JAIST Repository

https://dspace.jaist.ac.jp/

[FREWT 22 5 2] An investigation of a state machine

Tite visualization tool SMGA & case studies with SMGA
Author(s) INFR, 3

Citation

Issue Date 2021-03

Type Thesis or Dissertation

Text version

author

URL http://hdl.handle.net/10119/17096
Rights

_ Supervisor: # /5 FI#, SeumBl 2B iRt &1 (HR
Description

B¥)

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Master’s Research Project Report

An investigation of a state machine visualization tool SMGA & case studies
with SMGA

Midori Kobayashi

Supervisor Kazuhiro Ogata

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology
(Information Science)

March, 2021

Abstract

Nowadays, the Internet and other software systems are used everywhere. For
example, e-commerce systems such as Amazon and Rakuten have permeated
our lives and are an integral part of our daily lives. If these systems do not
work as intended, they may cause economic loss or human damages, which
will not make our lives more convenient, but rather cause serious consequence.
And the most core softwares of the Internet is a distributed system. It is not
easy to develop a distributed system as desire because the systems are often
concurrent programs. For example, in concurrent program, many processes
and computers must use shared resources such as memory to meet certain
constraints, so it is known that it is very difficult to develop a distributed
system to work as intended and does not behave in any other way. To develop
a distributed system (worked as intended), many technologies need to be used
strictly. One such technique is formal verification. Formal verification can
be categorized into model checking and theorem proving. Model checking
often is used to detect defects, and theorem proving is necessary to ensure
that the system works as intended. However, theorem proving often needs
lemmas, which require much human effort. Finding lemmas is a big barrier
of theorem proving in formal verification. On the other hand, humans are
good at visual perception. State Machine Graphical Animation (SMGA) can
be known as a tool that supports the use of theorem proving and information
visualization. The tool has potential to remove or subordinate the barriers
to lemma discovery.

The purpose of this study mainly is to survey case studies of SMGA. Maude
is used to generate the state sequence of the state machine, which is the input
of SMGA. For this reason, this research includes a survey on state machines,
how to formalize protocols as state machines, how to describe state machines
in Maude (how to create formal specifications), how to model check (the
specifications) in Maude that state machines satisfy desired properties, and
how to generate state sequences of state machines using Maude.

In this research report, five protocols will be studied. These include the Test
& Set protocol (TAS), a flawed version of the Test & Set protocol (FTAS),
the Qlock protocol, two flawed versions of the Qlock protocol (FQlock0O and
FQlockl), and the Anderson protocol. Specifically, we will learn what kind
of pseudocode these protocols are written in and what kind of rewriting rules
are used. Then, we will explain how to visualize these protocols in SMGA
and how to design them. Various figures will be used for the design. In
this way, we will not only visualize the design, but also make it easy to

discover the characteristics. Then, we will describe what characteristics we
found for each protocol by using SMGA. Finally, the correctness of these
characteristics will be discovered by model checking. To create a graphical
animation using SMGA, an input file is required. To create the input file, we
need to generate the state sequence using Maude. Also, Maude is used for
model checking. In Maude, we use the search command, one of the important
commands, which can search for a user-specified state and confirm whether
the state exists. Moreover, we will describe how to create a good diagram
for graphical animation, how to observe graphical animations and look for
protocol characteristics. These contents should be described concerning what
characteristics you found in the animations you created in SMGA. We will
then use these to help us discover even better ways to create diagrams and
find characteristics of protocols.

One of the future tasks of the project report is to provide an important
theorem proving in formal verification. We can perform model checking and
formal verification to develop distributed systems as intended. Learning both
of two techniques will be of great help in developing software that supports
our daily lives. In addition to learning theorem proving, it is also important
to learn how the applied protocols in the report are used in the software that
we use in our daily lives. It will help us to further understand the report
and learn about software development. In addition to the search command,
there are many other commands in Maude. By using such that commands,
we can perform various types of model checking. Model checking is excellent
for finding defects in software development. In other words, using various
commands is useful for finding various kinds of defects.

Contents

Introduction

1.1 Overview
1.2 Aims and Significance
1.3 Report Outline L

Preliminaries

2.1 Mutual Exclusion
2.2 State Machine
23 Maude
2.4 State Machine Graphical Animation

Variants of Test & Set (TAS) Mutual Exclusion Protocol

3.1 FTAS: A flawed version of TAS
3.1.1 Description of FTAS in Maude
3.1.2 State Machine Representation(FTAS)
3.1.3 Use of SMGA(FTAS)
3.1.4 Model Checking Using Maude(FTAS)

3.2 TAS: A protocol satisfies mutual exclusion
3.2.1 Description of TAS in Maude
3.2.2 State Machine Representation(TAS)
3.2.3 Useof SMGA(TAS)
3.2.4 Model Checking Using Maude(TAS)

Variants of Qlock Mutual Exclusion Protocol

4.1 FQlock0: A flawed version of Qlock protocol
4.1.1 Description of FQlockO in Maude
4.1.2 State Machine Representation(FQlock0)
4.1.3 Use of SMGA(FQlock0)
4.1.4 Model Checking Using Maude(FQlock0)

4.2 FQlockl: A protocol satisfies mutual exclusion
4.2.1 Description of FQlockl in Maude

4.2.2 State Machine Representation(FQlockl) 37
4.2.3 Use of SMGA(FQlockl) 39
4.2.4 Model Checking Using Maude(FQlockl) 40
4.3 Qlock: A protocol satisfies mutual exclusion 42
4.3.1 Description of Qlock in Maude 43
4.3.2 State Machine Representation(Qlock) 44
4.3.3 Use of SMGA(Qlock) 45
4.3.4 Model Checking Using Maude(Qlock) 46
Anderson Mutual Exclusion Protocol 56
5.1 Description of Anderson in Maude o7
5.2 State Machine Representation(Anderson) 59
5.3 Use of SMGA(Anderson) 61
5.4 Model Checking Using Maude(Anderson) 62
Lessons Learned 66
6.1 How to create a good diagram for graphical animation 66
6.2 How to Observe Graphical Animations and Look for Protocol
characteristicso 68
Conclusion 70
7.1 Summary of the research report 70
7.2 Future Issues 71

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12

3.13

3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

3.23

An example of mutual exclusion
A series of graphical animations.
Example of an input file
Example of an input file to SMGA

Representing the rewriting rules using a figure
Representing the state machine using a figure
Visually representing the state machine using SMGA
A representation of the process using a figure
A representation of the section using a figure
A representation of the value of “lock” using the figure

Input files used in FTAS
Diagram showing the initial conditions using SMGA (FTAS)
Visual representation of various state machines using SMGA .
The state does not meet the mutual exclusion of the machine .
Figure showing that there can be up to three processes in each
section at the same time. 0L
Figure showing that the value of “lock” will be false if all
processes are present in rs
Figure showing that if there is no process in cs, the value of
“lock” will be false
Representing the rewriting rules using a figure(TAS)
Representing the state machine using a figure
Visually representing the state machine using SMGA
A representation of the process using a figure
A representation of the section using a figure
A representation of the value of “lock” using the figure .
Input files used in TAS
Diagram showing the initial conditions using SMGA(TAS)
Visual representation of various state machines using
SMGA(TAS)
Figure showing that there is at most one process in cs.

3

15

16

16
19
20
20
21
21
22
22
23

24
25

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11

4.12

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

4.23
4.24
4.25

4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34

4.35

Representing the rewriting rules using a figure(FQlockO0)
Representation of a state machine in a diagram(FQlock0) . . .
Visually representing the state machine using SMGA (FQlock0)
A representation of the process using a figure(FQlock0)
A representation of the section using a figure(FQlock0)

A representation of the queue using a figure(FQlock0)
Representation of tmp[pl] and tmp[p2] using figures(FQlock0)
Input files used in FQlockO
Diagram showing the initial conditions using SMGA (FQlock0)
Visual representation of various state machines using
SMGA(FQlockO) oo
There are at most two processes in each section at the same

Mutual exclusion is not satisfied because two processes can
exist simultaneously inecs. 0L
Representing the rewriting rules using a figure(FQlock1)
Representation of a state machine in a diagram(FQlockl) . . .
Representation of a state machine in a diagram(FQlockl) . . .
A representation of the process using a figure(FQlockl)
A representation of the section using a figure(FQlock1)

A representation of the queue using a figure(FQlockl)
Representation of tmp[pl] and tmp[p2| using figures(FQlock1)
Input files used in FQlockl
Diagram showing the initial conditions using SMGA (FQlock1)
Visual representation of various state machines using
SMGA(FQlockl)
It indicates that there is at most one process in cs.
It indicates that there is at most one process inds.
It shows that two processes can exist simultaneously in rs and

Representing the rewriting rules using a figure Qlock
Representation of a state machine in a diagram(Qlock)
Visually representing the state machine using SMGA (Qlock) .
A representation of the process using a figure(Qlock)
A representation of the section using a figure(Qlock)
A representation of the queue using a figure(Qlock)
Input files used in Qlock
Diagram showing the initial conditions using SMGA (Qlock)
Visual representation of various state machines using SMGA

(Qlock) o

Indicates that there can be at most one process in ¢s.

4

29
30

31
31

32
33
34

35

92

4.36 It shows that two processes can exist simultaneously in rs and

4.37 When a process exists in rs, it means that the value of the
process does not exist in queue.,

5.1 Representing rewrite rules using diagrams
5.2 Representing state machines using diagrams
5.3 Using SMGA to visually represent state machines
5.4 Use figures to represent processes.
5.5 Use figures to represent sections.
5.6 Representation of place[pl],place[p2],place[p3] using figures . .
5.7 Represent (place[pl]: 1) and (place[pl]: 2) using a figure. . . .
5.8 Represent (next: 0), (next: 1), and (next: 2) using a diagram .
5.9 Using a figure to represent (array[0]: true) (array[l]: false)
(array[2]: false)o
5.10 Use the figure to represent (array[0]: false) (array[l]: true)
(array[2]: false) and (array[0]: false) (array[l]: false) (array|[2]:
true)
5.11 Input files used in Anderson

62

5.12 Diagram showing the initial conditions using SMGA (Anderson) 63

5.13 Visual representation of various states using SMGA

6.1 Graphical animation without graphics.

65

Chapter 1

Introduction

1.1 Overview

Most mission-critical software, such as the Internet, is a distributed system.
It is difficult to develop distributed systems as intended, and many tech-
nologies must be used securely. Formal verification is one such techniques.
Formal verification can be classified into model checking and theorem prov-
ing. Model checking is good at detecting defects, while theorem proving is
necessary to ensure that the system works as desire. However, theorem prov-
ing often uses lemmas, which require much human effort in most cases. On
the other hand, humans have a high visual perceptual ability [1, 2, 3, 4]. To
take advantage of this fact, a support tool for visualizing the behavior of
state machines, which are mathematical models of distributed systems, has
been developed, State Machine Graphical Animation (SMGA). SMGA can
be known as a tool to facilitate the use of theorem proving and information
visualization.

1.2 Aims and Significance

The purpose of this study is mainly to investigate a case study of SMGA,
where Maude is used to generating a state sequence of state machines, which
are inputs to SMGA. Therefore, this investigation includes investigation of
state machines, how to formalize protocols as state machines, how to describe
state machines in Maude (how to create formal specifications), how to model
check in Maude that state machines satisfy desired properties, and how to
generate state sequences of state machines using Maude.

Today, the Internet and other software systems are used everywhere. For
example, e-commerce systems such as Amazon and Rakuten are pervasive in

our lives and are an integral part of our daily lives. If these systems do not
work as intended, they may cause economic loss and human damages, which
may cause serious consequences instead of making our lives more convenient.
Most of the core software systems take the form of distributed systems. It
is known that it is very difficult to develop distributed systems in such a
way that they work as intended but do not work in any other way because
many processes and computers must use shared resources such as memory
to satisfy certain constraints. Formal verification based on theorem proving
is one of the most powerful techniques to verify distributed systems work as
intended. However, it is necessary for humans to discover lemmas. SMGA
has the potential to remove or subordinate the barriers for theorem proving
in formal verification. In this sense, this study is important.

1.3 Report Outline

The following is a report on the research project.

* Chapter 1: Introduction
In this chapter, we introduced the overview, aims, and significance of the
thesis.

* Chapter 2: Preliminaries
In this chapter, we will explain the terms used in the research project: Mutual
exclusion, State machine, Maude, and State Machine Graphical Animation.

* Chapter 3: Variants of Test&Set (TAS) Mutual Exclusion Protocol
This chapter introduces the Test&Set (TAS) Protocol.

* Chapter 4: Variants of Qlock Mutual Exclusion Protocol
In this chapter, we introduce the Qlock Protocol.

+ Chapter 5: Variants of Qlock Mutual Exclusion Protocol
In this chapter, we will introduce the Anderson Mutual Exclusion Protocol.

* Chapter 6: Lessons Learned
In this chapter, I will describe what I learned from the research report.

* Chapter 7: Conclusion
In this chapter, the summary of the research report and future tasks will be
discussed.

Chapter 2

Preliminaries

2.1 Mutual Exclusion

Mutual exclusion refers to the process of maintaining consistency when many
processes can use a shared resource in the execution of a computer program.
When conflicts occur due to simultaneous accesses from multiple processes,
mutual exclusion is a process to maintain consistency by preventing other
processes from using the resource while allowing one process to use it exclu-
sively. In other words, it is to prevent multiple processes (or threads) from
entering a critical section at the same time. A critical section is a period
of time when a process is accessing a shared resource such as shared mem-
ory. For example, when some people share a bicycle[5], the queue is used to
consider whether the bicycle should be given to at most one person. Let’s
assume that the initials are put in a queue in the order of Emma, David,
and Alice. Emma is allowed to use the bike first, and she will be removed
(dequeued) from the queue when she used the bike. Then the next person
who is allowed to use the bike will be David. Figure 2.1 shows an example
of the mutual exclusion protocol when a bicycle is shared.

M)

Alice Bob Cathy David Emma

After use

Figure 2.1: An example of mutual exclusion

2.2 State Machine

A state machine is a mathematically abstract “model of behavior” consisting
of a finite number of states, transitions, and behaviors. It is sometimes used
in program design to study how logic flows when a series of states are taken.
It takes one state out of a finite number of “states”. At a certain point in
time, only one state is taken, and it is called the “current state” of that
point in time. Some event or condition causes a transition from one state to
another, which is called a transition. A transition is defined by enumerating
the states that can be transitioned from each current state and the conditions
that trigger the transition.

