack commands.

We first discuss the basic architecture of this framework and the imple-
mentation of AutoPentest-DRL. Then, we demonstrate the efficiency of this
framework by evaluating it both in logical and real network environments.
In logical networks, the average accuracy of the two different topologies we
studied is 0.932. In real networks, the framework can employ three differ-
ent vulnerabilities to get the root privilege of the corresponding serves, and
finally, it can copy the test Trojan to the target machine successfully. Our
results show that AutoPentest-DRL is suited well for both environments and
it is possible to apply it to real systems.

In the future, we plan to do more research on fast attack path discovery
techniques in large-scale network scenarios to support penetration testing
on complex networks. We also plan to incorporate the generated feedback
information during the process of penetration testing into the attack path
discovery algorithm to dynamically adjust the attack path. Finally, we will
improve the compatibility of our system by integrating other penetration
testing tools, such as Nessus and Cobalt Strike. We really hope that our
research can promote the development of automated penetration testing,
and also inspire other researchers.

2

Contents

1 Introduction 1

2 Background and Related Work 4
2.1 Reinforcement Learning . 4
2.2 Deep Reinforcement Learning 6
2.3 Attack Tree . 8

2.3.1 Attack Tree Model . 8
2.3.2 MulVAL . 11

2.4 Penetration Testing Tools . 11
2.4.1 Shodan . 11
2.4.2 Nmap . 13
2.4.3 Metasploit . 14

2.5 Penetration Testing Using Attack Path Planning 14

3 Framework Architecture 17
3.1 Overview . 17
3.2 Network Scanning . 19
3.3 Topology Generation . 19
3.4 Training Dataset . 22
3.5 Simplified Matrix . 24
3.6 DQN Decision Engine . 26
3.7 Metasploit RPC API . 28

4 Experiment Results and Discussion 31
4.1 Network Topology Models . 31
4.2 DQN Dataset Generation . 33
4.3 DQN Training Results . 35
4.4 Evaluation on Logical Network 37
4.5 Evaluation on Real Network 40
4.6 Discussion . 46

1

5 Conclusion and Future Work 47
5.1 Concluding Remarks . 47
5.2 Future Work . 48

List of Figures

2.1 Overview of MDP architecture. 4
2.2 Overview of RL process. 5
2.3 Overview of the architecture of DQN model. 7
2.4 Overview of the training process for DQN. 8
2.5 Architecture of Deep Q-learning. 9
2.6 Attack tree node representation. 10
2.7 Example of Shodan searching result. 12
2.8 Nmap scan report. 13
2.9 Attack path planning using PDDL. 15

3.1 Architecture of the automated penetration testing framework. 18
3.2 Example of Nmap scanning result. 20
3.3 Sample configuration file of topology-generator. 21
3.4 Example of generated network topology. 22
3.5 Example of alternative generated network topology. 23
3.6 Mail server information through Shodan search engine. 24
3.7 Overview of DQN Decision Engine. 27
3.8 Attack process of using Metasploit RPC API. 29

4.1 Experiment network topology models. 32
4.2 Generated attack tree. 34
4.3 DQN network model in the experiment scenario. 35
4.4 Cumulative reward changes with discount factor (GAMMA). . 36
4.5 Average reward change with the increase of epoch. 37
4.6 Error ratio of the DQN network model. 38
4.7 Attack tree generated by deep trimming. 39
4.8 Attack path distribution of DQN model. 40
4.9 Real network environment. 41
4.10 Penetration testing process for an experiment scenario. 41
4.11 Nmap scanning result of File server. 42
4.12 Configuration file. 43
4.13 Attack tree for real network. 44

3

4.14 Exploiting process of Web server. 45
4.15 Trojan file uploaded to Workstation2. 45

List of Tables

3.1 Mail Server profile examples 23
3.2 Example of vulnerability dataset 24

4.1 Network information for Topology 2 33
4.2 Information of different vulnerabilities 33
4.3 Different attack paths for the end node 1 35
4.4 Comparison of different methods 40

Acknowledgement

At first, I would like to express my sincere appreciation for my supervisor,
Associate Professor Razvan BEURAN. Thanks so much for his advice and his
instructive comments on the direction of my own research. During the process
of writing the thesis, he gave so much helpful guidance on the difficulties
and doubts that I faced, and invested a lot of effort and energy. His kind
assistance helped a lot with my research in JAIST.

At the same time, I would like to sincerely thank my second supervisor,
Professor Yasuo TAN for his patient instructions and support. His guidance
and constant encouragement help me to continue my study. I would also
like to thank Associate Professor Shinobu HASEGAWA. With his careful
guidance and advice, I finished my minor research very well.

In addition, I would also like to thank my friends in our lab. From their
helpful support and suggestions, I got great inspiration for my thesis. I am
also grateful to the authors in the reference literature. After reading their
research, I understand how I can start my research topic.

Finally, I would like to thank the thesis review teachers for their hard
work. I am sincerely grateful to my family and friends. Thanks to their
good support and encouragement, I was able to complete my master’s thesis
successfully.

Chapter 1

Introduction

In recent years, with the rapid expansion of network connections and the fre-
quent occurrence of security incidents, especially the large-scale opening of
the Internet and the access of financial networks, cybersecurity has become
an increasingly prominent problem, more and more systems are threatened
by intrusion attacks. In 2014, Yahoo suffered serious network attacks, threat-
ening the accounts of nearly 1 billion users, which is the biggest vulnerability
found in the history of cybersecurity. In September 2018, Facebook officially
admitted that due to a token access vulnerability, hackers could take over 50
million user accounts, and about 90 million users were affected. One of the
Japanese biggest cryptocurrency exchanges Bitpoint was attacked in July
2019, which caused the loss of 32 million dollars.

In order to address this issue, an effective way is to utilize penetration
testing to test the security of the company’s or government’s network envi-
ronment. Penetration testing is an authorized attack process that is always
been used to evaluate the system’s network security, especially on its network
security weaknesses and shortcomings through executing ethical attacks. The
managers can see the potential threats for malicious attackers to enter the
company or cause damage to the company’s data assets by simulating real-
time attacks [1]. This kind of approach is been built, and several commercial
programs are available to help the pentesters (white-hat hackers) in execut-
ing the tedious jobs [2]. In summary, penetration testing plays a significant
role in cybersecurity.

The process of penetration testing is currently done mostly manually, as
penetration testers need to attack the test system and use verification attacks
to test different network environments by themselves. McDermott divides
the penetration testing process into six stages: define penetration testing
objectives, conduct background studying, create imaginary flaws, verify sur-
mise, generalize discovered flaws and remove discovered flaws [3]. Because

1

the basic knowledge of network security is not easy to formalize, and prone
to human errors, so this process is an extremely laborious, time-consuming,
and complex task [4]. Thus, with the development of technology, more and
more people try to model the target environment and generate attack plans
through attacks based on different models. The Core security company has
adopted this penetration test method since 2010, and adopted a variant of
metric FF system as the attack plan in the research which is called ‘Core
IMPACT’ [5].

With the vigorous development of computer technology, more and more
researchers are migrating their research in the field of chess to penetration
testing, and automated penetration testing is gaining popularity. Through
automated analysis, automated penetration testing can discover the potential
vulnerabilities of the target network and host, and invoke the attack payload
to verify those kinds of vulnerabilities [6, 7]. The establishment of the attack
tree is a very important part of ensuring automated penetration testing. It
is first proposed by Schneier in 1999, the idea is to model security danger on
a specific network environment [8].

At the same time, Obes tried to employ plan domain definition language
(PDDL) to the field penetration testing in order to use path planning technol-
ogy to find the attack paths [9]. Boddy first employed artificial intelligence
in the process of penetration testing [10], which leads to the insertion of the
cybersecurity area into the 2008 International Planning Competition. Sev-
eral years later, the company of Core Security tried to use simulated external
attacks to make a plan for penetration testing [11]. Meanwhile, Yousefi ap-
plied reinforcement learning (RL) to make an analysis of the attack tree [12],
which used Q-learning to get the most possible attack path, but it still can
not apply to the real network environment.

All these tools have improved the efficiency of penetration testing, but
there are still some problems. From the host level, these tools simply inte-
grate existing network attack tools, lack the ability to reason about network
attack and defense knowledge, and cannot intelligently select attack loads
and configure load parameters for penetration testing based on the status
of the target host; from the network level, most of these penetration testing
tools perform vulnerability assessments for a single host, and cannot assess
the vulnerability of the entire target network, and also lack the ability to
discover potential attack paths of the target network.

To get over this kind of problem, a promising approach is turning the dis-
covery of attack paths problem into a description of a reinforcement learning
problem, basically expressing penetration testing as an environment of re-
inforcement learning. Different from reinforcement learning, deep reinforce-
ment learning combines reinforcement learning with deep learning, and uses

2

a trial and error method to find the best solution, which is more suitable for
attack path planning and analyzing attack tree.

In this paper we present the framework named AutoPentest-DRL that
we built with the goal of executing penetration testing automatically for a
real network environment. Our main contributions are:

• We employ a reinforcement learning (RL) method based on deep Q-
learning (DQN) to select the optimal attack path of automated pene-
tration testing. The policy prioritizes selecting the path which has the
biggest reward.

• We randomly generate a great number of network topologies to improve
the diversity of the training model. We also use the DFS algorithm to
simplify the attack path matrix to make it more suitable as input for
DQN.

• We integrate scanning tools such as Nmap into the framework to realize
automatic detection of the target network, and employ the RPC API
to communicate with Metasploit to execute attack commands.

The rest of the thesis is organized as follows. In Section 2, we provide an
overview of the algorithms and techniques related to reinforcement learning
and attack tree, the penetration tools that we plan to use and some related
work that how the other researchers use attack path planning to solve the
similar problems. Then in Section 3, we provides details of the proposed
automated penetration testing framework architecture. Next we propose an
experiment that we designed to make a evaluation of the framework both on
a logical network and a real network environment in Section 4. Finally, we
conclude the paper in Section 5 and propose our future developments.

3

Chapter 2

Background and Related Work

2.1 Reinforcement Learning

Deep learning has contributed to dramatic advances in the scalability and
performance of machine learning over the past years [13]. One of the most
famous applications is the sequential decision-making setting of reinforcement
learning (RL). Reinforcement learning maps environment space and action
space to each other, so that the agent can get the maximum cumulative
reward in the process of training [14]. Delayed return and trial-and-error are
the main characteristics of reinforcement learning. It is very important to
choose different actions to get the maximum reward [15]. The final target
of reinforcement learning is to find the best policy in which the agent will
get the biggest reward, so the agent needs to try and try many times to
understand how to communicate with the environment [14, 16].

S1 S2S0 S3

r1 r2 r3

P0 P1 P2

a0 a1 a2

Figure 2.1: Overview of MDP architecture.

The process of reinforcement learning (RL) can be explained through the
Markov Decision Processes (MDP). An MDP model can be separated into

4

four different parts: S, A, P, R. S is the state space; A is the action space;
P (s’| s, a) is the possibility that the agent adopts the action from s to s′; R(s,
a) is the calculated reward. In Fig.2.1, an agent of MDP process is in the
initial state S0, after performing the action a0, it transitions to the state S1

according to the probability P0, and uses the reward function to obtain the
reward value r1 according to a0 and S1. When the system state transitions
from the current state to the next state s′, the function of reward can be
denoted as r(s’| s, a).

So as to the reinforcement learning process, as Fig.2.2 shows, t is the
time step. First through the environment, the agent will get the current
state St. Then the agent will do the action At. Next the next state St+1 and
the reward Rt which are corresponding to the time step will be created by
the environment.

Agent

Environment

Rt+1
St+1

reward
Rt

state
St

action
At

Figure 2.2: Overview of RL process.

In reinforcement learning, the objective is to maximize the cumulative
rewards which can be used to choose the action. Strategy π: S→A is a
mapping from state space to action space. It means that the agent chooses
action at in the state st, executes it and transfers from current state to next
state st+1 with the possibility f(st, at), and accepts the reward rt from the
environment feedback simultaneously. In the algorithm model, the reward
and the discount factor γ need to be multiplied with each other, in this way
a reward function is been defined to calculate the corresponding reward at

5

the different time t :

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+1+k (2.1)

Because if it is located far away from the current state, the reward value
γ ∈ [0, 1] will get the great uncertainty The discount factor (γ) is always
been used to calculate for the model’s uncertainty.

For that reason, the value function is been imported to as the representa-
tive of the “value” for a state, for instance, for the specific state, the following
formula is the expectation of the future rewards:

V π(s) = E

[
∞∑
k=0

γkrt+1+k | st = s

]
(2.2)

The function of state action is Qπ(s, a), that has connection with the
execution of action a which is located in s. After training many times until
the agent finds the end target, the reward in this process can be described
as the following formula:

Qπ(s, a) = E

[
∞∑
k=0

γkrt+1+k | st = s, at = a

]
(2.3)

Our goal is to find the best performing strategy. We think that if one of
the strategies has the greatest reward, then it is the best performing strategy.
We take it as the result of our final policy. The action state function of finding
the strategy is shown as follows:

Q∗(s, a) = max
π

E

[
∞∑
k=0

γkrt+1+k | st = s, at = a

]
(2.4)

RL in automated penetration testing generates the best policy through its
interactions in its environment without prior knowledge. It has successfully
captured the complexity and uncertainty of penetration testing [17]. RL
based model for penetration testing has been used in recent research works
[18].

2.2 Deep Reinforcement Learning

The basic idea of deep reinforcement learning (DRL) is to combine the re-
inforcement learning and deep learning. It integrates deep learning’s under-
standing of perception problems such as vision. At the same time, we also
need to understand how it makes the choice.

6

Input Deep Convolutional
Neural Network

.

.

.

.

.

.

.

.

Fully
Connected

Layer

Q Value

Figure 2.3: Overview of the architecture of DQN model.

In the deep reinforcement learning, the state space is been obtained by
the “agent”, and it chooses the suitable and corresponding actions. This
process is related to the different policies. The state of the environment will
be changed, and finally the model will gain the reward [19]. The emergence
of DRL makes RL technology truly practical and can solve complex problems
in real-world scenarios.

Deep reinforcement learning is been separated into 3 different functions:
value-based function, policy-based function, model-based function [20]. The
RL model has been used by many existing methods which utilize the Q-
Learning approach [21]. One of the representative of value-based functions is
Deep Q-Network (DQN), it is first proposed by Mnih et al. in 2013 which is
been used to learn strategies directly from pixel images to play Atari games
[22, 23], it combines the Q-Learning algorithm [24] with the Convolution
Neural Network (CNN) in the inner of the reinforcement learning, so as to
create the advanced DQN model.

A typical DQN model architecture is been provided in Fig. 2.3. DQN
model contains both input and output. In this figure, it is assumed that the
input is a picture, which is transformed non linearly by the convolution layer
and the fully connected layer, and in the end it will output a q value.

Fig. 2.4 indicates a classic training process of the DQN model. The target
values are constructed using a designated target network Q(s, a; θ−) (using

7

Replay Buffer

Environment Current Net Target Net

Loss Function

argmaxaQ(s, a; θ)

(s, a, r, s')

(s,a)

Q(s,a;θ) max Q(s ,a θ−)

s '
r

s

Figure 2.4: Overview of the training process for DQN.

the previous iteration parameters θ−), where the expectation is to take ‘w.r.t.’
as the sample allocation of experience transitions in the replay buffer [25].
The DQN loss is minimized by using a Stochastic Gradient Descent (SGD)
variant, sampling mini-batches from the replay buffer. Additionally, DQN
model requires an exploration procedure to interact with the environment.
The number of new experience transitions (s, a, r, s

′
) added by exploration

to the replay buffer. Fig. 2.5 is the basic architecture of DQN method. By
using this kind method, we can utilize the DQN to find the optimal attack
path.

In order to determine the parameters of 1 and the discount factor γ, and
improve the generality and stability of the algorithm, we need to reduce the
reward of deep Q-learning network as much as possible. At present, deep
reinforcement learning is widely used in face recognition, automatic driving
and other fields, which fully proves that deep Q-learning method has strong
adaptability and versatility.

2.3 Attack Tree

2.3.1 Attack Tree Model

The attack tree gives us a systematic method to show the security of the
system according to the different attacks. Basically, that path represents an
attack on the system in a tree structure, the attack starts from the top node,
the target is the root node, and the different way to achieve the target is the
leaf node. Attack trees are a formal method of performing threat and risk

8

Agent

Function Approximation Error

Q-Value in
Target Network

Q-Value in
Evaluation Network

Targeted
Neural

Network

Evaluation
Neural

Network

Network
Clone

Mini-batch

Experience Memory
<State, Action,

Reward, Next State>

Environment

ActionStateReward

NN Parameters
Gradient Update

Figure 2.5: Architecture of Deep Q-learning.

9

analysis on a defined system.
The attack tree model was first proposed by Schneier in 1999 [8]. The

model uses a kind of tree representation of the interdependence between
attack behaviors and attack steps in order to analyze the security threats of
the system. In the inner of the attack tree, every node is a kind of action
or target, the root node located at the bottom of the tree indicates that the
attacker wants to reach the final goal. The leaf node at the end of the back
tree is the specific attack method. There are some advantages of this analysis
method that it has a clear structure, combines with the nature of network
attacks, and the data representation of the attack tree is more flexible and
has the characteristics of reusability [26].