2.3 Maude

Maude [4] is an algebraic specification language developed by a team led by
Jose Meseguer. Maude is a rewriting logic-based specification and program-
ming language. The states of a state machine are represented by data such
as OComp and associative commutative sets (called Soup), and state transi-
tions are described by rewrite rules. The rewrite rule takes the form rlfl]: t—
t' . where t, t' is homogeneous terms containing variables, and 1 is the label
of the rule. For the rewrite rule, if a state satisfies the conditions of t, it can
be changed to the state of t' . Maude also provides several built-in modules,
such as BOOL and NAT for Boolean values and natural numbers. Boolean
values are represented as true or false, and natural numbers are represented
as usual as 0, 1, 2, ... as usual. By using an example, we will explain the
rewriting rules.

rl [enter] : {(pc[I]: rs) (lock: false) OCs} =>{(pc[l]: cs) (lock: true) OCs} .

rl denotes a rewrite law, and [enter] is the label of the rewrite law. If a state
satisfies {(pc[I]: rs) (lock: false) OCs}, then it can be rewritten to the state
{(pc[I]: es) (lock: true) OCs} .

Here, there are processes p and ¢, I represents the ID of the process, and p
and ¢ are defined by I. There are two sections, rs (Remainder Section) and
cs (Critical Section), which represent the locations where the processes exist.
In other words, (pc[l]: rs) means that a process is located in rs. the lock is
a Boolean value and can take the values true or false. (lock: false) means
that the value of the lock is false. “OCs” is called an observer component.
Observer component means that when processes p and q exist, in {(pc[p]:
rs) (lock: false) OCs}, (pc|p]: rs) specifies the value of process p. Also, (lock:
false) specifies the value of lock. However, the value of process q is not speci-
fied. In this case, process q becomes an observer component. In other words,

an observer component is a value that is not specified among the values that
exist,.

There are various functions in Maude, and this paper deals with the search
command. The search command can search for a user-specified state in an
input file. We will use an example to explain the search command.

Maude> search [1] in TAS : init =>* {(pclpl]: cs)
(pclp2]: cs) 0OCs} .

The phrase “search [1] in TAS” means to search for one specified state in
the user-created module “TAS”. “init” indicates the initial state. The user-
specified state is the state described to the right of “=>". In other words,
“init =>* {(pc[pl]: cs) (pc[p2]: cs) Ocs}.” searches for the state “{(pc[pl]:
cs) (pe[p2]: cs) Ocs}.” from the initial state.

There are two patterns of output results for the search command. The first
is No solution. This means that the user-specified state was not found. The
second is Solution 1, which means that the user-specified state exists.

2.4 State Machine Graphical Animation

State Machine Graphical Animation(SMGA) [3] is implemented using the
drawing web app DrawSVG (www.drawsvg.org). It designs an image for each
state and observes the characteristics of the state by considering the sequence
of images, obtained by simple computation, as a movie. The sequence of
images is represented in Figure 2.1. if the image input to SMGA has three
processes, we can design an image for each state as shown in Figure 2.2.
As shown in Figure 2.2, the input file to SMGA consists of three parts:
H#4#Hkeys, ##F##textDisplay, and ###states. Figure 2.3 shows an example
of an input file to SMGA. In this ###keys part, the names (or keys) used
by the observable components that make up the state are listed. In the
case of Figure 2.4, locked, pc[pl], pc[p2], and pc|p3] are enumerated. using
SMGA, the values displayed in the keys to represent the state are represented
by various figures. Figure 2.4, we use circles to represent processes, and
rectangles to represent rs (Remainder Section), cs (Critical Section), and
locked. Figure 2.2 shows a series of states generated by SMGA. For example,
in state 2, processes pl, p2, and p3 exist in rs and the value of locked is
false; in state 3, the next state after state 2, p2 that existed in rs disappears
and exists in cs and the value of locked changes to true. From this series of
changes, we can observe that process p2 has moved from rs to ¢s and the
value of locked has changed from false to true. In other words, the state
of Figure 2.2 can be inferred that when a process moves from rs to cs, the
value of locked changes from false to true. In this way, SMGA can help us

understand the characteristics of a state from a series of images, and using
Maude, we can also verify that the characteristics obtained from SMGA are
correct.

Maude> search [1] in TAS
{(pclpil: rs) (pclp2]: rs) (pclp3]: rs) (lock: false) }
=>x {(pclpl]l: rs) (pclp2]: cs) (pclp3]: rs) (lock: true) } .

Solution 1 (state 2)

The search command shows a test to see if it is possible to change from state
2 to state 3. The output result is Solutionl, which indicates the existence of
the predicted result. In this way, we can check whether the characteristics
predicted by SMGA are correct by using Maude.

———*|cs ————*|cs
rs @ locked s @ locked

State 1 : (locked: true) (pe[p1]: s) (pe[p2]: rs) (pe[p3]: rs) State 2 : (locked: false) {pc[p1]: rs) (pc[p2): rs) (pc[p3]: rs)

—————|cs rs ~|cs
rs @ locked locked
- -

State 3 : (locked: true) (pcp1]: rs) (pc[p2]: cs) (pc[p3]: rs) State 4 : (locked: false) (pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)

—
s cs > |cs
@ locked s @ locked
-—

State 5 : (locked: true) (pc[p1]: ¢s) (pe[p2]: rs) (pe[p3): rs) State 6 : (locked: false) (pc[p1]: rs) (pe[p2]: rs) (pe[p3]: rs)

—
rs cs =" cs
locked @ s @ locked
-false
- ———

State 7 : (locked: true) (pc[p1]: rs) (pe[p2): rs) (pel[p3): cs) State 8 : (locked: false) (pe[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)

-

Figure 2.2: A series of graphical animations.

Hititkeys

locked pclp1] pelp2] pelp3]
ttt#textDisplay

false (pclp1l: rs) (pclp2]: rs) (pclp3l: rs))

#itfstates

(locked:

(locked: true (pclp1]: cs) (pclp2]: rs) {pclp3]:

(locked: false {pclp1]: rs) (pclp2]: rs) (pc[p3]:

gloctegi true (pclpl]l: rs} (pclp2]: cs) (pclp3]:
ocked:

(locked:
(locked:
(locked:
(locked:
(locked:

false (pclp1l: rs) (pclp2]: rs) (pclp3l:

true (pclpll: cs) (pclp?]:

rs; (pclp3]:

false (pclp1]: rs) (pelp?]: rs) (pclp3]:

true (pclpl]l: rs) (pclp2]:

rs) {pclp3]:

false (pclpl]l: rs) (pclp2]: rs) (pclp3l: rs))
false {(pclp1]: rs) (pclp2]: rs} (pclp3]: rs)

Figure 2.3: Example of an input file

—»
rs locked
false
-

*)

Figure 2.4: Example of an input file to SMGA

Chapter 3

Variants of Test & Set (TAS)
Mutual Exclusion Protocol

3.1 FTAS: A flawed version of TAS

In this chapter, we describe FTAS, a pattern that does not satisfy the mu-
tual exclusion of Test & Set (TAS). Here, “locked” is a Boolean variable
that can take the value “true” or “false”. There are many processes, which
are arranged under one of three labels: rs(Remainder Section), ms(Middle
Section), and cs(Critical Section). By default, each process is placed in the
rs(Remainder Section) and the value of “locked” is “true”. The pseudo code
of FTAS is as follows.

Loop “Remainder Section”
rs : while locked = true {}
“Middle Section”
ms : locked := true;
“Critical Section”
cs : locked := false;

3.1.1 Description of FTAS in Maude

In this chapter, we will use Maude to represent the FTAS protocol. For
this purpose, we describe the code used in Maude, which is assumed to have
three processes called pl, p2, and p3. Therefore, we can represent the state

as (pc[pl]: 11) (pc[p2]: 12) (pe[p3]: 13) (lock: B).

.

pc| |7 represents a process counter, and the value is rs, ms, cs.

8

< 117, “127, “13” takes one of the values of rs, ms, cs.

* “pl7, “p27, and “p3” represent the ID of the process.

* “lock” represents a locked variable in the protocol.

+ “B” is a Boolean variable and takes the value “true” or “false”.

In the initial state, 11, 12, and 13 are rs and B is “true”.
The state transitions of FTAS are specified in Maude as the following three
rewrite rules.

rl [enter]: {(pc[P]: rs) (lock: false) OCs} =>{(pc[P]: ms)

(lock: false) OCs} .
rl [wait]: {(pc[P]: ms) (lock: B) OCs} =>{(pc[P]: cs) (lock: true) OCs} .
rl [exit]: {(pc[P]: cs) (lock: B) OCs} =>{(pc[P]: rs) (lock: false) OCs} .

“=>" indicates that the state changes to the arrow direction.

“P” represents the process ID variable in Maude, “B” represents the Boolean
variable, and takes a value of “true” or “false”.

“Ocs” stands for observable components.

The rewrite rule “rllenter]” is used as an example below.

It means that “{(pc[P]: rs) (lock: false) OCs}” has been changed to “{(pc[P]:
ms) (lock: false) OCs}” by the rewrite rule “rllenter]”.

There are three rewrite rules: enter, wait, and exit.

The three rewrite rules are explained below:

Rule 1 (enter): Process P is located at rs and the lock value is false. Later,
process P is located in ms and the lock value is true.

Rule 2 (wait): Process P is located in ms and the lock value is B. After that,
process P is located in cs and the lock value is true.

Rule 3 (exit): Process P is located in cs and lock value is B. Later, process
P is located in rs and the lock value is false.

Figure 3.1 shows three state transition diagrams. Each time you transition
from one state to another, you can indicate the process ID.

Figure 3.1, explaining the rewriting rule “[enter|” as an example, if the state
is “(pc[P]: rs) (lock: false) OCs”, the rewriting rule indicates that “(pc[P]:
ms) (lock: true) OCs” by “[enter]”.

(pclPl: cs)
(lock: B)
OCs

(pelPl: rs) (pc[P]: ms)
(lock: false) (lock: B)
0Cs OCs

(pc[P]: ms)

(lock: false) (pel[P]: cs)

OCs (lock: true)
OCs

(pc[P]: rs)
(lock: false)
OCs

Figure 3.1: Representing the rewriting rules using a figure

3.1.2 State Machine Representation(FTAS)

In this chapter, we will explain how to represent state machines using di-
agrams. Representing a state machine using a diagram helps to discover
characteristics from visual information.

There are three processes called pl, p2, p3, and each state is like (pc [pl]:
rs) (pc [p2]: rs) (pe [p3]: rs) (lock: false).

In that case, it is expressed as shown in the Figure 3.2.

Figure 3.2 is a visualization of the initial state.

When SMGA is used for the state of (pc [pl]: rs) (pc [p2]: rs) (pc [p3]: rs)

—— PC[P1] :

l—— PC[P3] :

[rs]
—— PC[P2] : rs
[rs]

L locked : false

Figure 3.2: Representing the state machine using a figure

(lock: false), it is expressed as shown in the Figure 3.3.
Figure 3.3 shows a visualization of the initial state using SMGA.

A brief explanation will be given for the diagram using SMGA.

Figure 3.4 shows the processes pl, p2, and p3 using circles. These processes
are arranged in one of three sections: rs (Remainder Section), ms (Midle

10

lock: false

CS

Figure 3.3: Visually representing the state machine using SMGA

Section), and cs (Critical Section).

In Figure 3.5, sections rs (Remainder Section), ms (Midle Section), and

Figure 3.4: A representation of the process using a figure

cs (Critical Section) are represented using squares. There are cases where
processes are located within this section and cases where neither process is
located.

In Figure 3.6, a square is used for locked. lock will be “false” or “true” as

rs ms cs

Figure 3.5: A representation of the section using a figure

shown.

11

lock : false lock : true

Figure 3.6: A representation of the value of “lock” using the figure

3.1.3 Use of SMGA(FTAS)

This chapter describes how to use of SMGA and visually discovering charac-
teristics.

In the use of SMGA, two inputs are required: an image design and an input
file.

The image design is created by the user and allows the user to develop an
understanding based on his or her own design. The input file is generated
by Maude. The input file is generated by Maude and plays the animation to
SMGA.

#ithtkeys
lock pclp1] pclp2] pelp3]
#ittttextDisplay
#Histates

{lock: false (pc
(lock: false (pc
(lock: false (pc

[p3l: rs)|
[
lock: true (pc[?
[
[

o rs) (pclp2]: rs) pc
©rs) (pclp2]: rs) pc[p3]: ms)
:ms) (pclp2]: rs) pclp3]: ms)

]
]
]i os) (pc[p2]: rs) pclpd]: ms) |
]
]

i

lock: false (pc S rs) (pclp2]: rs) pclp3]: ms)

lock: false (pc ©rs) (pclp2]: ms) pc[p3]: ms)

pi
pl
pl
(1]
(pl
(p1
(lock: false (pclp1]: ms) (pc[p2]: ms) pclp3l: ms)
(lock: true (pclpll: cs) (pclp2]: ms) pclp3]: ms) |
(lock: true (pclpl]: cs) (pclp2]: cs) pc[p3]: ms) |
(lock: false (pclpll: cs) (pclp2]: rs) pclp3]: ms)
(lock: true (pclp1]: os) (pclp2]: rs) pelp3]: cs) |
(lock: false (pclpl]: cs) (pc[p2]: rs) pclp3]: rs)
(cs) (pc[p2]: ms) pclpd]: rs)
(rs) (pc[p2]: ms) pcl[p3]: rs)
©rs) (pclp2]: ms) pclp3]: ms)
rs) (pc(p2]: cs) pclp3]: ms)

lock: false {(pcl
lock: false (pcl
(lock: false (pcl
(lock: true (pclp

JR T T T N

Figure 3.7: Input files used in FTAS

Create various state machines using Maude. Figure 3.7 shows the state gen-
erated for (pc[pl]: 11) (pc[p2]: 12) (pe[p3]: 13) (lock: B).

When SMGA is used for Figure 3.7, it becomes as shown in Figure 3.8 and
Figure 3.9 below.

Figure 3.8 shows the initial state in the input file generated using Maude.

By using SMGA, it is possible to organize where each process is located and
what the value stored in lock is. In state 8, there are two processes in cs.