By assigning values to each node, we can do some basic calculations based
on this tree structure to describe various attack methods against the overall
target, so it is still feasible to apply it to the field of attack. According to a
given attack tree, we can start from a certain leaf node of the tree to find a
path that can achieve our attack goal and has a relatively low cost.

The attack tree can be used to show the attack process, and the root node
is the ultimate intrusion target. The node represents the method to obtain
the intrusion target of the superior node. The relationship between the nodes
may be one of the two relationships of “OR” and “AND”. Leaf nodes can
be instantiated by specific events in different environments. The relationship
of “OR” means that the acquisition of any child node goal can lead to the
acquisition of the parent node goal. The relationship of “AND” means that
the acquisition of all child node goals can lead to the acquisition of the parent
node goal. Fig.2.6 shows a graph of the two kinds of relationships, “OR” and
“AND”.

G0

G1 G2 G3

G0

G1 G2 G3

Goal
AND

G0

G1

G2

G3

Goal
OR

G0

G1

G2

G3

Graph GraphText Text

Figure 2.6: Attack tree node representation.

The structure of the attack tree model is clear and intuitive, which fits
the nature of network attacks, and is reusable and easy to expand. It is often

10

used for risk analysis and designing countermeasures against attacks.

2.3.2 MulVAL

The meaning of MulVAL is “Multi-host, Multi-stage Vulnerability Analy-
sis Language”. It is an open-source security practitioner tool, the system
administrators cause it to generate the real attack tree for a network envi-
ronment. At the same time, it can be used to help enterprises manage the
use of different networks, so as to reduce the security risk of enterprises [27].
By using the attack graph automatic generation technology of the MulVAL
tool, the attack graph does consider all the vulnerabilities that can be used
by the attacker, and makes the method of network security assessment move
from manual to automated, and evaluate it in a more objective and precise
manner. It helps further improve the handling of different vulnerabilities.

Based on the different network topology properties, the complexity is also
different, it is between O(n2) and O(n3). Because of this, other automation
tools can use MulVAL to improve the management efficiency of the company.
So many small and medium-sized companies are willing to use it.

2.4 Penetration Testing Tools

2.4.1 Shodan

Although people currently think that Google is the most powerful search
engine, Shodan is the most terrifying search engine on the Internet. Unlike
Google, Shodan does not search for URLs on the Internet, but directly enters
the back channel of the Internet. Shodan can be said to be a “dark” Google,
constantly looking for all the servers, cameras, printers, routers, etc. con-
nected to the Internet. Google cannot search for device information on the In-
ternet, while Shodan can obtain device information. And many times servers,
cameras, printers, routers and so on. require an administrator password to
log in. Shodan is used to search for online devices in the cyberspace. You
can search for specific devices or specific types of devices through Shodan.
The most popular searches on Shodan are: webcam, linksys, cisco, netgear,
SCADA and so on.

The working principle of Shodan is to scan the entire network of devices
and capture and analyze the banner information returned by each device. By
understanding this information, Shodan can know which Web server is the
most popular during the network, or how many exist in the current network.
Fig. 2.7 provides an example result of the Shodan search engine.

11

"_shodan": {

"crawler": "d264629436af1b777b3b513ca6ed1404d7395d80",

"id": "970ccb1e-05d9-483a-a1fc-13dfa07d419b",

"module": "https-simple-new",

"options": {},

"ptr": true

},

"asn": "AS4812",

"cpe": [

"cpe:/a:apache:http_server:2.2.15"

],

"hash": -1963466945,

"info": "(CentOS)",

"os": null,

"port": 8081,

"product": "Apache httpd",

"timestamp": "2019-11-26T04:07:02.615692",

"transport": "tcp",

"version": "2.2.15",

"vulns": {

"CVE-2010-1452": {

"cvss": "5.0",

"verified": false

},

"CVE-2011-0419": {

"cvss": 4.3,

"verified": false

},

"CVE-2011-3192": {

"cvss": "7.8",

"verified": false

},

"CVE-2011-3348": {

"cvss": 4.3,

"verified": false

}

}

Figure 2.7: Example of Shodan searching result.

12

Figure 2.8: Nmap scan report.

2.4.2 Nmap

Nmap (“Network Mapper”) is a free utility to scan the network environment.
It is the world’s best port scanner and a prominent piece of our host security
instruments [28]. It will find the basic information of the target machine
by using IP address to or host name. It can also find the vulnerability
information which includes CVE id, running port and so on. Nmap has many
different operating parameters. Through different combinations, we can find
various network information of the target network, including different ports,
product versions, and possible vulnerabilities [29].

A typical Nmap scan is shown in Fig. 2.8. Argument −A is been used
to let version and operation system can be detected. Argument −T4 is been
used to faster the execution.

13

2.4.3 Metasploit

By using Metasploit, we can use different expositions to attack the tested host
[30]. It basically contains the current commonly used vulnerability machine
utilization methods, which is very suitable for white-hat hackers. It can run
on Linux, Mac, Windows and other kinds of operating systems. The goal of
Metasploit is to build a penetration testing tool that even novices can easily
use to execute attack testing.

Metasploit is been built to simplify the lives of security experts. At first,
the main users are the people who are working on cybersecurity and other
people who are really interested in cybersecurity. Within the guidance, these
people can try to do penetration testing, Shellcode writing and vulnerability
finding. At the same time, Metasploit provides an extensible model to inte-
grate load control (Payloads), encoders (Encoders), no-operation generators
(Nops) and vulnerabilities. It integrates common overflow vulnerabilities and
popular Shellcode on various system platforms, so Metasploit is an effective
way to analyze some high-risk vulnerabilities [31].

The scope of the Metasploit payloads starts from normal command shells
to powerful post-exploitation shells like Meterpreter. It is a kind of post-
exploitation agents which employ the protocol to execute actions. [32].
Through the Meterpreter, the attacker can upload Trojan to the target ma-
chine, execute malicious programs, and interact with the target host. As
a backdoor with extremely high permission, the Meterpreter can upgrade
ordinary Shellcode to Meterpreter through the code ’sessions - u id’.

RPC service is a set of message types and remote attack methods, which
can provide a way for external applications to interact with web services.
Metasploit can establish an RPC server through HTTP based to interact
with Metasploit command console or session. For example, it can start the
main framework and use the vulnerability to penetrate other hosts. At the
same time, it can also be combined with other penetration testing tools to
achieve good performance.

2.5 Penetration Testing Using Attack Path

Planning

Over the past decades, there are many kinds of different attempts about au-
tomated penetration testing. Schneier first presented an attack tree model to
describe attack [8]. But the attack tree model has some limitations, it only
faces the attack path of single target. In 2002, Sheyner proposed an attack
graph model, the idae is that every environment of penetration testing is

14

a sequence of the intruders’ different actions [33]. Obes et al. tried to use
plan domain definition language (PDDL) to bridge penetration testing and
planning in order to find attack paths [9]. Fig. 2.9 is the attack path plan-
ning method which uses PDDL representation to plan the attack path. It
first converted the attack path discovery into PDDL based on vulnerability
and network scenario information representation; then used a deterministic
planning algorithm to find the attack path. According to the different plan-
ning models, the algorithm of attack path planning has been divided into
three types: based on planning diagram technology, based on partial-order
planning, and based on hierarchical task network. Khan employed PDDL to
implement vulnerability assessment automatically in 2017 [34]. And there is
also a good product named “Core Impact” that applied PDDL on commercial
products [11].

Figure 2.9: Attack path planning using PDDL.

There is also an approach named Hierarchical Task Network (HTN) which
is based on the task and task decomposition. The advantage of this algorithm
is that it can analyze planning problems from a high-level abstract perspec-
tive, and it can ignore the specific implementation details of the bottom layer
simultaneously, which is easy to understand. The disadvantage is that it is
often necessary to customize specific problem decomposition methods and
implementation methods to deal with specific problems. There is another
similar method named HTNLearn which converts the constraint problem of

15

the task decomposition method into a CSP problem and uses a weighted
MAX-SAT solver to solve it.

However, these methods mainly solve the problem under static, deter-
ministic, and fully observable conditions, but penetration testing is a kind
of dynamic, non-deterministic, and under partial observation conditions pro-
cess, all those kinds of methods need enough information about a specific
network. Therefore, the study of non-deterministic planning technology has
great significance in realizing attack path planning. One of the representa-
tive methods is attack path planning based on Determinizing technology. It
transforms non-deterministic problems into multiple deterministic planning
problems, then uses deterministic planning algorithms to solve the trans-
formed problems. Another representative approach is FF-Replan which is
based on probability optimization technology. The algorithm first randomly
selects a certain behavior result from a variety of possible behavior results.
According to this, it transforms the non-deterministic programming problem
into a deterministic programming problem, and then uses the FF (Fast For-
ward) algorithm to achieve attack path planning. If an unexpected state is
encountered, the above process is iteratively performed with this state as the
initial state.

16

Chapter 3

Framework Architecture

3.1 Overview

In this section, we provided how we use deep Q-learning network algorithm
to build the AutoPentest-DRL framework. The architecture has six different
parts like Fig. 3.1 shows.

• Network Scanning: Integrate the scanning tools such as Nmap in order
to find the target system’s vulnerabilities

• Topology Generation: Produce multiple network topology to increase
the network diversity

• Training Dataset: Use Shodan and other database to build our own
training dataset

• DQN Decision Engine: Utilize the DQN to train our own model for
choosing the attack path

• Simplified Matrix: Employ DFS algorithm to simplify the training ma-
trix to ensure success rate

• Metasploit RPC API: Use RPC server to communicate with Metasploit
to do the attack

From the left side we can see the blue line, it uses the logical network
to verify the feasibility of the framework. The user first inputs the basic
information which includes network topology, open port and existed vulner-
ability for every machine, the generated file will be input to the MulVAL
to create the attack tree. Second the attack tree will be input to the DQN
Decision Engine to calculate and choose the optimal attack path. Finally

17

U
se

r I
np

ut

N
m

ap
 S

ca
nn

er

M
ul

VA
L

R
ea

l N
et

w
or

k

A
tta

ck
 P

at
h

St
ar

t

Pa
th

1
Pa

th
2

En
d

Pe
ne

tr
at

io
ns

 T
oo

ls

M
et

as
pl

oi
t

of
fic

e

w
eb

 s
er

ve
r

de
sk

to
p

Lo
gi

ca
l N

et
w

or
k

of
fic

e

w
eb

 s
er

ve
r

de
sk

to
p

O
R

D
Q

N
 D

ec
is

io
n

En
gi

ne

O
R

To
po

lo
gy

 &

Vu
ln

er
ab

ilit
y

In
fo

rm
at

io
n F

ig
u
re

3.
1:

A
rc

h
it

ec
tu

re
of

th
e

au
to

m
at

ed
p

en
et

ra
ti

on
te

st
in

g
fr

am
ew

or
k
.

18

the attack path will be imported to the logical network to see if it’s correct.
From the right side which means following the red line, the framework will
be used in the real network. The middle part about attack path generation
is basically the same, but the input is been replace by the Nmap scanning
result. And the attack path will be imported to the penetration tools to do
the penetration testing to the real network.

3.2 Network Scanning

To understand the inner traffic between the network topology, it may be
related to the scanning tools. The aim of scanning tools is to discover the
possible vulnerabilities, the excised ports and other useful information. Most
of the scanning behaviors are not harmful, but some of them are executed
with a malicious effect [29]. There are a great number of ports which include
65535 TCP ports and 65535 UDP ports.

The representative of the scanning tools is Nmap, which is one of the most
powerful port scanners in the world. With the assistance of the scanning of
Nmap, we discover the detail information especially existing vulnerabilities
of the target system according to the available ports and services. There are
many options and scripts provided by Nmap in order to find out the target
operation system, offerings and versions. For our framework, the most im-
portant thing is to figure out the existing vulnerability of the target node.
NSE is one of the vulnerability scanning scripts which includes many vulner-
ability library files and network protocol library components. We can use the
scan results of NSE to create an excellent vulnerability report simultaneously.
Here we scan the target node by employing the following command:

nmap −p −−sV −oX −−vers ion −a l l −−s c r i p t vuln <ip>

The parameter of −oX enables Nmap to output the scanning report in
XML format. We extract the detailed information (including existing vul-
nerabilities, product name and so on) from the XML file for every target
node and allocate them to the network topology file. The generated network
topology will be used in the following steps. Fig. 3.2 is a Nmap scanning
result report which includes all the needed information.

3.3 Topology Generation

Generally in machine learning, if we have more learning samples, we will get
higher learning accuracy of the model. To improve the learning rate, we try
to generate enough and sufficiently complex network topology models. There

19

Figure 3.2: Example of Nmap scanning result.

is a python tool named ”topology-generator” which is issued by cesarghali
in 2015, it can generate random network topologies consisting of routers,
clients, and servers. Input parameters can be specified in a configuration file.
The generated topologies are written into JSON output files and optionally
plotted in PDF format. Fig. 3.3 is a sample configuration file:

The parameter of ‘topologies’ means the number of generated topologies,
‘routers’ means the number of routers which can connect the servers and the
clients, ‘router-links’ means the number of links between two routers, ‘clients’,
‘client-links’, ‘servers’ and ‘server-links’ are same as ‘routers’ and ‘router-
links’. ‘channels’ is the number of channels used to connect the topology
nodes. Each channel can have a different data rate. ‘channel-rates’ is a list
of channel rates. The size of this list should match the value of the ‘channel’
parameter.

In order to run this tool, we can use the following command:

20

{

"topologies": "1",

"plot": "True",

"dimensions": "10x10",

"routers": "2",

"router-links": "1-2",

"clients": "5",

"client-links": "1-2",

"servers": "3",

"server-links": "1-2",

"channels": "1",

"channel-rates": "10"

}

Figure 3.3: Sample configuration file of topology-generator.

. / topo−gen . py −c <c o n f i g F i l e> −o <outputFi le>

< configF ile > is the configuration file path, < outputF ile > is the
output file name without the extension. The bash commandtopo − gen will
create two output files: < outputF ile > .json and < outputF ile > .pdf .

Fig. 3.4 shows an example of generated network topology. The red points
represent the routers, the green points represent the servers and the blue
points represent the clients. The relationship between them is connected by
the black line.

By defining those options we can create many kinds of different network
topologies, in order to increase the diversity of the generated network topol-
ogy, the start point and end point are been selected randomly. For example,
suppose we take one of the green points as the attack starting point and one
of the blue points as the final target point, by randomly selecting the starting
point and the end point, we can generate a large number of different topo-
logical structures on the basis of one single network topology, thus greatly
improving the diversity of the generated samples.

If we change one parameter in the configuration file, we can completely
change the structure of the network topology. For example, if we change
‘client-links’ from ‘1-2’ to ’1’, the network topology is as Fig. 3.5 shows. So
in this way, we can get enough complex network topology samples.

21

Figure 3.4: Example of generated network topology.

3.4 Training Dataset

The generation of training data is basically the same as described in [35]. It
is been divided into 3 steps:

1. Shodan search engine is been employed to get the needed information
of different hosts

2. MulVAL is been used to generate the attack trees for the selected net-
work environment

3. Organize the above data into the format we need to suit for the DQN
Decision Engine

Host Dataset

Host Dataset includes all the host information. In this process, Shodan
search engine plays an important role. We need to use it to obtain real
device information, so as to improve the correlation between the data and

22

Figure 3.5: Example of alternative generated network topology.

the samples. Fig. 3.6 is an example of Shodan search engine. Here is a real
mail server which is existed in the Internet. Some key information is been
returned by the result of Shodan searching.

We generate a separate dataset file for every different service with the
needed information. In order to protect the privacy of the device, the data
collected by us only retains the non-sensitive information, and all the sensitive
information is removed. Table 3.1 provides aprofile example of a mail server.

Table 3.1: Mail Server profile examples

Port Product Protocol OS Vulnerability
25 Haraka smtp CentOS CVE-2012-1452
587 Exim smtp Ubuntu CVE-2011-0419
995 Mailtraq pop/imap FreeBSD CVE-2017-9617

23

"info": "(Ubuntu)",

"os": ubuntu 12,

"port": 465,

"product": "Apache James",

"transport": "smtp",

"version": "2.3.2",

"vulns": {

"CVE-2008-2049",

...

}

Figure 3.6: Mail server information through Shodan search engine.

Vulnerability Dataset

In order to get the needed information of vulnerability, the vulnerability
dataset is very necessary in our training process. We need to get the corre-
sponding score through different vulnerabilities to get the reward. At present,
the market mainly includes CVE and Microsoft vulnerability (MS) [36, 37].
In order to measure the different harm caused by different vulnerabilities,
we usually use CVSS to evaluate them [38]. CVSS includes basic score and
availability score. In this dataset, all the needed vulnerability information
come from the National Vulnerability Database (NVD) and Microsoft. Table
3.2 is an example of the vulnerability dataset.