12

lock: false

cs

State 0 : (lock: false) (pc[p1]: rs) (pe[p2]: rs) (pe[p3]: rs)

Figure 3.8: Diagram showing the initial conditions using SMGA (FTAS)

Figure 3.9 shows some states. In state 8, pl and p2 are present in cs at the
same time.In Figure 3.10, state 8 is represented in Figure 3.10.

For this reason, the FTAS protocol described in this chapter does not satisfy
mutual exclusion.

By using SMGA, the following three characteristics can be guessed about
FTAS.

(1) There are at most three processes in each section at the same time.
(2) If there are all processes in rs, the value of “lock” will be false.
(3) If there are no processes in cs, the value of “lock” will be false.

These three characteristics are shown in Figure 3.11 to Figure 3.13 using

SMGA.

3.1.4 Model Checking Using Maude(FTAS)

In this chapter, we describe model checking with Maude, which allows us to
investigate all user-specified changes in the state of a machine from one state
to another.

An example will be used to illustrate this.

Maude> search [1] in TAS-FAILURE : init =>x
{(lock: true) (pcl[I:Pid]: cs) (pcl[j:Pid]l: cs) 0OCs} .

13

ms s

@ @
/

| e

cs

— |eo

State 1 flock: false) {pofpt]) (polp2]- 15) {pefp3] ms)

State 4 - {lock faise } {pelp1]: 15) {pclp2]: rs) (pe{pd]: ms) State 5 - (kock: false) (pelp1]: rs) {pelp2]: ms) (pefp3) ms)

j %” P

State 7

State 2 : (lock false) (pelp1]. ms) (pe(p2): rs) (pelpa) ms) State 3 : flock: true) (pelp1]: cs) (pelp2): rs) (pefpd]: ms)

s

\eé

ms rs ms

rs ms

—_—
——

®®

(1)
Iock false Iock false

State 6 | {lock: fatse) (pcip1]: ms) (pe(p2]: ms) (pelp3]: ms)

[oe]
= ® -

flock: true) (pelpi]. o5) (pelp2]: ms) (pelp3]: ms) State 8 : (lock: true) (pelp1) &8) (pelp2): ¢) (pclp3]) ms)

Figure 3.9: Visual representation of various state machines using SMGA

Solution 1 (state 20)
states: 21 rewrites: 29
0Cs --> pc[p3]: rs

The above command searches for the state “(lock: true) (pc[l:Pid]: cs)
(pclj:Pid]: ¢s) OCs.” from the conditions “init” in module “TAS-FAILURE”.
“Solution 1 (state 20)” indicates that the state “(lock: true) (pc[l:Pid]: cs)
(pclj:Pid]: cs) OCs .” exists in module TAS-FAILURE at state 20.

“OCs =>pc[p3]: rs” means observable components (OCs) is pc[p3] in this
case.

As explained above, Maude can search for a user-specified state, and we can
see that the FTAS process does not satisfy mutual exclusion because more
than one process exists simultaneously in cs.

From the above results, we can confirm that there exists a case which con-

14

s ms

lock: false

cs

State 0 : (lock: false) (pe[p1]: rs) (pe[p2]: rs) (pe[p3): rs)

Figure 3.10: The state does not meet the mutual exclusion of the machine
s ms rs ms
® @ '
\ Iock false / \ / \
cs . cs

State 3 : (loc) (pe{p1): ms) (pe(p2): ms) (pe(p3): ms) State 18 - (lock: true) (pelp1): s) (pelp2) o8) (pelp3): cs)

State 27 : (lock: true) (pe[p1]: ms) (pe[p2]: s) (pefp3) es)

Figure 3.11: Figure showing that there can be up to three processes in each
section at the same time.

tains two processes in cs.

Maude> search [1] in TAS-FAILURE : init =>* {(pc[i:Pid]: rs)
(pclj:Pid]l: rs) (pclk:Pid]l: rs) (pc[l:Pid]l: rs) 0OCs} .

No solution.

The above command searches for the state “(pc[i:Pid]: rs) (pc[j:Pid]: rs)
(pclk:Pid]: 1s) (pc[l:Pid]: rs) OCs .” from the conditions “init” in module
“TAS-FAILURE”.

“No solution” indicates that the state “(pc[i:Pid]: rs) (pc[j:Pid]: rs) (pc[k:Pid]:
rs) (pc[l:Pid]: rs) OCs” does not exist in module “TAS-FAILURE ”.

This indicates that no more than one new process has been added to the
FTAS dealt with in this chapter, whereas only three processes are in use.
From the above result, we can see that the number of processes does not
increase.

Also, for Figure 3.8, the value of “lock” will be false if there are all processes

15

rs s
.@ me i @ ms ms

cs cs cs

State 0 (jock: fatse) (pelp1]: 18) (pclp2): 15) (polp3): 15) State 36 ook faise) (pelp1): 18) (pelp2): 1s) (plp3): 15) State 39 : {lock- faise) {pe{p1]: rs) (pe{p2]: rs) {pelp3]: rs)

Figure 3.12: Figure showing that the value of “lock” will be false if all pro-
cesses are present in rs

rs @ ms rs ms s ms
- - -

cs cs cs

State 10 (lock: faise) (pe{p1] rs) (pe{p2): ms) (pe(p3) rs) State 25 : (lock: faise) (pe{p1]): ms) (pelp2): rs) (pe(p3): s) State 32 - (lock: faise) (pclp1): ms) (po(p2): ms) (pe{p3): rs)

Figure 3.13: Figure showing that if there is no process in cs, the value of
“lock” will be false

in rs.”

Maude> search [1] in TAS-FAILURE : init =>
* {(pclpl]: rs) (pclp2]: rs) (pclp3]: rs) (lock: true)} .

No solution.

The above command searches for the state “(pc[pl]: rs) (pc[p2]: rs) (pc[p3]:
rs) (lock: true) .” from the conditions “init” in module “TAS-FAILURE ”.
“No solution” indicates that the state “(pc[pl]: rs) (pc[p2]: rs) (pc[p3]: rs)
(lock: true) .” does not exist in module “TAS-FAILURE”.

This indicates that the value of lock is false when all three processes, pl, p2,
and p3, are in rs.

If there is no process in cs, the value of “lock” is false. Model checking will
output the following results.

Maude> search [1] in TAS-FAILURE : init =>
{(pc[I:Pid]: X:Label) (pc[J:Pid]: Y:Label) (pc[K:Pid]: T:Label)

16

(lock: true) } such that
X:Label =/= cs and Y :Label =/= cs and T:Label =/= cs

No solution.

The above command searches for the state “{(pc[l:Pid]: X:Label) (pc[J:Pid]:
Y:Label) (pc[K:Pid]: T:Label) (lock: true)} such that X:Label =/= cs and
Y :Label =/= cs and T:Label =/= cs” from the conditions “init” in module
“TAS-FAILURE".

Also, I, J, and K take the value of one of the processes pl, p2, or p3.

X, Y, and T can take values of rs, ms, and cs.

However, “X:Label =/= ¢s”, “Y:Label =/= c¢s”, and “T:Label =/= cs” in-
dicate that X, Y, and T do not take the value of cs.

“No solution” indicates that the state “{(pc[l:Pid]: X:Label) (pc[J:Pid]:
Y:Label) (pc[K:Pid]: T:Label) (lock: true)} such that X:Label =/= cs and
Y:Label =/= c¢s and T:Label =/= c¢s” does not exist in module “TAS-
FAILURE”.

This means that, If there are no processes in cs, the value of “lock” will be
false.

3.2 TAS: A protocol satisfies mutual exclu-
sion

In this chapter, we describe the Test & Set (TAS) that satisfies mutual
exclusion. Here, “locked” is a Boolean variable that can take the value “true”
or “false”. There are many processes, which are arranged under one of two
labels: rs(Remainder Section) and cs(Critical Section). Initially, each process
is located in the rs(Remainder Section) and the value of “locked” is “true”.

The pseudo code of TAS is as follows.

Loop “Remainder Section”
rs : repeat while test & set(locked);
“Critical Section”
cs : locked := false;

test & set(locked){
if locked = false

17

locked := true
return false;
else return true;}

3.2.1 Description of TAS in Maude

In this chapter, we will use Maude to represent the TAS protocol. For this
reason, we will describe the code used in Maude, assuming that there are
three processes called pl, p2, and p3 in Maude. Therefore, we can represent
the state as (pc[pl]: 11) (pc[p2]: 12) (pe[p3]: 13) (lock: B).

* “pc|]” represents a process counter, and the value is rs, cs.

+ 11,12,13 takes one of the values of rs, cs.

« “pl7, “p2”, and “p3” represent the ID of the process.

* “lock” represents a locked variable in the protocol.

+ “B” is a Boolean variable and takes the value “true” or “false”.

In the initial state, 11, 12, 13 are rs and B will be false.
The state transitions of TAS are specified in Maude as the following two
rewrite rules.

rl [enter] : (pc[I]: rs) (lock: false) OCs =>(pc[l]: cs) (lock: true) OCs .
rl [exit] : (pc[l]: cs) (lock: B) OCs =>(pc[l]: rs) (lock: false) OCs .

“=>" indicates that the state changes to the arrow direction.

“I” represents the process ID variable in Maude, “B” represents the Boolean
variable, and takes a value of “true” or “false”.

“Ocs” stands for observable components.

“rl[enter]” is used as an example below.

It means that “(pc[P]: rs) (lock: false) OCs” has been changed to “(pc[P]:
ms) (lock: false) OCs” by the rewrite rule “rl[enter|”.

There are two rewrite rules: enter and exit. Two rewriting rules are repre-
sented in Figure 3.14. The two rewrite rules are explained below:

Rule 1 (enter): Process P is located at rs and the lock value is false. Later,
process P is located in cs and the lock value is true.

Rule 2 (exit): Process P is located in cs and the lock value is B. After that,
process P is located in rs and the lock value is false.

Figure 3.12, explaining the rewriting rule “[enter]” as an example, if the state

18

is “(pc[P]: rs) (lock: false) OCs”, the rewriting rule indicates that “(pc[P]:
cs) (lock: false) OCs” by “[enter]”.

(pc[ﬂ: rs)
(lock: false)
OCs

(pc[ﬂ: cs)
(lock: B)
0OCs

(pc[ﬂ: cs)
(lock: true)
OCs

(pc[l]: rs)
(lock: false)
OCs

Figure 3.14: Representing the rewriting rules using a figure(TAS)

3.2.2 State Machine Representation(TAS)

In this chapter, we will explain how to represent state machines using di-
agrams. Representing a state machine using a diagram helps to discover
complements from visual information.

There are three processes called pl, p2, p3, and each state is like (pc[pl]: rs)
(pc[p2]: rs) (pe[p3]: rs) (lock: false).

In that case, it is expressed as shown in the Figure 3.15.

Figure 3.15 is a visualization of the initial state.

When SMGA is used for the state of (pc[pl]: rs) (pc[p2]: rs) (pc [p3]: rs)
(lock: false), it is expressed as shown in the Figure 3.16 below.

A brief explanation will be given for the diagram using SMGA. Figure 3.17
shows the processes p1, p2, and p3 using circles. These processes are arranged
in one of three sections: rs (Remainder Section) and cs (Critical Section).

In Figure 3.18, sections rs (Remainder Section) and cs (Critical Section)

are represented using squares. There are cases where processes are located
within this section and cases where neither process is located.

19

—— pCIP1] : E

L pcp2l : | IS

| PC[P3] : E
locked : false

Figure 3.15: Representing the state machine using a figure

> |cs
rs locked
e
-

Figure 3.16: Visually representing the state machine using SMGA

In Figure 3.19, a square is used for locked variable. lock will be “false” or
“true” as shown.

3.2.3 Use of SMGA(TAS)

This chapter describes the use of SMGA and visually discovering comple-
ments. In the use of SMGA, two inputs are required: an image design and
an input file.

The image design is created by the user and allows the user to develop an
understanding based on his or her own design.

The input file is generated by Maude. The input file is generated by Maude
and plays the animation to SMGA.

Create various state machines using Maude. Figure 3.20 shows the state
generated for (pc[pl]: 11) (pc[p2]: 12) (pc[p3]: 13) (lock: B).

When SMGA is used for Figure 3.20, it becomes as shown in Figure 3.21 and
Figure 3.22.

In Figure 3.23, various states are represented. In all states, at most one

20

Figure 3.17: A representation of the process using a figure

rs CS

Figure 3.18: A representation of the section using a figure

process exists in cs.

In all states, at most one process is present in cs. It can be inferred that the
TAS satisfies mutual exclusion in all states.

In addition, by using SMGA, the following characteristics can be confirmed.

(1) There is at most one process in cs.
(2) When a process exists in cs, the value of lock is true.
(3) When the value of lock is true, there is one process in cs.

Figure 3.23 shows the characteristics from (1) to (3).

3.2.4 Model Checking Using Maude(TAS)

In this chapter, we describe model checking with Maude, which allows us to
investigate all user-specified changes in the state of a machine from one state
to another. An example will be used to illustrate this.

Maude> search [1] in TAS : init =>* {(pc[pll: cs)
(pclp2]: cs) 0OCs} .

No solution.

The above command searches for the state “{(pc[pl]: cs) (pc[p2]: cs) OCs}
. from the conditions “init” in module “TAS”.

“No solution” indicates that the state “(pc[pl]: cs) (pc[p2]: cs) OCs ” does
not exist in module TAS.

21

lock : false lock : true

Figure 3.19: A representation of the value of “lock” using the figure

f#itkeys
locked pelpl] pelp2] pelp3]

#tttttextDisplay

#Hittstates

(locked: false (pclp1]: rs) (pclp2]: rs) (pclp3l: rs))
(locked: true (pclpl]: cs) (pclp2]: rs) (pc[p3]: rs))
(locked: false (pclpll: rs) (pclp2]: rs) (pclp3l: rs))
(locked: true (pclpll: rs)} {pclp2]: cs) (pclp3l: rs)) |
(locked: false (pclpll: rs) (pclp2l: rs) (pc[p3l: rs))
(locked: true (pclpll: cs} (pclp2]: rs) (pclp3l: rs)) |
(locked: false (pclpl1]: rs) (pclp2]: rs) (pclp3l: rs))
(locked: true (pclpll: rs} (pclp2]: rs) (pclp3l: cs)) |
(locked: false (pclpl1]: rs) (pclp2]l: rs) (pclp3l: rs))
(locked: false (pclpll: rs) (pclp2l: rs) (pc[p3l: rs)

Figure 3.20: Input files used in TAS

As explained above, Maude can search for user-specified states, and we can
see that the TAS process satisfies the mutual exclusion property because
there is no state in cs in which more than one process exists at the same
time.

Maude> search [1] in TAS : init =>* {(pc[i:Pid]: rs) (pc[j:Pid]: rs)
(pclk:Pid]: rs) (pclk:Pid]l: rs) 0Cs} .

No solution.

The above command searches for the state “{(pc[i:Pid]: rs) (pc[j:Pid]: rs)
(pc[k:Pid]: rs) (pc[k:Pid]: rs) OCs} .” from the conditions “init” in module
“TAS”. “No solution” indicates that the state “{(pc[i:Pid]: rs) (pc[j:Pid]:
rs) (pclk:Pid]: rs) (pe[k:Pid]: rs) OCs} .” does not exist in module TAS.

This indicates that no more than one new process has been added to the
TAS dealt with in this chapter, whereas only three processes are in use.

In addition, model checking “There is at most one process in cs.” yields the
following results.

Maude> search [1] in TAS : init =>
* {(pcli:Pid]: cs) (pcl[j:Pid]l: rs) (pclk:Pid]l: rs) 0Cs} .

Solution 1 (state 1)

22

———————>|cCs
rs locked
e
-

State 0 : (locked: false) (pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)

Figure 3.21: Diagram showing the initial conditions using SMGA(TAS)

Also, i, j, and k take the value of one of the processes pl, p2, or p3.
The above command searches for the state “{(pcli:Pid]: cs) (pc[j:Pid]: rs)
(pc[k:Pid]: rs) OCs} .” from the conditions “init” in module “TAS”.
“Solution 1 (state 1)” indicates that the state “(pc[i:Pid]: cs) (pc[j:Pid]: rs)
(pclk:Pid]: rs) OCs .” exist in module “TAS” at state 1.
This means that there is a state where one process exists in c¢s and two
processes exist in rs.

Maude> search [1] in TAS : init =>x%
{(pcl[i:Pid]: cs) (pcl[j:Pid]: cs) (pclk:Pid]: rs) 0OCs} .

No solution.

The above command searches for the state “(pc[i:Pid]: cs) (pc[j:Pid]: cs)
(pclk:Pid]: rs) OCs .” from the conditions “init” in module “TAS”.

Also, i, j, and k take the value of one of the processes pl, p2, or p3.

“No solution” indicates that the state “(pcl[i:Pid]: ¢s) (pc[j:Pid]: ¢s) (pe[k:Pid]:
rs) OCs .” does not exist in module TAS.

As shown in the figure, this means that there can be only one process in cs
at most.

Maude> search [1] in TAS : init =>%
{(pcl[I:Pid]: cs) (pcl[j:Pid]l: cs) (pclk:Pid]: cs) 0OCs} .

No solution.

The above command searches for the state “{(pc[i:Pid]: ¢s) (pc[j:Pid]: cs)
(pc[k:Pid]: cs) OCs} .” from the conditions “init” in module “TAS”.

Also, i, j, and k take the value of one of the processes pl, p2, or p3.

“No solution” indicates that the state “{(pc[i:Pid]: ¢s) (pc[j:Pid]: cs) (pc[k:Pid]:
cs) OCs} .7 does not exist in module TAS.

As shown in the figure, this means that there is only one process at most in
cs.

23

Q

n
—
[72]

——————*|cs
rs locked . locked
e o
- -———

State 1 : (locked: true) (pc[p1]: cs) (pe[p2]: rs) (pc[p3]: rs) State 2 : (locked: false) (pc[p1]: rs) (po[p2]: rs) (po[p3]: rs)

— > cs S
rs locked

I——— 1]
locked

—

®

-~ -—

State 3 : (locked: true) (pc[p1]: rs) (pe[p2]: cs) (pc[p3]: rs) State 4 : (locked: false) (pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)

_ >(cs | cs
rs locked rs locked
true false
-— -—

State 5 : (locked: true) (pc[p1]: cs) (pe[p2]: rs) (pe[p3]: rs) State 6 : (locked: false) (pe[p1]: rs) (pe[p2]: rs) (pe[p3]: rs)
™| cCs

———
rs cs
locked rs locked
-———

State 7 . (locked: true) (pc[p1]: rs) (pe[p2]: rs) (pe[p3]: cs) State 8 : (locked: false) (pc[p1]: rs) (pe[p2]: rs) (pc[p3]: rs)

Figure 3.22: Visual representation of various state machines using
SMGA(TAS)

The following is a model check for the fact that the value of lock is “true”
when the process exists in cs.

Maude> search [1] in TAS : init =>
* {(pcl[i:Pid]: cs) (pclj:Pid]: rs) (pclk:Pid]: rs) 0Cs} .

Solution 1 (state 1)
states: 2 rewrites: 2
0Cs --> lock: true

j:Pid --> p2
k:Pid --> p3
i:Pid -—> p1l

The above command searches for the state “{(pcli:Pid]: ¢s) (pc[j:Pid]: rs)
(pclk:Pid]: rs) OCs} .” from the condition “init” in module “TAS”.
“Solution 1 (state 1)” indicates that the state “{(pc[i:Pid]: cs) (pc[j:Pid]: rs)

24

rs —————*|cs F———=cs —————(cs
@ locked rs @ locked rs locked
-— -—

State 1 : (locked: true) (pc[p1]: cs) (pe[p2]: rs) (pe[p3]: rs) State 3 : (locked: true) (pe[p1]: 18) (Pe[P2]: cs) (pefp3): 18) State 7 : (locked: true) (pe[p1]: rs) (pe[p2): rs) (pe[p3): cs)

Figure 3.23: Figure showing that there is at most one process in cs.

(pclk:Pid]: rs) OCs} .” exists in module “TAS” at state 1.

In this case, “j:Pid” has a process ID of p2, “k:Pid” has a process ID of p3,
and “i:Pid” has a process ID of pl.

From the above, it can be shown that when a process exists in cs, the value
of lock is true.

25

Chapter 4

Variants of Qlock Mutual
Exclusion Protocol

4.1 FQlock0O: A flawed version of Qlock pro-
tocol

In this chapter, we describe the FQlockO protocol, which is a protocol that
does not satisfy mutual exclusion (FQlock0). queue can hold multiple pro-
cesses in the order in which they are recorded. The standard functions of
the queue are “enq”, “top”, and “deq”. “enq” is to hold processes in queue.
“top” can refer to the value held at the top of the queue. “deq” can remove
the value held at the top of the queue. There are many processes, and they
are placed under one of five labels: rs (Remainder Section), es (Enqueuing
Section), ws (Waiting Section), ds (Dequeuing Section), and cs (Critical Sec-
tion). Initially, each process is placed in rs (Remainder Section), and no
value is held in the queue. The pseudo code for FQlockO is as follows.

Loop “Remainder Section”
rs : queue := eng(queue,i);
es : queue = tmp;;
ws : repeat until top(queue) = i;
“Critical Section”
cs 1 tmp; = deq(queue);
ds : queue := tmp;;

26

4.1.1 Description of FQlockO in Maude

In this chapter, we will use Maude to represent the FQlockO protocol. There-
fore, we will describe the code used in Maude. pl and p2 are assumed to be
two processes in Maude. Therefore, the state can be expressed as (pc[pl]:

11) (pe[p2]: 12) (queue:q) (tmp[pl]: q1) (tmp[p2]: q2).
* “pc[]” represents a process counter, and the values are rs, es, ws, ds, and
cs.

+ 11 and 12 take the value of one of rs, es, ws, ds, or cs.

* “pl” and “p2” represent process IDs.

* “q”, “ql”, and “q2” represent process IDs and empty.

+ “(tmp[pl]: q1)” takes the value of the process ID in the 1 part.

* “(queue: q)” takes the value of the process ID in the q part.

In the initial state, 11 and 12 are rs,and q, q1 and g2 are empty.
The state transitions of FQlock0 are specified in Maude as the following five
rewrite rules.

rl [eql] : (pc[l]: rs) (queue: Q) (tmpl[I]: R)
=>(pc[l]: es) (queue: Q) (tmp[I]: enq(Q,I)) .

rl [eq2] : (pc[l]: es) (queue: Q) (tmp[l]: R)
=>(pc[l]: ws) (queue: R) (tmp[I]: R) .

rl [wt] : (pc[l]: ws) (queue: (I Q))
=>(pc[l]: cs) (queue: (IQ)) .

rl [dql] : (pc[I]: es) (queue: Q) (tmpl[I]: R)
=>(pc[l]: ds) (queue: Q) (tmpl[l}: deq(Q)) .

rl [dq2] : (pc[I]: ds) (queue: Q) (tmplI]: R)
=>(pc[I]: rs) (queue: R) (tmpl[I]: R) .

“=>" indicates that the state changes to the arrow direction.

“rlleql]” is used as an example. It means that “(pc[I]: rs) (queue: Q) (tmplI]:
R)” has been changed to “(pc[l]: es) (queue: Q) (tmp[l]: enq(Q,I))” by the
rewrite rule “rlfeql]”.

“I” represents the process ID in Maude; “Q” represents the value held in the
queue, which is the process ID or an empty value; “R” represents the value
held in tmplI], which is the process ID or an empty value.

27

There are five rewriting rules: eql, eq2, wt, dql, and dq2. The five rewrite
rules are explained below.

Rule 1 (eql): When process I exists in rs, the content of queue is), and the
content of tmp is R, then process I exists in es, the content of queue is Q,
and the content of tmp is enq(Q,I).

Rule 2 (eq2): When process I exists in es, the content of queue is Q, and the
content of tmp is R, then process I exists in ws, the content of queue is R,
and the content of tmp is R.

Rule 3 (wt): When process I exists in ws and the content of the queue is
(I,Q), then process I exists in cs and the content of the queue is (1,Q).

Rule 4 (dql): When process I exists in cs, the content of queue is Q, and the
content of tmp is R, then process I exists in ds, the content of queue is Q,
and the content of tmp is deq(Q).

Rule 5 (dql): When process I exists in ds, the content of queue is Q, and
the content of tmp is R, then process I exists in rs, the content of queue is
R, and the content of tmp is R.

Figure 4.1 shows a representation of the five rewriting rules.

4.1.2 State Machine Representation(FQlockO)

In this chapter, we will explain how to represent state machines using dia-
grams. Representing a state machine using a diagram helps us to discover
complementary issues from visual information.

Suppose that there are two processes called pl and p2, and that each state is
represented as (queue: empty) (pc[pl]: rs) (pc[p2]: rs) (tmp[pl]: pl empty)

(tmp[p2]: empty) (initial state). In this case, it is represented as shown in
the Figure 4.2 .

When SMGA is used for the state of (queue: empty) (pc[pl]: rs) (pc[p2]: rs)
(pc[p3]: ms) (tmp[pl]: empty) (tmp[p2]: empty), it is represented as shown
in the following Figure 4.3.

A brief description of the diagram with SMGA is given. Figure 4.1 shows
the representation of processes pl and p2 with circles. These processes are
arranged in one of five sections: rs (Remainder Section), es (Enqueuing Sec-
tion), ws (Waiting Section), ds (Dequeuing Section), and cs (Critical Sec-

28

(pell]: es) (pc[1]: ws)
(queue: Q) (queue: (1Q))
(tmpl1]:R)

(pell]: rs)
(queue: Q)
(tmp|1]:R)

(pc[1]: es)
(queue: Q)
(tmpl1]:eng(Q,1))

dq2

(pcll]: ds)

Figure 4.1: Representing the rewriting rules using a figure(FQlock0)

tion). It is located in one of the following five sections.

Figure 4.5 shows the sections rs (Remainder Section), es (Enqueuing Sec-
tion), ws (Waiting Section), ds (Dequeuing Section), and cs (Critical Section)
with squares. There are cases in which processes are located in these sec-
tions, and cases in which none of the processes are located.

Figure 4.6 shows a hexagonal representation of queue. pl and p2 values are
held in queue.

The queue holds the values pl and p2. If the value empty is held, the value
is not displayed.

Figure 4.7 shows a hexagonal representation of tmp|[p1], tmp[p2], and tmp[p3].
tmp[pl] and tmp[p2] hold the values of pl and p2.

If the value of empty is retained, the value is not displayed.

4.1.3 Use of SMGA (FQlockO0)

In this chapter, we will discuss how to use SMGA and finding characteristics
visually. In the use of SMGA, two inputs are required: the design of the
image and the input file.

The image design is user-generated and allows the user to develop an under-

29

queue empty

pl p2

pc rs pc rs

tmp| empty tmp| empty

Figure 4.2: Representation of a state machine in a diagram(FQlock0)

es

rs
queue
2

tmp[p1] tmp{p2]

ds cs ws

State 0 * (queue: empty) (polp1]: 1s) (peip2]: /s) (tmplp1]: empty) (tmp[p2]: empty)

Figure 4.3: Visually representing the state machine using SMGA (FQlock0)

standing based on his or her design. The input file is generated by Maude.
The input files are generated by Maude and play animations in SMGA.
Various state machines are generated using Maude.

Figure 4.8 shows the states generated for (queue:q) (pc[pl]: 11) (pc[p2]: 12)
(tmp[pl]: ql) (tmp[p2]: q2).

SMGA for Figure 4.8 is shown in Figure 4.9. By using SMGA, we can
sort out where each process is located and what values are stored in queue,
tmp[pl], and tmp[p2].

Figure 4.10 shows some states: in state 6, there are two processes in cs. This
means that the FTAS protocol described in this chapter does not satisfy mu-
tual exclusion.

By using SMGA, the following two characteristics can be inferred for FQlockO.

(1) There are at most two processes in each section at the same time.
(2) Mutual exclusion is not satisfied because two processes can exist simul-

30

Figure 4.4: A representation of the process using a figure(FQlock0)

rs es ws

ds cs

Figure 4.5: A representation of the section using a figure(FQlock0)

taneously in cs.

These two characteristics are shown in Figure 4.11 to Figure 4.12 using
SMGA.

4.1.4 Model Checking Using Maude(FQlockO)

In this chapter, we describe model checking using Maude, which allows us
to examine the changes in all state machines from one state to another, as
specified by the user. We will use an example to illustrate.