Table 3.2: Example of vulnerability dataset

MS ID CVE ID Type ExpScore BaseScore
MS12-039 CVE-2011-3402 Insufficient Information 8.6 9.3
MS11-069 CVE-2011-1970 Buffer Errors 10.0 5.0
MS16-124 CVE-2016-0070 Information Disclosure 8.6 4.3

3.5 Simplified Matrix

Simplifying the input matrix is the key step of generating training data.
In the traditional deep reinforcement for attack tree, the neural network
will learn how to find the most possible path in a huge matrix. It takes a

24

considerable amount of time to adjust the learning parameters in order to
obtain good training results. In our previous research [35], the accuracy rate
is 0.863 and there is a possibility of improvement. At the same time, due to
the expansion of our training data, the input matrix also becomes bigger and
more complicated. In order these problems and improve the success rate, we
propose to employ DFS to simplify the input matrix.

In this example attack tree like Fig. 2.6 shows, the start point of an
attacker is the Internet which is located in node 33, and the final objective
of the attacker is to have an access to the Workstation2 which is located in
node 1. We suppose an attacker can move in any direction until he reaches
the final goal. In this case we need to give every node a reward score to make
a transfer matrix:

• For every node which exists vulnerability, we use the Scorevul to rep-
resent the reward.

• For the execCode node except node 1, the reward score is 0.2.

• The reward value of start node 33 is 0.01 and the end node 1 is 100.

• For any other nodes, we give the reward score 0, and if the node cannot
access another node, the reward score is -1. Because we have 57 nodes,
so the size of the matrix is 57× 57.

The transfer matrix is as follows:

−1. −1. −1. −1. −1. · · · −1.
100. −1. −1. −1. −1. · · · −1.
−1. 0.2. −1. −1. −1. · · · −1.
−1. −1. 0.01. −1. −1. · · · −1.
−1. 4.5. −1. −1. −1. · · · −1.

...
...

...
...

...
. . .

...
−1. −1. −1. −1. −1. · · · −1.
−1. −1. −1. 0.2. −1. · · · −1.

The transfer matrix indicates all of the actions and we need to simplify it

in order to send it to the DQN model and save time. For this purpose, DFS
is considered to be integrated into the framework to simplify the transfer
matrix. Firstly we search all of the different attack paths. Next we try to
generate a new matrix according to this format [start,midsteps, goal]. start
means the reward score of the start position, goal means the reward score of

25

the goal position, midsteps is the total of the intermediate steps. The size
of the simplified matrix is 10× 10 and it is as follows:

0.01. 4.6. 2.5. 1.6. · · · −1.
0. −1. −1. −1. · · · 100.
0. −1. −1. −1. · · · 100.
0. −1. −1. −1. · · · 100.
...

...
...

...
. . .

...
0. −1. −1. −1. · · · 100.
−1. 0. 0. 0. · · · −1.

The state of the attacker is displayed by the matrix pattern. For example,

if the current attacker is in row 1(state 1), the value [0.01, 4.6, 2.5, 1.6, ...,−1]
means if we move to row 2(state 2), we will get the score of 4.6. Since
the current attacker moves to state 2, the value of the current state is
[0,−1,−1,−1, ..., 100].

3.6 DQN Decision Engine

The DQN Decision Engine is the core of the framework, it will be learned
many times and output the correct attack path [35]. Fig. 3.7 shows the
relationship between DQNDecisionEngine and input data TrainingData
and output data AttackPath.

In the DQN Decision Engine, the input is the simplified matrix, the out-
put is the most possible attack tree, and the softmax is been selected as
the active function. The DQN Decision Engine also consists of an agent and
states, the agent can move to next state according to the action. Taking an
action in a state result in a value reward.

During the process of learning, the agent of DQN Decision Engine rep-
resents a real attacker, the simplified matrix is the environment. The agent
can move freely in the matrix regardless of the values in the matrix. The
ultimate goal is to move to the nodes we need which means we find the tar-
get successfully. The value in the matrix represents the reward of each move
step, it is defined by ourselves. In the set of rewards, each vulnerability is
very important. According to the Common Vulnerability Scoring System
(CVSS), we get their rewards by calculating as the following formula 3.1.
We use Matrix R to create Matrix Q for the goal and employ Q-learning to
update the learning policy by the following equation 3.2 [21].

Scorevul = baseScore× exploitablityScore

10
(3.1)

26

D
Q

N
 D

ec
is

io
n

 E
ng

in
e

St
at

e

Q
-v

al
ue

 A
ct

io
n

0

Q
-v

al
ue

 A
ct

io
n

1

Q
-v

al
ue

 A
ct

io
n

2

A
tta

ck
 P

at
h

St
ar

t

Pa
th

1
Pa

th
2

En
d

N
et

w
or

k
To

po
lo

gy
D

at
as

et

M
ul

VA
L

D
Q

N
D

at
as

etD
FS

Tr
ai

ni
ng

 D
at

a

Sh
od

an
Se

ar
ch

 E
ng

in
e

H
os

t
D

at
as

et

Vu
ln

er
ab

ilit
y

D
at

as
et

To
po

lo
gy

G
en

er
at

or

Si
m

pl
ifi

ed
M

at
rix

F
ig

u
re

3.
7:

O
ve

rv
ie

w
of

D
Q

N
D

ec
is

io
n

E
n
gi

n
e.

27

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)] (3.2)

In this equation, the target of Q-learning is Rt+1 + γ max
a

Q(St+1, a) −
Q(St, At), S is a set of states and A is a set of actions, t is the time. It uses
ε− greedy to generate action at+1, but the action used in order to calculate
the target is the largest action for Q(St+1, a). Through continuous learning
of the parameters, the model can accumulate a lot of experience. Details of
Deep Q-learning algorithm about DQN Decision Engine are described in the
following algorithm 1:

Algorithm 1: DQN Decision Engine Algorithm

Input: Simplified State/Reward (Environment) Matrix (R),
Discounted factor (γ), Learning rate (α)

Output: The most possible action selection policy (Matrix Q)
1 for episode=1, M do
2 Initlalize Q with random weights for t=1, T do
3 Select a random state (St ∈ S)
4 while current state != goal state do
5 Select a random action at from all possible actions,
6 otherwise select at = maxaQ

∗(St, a;w)
7 Execute the action at and observe the reward rt
8 Update Q with the transition:
9 Q(St, At)←

Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)]

10 Current state = next state

The Input is the simplified matrix which includes state, reward and so
on. The Output is the most possible action selection policy that is called
‘Matrix Q’. First select a state randomly, then judge whether currentstate
and currentstate are equal. If they are not equal, select an action randomly,
execute it and get the reward. Next use transition to update the Q. After
looping many times, currentstate is equal to the currentstate, which means
that the algorithm finds the most possible path successfully.

3.7 Metasploit RPC API

The RPC API of Metasploit enables to communicate with the Metasploit
employing HTTP-based remote procedure call (RPC) services. In order to

28

use it, you must start the RPC server by loading the msgrpc plugin. There
is an interface named MessagePack which comes from the msgrpc plugins, it
will open a port to listen the input commands. In this way, you can send
information to Metasploit and also get the return results through the port.
After starting the RPC server, you can use msfrpc utility to connect it by
running the following code:

ruby msfrpc −U <username> −P <password> −a <ip address>

< username > and < password > are the server’s username and pass-
word to access msfrpcd. After connecting the RPC server, you will get the
following response:

[∗] exec : ruby msfrpc −U xxx −P xxx −a x . x . x . x
[∗] The ’ rpc ’ ob j e c t ho lds the RPC c l i e n t i n t e r f a c e
[∗] Use rpc . c a l l (’ group . command ’) to make RPC c a l l s

Fig. 3.8 shows the entire attack process of using Metasploit RPC API.
Fisrtly DQN Decision Engine will send some information that includes attack
path for the attack tree, the attack tree will be converted to a format which
can be recognized by RPC server through the middle ware module; Secondly
the Metasploit RPC api server will send attack commands to the penetration
tools like Metasploit to tell it how to attack the target server; Finally the
penetration tools will so the penetration testing to the test server to achieve
the target.

DQN Decision Engine

RPC
API

Penetration
Tools

Test Server 1

Test Server 2

Penetrations Tools

Metsaploit

send info
send

commands

Figure 3.8: Attack process of using Metasploit RPC API.

In order to convert the output path by DQN Decision Engine into the
format which can be recognized by Metasploit, we need to extract the use-
ful information in the path. For example, in the path “33 → 31 → 24 →

29

23 → 22 → 20 → 17 → 16 → 15 → 13 → 10 → 9 → 8 → 6 → 5 →
4 → 3 → 2 → 1” (cf. Fig. 4.2), the node 8 means that the fileServer will
suffer from execCode attack. The node 29 describes the detailed informa-
tion about the existing vulnerability (CVE-2015-3306) in Apache product.
If we want to get the root privilege in fileServer, we need to employ the vul-
nerability of CVE-2015-3306 to penetrate the fileServer. Other nodes about
servers or workstations are in the same situation. Based on the above char-
acteristics, we simplified the entire attack process into the following path:
“33 → 22 → 15 → 8 → 1”. In this way, penetration tools like Metasploit
only need to know the IP address and vulnerabilities of every machine to
achieve automated penetration testing.