Maude> search [1] in FQLOCKO : init =>* (pc[pll: cs)
(pc[p2]: cs) S .

Solution 1 (state 33)
states: 34 rewrites: 66
S --> queue: (p2 empty) (tmpl[pll: pl empty) tmplp2]: p2 empty

The above command searches for the state “(pc[pl]: ¢s) (pe[p2]: cs) S .7
from the conditions “init” in module “FQLOCKO0”.

“Solution 1 (state 33)” indicates that the state “(pc[pl]: cs) (pc[p2]: cs) S
U7 exists in module “FQLOCKO0” at state 33.

“S”is observer components. In this case, “S” is “queue: (p2 empty) (tmp[pl]:

pl empty) tmp[p2]: p2 empty”.

31

gqueue

2)

Figure 4.6: A representation of the queue using a figure(FQlock0)

tmp[p1] tmp[p2]

) D)

Figure 4.7: Representation of tmp[pl] and tmp[p2| using figures(FQlock0)

As explained above, Maude can search for a user-specified state, and we can
see that the FQlock0 process does not satisfy mutual exclusion because there
are two or more processes in cs at the same time.

(1) Maude> search [1] in FQLOCKO : init =>* (pc[pl]: rs)
(pclp2]: rs) S .

Solution 1 (state 0)
states: 1 rewrites: 1
S --> queue: empty (tmp[pl]l: empty) tmp[p2]: empty

(2) Maude> search [1] in FQLOCKO : init =>* (pclpl]: es)
(pclp2]: es) S .

Solution 1 (state 3)
states: 4 rewrites: 7
S --> queue: empty (tmp[pl]l: pl empty) tmp[p2]: p2 empty

(3) Maude> search [1] in FQLOCKO : init =>* (pc[pl]: ws)
(pclp2]: ws) S .
Solution 1 (state 12)

states: 13 rewrites: 22
S --> queue: (p2 empty) (tmpl[pll: pl empty) tmplp2]: p2 empty

(4) Maude> search [1] in FQLOCKO : init =>* (pc[pl]: cs)
(pclp2]: cs) S .

32

#itkeys
queue pclpl] pclp2] tmplp1] tmp[p2]

###ttextDisplay
queue::::REV::::
tmp[p1]

tmp[p2]::::

H#Hit#states

(queue: empty (po[p1]: rs) (pc[p2]: rs) (tmp[pl]: empty) tmp[p2]: empty) ||
(queue: empty (pc[p1]: es) (pc[p2]: rs) (tmp[p1]: p1 empty) tmp[p2]: empty) ||
(queue: empty (pc[p1]: es) (pc[p2]: es) (tmp[p1]: p1 empty) tmp[p2]: p2 empty) ||
(queue: p2 empty (pc[p1]: es) (pc[p2]: ws) (tmp[p1]: p1 empty) tmp[p2]: p2 empty)
(queue: p2 empty (pclpl]: es) (pc[p2]: cs) (tmp[p1]: p1 empty) tmp[p2]: p2 empty)
(queue: p1 empty (pclpl]: ws) (pclp2]: cs) (tmp[p1]: p1 empty) tmp[p2]: p2 empty)
(queue: p1 empty (pc[p1]: cs) (pc[p2]: cs) (tmp[p1]: pl1 empty) tmp[p2]: p2 empty)
(queue: p1 empty (pc[pl]: ds) (pc[p2]: cs) (tmp[pl1]: empty) tmp[p2]: p2 empty) fl

(queue: p1 empty (pc[pll: ds) (pc[p2]: ds) (tmp[p1]: empty) tmp[p2]: empty) ||

(queue: empty (pc[pl1]: rs) (pc[p2]: ds) (tmp[pl1]: empty) tmp[p2]: empty) ||

(queue: empty (pe[p1]: rs) (pc[p2]: rs) (tmp[p1]: empty) tmp[p2]: empty) ||

(queue: empty (pc[p1l: rs) (pc[p2]: es) (tmp[p1]: empty) tmp[p2]: p2 empty) ||

(queue: p2 empty (pc[p1l: rs) (pc[p2]: ws) (tmp[p1]: empty) tmp[p2]: p2 empty) ||

(queue: p2 empty (pc[p1]: rs) (pc[p2]: cs) (tmp[p1]: empty) tmp[p2]: p2 empty) ||

(queue: p2 empty (po[pl1]: es) (pc[p2]: cs) (tmplpi]: p2 pl empty) tmp[p2]: p2 empty) ||
(queue: p2 p1 empty (pclp1]: ws) (pc[p2]: cs) (tmp[p1]: p2 p1 empty) tmp[p2]: p2 empty) H
(queue: p2 p1 empty (pc[p1l: ws) (pc[p2]: ds) (tmp[p1]: p2 p1 empty) tmp[p2]: p1 empty)
(queue: p1 empty (pc[p1]l: ws) (pc[p2]: rs) (tmp[p1]: p2 p1 empty) tmp[p2]: p1 empty) ||
(queue: p1 empty (pclpl]: ws) (pc[p2]: es) (tmp[pl1]: p2 p1 empty) tmp[p2]: pl1 p2 empty) ||
(queue: p1 p2 empty (pclp1]: ws) (pc[p2]: ws) (tmp[p1]: p2 p1 empty) tmp[p2]: p1 p2 empty)
(queue: p1 p2 empty (pc[p1]: cs) (pc[p2]: ws) (tmp[p1]: p2 p1 empty) tmp[p2]: pi p2 empty)
(queue: p1 p2 empty (pc[p1]: ds) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: p1 p2 empty) ||
(queue: p2 empty (pclpll: rs) (pclp2]: ws) (tmp[p1l: p2 empty) tmp[p2]: p1 p2 empty) ||
(queue: p2 empty (pclpl1]: es) (pclp2]: ws) (tmp[p1]: p2 p1 empty) tmp[p2]: p1 p2 empty)

o

Figure 4.8: Input files used in FQlock0

Solution 1 (state 33)
states: 34 rewrites: 66
S --> queue: (p2 empty) (tmpl[pll: pl empty) tmpl[p2]: p2 empty

(5) Maude> search [1] in FQLOCKO : init =>* (pc[pl]: ds)
(pclp2]: ds) S

Solution 1 (state 59)
states: 60 rewrites: 113
S --> queue: (p2 empty) (tmp[pll: empty) tmp[p2]: empty

The above commands((1) to (5)) show that pl and p2 exist simultaneously
in the sections rs, es, ws, ¢s, and ds in module “FQLOCKO0”

Taking “(1)” as an example. The command searches for the state “(pc[pl]:
rs) (pc[p2]: rs) S.” from the conditions “init” in module “FQLOCKO0”.

“Solution 1 (state 1)” indicates that the state “(pc[pl]: rs) (pc[p2]: rs) S .”
exists in module “FQLOCKO0” at state 0.

“S”is observer components. In this case, “queue: empty (tmp[pl]: empty)

tmp[p2]: empty ”.
The same explanation applies to (2) through (5).

33

s es

N

tmp[p1] tmp[p2]

ds cs ws

State 0 : (queue: empty) (pc[p1]: rs) (pe[p2]: rs) (tmp(p1]: empty) (tmp[p2]: empty)

Figure 4.9: Diagram showing the initial conditions using SMGA (FQlock0)

4.2 FQlockl: A protocol satisfies mutual ex-
clusion

This chapter describes the flockl protocol (a revision of FQlockO, which
satisfy mutual exclusion).The queue can hold many processes in the order
in which they are recorded. The standard functions of the queue are “enq”,
“top”, and “deq”. “enq” is to hold processes in the queue. “top” can refer to
the value held at the top of the queue. “deq” can remove the value held at the
top of the queue. There are many processes, and they are placed under one
of four labels: rs (Remainder Section), ws (Waiting Section), ds (Dequeuing
Section), and cs (Critical Section). Initially, each process is placed in rs
(Remainder Section), and no value is held in the queue. The pseudo code for
FQlockl1 is as follows:

Loop “Remainder Section”
rs : queue := eng(queue,i);
ws : repeat until top(queue) = i;
“Critical Section”
cs 1 tmp; = deq(queue);
ds : queue := tmp;;

34

s es s es
> > > > -
tmp[p1) tmp[p2] tmp[p1] tmp(p2)
ds cs ws ds cs ws
—— —
e } 68 (peip2) o) Qi o State 2. (queve: empdy) (pclpt]. @) (cio2]: 8) (g] oY empdy) Gmpfpa] p2 ety)
rs es
[es
o o
P — SRR
tmplpt] tmpip2) | tmp[p1] tmplp2)
ds cs ws ds cs ‘ ws
EE— fz) P N
\")
(queve: p2 empty) (pe{p1]-e8) (peip2]- w) tmeipt): 1 emeny) (mpis2] 52 emy State 4 (queve: 52 erpty) (5<1p1). €8) (<152} 68) mpip] 1 empiy) (plpz]: p2 ety)
s Lo es
queue queue
1
tmpip1] mplp2) tmpip1) tmplp2]
ds s ds cs ws
® ®

tate 6 el (pelp2) i y) (p2) p2 ¥)
T T State 6. (quewe: p1 empty) (pelpt]-o8) (pelp2} o8) Cmplp1]. p1 empry) (mp(o2). 52 e

Figure 4.10: Visual representation of various state machines using
SMGA (FQlock0)

4.2.1 Description of FQlockl in Maude

In this chapter, we will use Maude to represent the FQlockl protocol.
Therefore, we will describe the code used in Maude. pl and p2 are assumed
to be two processes in Maude. Therefore, the state can be expressed as
(pe[pl]: 11) (pe[p2]: 12) (queuerq) (tmp[pl]: ql) (tmp[p2]: ¢2).

+ “pc” represents a process counter, and the types of values are rs, ws, ds,
and cs.

+ 11 and 12 take the value of one of rs, ws, ds, or cs.

* “pl” and “p2” represent process IDs.

* (tmp[pl]: q1) takes the value of the process ID in the ql part.

* (queue: q) takes the value of the process ID in the q part.

In the initial state, 11 and 12 are rs and q, ql,and g2 are empty.

35

s es r rm
TN
> > . S m > _

tmpp1) fmplp2] tmplp1] tmp[p2]
I D) S
s cs ws ds cs ws
— ®@ [
we: empty) (pe[p1]: es) (pe[p2]: es) ftmpfp1] wlp2] (queve empty) (ool fmef; ol i
rs [es ®
queue
‘06 o e |
tmplp1] tmp{p2] (MR (]
1p2 2pl
) L = T

ds cs ws
ds cs ws . L f\
— — ()

P2 empty) (pofp1]: ws) (peip2): w8) (mp(p1]: p2 p1 empty) (mp{p2]: p1

Figure 4.11: There are at most two processes in each section at the same
time.

The state transitions of FQlockl are specified in maude as the following four
rewrite rules.

rl [eq] : (pc[I]: rs) (queue: Q)
=>(pc[I]: ws) (queue: enq(Q,I)) .

rl [wt] : (pc[l]: ws) (queue: (I Q))
=>(pc[l]: cs) (queue: (I Q)) .

rl [dql] : (pc[I]: cs) (queue: Q) (tmp[I]: R)
—>(pell]: ds) (queue: Q) (bmp[l]: deq(Q))

rl [dq2] : (pc[I]: ds) (queue: Q) (tmplI]: R)
=>(pc[l]: rs) (queue: R) (tmp[I]: R) .

“=>" indicates that the state changes to the arrow direction.

“rlleq)” is used as an example. It means that “(pc[l]: rs) (queue: Q)” has
been changed to “(pc[l]: ws) (queue: enq(Q,I))” by the rewrite rule “rlleq]”.
I represents the process ID in Maude; Q) represents the value held in queue,
which is the process ID or an empty value; R represents the value held in
tmp(l], which is the process ID or an empty value.

36

rs
queue

tmp[p1] tmp[p2]

CcSs
[® @

State 6 . (queue: p1 empty) (pc[p1]: cs) (pc[p2]: cs) (tmp[p1]: p1 empty) (tmp[p2]. p2 empty)

ds WS

Figure 4.12: Mutual exclusion is not satisfied because two processes can exist
simultaneously in cs.

There are four rewriting rules: eq, wt, dql, and dq2.
The four rewrite rules are explained below.

Rule 1 (eq): If process I exists in rs, and the content of the queue is Q, then
process I exists in ws, and the content of the queue is enq(Q,I).

Rule 2 (wt): If process I exists in ws, and the content of the queue is (I,Q),
then process I exists in cs, and the content of the queue is (I,Q).

Rule 3 (dql): If process I exists in cs, the content of queue is Q, and the
content of tmp is R, then process I exists in ds, the content of queue is Q),
and the content of tmp is deq(Q).

Rule 4 (dq2): If process I exists in ds, and the content of queue is Q, and the

content of tmp is R, then process I exists in rs, and the content of queue is
R, and the content of tmp is R.

The rewriting rule is represented in the following Figure 4.13.

4.2.2 State Machine Representation(FQlockl)

In this chapter, we will explain how to represent state machines using dia-
grams. Representing a state machine using a diagram helps us to discover
characteristics issues from visual information.

37

(pc[l]: ds)

(queue: Q)
(tmp[1]:R)

(pc[]] 1 rs)
(queue: Q)

(pc[1]: ws)
(queue: (1Q))

(pell]: cs)
(queue: (10))

Figure 4.13: Representing the rewriting rules using a figure(FQlock1)

(pell]: cs)
(queue: Q)
(tmp[H:R)

(pe[1]: ws)

c[I]: ds
(queue: enq(Q,1))) G

(queue: Q)
(tmplI]:deq(Q)

(pc[]]: 1s)
(queue: R)
(tmp[l]:R)

Suppose that there are two processes called pl and p2, and that each state is
represented as (queue: empty) (pc[pl]: rs) (pc[p2]: rs) (tmp[pl]: pl empty)
(tmp[p2]: empty) (initial state). In this case, it is represented as shown in
the Figure 4.14.

When SMGA is used for the state of (queue: empty) (pc[pl]: 1s) (pc[p2]: rs)

queue empty

pl p2

pc rs pc rs

tmp| empty tmp| empty

Figure 4.14: Representation of a state machine in a diagram(FQlock1)

(tmp[pl]: empty) (tmp[p2]: empty), it is represented as shown in the Figure
4.15.

A brief description of the diagram with SMGA is given. Figure 4.16 shows
the representation of processes pl and p2 with circles. These processes are
arranged in one of five sections: rs (Remainder Section), ws (Waiting Sec-
tion), ds (Dequeuing Section), and cs (Critical Section). It is located in one
of the following five sections.

Figure 4.17 shows the sections rs (Remainder Section),ws (Waiting Section),
ds (Dequeuing Section), and cs (Critical Section) with squares. There are
cases in which processes are located in these sections, and cases in which
none of the processes are located.

38

s LE

queue

tmp[pl] tmp[p2]

ds cs

State 0 : (queue: empty) (pc[p1]: rs) (pc[p2]: rs) (tmp[p1]: empty) (tmp[p2]: empty)

Figure 4.15: Representation of a state machine in a diagram(FQlock1)

Figure 4.16: A representation of the process using a figure(FQlock1)

Figure 4.18 shows a hexagonal representation of queue. pl and p2 values
are held in queue.
The queue holds the values pl and p2. If the value empty is held, the value
is not displayed.

Figure 4.19 shows a hexagonal representation of tmp[pl], tmp[p2|. tmp|[p1]
and tmp[p2] hold the values of pl and p2. If the value of empty is retained,
the value is not displayed.

4.2.3 Use of SMGA (FQlock1)

In this chapter, we will discuss the use of SMGA and finding characteristics
visually. In the use of SMGA, two inputs are required: the design of the
image and the input file.

The image design is user-generated and allows the user to develop an under-
standing based on his or her design.

The input file is generated by Maude. The input files are generated by Maude
and play animations in SMGA.

Various state machines are generated using Maude. Figure 4.20 shows the
state generated for (queue:q) (pc[pl]: 11) (pc[p2]: 12) (tmp[pl]: ql) (tmp[p2]:
q2). SMGA for Figure 4.20 is shown in Figure 4.21.

39

rs WS

ds cs

Figure 4.17: A representation of the section using a figure(FQlock1)

gqueue

))

Figure 4.18: A representation of the queue using a figure(FQlock1)

By using SMGA, we can sort out where each process is located and what
values are stored in queue, tmp[pl], and tmp[p2].

Figure 4.22 shows some states. Since there is at most one process in cs, the
FQlockl protocol described in this chapter satisfies mutual exclusion.

By using SMGA, the following two characteristics can be inferred for FQlock1.

(1) There is at most one process in cs.
(2) There can be at most one process in ds.
(3) Two processes can exist in rs and ws at the same time.

These three characteristics are shown in Figure 4.23 to Figure 4.25 using
SMGA.

4.2.4 Model Checking Using Maude(FQlock1)

In this chapter, we describe model checking using Maude, which allows us
to examine the changes in all state machines from one state to another, as
specified by the user. We will use an example to illustrate.

Maude> search [1] in FQLOCK1 : init =>
* (pclpl]l: cs) (pclp2]: cs) S .

40

tmp[p1] tmp[p2]

)) 2)

Figure 4.19: Representation of tmp[pl] and tmp[p2] using figures(FQlock1)

No solution.

The above command searches for the state “(pc[pl]: cs) (pc[p2]: cs) S .”
from the conditions “init” in module “FQLOCK1”.

“No solution” indicates that the state “(pc[pl]: ¢s) (pc[p2]: cs) S.” does not
exist in module FQLOCK1.

As explained above, Maude can search for a user-specified state, and since
there is at most one process in cs, we can see that the FQlockl protocol
satisfies mutual exclusion .

Maude> search [1] in FQLOCK1 : init =>
* (pclpl]l: ds) (pclp2]: ds) S .

No solution.

The above command searches for the state “(pc[pl]: ds) (pc[p2]: ds) S .”
from the conditions “init” in module “FQLOCK1"”.

“No solution” indicates that the state “(pc[pl]: ds) (pc[p2]: ds) S.” does not
exist in module FQLOCK1.

As explained above, Maude can search for a user-specified state, and it
showed that there are no two processes in ds at the same time in the FQlock1
protocol.

Maude> search [1] in FQLOCK1 : init =>
* (pclpl]: rs) (pclp2]: rs) S .

Solution 1 (state 0)
S --> queue: empty (tmp[pl]: empty) tmp[p2]: empty

The above command searches for the state “(pc[pl]: rs) (pc[p2]: rs) S .”
from the conditions “init” in module “FQLOCK1”.
“Solution 1 (state 0)” indicates that the state “(pc[pl]: rs) (pc[p2]: rs) S .”

exists in module “FQLOCK1” at state O.
The above explanation shows that two processes can exist simultaneously in
IS.

Maude> search [1] in FQLOCK1 : init =>
* (pclpll: ws) (pclp2]: ws) S .

41

fititkeys
queue pclp1] pelp2] tmp[pl1] tmp[p2]

#ittextDisplay
CREV L

fittistates

(queue: empty (pelp1]: rs) (pelp2]: rs) (tmp[pl]: empty) tmp[p2]: empty)

(queue: p2 empty (pclpl1]: rs) (pc[p2]: ws) (tmp[p1]: empty) tmp[p2]: ernoty) H
(queue: p2 empty (pelpl]: rs) (pc[p2]: es) (tmp[pl] empty) tmp[p2]: empty)

(queue: p2 p1 empty (pclpl]: ws) (pclp2]: cs) (tmp[p1]: empty) tmp[p2]: empty) ||
(queue: p2 p1 empty (pc[p1]: ws) (pc[p2]: ds) (tmp[p1]: empty) tmp[p2]: pi empty) I
(queue: pl empty (pelpl]: ws) (pclp2]: rs) (tmp[pl]: empty) tmp[p2]: p1 empty)
(queue: pl1 p2 empty (pe[pl]: ws) (pclp2]: ws) (tmp[p1]: empty) tmp[p2] : pl empty) H
(queue: pl p2 empty (pc[pl]: cs) (pc[p2]: ws (tmp[p1]: empty) tmp[p2] : pl empty)
(queue: p1 p2 empty (pc[p1l: ds) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: pl1 empty)
(queue: p2 empty (pclpl]: rs) (pclp2] :ws) (tmp[m] p2 empty) tmp[p2]: pl empty) I|
(queue: p2 empty (pe[pl]: rs) (pclp2]: cs) (tmp[p1]: p2 empty) tmp[p2]: pl empty) ||
(queue: p2 pl empty (pclpl]: ws) (pclp2]: cs) (tmp[pl]: p2 empty) tmp[p2]: pl empty) H
(queue: p2 pl empty (pc[p1]: ws) (pc[p2]: ds) (tmp[p1]: p2 empty) tmp p2 T pl ernpty
(queue: pl empty (pc[p1]: ws) (pc[p2]: rs) (tmo[p1]:p2 empty) tmp[p2]: pl1 empty)
(queue: p1 empty (pe[p1]: cs) (pc[p2]: rs) (tmp[pi]: p2 empty) tmp[p2]: pi empty) |
(queue: pl empty (pe[pl]: ds) (pc[p2]: rs) (tmp[pl]: empty) tmp[p2]: pl empty) il
(queue: empty (pclpl1]: rs) (pe[p2]: rs) (tmp[p1]: empty) tmp[p2]: pl empty)

(queue: p2 empty (pclpl]: rs) (pc[p2]: ws) (tmp[p1]: empty) tmplp2]: pi empty H
(queue: p2 empty (po[p1]: rs) (pc[p2]: os) (tmp[p1]: empty) tmp[p2]: p1 empty)
(queue: p2 p1 empty (pclpl]: ws) (pclp2]: cs) (tmp[p1]: empty) tmp[p2]: pl empty) H
(queue: p2 pl1 empty (pc[pi]l: ws) (pc[p2]: ds) (tmp[p1]: empty) tmp[p2]: pi empty)
(queue: p1 empty (pc[pl]: ws) (pelp2]: rs) (tmp[pl]i empty) tmp[p2]: pl empty)
(queue: pl p2 empty (pc[pl]l: ws) (pc[p2]: ws (tmp[p]]: empty) tmp[p2]: pl empty) ||
(queue: p1 p2 empty (pc[pl]: cs) (pc[p2]: ws) (tmo[p1]: empty) tmp[p2]: p1 empty)
(queue: pl1 p2 empty (pc[pl1]: ds) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: pt empty) ||
(queue: p2 empty (pc[pl1]: rs) (pclp2]: ws) (tmp[p1]: p2 empty) tmp[p2]: p1 empty) T
(queue: p2 empty (pc[pl]: rs) (pcp2]: os) (tmp[pl]: p2 empty) tmp[p2]: pl empty)
(queue: p2 empty (pc[p1]: rs) (pc[p2]: ds) (tmp[p1]: p2 empty) tmp[p2]: empty) ||
(queue: p2 p1 empty (pelpll: ws) (polp2]: ds) (tmp[p1l:p2 empty) tmp[p2] : empty) ||
(queue: empty (pclp1]: ws) (pe[p2]: rs) (tmp[p1]: p2 empty) tmp[p2]: empty) ||
(queue: p2 empty (pelpll: ws) (pc[p2]: ws) (tmp © p2 empty) tmp[p2] :empty) |"

S -
fuar’

(queue: p2 empty (pe[pl]: ws) (pc[p2]: es) (tmp[p1]l: p2 empty) tmp[p2]: empty)
(queue: p2 empty (pe[pl]: ws) (pc[p2]: ds) (tmp[pl]l: p2 empty) tmp[p2]: empty)
(queue: empty (pc[p1]: ws) (pclp2]: rs) (tmp[p1]: p2 empty) tmp[p2]: empty) ||
(queue: p2 empty (pclpl]: ws) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty)
(queue: p2 empty (pclp1]l: ws) (pc[p2]: cs) (tmp[p1]l: p2 empty) tmp[p2]: empty)
(queue: p2 empty (pc[pl]: ws) (pclp2]: ds) (tmp[p1]: p2 empty) tmp[p2]: empty)
(queue: empty (pc[p1]: ws) (pc[p2]: rs) (tmp[p1]: p2 empty) tmp[p2]: empty) ||
(queue: p2 empty (po[p1]: ws) (pc[p2]: ws) (tmp[p1]: p2 empty) tmp[p2]: empty)
(queue: p2 empty (pc[pl]: ws) (pc[p2]: cs) (tmp[p1]: p2 empty) tmp[p2]: empty)
(queue: p2 empty (pc[pl]l: ws) (pc[p2]: ds) (tmp[p1]l: p2 empty) tmp[p2]: empty)
(queue: empty (pc[p1]: ws) (pc[p2]: rs) (tmp[o1]: p2 emoty) tmp[p2]: empty) ||
(aueue: p2 emoty (bclpll: ws) (pelp2]: ws) (tmololl: p2 empty) tmolp21: emoty) |l

Figure 4.20: Input files used in FQlock1

Solution 1 (state 3)
S --> queue: (pl p2 empty) (tmp[pll: empty) tmp[p2]: empty

The above command searches for the state “(pc[pl]: rs) (pc[p2]: rs) S .”
from the conditions “init” in module “FQLOCK1”.

“Solution 1 (state 3)” indicates that the state “(pc[pl]: ws) (pc[p2]: ws) S
7 exists “FQLOCK1” at state 3.

The above explanation shows that two processes can exist simultaneously in
WS.

4.3 Qlock: A protocol satisfies mutual exclu-
sion

This chapter describes the Qlock protocol (a revision of FQlock0, which
satisfies mutual exclusion). queue can hold many processes in the order in
which they are recorded. The standard functions of queue are “enq”, “top”

42

IS ws

queue
') >
tmp[pl] tmp[p2]

)

ds cs

State 0 : (queue: empty) (pc[p1]: rs) (pc[p2]: rs) (tmpp1]: empty) (tmp[p2]: empty)

Figure 4.21: Diagram showing the initial conditions using SMGA (FQlock1)

and “deq”. The standard functions of queue are “enq”, “top”, and “deq”.
“enq” is to hold processes in queue. “top” can refer to the value held at the
top of the queue. “deq” can remove the value held at the top of the queue.
There are multiple processes, and they are placed under one of five labels:
rs (Remainder Section), es (Enqueuing Section), ws (Waiting Section), ds
(Dequeuing Section), and cs (Critical Section). (Critical Section). Initially,
each process is placed in rs (Remainder Section), and no value is held in the
queue. The pseudo code for Qlock is as follows.

Loop: “Remainder Section”
rs : enq(queue,i);
ws : repeat until top(queue) = i;
“Critical Section”
cs : deq(queue);

4.3.1 Description of Qlock in Maude

In this chapter, we will use Maude to represent the Qlock protocol. Therefore,
we will describe the code used in Maude. pl and p2 are assumed to be two
processes in Maude. In Maude, we assume that there are two processes
called pl and p2, and the state can be expressed as (pc[pl]: 11) (pc[p2]: 12)

(queue:q).

* “pc[]” represents a process counter, and the value is rs, ws, or cs. * “I1”
and “12”7 take the value of one of rs, ws, or cs.

43

* “pl” and “p2” represent process IDs.
o 0

q” represent process IDs and empty.
* (queue: q) takes the value of the process ID in the

« 77

part.

In the initial state, 11 and 12 are rs and q is empty.
The state transitions of Qlock are specified in maude as the following five
rewrite rules.

rl [eq] : (pe[l]: rs) (queue: Q) =>(pc[l]: ws) (queue: enq(Q,1)) .
rl [wt] : (pe[l): ws) (queue: (I Q)) =>(pc[l]: cs) (queue: (I1Q)) .
1l [dq] : (pell]: es) (queue: Q) =>(pc[l]: 1s) (queue: deq(Q)) .

“=>" indicates that the state changes to the arrow direction.

“rlleq)” is used as an example. It means that “(pc[l]: rs) (queue: Q)” has
been changed to “(pc[l]: ws) (queue: enq(Q,I))” by the rewrite rule “rlleq]”.
The “I” represents the process ID in Maude; “Q” represents the value held
in the queue, which can be a process ID or an empty value.

There are three rewriting rules: eq, wt, and dq.

The following is an explanation of the three rewriting rules.

Rule 1 (eq): If process I exists in rs and the content of the queue is Q, then
process I exists in ws and the content of the queue is enq(Q,I).

Rule 2 (wt): If process I exists in ws, and the content of the queue is (1,Q),
then process I exists in cs, and the content of the queue is (I,Q).