30

Chapter 4

Experiment Results and
Discussion

In this chapter, we build an experiment to train the DQN Decision Engine.
At the same time, we use some common network topologies to evaluate our
framework in a logical network. At the same time, we also build a virtual
machine environment to execute real penetration testing in order to test the
validity of the framework on a real network.

4.1 Network Topology Models

Fig. 4.1 provides two different network topologies. The ‘Topology 1’ of Fig.
4.1(a) is a simple network which is a personal home network environment. It
includes the ‘Web server’, ‘File server’ and ‘Workstation 1’. The ‘Topology
2’ of Fig. 4.1(b) on the right side is a company’s network environment. It is
a bit more complicated than the home network topology and also includes
some computer machines. ‘Web server’ is been used to show the website of
the company through HTTP/HTTPS protocol. ‘Mail server’ is been set to
receive and deliver emails. ‘File server’ offers a central storage place for files
on internal data media. Here we mainly talk about the ‘Topology 2’ because
it’s more realistic than ‘Topology 1’.

31

(a) Topology 1 (b) Topology 2

Figure 4.1: Experiment network topology models.

In this experiment network topology, the different machines are located
in the different areas. For example in ‘Topology 2’, ‘Web server’ directly
connects with the router which is located behind the ‘Firewall’. ‘Mail server’
and ‘Workstation 3’ are located in a subnet that is linked by a router with
the ‘Firewall’. ‘Workstation 2’ and ‘File server’ are in another subnet that
connects the subnet of the ‘Web server’.

For every node in the attack path, we have formulated the following
connection rules:

• The ‘Internet’ is the start point that the attacker has access to the
‘Web server’ through HTTP and HTTPS.

• Through file transfer protocols like FTP, NFS, the ‘File server’ and the
‘Web server’ have a connection to each other.

• Through file transfer protocols like FTP, NFS, the ‘Workstation 2’ and
the ‘File server’ have a connection to each other.

• Through HTTP and HTTPS protocols, the ‘Workstation 2’ and ‘Work-
station3’ can connect to the ‘Internet’.

• Through IMAP and SMTP protocols, the ‘Workstation 3’ has a con-
nection to the ‘Mail server’.

32

4.2 DQN Dataset Generation

For every device, we need to initialize detailed information such as vulner-
abilities, open ports, products, and protocols. All those information comes
from the training data which is mentioned in Section 3.4. Table 4.1 provides
some information about these machines for ‘Topology 2’.

Table 4.1: Network information for Topology 2

Host Vulnerability Product Port Protocol
Web server CVE-2017-2619 Samba 139 SMB
Mail server CVE-2017-0307 - 465 SMTP
File server CVE-2007-6232 - 21 FTP

Workstation3 - - - HTTP/HTTPS/SMTP
Workstation2 - - - HTTP/FTP

As for the vulnerability dataset, there is also some needed information.
For instance, in the Table 4.2, the vulnerability of ‘CVE-2019-0211’ needs its
own type and caused effect which is ‘Privilege Escalation’ and ‘root’. And
for the ‘CVE-2015-3306’, the effect is been changed to ‘user’ which means
you can not execute some high privilege actions.

Table 4.2: Information of different vulnerabilities

Vulnerability Effect Type
CVE-2015-3306 user Improper Access Control
CVE-2019-0211 root Privilege Escalation
CVE-2020-17087 root Privilege Escalation

Given the network information of ‘Topology 2’, we use MulVAL to gen-
erate an attack tree which is shown in Fig. 4.2. Every node has its own
description, for example the node ‘35’, it means that there is a vulnerability
named ‘CVE-2011-4718’ existed in the ‘fireWall’, which can cause attackers
to obtain root privilege. In the scenario, the start point of the attacker is
the node ‘33’ Internet, the target is to execute malicious code on the node
‘1’ which means we have access to the final target workstation.

After we get the generated attack tree, we need to create the DQN dataset
by combining the attack tree with the host dataset and vulnerability dataset.

33

F
ig

u
re

4.
2:

G
en

er
at

ed
at

ta
ck

tr
ee

.

34

We transfer the attack tree to the matrix in order to use it as the input of the
neural network, then the DFS algorithm is been used to simplify the matrix
where is been talked in Section 3.5. In this way we can generate the input
data of DQN Decision Engine which is called DQN dataset.

4.3 DQN Training Results

After we generate the needed dataset, we need to train the DQN model.
In this experiment scenario, we select a neural network with 3 layers. The
network model we used in the experiment scenario is provided in Fig. 4.3.
In the neural network, the input is the DQN dataset which is transferred
to matrix, the output is the most possible attack path. In order to verify,
we define that the most possible path in the matrix is the path with the
minimum steps while choosing the biggest value of reward.

Figure 4.3: DQN network model in the experiment scenario.

Table. 4.3 shows an example of the different attack paths for the target
end node 1. As we can see, there are two example attack paths which the
first one uses all of the existed vulnerabilities and the second one uses two
different vulnerabilities. If we start from the node 33 and the end node is
node 1, the maximum rewards of the first one are bigger than the second
one, which means that our training has worked, the strategy will of DQN
Decision Engine prioritize to select the attack path with the largest reward.

Table 4.3: Different attack paths for the end node 1

Start Node End Node Attack Path Maximum Rewards
33 1 33→22→15→8→1 113.5
33 1 33→22→15→5→1 108.7

Fig. 4.4 shows the running information of DQN model through the rep-
resentation of enterprise network state space. We change the discount factor

35

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Discount Factor (GAMMA)

102

104

106

108

110

112

114

116

118

Cu
m

ul
at

iv
e

Re
wa

rd

Batch Size = 16
Batch Size = 32

Figure 4.4: Cumulative reward changes with discount factor (GAMMA).

from GAMMA = 0.6 to GAMMA = 0.99. The lower value of the discount
factor indicates that the reward of the terminal state has no substantial im-
pact on the reward of the current state, while the higher value of the discount
factor indicates that the higher reward of the terminal state will affect the
reward of the agent in the current state. We also use different batch sizes
(BS) to observe the effect on learning the best strategy. When BS = 16, the
proxy achieves faster convergence compared with BS = 32. So BS = 16 is
been chosen as our batch size.

The variation of the average reward with the number of the epoch is
shown in Fig. 4.5. There are about 150 epochs, the reward is small at first,
as the number of epoch increases, the reward is getting bigger. After about
80 iterations, the increasing trend of reward begins to gradually slow down
until stable. At this time, the DQN model begins to stabilize which means
it finds the best strategy in the current state. In this case of ‘Topology 2’,
the attack path is “23 → 21 → 20 → 19 → 18 → 16 → 15 → 14 → 13 →
11 → 10 → 9 → 8 → 6 → 5 → 4 → 3 → 2 → 1” (cf. Fig. 4.7), which
means that the DQN network model chooses the strategy that exploits the

36

vulnerabilities as much as possible.

0 20 40 60 80 100 120 140
Epoch

0

20

40

60

80

100

Av
er

ag
e

Re
wa

rd

Deep Q-Learning Network

Figure 4.5: Average reward change with the increase of epoch.

Fig. 4.6 is the error ratio of the DQN network model, we can find that
this framework has a good performance in convergence. The error rate grad-
ually decreases and stabilizes as the number of iterations increases, that the
overall trend is opposite to Fig. 4.5. Therefore, our DQN model has better
adaptability.

4.4 Evaluation on Logical Network

In order to evaluate the framework on the logical network, we adopt 1000
different attack trees as our validation data to test the performance. 500
samples are generated by the ‘topology-generator’ according to ‘Topology 1’,
another 500 samples are generated according to the ‘Topology 2’. For the
purpose of distinguishing between correct and wrong attack paths, we use
the special generated attack path as our evaluation standard. There is a
parameter named ‘-p’ in the MulVAl that uses deep trimming algorithm to
generate the attack trees like Fig. 4.7 shows. The node 23 which is marked
by blue circle is the start point, the node 1 which is marked by a green circle

37

Figure 4.6: Error ratio of the DQN network model.

is the end point. The other that is marked by a red circle are the middle
points.

If you look closely at the attack tree, there are two different attack paths.
One chooses to exploit the vulnerability to infiltrate the ‘File server’, and the
other chooses to use the NFS shell. In this experiment, since the NFS shell
is difficult to use, in order to improve the success rate, we default to choose
the attack path with more vulnerabilities as the correct attack path.