Rule 3 (dql): If process I exists in cs and the content of the queue is Q, then
process I exists in rs and the content of the queue is deq(Q).

The following is the Figure 4.26 of the rewriting rules.

4.3.2 State Machine Representation(Qlock)

In this chapter, we describe how to represent state machines using diagrams.
Representing a state machine using a diagram helps to discover complemen-
tary issues from visual information.

Suppose that there are two processes called pl and p2, and that each state
is represented as (queue: empty) (pe[pl]: rs) (pc[p2]: rs). In this case, it is
represented as shown in the Figure 4.27.

44

When SMGA is used for the state of (queue: empty) (pc[pl]: rs) (pc[p2]:
rs), it is represented as shown in the following Figure 4.28.

A brief description of the diagram using SMGA is given. The Figure 4.29
uses circles to represent processes pl and p2. These processes are arranged
in one of three sections: rs (Remainder Section), ws (Waiting Section), and
cs (Critical Section).

The Figure 4.30 uses squares to represent the sections rs (Remainder Sec-
tion), ws (Waiting Section), and cs (Critical Section). There are cases in
which processes are located in these sections, and cases in which none of the
processes are located.

The Figure 4.31 shows a pentagon representation of a queue. pl and p2
values are stored in the queue. The queue holds the values pl and p2. If the
value empty is held, the value is not displayed.

4.3.3 Use of SMGA (Qlock)

In this chapter, we will discuss the use of SMGA and finding characteristics
visually. In using SMGA, two inputs are required: the image design and the
input file.

The image design is user-generated and allows the user to develop an under-
standing based on his or her design. The input file is generated by Maude.
The input files are generated by Maude and play animations in SMGA.
Various state machines are generated using Maude. Figure 4.32 shows the
state generated for (queue:q) (pc[pl]: 11) (pc[p2]: 12).

Using SMGA for Figure 4.32, the following Figure 4.33 is obtained.

By using SMGA, we can organize where each process is located and what
values are stored in queue.

In state 0, there are two processes in rs.

Figure 4.34 shows some states: since there is at most one process in cs, the
Qlock protocol described in this chapter satisfies mutual exclusion.

By using SMGA, the following three characteristics can be inferred about
Qlock.

(1) There can be at most one process in cs.

(2) There can be two processes in rs and ws at the same time.

(3) When a process exists in rs, the value of that process does not exist in
queue.

These three characteristics are shown in Figure 4.35 to Figure 4.37 using

SMGA.

45

4.3.4 Model Checking Using Maude(Qlock)

In this chapter, we describe model checking using Maude, which allows us
to examine the changes in all state machines from one state to another, as
specified by the user.

We will use an example to illustrate.

Maude> search [1] in QLOCK : init =>* (pclpll: cs) (pc[p2]: cs) S .

No solution.

The above command searches for the state “(pc[pl]: ¢s) (pc[p2]: ¢s)” from
the conditions “init” in module “QLOCK”.

“No solution.” indicates that the state “(pc[pl]: cs) (pc[p2]: cs)” does not
exist in module “Qlock”.

As explained above, Maude is able to search for user-specified states, and
since there is at most one process in cs, we can see that the Qlock protocol
satisfies mutual exclusion.

Maude> search [1] in QLOCK : init =>* (pclpl]: rs) (pc[p2]: rs) S .

Solution 1 (state 0)
states: 1 rewrites: 1
S --> queue: empty

The above command searches for the state of “(pc[pl]: rs) (pc[p2]: rs) S”
from the conditions “init” in module “QLOCK”.

“Solution 1 (state 0)” indicates that the state “(pc[pl]: rs) (pc[p2]: rs) S .”
exists in module “QLOCK?” at state 0.

“S —>queue: empty” represents the observer component.

Maude> search [1] in QLOCK : init =>* (pcl[pll: ws) (pc[p2]: ws) S .

Solution 1 (state 3)
states: 4 rewrites: 8
S --> queue: (pl p2 empty)

The above command searches for the state “(pc[pl]: ws) (pc[p2]: ws) S”
from the conditions “init” in module “QLOCK?”.

“Solution 1(state 3)” indicates that the state “(pc[pl]: ws) (pc[p2]: ws) S”
exists in module “QLOCK” at state 3.

S —>queue: empty” represents the observer component.

As explained above, by using Maude, we can check that there are two pro-
cesses in rs and ws in the Qlock protocol.

46

Maude> search [1] in QLOCK : init =>* (pclpl]: rs) (pc[p2]: ws) S .

Solution 1 (state 2)
states: 3 rewrites: 5
S --> queue: (p2 empty)

The above command searches for the state of “(pc[pl]: rs) (pc[p2]: ws) S”
from the conditions “init” in module “Qlock”.

“Solution 1 (state2)” indicates that the state “(pc[pl]: rs) (pc[p2]: ws) S”
exists in module “QLOCK” at state 2.

“S —>queue: (p2 empty)” represents the observer component.

At this time, “(p2 empty)” represents the content of the queue, and the value
of p1, which exists in rs, is not retained.

The following results((1) to (3)) show various patterns in which one or more
processes among pl and p2 exist in rs.

(1) Maude> search [1] in QLOCK : init =>* (pc[pl]l: rs)
(pclp2]: cs) S .

Solution 1 (state 6)
states: 7 rewrites: 13
S --> queue: (p2 empty)

(2) Maude> search [1] in QLOCK : init =>*x (pc[pl]: ws)
(pclp2]: rs) S .

Solution 1 (state 1)
states: 2 rewrites: 3
S --> queue: (pl empty)

(3) Maude> search [1] in QLOCK : init =>* (pc[pl]: cs)
(pclp2]: rs) S .

Solution 1 (state 4)
states: 5 rewrites: 9
S --> queue: (pl empty)

As you can see in the above results when a process exists in rs, the value of
that process does not exist in the queue.

47

WS

@

rs ws

tmplpl] tmp[p2] tmpfpl] tmp[p2]

ds cs ds cs
State 1 : (queue: p2 empty) (pclp1]: rs) (pclp2): ws) (tmp{p1]: empty) (tmp{p2]: empty) State 2 : (queue: p2 empty) (pc[p1]: rs) (pelp2]: s) (tmplp1]: empty) (tmp[p2): empty)
TS ws s ws
queno @ queuc
)__pip2)) ptp2)3
tmp[pl] tmp(p2] tmp(pl] tmp(p2]
) >

ds s ds cs

©)

State 3 : (queue: p2 p1 empty) (pc[p1): ws) (pe[p2): cs) (tmp(p1): empty) (tmp[p2): empty) State 4 : (queue: p2 p1 empty) (pe[p1]: ws) (pe{p2]: ds) (tmplp1]: empty) (tmp[p2]: p1 empty

TS ws s ws
e N ® ®
)l >) __p2pt
tmplpl] tmp(p2] tmplpl] tmplp2]
ds cs ds cs

State 5 : (queue: p1 empty) (pelp1]): ws) (pelp2): 1s) (implp1): empty) tmp(p2): p1 empty) State 6 : (queue: p1 p2 empty) (pe[p1]: ws) (pc[p2): ws) (tmp{p1]: empty) (tmp{p2]: p1 empty

Figure 4.22: Visual representation of various state machines using
SMGA (FQlock1)

48

s ws rm ws

®

Lo Lo
) pip2 >) p2pt >
tmp[pl] tmp(p2] tmplpl] tmpip2]
) > >
ds s ds s

@ @

State 3 : (queue: p2 p1 empty) (pelp1]: we) (pelp2]: ¢s) (tmplp1]: empty) (tmplp2]: empty) State 7 - (queve: p1 p2 emply) (pe[pl]: ¢s) (pelp2): ws) (tmplp1]- emply) (tmp{p2): p1 empty

s ws s ws

quene L

tmp{pl] tmp{p2] tmp[pl] tmplp2]

State 10 (queue: p2 empty) (pe[p1): 18) (pel[p2]: <8) (tmpfp1): p2 emply) (Mp[p2): P1 €MPly State 14 : (queve: p1 empty) (pelp1l: ¢s) (pelp2]: 1s) mplp1]: P2 empty) (implp2]: p1 empty

Figure 4.23: It indicates that there is at most one process in cs.

IS ws s ws
queue queue
) pip2 >) p2pt
tmplpl] tmp[p2] tmp[pl] tmp(p2]
pl
ds cs ds cs

State 8 : (queue: p1 p2 empty) (pelpi]: ds) (pe[p2]: ws) (tmp[pd]: p2 empty) (tmp{p2]: p1
State 4 - {queue: p2 p1 empty) (pe[p1]: ws) (po[p2]: ds) (tmp(p1]: empty) (tmp{p2]: pT empty empty)

s ws Is WS

) pip2 >) ot
tmp[pl] tmplp2] tmp[pl] tmp[p2]
ds cs ds o8
State 12 - (queue: p2 p1 empty) (pc[p1]: ws) (pc[p2]: ds) (tmp[p1]: p2 empty) (tmp[p2]: p1
empty) State 15 : (queue: p1 empty) (pclp1]: ds) (pelp2]: rs) (tmplp1): empty) (tmp[p2]: p1 empty)

Figure 4.24: Tt indicates that there is at most one process in ds.

49

TS WS s w5

qﬂ: queue
> > p2 pl >

tmp[pl] tmp[p2] tmp[pl] tmp[p2]
p1
ds s ds o
State 0 . (queue: empty) (pe[p1]: rs) (pelp2]: 1s) (tmp{p1]: empty) (tmpfp2]: empty) State 6 * (queue: p1 p2 empty) (pe[p1]: ws) (pe[p2]: ws) (tmp[p1]: empty) (tmp[p2]: p1 empty

ws TS

[ws |
quene quene
) >) oo

tmp[p1] tmp[p2] tmplpl | tmp[p2]

ds | W ds cs

State 16 : (queue: empty) (pep1]: rs) (pc[p2]: rs) (tmp[p1]: empty) (tmp{p2]: p1 empty)

rs

State 22 : (queue: p1 p2 empty) (pelp1]: ws } (pelp2l: ws) (tmplp1]: empty) (tmpfp2]: p1 empt

Figure 4.25: It shows that two processes can exist simultaneously in rs and
WS.

(pc[ﬂ: rs)
(queue: Q)

(pe[l]: ws)
(queue: 1Q)) (pelll: cs)
! © (queue: Q)

(pclll: ws)
(queue: enq(Q,1)))

(pelll: cs) (pell]: rs)

(queue: deq{(Q))
(queue: (1 Q)) E aQ

Figure 4.26: Representing the rewriting rules using a figure Qlock

gqueue empty

pl p2

pc rs pc rs

Figure 4.27: Representation of a state machine in a diagram(Qlock)

30

rs

WSs

queue

CS

State 0 : (queue: empty) (pc[p1]: rs) (pc[p2]: rs)

Figure 4.28: Visually representing the state machine using SMGA (Qlock)

Figure 4.29: A representation of the process using a figure(Qlock)

rs

023

Figure 4.30: A representation of the section using a figure(Qlock)

queue

>

Figure 4.31: A representation of the queue using a figure(Qlock)

o1

Hitkeys
queue pclp1] pclp2]

#ftextDisplay
queue:: :REV::::_

#states

(queue: empty (pclpll: rs) (pclp2]: rs) ||
(queue: {(p1 empty) {(pc[p1]: ws) pclp2]: rs)
(queue: (p1 empty) (pclpl]: cs) pclp2]: rs)
(queue: empty (pclpl]: rs) pclp2]: rs) ||
{queue: (p2 empty) {pclpl]l: rs) pclp2]: ws)
(queue: {p2 empty) {pelpll: rs) pclp2]: cs)
(queue: {(p2 p1 empty) (pc[p1]: ws) pc[p2]: cs) ||
(queue: {(p1 empty) {(pc[p1]: ws) pclp2]: rs)
(queue: (p1 empty) (pclpl]: cs) pclp2]: rs)
(queue: empty (pclpl]: rs) pclp2]: rs) ||
(queue: (p2 empty) (pclpl]: rs) pclp2]: ws) ||
(queue: {(p2 p1 empty) (pclp1]: ws) pc[p2]: ws) ||
(queue: {(p2 p1 empty) (pc[p1]l: ws) pe[p2]: cs) ||
(queue: (p1 empty) (pc[p1]: ws) pcl[p2]: rs) ||
(queue: (p1 empty) (pclpl]: cs) pclp2]: rs) ||
(queue: empty (pclp1]: rs) pelp2]: rs) ||

(queue: (p2 empty) (pc[pl]l: rs) pclp2]: ws) ||
(queue: {p2 empty) {pclp1l: rs) pclp2]: cs) ||
(queue: empty (pclpll: rs) pelp2]: rs) ||

(queue: (p2 empty) (pclpl]: rs) pclp2]: ws) ||
(queue: (p2 p1 empty) (pclpl]: ws) pe[p2]: ws) ||
(queue: (p2 p1 empty) (pc[p1l: ws) pc[p2]: cs) ||
(queue: (p1 empty) (pclp1]: ws) pcl[p2]: rs) ||
(queue: {p1 empty) {pclp1l: ¢s) pclp2]: rs) ||
(queue: {(p1 p2 empty) (pc[p1]: cs) pc[p2]: ws) ||
(queue: (p2 empty) (pclpl]: rs) pclp2]: ws) ||
(queue: (p2 empty) (pclp1]: rs) pclp2]: cs) ||

Figure 4.32: Input files used in Qlock

WS

rs

[queue

Cs

State 0 : (queue: empty) (pc[p1]: rs) (pc[p2]: rs)

Figure 4.33: Diagram showing the initial conditions using SMGA (Qlock)

52

s WS

queod quene

cs cs

State 1 (queue: (p1 emply)) (pe(p1] ws) (pclp2] rs) State 2. (queve: (p1 empty)) (pe(pt): &8) (pefp2). 15)
TS @ WS s o3
quene quene
| [e
s 3
State 3 : (queve: empty) (pelp1); rs) (peip2]: 1s) State 4 : (queve’ (p2 empty)) (pe[p1): rs) (pe[p2] ws)
s WS I WS
queuc queue
| (p2 pl(p2 >
cs cs

State 5 . (queve: (p2 emply)) (pelp1]. 15) (pc[p2] cs) State & : (queue: (P2 p1 empty)) (pe[p1]: ws) (pelp2) o5)

Figure 4.34: Visual representation of various state machines using SMGA

(Qlock)

33

queue

ws

cs

Stete 2 - (queue: (p1 empty)) (pelp]- o3) (polp2]: s)

IS

WS

queue

cs

State 14 : (queue: (p1 empty)) (pofp1]: 08) (Po[p2]: 15)

quee

cs

State 5 - (queue: (p2 empty)) (pe[p1]: s) (pelp2]: cs)

s

queue

| (¢l

cs

State 23 : (queve: (p1 emply)) (pelp]: s) (pelp2]: 1s)

Figure 4.35: Indicates that there can be at most one process in cs.