The result is shown in the Fig. 4.8. There are totally 932 samples that
find the correct path. For the ‘Topology 1’, the number of correct paths and
wrong path are 473 and 27, the accuracy is 0.946. For the ‘Topology 2’. the
number of correct paths and wrong path are 459 and 41, the accuracy is
0.918. So the average accuracy is 0.932. The result is shown that this frame-
work has a good performance in distinguishing the attack path. Since the
deep reinforcement learning framework contains a multi-layer neural network
model, the neural network has a certain generalization ability for data from a
data-driven perspective, and it is robust from a physical system perspective.

In order to show the advantage of our DQN Decision Engine, we build

38

F
ig

u
re

4.
7:

A
tt

ac
k

tr
ee

ge
n
er

at
ed

b
y

d
ee

p
tr

im
m

in
g.

39

473

27

459

41

0

50

100

150

200

250

300

350

400

450

500

Correct Path Wrong Path

Attack path distribution of DQN model

Topology 1 Topology 2

Figure 4.8: Attack path distribution of DQN model.

cooperation with the other related approaches. Table 4.4 provides compara-
tive analysis from three main aspects. Our AutoPentest-DRL framework has
a leading advantage in dealing with the network environment on the three
characteristics.

Table 4.4: Comparison of different methods

Characteristics PDDL FF AutoPentest-DRL
Re-planning © © ©

Uncertain path © ©
Multi-host ©

4.5 Evaluation on Real Network

In order to evaluate the effectiveness of this framework in the real network
environment, we build a real network topology environment using virtual

40

machines. The basic network topology is generated as ‘Topology 2’ of Fig.
4.9 shows.

Figure 4.9: Real network environment.

The ‘Firewall’ is run in ‘ubuntu 12’, the ‘Web server’ is run in ‘ubuntu
16’, the ‘Mail server’ is run in ‘ubuntu 16’, the ‘File server’ is run in ‘ubuntu
12’, the ‘Workstation1’ and ‘Workstation2’ are both run in ‘ubuntu 18’. We
use three different vulnerabilities (CVE-2007-2447, CVE-2010-2075, CVE-
2011-2523) and one test Trojan (generated by Metasploit).

Internet Web serverFirewall File server

CVE-2007-2447 Copy trojanCVE-2010-2075 CVE-2011-2523

Workstation2

Figure 4.10: Penetration testing process for an experiment scenario.

The three virtual machines (Firewall, Web server, File server) are sepa-
rately been inserted into the above vulnerabilities like Fig. 4.10 shows.

The detailed penetration testing steps are shown as follow:

1. Nmap is been used to obtain vulnerability information of each machine
in the network environment.

2. MulVAL generates attack trees by combining Nmap scanning results
with the configuration file which contains network topology informa-
tion.

41

Figure 4.11: Nmap scanning result of File server.

3. Attack tree is been transformed to the matrix and sent to the DQN
Decision Engine.

4. DQN Decision Engine calculates and choose the optimal attack path
and sent it to the Metasploit RPC server.

5. Metasploit RPC server sends corresponding attack command to the
test server to do the penetration testing.

The Nmap scanning result of ‘File server’ of Step 1 is been provided in
Fig. 4.11. Here we successfully find the vulnerability of CVE-2011-2523
which the type is ‘ftp-vsftpd-backdoor’ and the port is 21. The other two
machines (Firewall and Web server) are as the same.

The configuration file of Step 2 is shown in Fig. 4.12. As we can see,
the parameter of ‘attackerLocated’ is the start point, ‘attackGoal’ is the end
point, ‘hacl’ is been used to define the network topology, ‘networkServiceInfo’
defines the basic information of this machine, ‘vulExists’ means what kind
of vulnerabilities exist on this machine, ‘vulProperty’ is the property of the
vulnerability. For this network topology and vulnerability information, the
generated attack tree is as Fig. 4.13 shows.

42

Figure 4.12: Configuration file.

Follow the above steps to achieve a complete automated penetration test-
ing process. Through comparison and analysis, we found that this framework
has a higher success rate in the network environments with a small network
topology structure like Fig. 4.1, and is able to complete automated penetra-
tion testing according to the principle of adopting exploit vulnerabilities as
much as possible.

Fig. 4.10 shows the entire automated penetration testing process, the
attacker uses three different vulnerabilities to attack three servers in order
to get the control authority, and finally transmit the test Trojan from the
‘Internet’ to the ‘Workstation2’.

Through the vulnerability of CVE-2010-2075, we get the root privilege

43

F
ig

u
re

4.
13

:
A

tt
ac

k
tr

ee
fo

r
re

al
n
et

w
or

k
.

44

of the machine ‘Web server’, Fig. 4.14 shows the exploiting process of the
machine ‘Web server’. After exploiting successfully we get a session which
can be communicated with the next machine, the result of sending command
“whoami”” is ‘root’ which shows that we gain the root privilege successfully.
The attack process of ‘Firewall’ and ‘File server’ is basically the same as that
of ‘Web server’.

Figure 4.14: Exploiting process of Web server.

After gaining the root privileges on all three machines, a tunnel between
‘Internet’ and ‘Workstation2’ is established through port forward. The mali-
cious Trojan will forward from ‘Internet’ to ‘Workstation2’. Fig. 4.15 shows
the existed Trojan on ‘Workstation2’. When the Trojan is been executed,
we can easily access the ‘Workstation2’ from ‘Internet’ to achieve the goal of
penetration testing.

Figure 4.15: Trojan file uploaded to Workstation2.

The overall attack process can be described as the following: The attacker
first obtains the vulnerability information and attack path of the target host
through the scanning function of Nmap, and then the information is input
to the penetration tools, next the Metasploit is called through the RPC API
to perform penetration testing on the host machine.

45

4.6 Discussion

We use different host and vulnerability information to simulate the exper-
imental network that is evenly distributed among the target hosts. At the
same time, the tool named ‘topology-generator’ is used to generate a large
number of random network topology models to increase the diversity of train-
ing models. The purpose of this experiment is to demonstrate the feasibility
of exploring and utilizing the framework in a variety of network environ-
ments. In the real environment, when a company’s network security protec-
tion is very good, the penetration testing team may often spend too much
time trying to classify the security problems and do the penetration testing,
and the final reward on investment is low. When the batch size is set to 16,
this framework can provide the best attack path for the network. Even in the
worst case when the value of GAMMA is too low or too high, the algorithm
will converge in time and generate a feasible attack path.

The range of using this framework can be extended to many different
areas. For example, we can use this framework to improve the company’s
internal security protection. Testers can use this framework to easily evaluate
the company’s network environment with relatively little experience. At the
same time, this framework can also be used in the field of cybersecurity
education, especially in penetration testing training activities. Trainees can
try to do penetration testing in a simulated network environment. This will
greatly reduce the threshold of organizing network education and training,
because professional penetration testers are no longer needed. It will greatly
improve the trainees’ network security protection ability.

46

Chapter 5

Conclusion and Future Work

5.1 Concluding Remarks

In this research, we utilized reinforcement learning (RL) techniques, in par-
ticular deep Q-learning network (DQN), to create an automated penetration
testing framework. Firstly, we discussed the current situation of domain-
related machine learning algorithms applied to automated penetration test-
ing, and pointed out the necessity of using deep reinforcement learning to plan
attack path discovery under automated penetration testing conditions. For
this reason, we designed a DQN Decision Engine based on deep Q-learning
network (DQN) to find the optimal attack path automatically. The engine
adopted a three-layer neural network, and the learning parameters were care-
fully selected aiming for the best learning results.

Secondly, in order to generate enough network topology samples to im-
prove the adaptability to different networks of DQN model, we integrated a
topology generator tool into our framework to create random network topolo-
gies. Moreover, since the original matrix converted from the network topol-
ogy is large, increasing the convergence time of the DQN model, we employed
the DFS algorithm to simplify the matrix of attack path, thus improving the
efficiency of the model learning.

Next, we employed several penetration tools to make it possible to used
the DQN Decision Engine for penetration testing in a real network environ-
ment. Shodan was employed to collect network information for training the
DQN model, Nmap was used to scan the network information, especially
vulnerabilities of every machine, and RPC API was utilized to communicate
with Metasploit to perform the real attack operations.

Finally, we conducted experiment that demonstrate our framework has a
good performance both on the logical network and real network environment.

47

We used 1000 sample network topologies to evaluate the performance on the
logical network, the accuracy of ‘Topology 1’ is 0.946 and the accuracy of
‘Topology 2’ is 0.918, and the average accuracy is 0.932. We also built a
real network environment which is the same as ‘Topology 2’ to evaluate the
performance on the real network. The framework exploited three different
vulnerabilities to access the servers and copy the test Trojan to ‘Workstation
2’. We hope that our research can promote the development of automated
penetration testing, and also inspire other researchers.

5.2 Future Work

Our current research on automated penetration testing, especially on the
attack path discovery algorithm, is only suitable for small-scale network sce-
narios due to its high computational complexity, and has some limitations
on performing effective and fast attack path discovery in large-scale network
scenarios. Therefore, it is important to do research on fast attack path dis-
covery techniques in large-scale network scenarios. In the future, we will
conduct additional research on how to quickly discover attack paths under
large-scale network topology models.

Meanwhile, our research mainly focuses on single planning, and does not
consider the effectiveness of the planned path. To overcome this problem,
incorporating the generated feedback information during the process of pene-
tration testing into the attack path discovery algorithm to dynamically adjust
the attack path is a great way. Feedback information is an effective reflection
of the attack load and host status information. Integrating information into
the algorithm can effectively eliminate invalid attack loads and improve the
effectiveness of the planned path. For example, the load cost is dynamically
modified according to the feedback information, the cost of effective attack
load behavior is reduced, the cost of invalid load behavior is increased, and
the heuristic function is been guided to minimize the planning cost, thereby
achieving the purpose of improving the effectiveness of the planned path.

In the end, we plan to improve the compatibility of our system with
different penetration testing tools in the future. The current framework
mainly use Nmap for the network scanning part, and Metasploit for the real
attack part, but several other excellent tools exist. Therefore, we plan to
integrate other network scanning tools, such as Nessus, and attack tools, such
as Cobalt Strike, to AutoPentest-DRL in order to expand its applicability.

48

Bibliography

[1] W. Andrew, D. P. Newman, Penetration Testing and Network Defense,
Cisco Press, 2005.

[2] B. Burns, E. Markham, C. Iezzoni, P. Biondi, M. Lynn, Security Power
Tools, O’Reilly, 2007.

[3] J. P. McDermott, Attack net penetration testing, in: Proceedings of the
2000 workshop on New security paradigms, 2001, pp. 15–21.

[4] S. Jajodia, S. Noel, Topological vulnerability analysis: A powerful new
approach for network attack prevention, detection, and response, Algo-
rithms, Architectures and Information Systems Security (Indian Statis-
tical Institute Platinum Jubilee Series) (2008) 285–305.

[5] J. Hoffmann, The Metric-FF Planning System: Translating ”Ignoring
Delete Lists” to Numeric State Variables, Journal of Artificial Intelli-
gence Research 20 (2011) 291–341.

[6] Y. Stefinko, A. Piskozub, R. Banakh, Manual and automated penetra-
tion testing. benefits and drawbacks, in: 13th International Conference
on Modern Problems of Radio Engineering, Telecommunications and
Computer Science, 2016, pp. 488–491.

[7] F. Abu-Dabaseh, E. Alshammari, Automated penetration testing: An
overview, Computer Science & Information Technology (2018) 123–127.

[8] B. Schneier, Attack trees - modeling security threats, Dr. Dobb’s Journal
24 (1999) 21–29.

[9] J. L. Obes, C. Sarraute, G. Richarte, Attack planning in the real world,
arXiv preprint arXiv:1306.4044 (2013).

49

[10] M. Boddy, J. Gohde, T. Haigh, S. Harp, Course of action generation
for cyber security using classical planning, in: Proceedings of the Fif-
teenth International Conference on International Conference on Auto-
mated Planning and Scheduling, ICAPS’05, 2005, p. 12–21.

[11] J. L. Obes, C. Sarraute, G. G. Richarte, Attack planning in the real
world, arXiv: Cryptography and Security (2013) 3–6.

[12] M. Yousefi, N. Mtetwa, Y. Zhang, H. Tianfield, A reinforcement learning
approach for attack graph analysis, in: 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Com-
munications/ 12th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE), 2018, pp. 212–217.

[13] G. Hinton, Y. LeCun, Y. Bengio, Deep learning, Nature 521 (7553)
(2015) 436–444.

[14] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction,
2nd Edition, The MIT Press, 2018.

[15] Z. Zhou, Machine Learning, Tsinghua University Press, 2016.

[16] Y. Gao, S. Chen, X. Lu, Research on reinforcement learning technology:
a review, Acta Automatica Sinica 30 (1) (2004) 86–100.

[17] M. C. Ghanem, T. M. Chen, Reinforcement learning for efficient network
penetration testing, Information 11 (1) (2020) 6.

[18] J. Schwartz, H. Kurniawati, Autonomous penetration testing using re-
inforcement learning, arXiv preprint arXiv:1905.05965 (2019).

[19] L. P. Kaelbling, M. L. Littman, A. W. Moore, Reinforcement learning:
a survey, Journal of Artificial Intelligence Research 4 (1996) 237–285.

[20] C. Li, L. Cao, Y. Zhang, X. Chen, Y. Zhou, Knowledge-based deep
reinforcement learning: a review, System Engineering and Electronics
39 (11) (2017) 2603–2613.

[21] C. J. Watkins, P. Dayan, Q-learning, Machine learning (1992) 279–292.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, M. Riedmiller, Playing Atari with Deep Reinforcement Learning,
in: NIPS Deep Learning Workshop 2013, 2013, pp. 201–220.

50

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., Human-level control through deep reinforcement learning, Nature
518 (2015) 529–533.

[24] C. Watkins, Learning from delayed rewards, Ph.D. thesis, Cambridge
University (1989).

[25] O. Anschel, N. Baram, N. Shimkin, Averaged-dqn: Variance reduction
and stabilization for deep reinforcement learning, in: International Con-
ference on Machine Learning, PMLR, 2017, pp. 176–185.

[26] G. Xiang, Y. Cao, A study on detection-oriented attack classification
and attack tree generating algorithm, Transactions of Beijing Institute
of Technology 23 (3) (2003) 340–344.

[27] X. Ou, S. Govindavajhala, A. W. Appel, Mulval: A logic-based network
security analyzer., in: USENIX security symposium, Vol. 8, Baltimore,
MD, 2005, pp. 113–128.

[28] G. Kaur, N. Kaur, Penetration testing–reconnaissance with nmap tool.,
International Journal of Advanced Research in Computer Science 8 (3)
(2017).

[29] M. Shah, S. Ahmed, K. Saeed, M. Junaid, H. Khan, et al., Penetration
testing active reconnaissance phase–optimized port scanning with nmap
tool, in: 2019 2nd International Conference on Computing, Mathematics
and Engineering Technologies (iCoMET), IEEE, 2019, pp. 1–6.

[30] D. Maynor, Metasploit toolkit for penetration testing, exploit develop-
ment, and vulnerability research, Elsevier, 2011.

[31] J. Meng, A. Li, The implementation of vulnerability scanning technique
based on loading nessus on metasploit, Netinfo Security 12 (8) (2012)
185–186.

[32] R. Mudge, Network attack collaboration, sharing the shell, USENIX
;LOGIN: 36 (6) (2014) 27–28.

[33] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. M. Wing, Automated
generation and analysis of attack graphs, in: Proceedings 2002 IEEE
Symposium on Security and Privacy, IEEE, 2002, pp. 273–284.

51

[34] S. Khan, S. Parkinson, Towards automated vulnerability assessment,
in: 11th International Scheduling and Planning Applications Workshop
(SPARK), 2017, pp. 33–34.

[35] Z. Hu, R. Beuran, Y. Tan, Automated penetration testing using deep
reinforcement learning, in: 2020 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), IEEE, 2020, pp. 2–10.

[36] B. Cheikes, D. A. Waltermire, K. Scarfone, Common platform enumer-
ation: Naming specification version 2.3, National Institute of Standards
and Technology (2011).

[37] M. Karlsson, The edit history of the national vulnerability database,
Master’s thesis, Swiss Federal Institute of Technology Zurich (2012).

[38] T. Grance, M. Stevens, M. Myers, Guide to selecting information tech-
nology security products, National Institute of Standards and Technol-
ogy (2003).

52

List of Publications

Z. Hu, R. Beuran, Y. Tan, Automated Penetration Testing Using Deep Re-
inforcement Learning, in: 2020 IEEE European Symposium on Security and
Privacy Workshops (Euro S&PW), IEEE, 2020, pp. 2–10.

53

	Introduction
	Background and Related Work
	Reinforcement Learning
	Deep Reinforcement Learning
	Attack Tree
	Attack Tree Model
	MulVAL

	Penetration Testing Tools
	Shodan
	Nmap
	Metasploit

	Penetration Testing Using Attack Path Planning

	Framework Architecture
	Overview
	Network Scanning
	Topology Generation
	Training Dataset
	Simplified Matrix
	DQN Decision Engine
	Metasploit RPC API

	Experiment Results and Discussion
	Network Topology Models
	DQN Dataset Generation
	DQN Training Results
	Evaluation on Logical Network
	Evaluation on Real Network
	Discussion

	Conclusion and Future Work
	Concluding Remarks
	Future Work