TS Wws s ws
queue quons
cs cs
State 3 : (queue: empty) (pe[p1]: 18) (pelp2]. 15) State 9 : (queue: empty) (pelp1): rs) (pelp2]. rs)
TS WS TS WS,

queue

plip2

cs

queue

plp2

cs

State 11 - [queue: (p2 p1 empty)) (pe[p1]: ws) (pclp2] ws) State 20 : (queue: (p2 p1 empty)) (pe[p1): ws) (po[p2]: ws)

Figure 4.36: It shows that two processes can exist simultaneously in rs and
WS.

o4

TS ws TS WS

queue queue

| (P2 ‘ (pl

Ccs cs

State 4 : (queue: (p2 empty)) {pelp]: rs) (pe(p2]: ws) State 7 : (queue: (p1 empty)) (pe[p1]: ws) (pelp2]: rs)

IS Is

queue quete

W8S WS

cs CS

State 15 : (queue: empty) (pclp1]: rs) (pelp2]: rs) State 18 : (queve: empty) (pe[p1]: rs) (pe[p2] rs)

Figure 4.37: When a process exists in rs, it means that the value of the
process does not exist in queue.

35

Chapter 5

Anderson Mutual Exclusion
Protocol

In this chapter, we describe the Anderson protocol. In this chapter, we de-
scribe the Anderson protocol, where “next” and “array” are variables shared
by processes, and “placeli]” is a natural number of variables given to process
i. The Anderson protocol is described as follows.

Loop: “Remainder Section”
rs : placeli] := fetch&incmode(next,N);
ws : repeat until array|[placeli]];
“Critical Section”
cs : array[place[i]], array[(place[i]+1) % N] := false,true;

The fetch&incmode function is shown as below:

fetch & incmode (next ,N){
temp := next;
next := (next + 1) % N;
return temp;}

In the protocol, there is an atomic operation called fetch&incmode. There
are many processes, and they are placed in one of three labels: rs (Remainder
Section), ws (Waiting Section), or cs (Critical Section). When there are N
processes, placeli] is given to N, and i takes the value of {0, 1...N-1}. Also,
placeli] takes the value of {0, 1...N-1}. Similarly, length of array[place[i]] is
given as N, where i takes the value {0, 1...N-1}. array[place[i]] is a Boolean
variable and takes the values “true” and “false”. “next” takes the value of
{0, 1..N-1}.

fetch&incmode(x,n) is executed for a variable x and a constant n with the

56

type of natural numbers as follows.
t :=x; x:= (x+ 1)%n; return t

5.1 Description of Anderson in Maude

In this chapter, we will use Maude to represent the Anderson protocol. There-
fore, we will explain the code used in Maude. The Anderson protocol treated
in this chapter assumes that there are three processes called pl, p2, and p3
in Maude. Thus, the states can be expressed as (pc[pl]: 11) (pc[p2]: 12)
(pe[p3]: 13) (next: x) (array[0]: B1) (array[l]: B2) (array[2]: B3) (place[pl]:
x1) (place[p2]: x2) (place[p3]: x3) can be expressed as follows.

The “pc[]” represents a process counter, and the value types are rs, ws, and
cs.

< “117, “127) and “13” take the value of one of rs, ws, and cs.

« “pl”, “p2”, and “p3” represent the IDs of processes.

* (next: x) takes one of the values 0, 1, or 2 for the x part.

+ “(array[0]: B1)”, B1 is a Boolean variable and takes the value of “true”
or “false”. In the same way, (array[l]: B2) (array[2]: B3) takes the value of
“true” or “false” for the B2 and B3 parts.

* “(place[pl]: x1)” will take one of the values 0, 1, or 2 for the x1 part.
(place[p2]: x2) (place[p3]: x3) similarly takes one of the values “0”, “1”, or
“2”7 for the x2 and x3 parts.

In the initial state, 11, 12, and 13 are rs; x, x1, x2, and x3 take the value of 0,
Bl is “true”, B2 and B3 are “false”.

The state transitions in the Anderson protocol are specified in Maude as the
following three rewrite rules.

rl [want] : (pc[l]: rs) (place[l]: N1) (next: N2) OCs =>
(pc[l]: ws) (place[I]: N2) (next: ((N2 + 1) rem N)) OCs .

rl [try] : (pc[l]: ws) (array[N1]: true) (place[l]: N1) OCs =>

(pc[l]: cs) (array[N1]: true) (place[l]: N1) OCs .

crl [exit] : (pc[I]: es) (array[N1]: B) (array[N2]: B1) (place[I]: N1) OCs =>
(pc[l]: rs) (array[N1]: false) (array[N2]: true) (place[l]: N1) OCs
if (N2 == ((N1 + 1) rem N)) .

“=>" indicates a change in state in the direction of the arrow.
“rl[want]” is an example. It means that “(pc[I]: rs) (place[l]: N1) (next: N2)
OCs” has been changed to “(pc[l]: ws) (place[I]: N2) (next: ((N2 + 1) rem

o7

N)) OCs .“by the rewriting rule “rlleql]”.

I represents the process ID in Maude. N1 represents the value held in place[l],
which takes the value 0, 1...N-1 if the number of processes is N. N2 repre-
sents the value held in next, which takes the value 0, 1...N-1 if the number
of processes is N. array[N1] and array[N2] are Boolean variables. array[N1]
and array[N2] are Boolean variables, and B and B1 take the values “true” or
“false”.

There are three rewriting rules: want, try, and exit. Three rewriting rules
are explained below:

Rule 1 (want): If process I exists in rs, and the content of place[l] is N1,
and the content of next is N2, then process I exists in ws, and the content of
place[l] is N1, and the content of next is ((N2 + 1)) rem N.

Rule 2 (try): If process I exists in ws, and the content of array[N1] is true,
and the content of place[l] is N1, then process I exists in cs, and the content
is N1.

Rule 3 (exit): If process I exists in cs, and the contents of array[N1] are B,
the contents of array[N2] are B2, and the contents of place[I] are N1, then
process | exists in rs, and the contents of array[N1] are false, the contents
of array[N2] are true, and the contents of place[l] are N1. The content of
place[l] is N1.

Figure 5.1 shows the state transition diagram.

(pelll: cs)
(array[Nl]: B)
(array[NZ]: B1)
(place[I]:N1)

(pe[l]:ws)
(array[N1]:true)
(place[I]: N1)

(pelll:1s)
(place[I]:N1)
(next: N2)

eq2

(pclll:ws)
(place[I]:N2)
(next: ((N2 + 1) rem N)),

(pc [[:cs)
(array[NI]: true)
(place[I]:N1)

(pclIl: rs)
(array[N1]: false)
(array[NZ]: true)
(place[I]: N1)

if (N2 = ((N1 + 1) remN))

Figure 5.1: Representing rewrite rules using diagrams

28

5.2 State Machine Representation(Anderson)

In this chapter, we describe how to represent state machines using diagrams.
Representing a state machine using a diagram helps to discover characteris-
tics issues from visual information.

There are three processes called pl, p2, and p3, and each state is represented
as (pclpl]: rs) (pc[p2]: rs) (pe[p3]: rs) (next: 0) (array[0]: true) (array[l]:
false) (array[2]: false) (place[pl |: 0) (place[p2]: 0) (place[p3]: 0) (all is an
initial state). In this case, it is represented as shown in the Figure 5.2.
When SMGA is used for the state (pc[pl]: rs) (pc[p2]: rs) (pc[p3]: rs) (next:

next: 1

pclp1]: s pclp2]: s pclp3]: rs
array[0]: true array[1]: false array[2]: false
place[p1]: 0 place[p2]: 0 place[p3]: 0

Figure 5.2: Representing state machines using diagrams

0) (array[0]: true) (array[l]: false) (array[2]: false) (place[pl]: 0) (place[p2]:
0) (place[p3]: 0), it is represented as shown in the Figure 5.3.

A brief description of the diagram with SMGA is given.

ws
’ next [| ‘

L
array -

cs

s

State 0 : (next: 0) (array[0]: true) (array[1]: false) (array[2]: false) (place[p1]: 0) (place[p2]: 0)
(place[p3]: 0) (pe[pt]: rs) (pe[p2]: rs) (pe[p3]: rs)

Figure 5.3: Using SMGA to visually represent state machines

39

Figure 5.4. shows the representation of processes pl, p2, and p3 with cir-
cles. These processes are arranged in one of three sections: rs (Remainder
Section), ws (Waiting Section), and cs (Critical Section).

Figure 5.5 uses squares to represent the sections rs (Remainder Section), ws

Figure 5.4: Use figures to represent processes.

(Waiting Section), and cs (Critical Section). There are cases in which pro-
cesses are located in these sections, and cases in which none of the processes
are located.

Figure 5.6 shows the representation of place[pl], place[p2], and place[p3]

rs ws cs

Figure 5.5: Use figures to represent sections.

using squares. Figure 5.6 shows the state of (place[pl]: 0) (place[p2]: 0)
(place[p3]: 0). For place[pl], the states of (place[pl]: 1) and (place[pl]: 2)
are shown in the Figure 5.7 . place[p2] and place[p3]| have the same form.

place[p1] |:|
place[p2] |:|
place[p3] I:l

Figure 5.6: Representation of place[pl],place[p2],place[p3] using figures

Figure 5.8 shows the representation of next as a rectangle. From left to right
in Figure 5.8, the states (next: 0), (next: 1), and (next: 2) are represented.
Figure 5.9 shows a square representation of array. The states in Figure 5.9
represent (array[0]: true) (array[l]: false) (array[2]: false), and when array
is “true”, it is indicated by a red square.

60

place[p1] D

place[p1] |:|

Figure 5.7: Represent (place[pl]: 1) and (place[pl]: 2) using a figure.

next [| ‘ next] | ‘next |:|‘

Figure 5.8: Represent (next: 0), (next: 1), and (next: 2) using a diagram

Figure 5.10 shows, from left to right, the states (array[0]: false) (array|[l]:
true) (array[2]: false) and (array[0]: false) (array[l]: false) (array[2]: true).

L
aray | [l

Figure 5.9: Using a figure to represent (array[0]: true) (array[l]: false) (ar-
ray[2]: false)

5.3 Use of SMGA (Anderson)

In this chapter, we will discuss the use of SMGA and finding characteristics
visually. In using SMGA, two inputs are required: the image design and the
input file.

The image design is user-generated and allows the user to develop an under-
standing based on his or her design. The input file is generated by Maude.
The input files are generated by Maude and play animations in SMGA.
Various state machines are generated using Maude. Figure 5.11 shows the
generated state machines for (pc[pl]: 11) (pc[p2]: 12) (pc[p3]: 13) (next: x)
(array[0]: B1) (array[l]: B2) (array[2]: B3) (place[pl]: x1) (place[p2]: x2)
(place[p3]: x3).

Figure 5.12 shows the SMGA of Figure 5.11. By using SMGA, we can or-
ganize where each process is located and what values are stored in “next”,
“array”, and “place”.

In state 0, there are three processes in rs.

61

array - array -

Figure 5.10: Use the figure to represent (array[0]: false) (array[l]: true)
(array[2]: false) and (array[0]: false) (array[l]: false) (array|[2]: true)

f#tkeys

next array[0] array[1] array[2] place(p1] place[p2] place[p3] pelp1] pclp2] pclp3]

#iittextDisplay

Histates

(next: 0 {array[0]: true) (array[1]: false) (array[2]: false) (place[p1]: 0} (place[p2]): 0) (place[p3]: O} (pclp1]): rs) (pc[p2]: rs) pc(pd]: rs)
(next: 1 (array[0]: true) (array[1]: false) (array[2]: false) (place[pl]: 0) (place[p2]: 0) (place[p3]: 0} (pclp1]): rs) (pclp2]: ws) pc[p3]: rs)
(next: 2 {array[0]: true) (array[1]: false) (array[2]: false) (place[pl]: 0} (place[p2]: 0) (place[p3]: 1} (pclpl]: rs) (pc[p2]: ws) pc[p3]: ws)
(next: 2 {array[0]: true) (array[1]: false) (array[2]: false) (place[pl]: 0) (place[p2]: 0) (place[p3]: 1} (pclp1]: rs) (pc[p2]: cs) pclp3]: ws)
(next: 2 {array[0]: false) (array[1]: true) (array[2]: false) (place[p1]: 0) (place[p2]: 0) (place[p3]: 1} (pclp1]: rs) (pc[p2]: rs) pc[p3]: ws)
(next: 0 {array[0]: false) (array[1]: true) (array[2]: false) (place[pl]: 0} (place[p2]: 2) (place[p3]: 1} (pclp1l: rs) (pc[p2]: ws) pc[p3]: ws)
(next: 0 (array[0]: false) (array[1]: true) (array[2]: false) (place[p1]: 0) (place[p2]: 2) (place[p3]: 1} (pclp1]: rs) (pc(p2]: ws) pelp3]: cs)
(next: 1 {array[0]: false) (array[1]: true) (array[2]: false) (place[p1]: 0} (place[p2]: 2) (place[p3]: 1) (pclpl]: ws) (pc[p2]: ws) pc[p3]: os)
(next: 1 {array[0]: false) (array[1]: false) (array[2]: true) (place[pl]: 0) (place[p2]: 2) (place[p3]: 1} (pelp1l: ws) (pclp2]: ws) pelp3]: rs)
(next: 1 (array[0]: false) (array[1]: false) (array[2]: true) (place[p1]: 0) (place(p2]: 2) (place[p3]: 1} (pelp1]): ws) (pelp2]: cs) pelp3]: rs)
(next: 2 {array[0]: false) (array[1]: false) (array[2]: true) (place[p1]: 0} (place[p2]: 2) (place[p3]: 1} (pclp1]: ws) (pc[p2]: os) pc[p3]: ws)
(next: 2 {array[0]: true) (array[1]® false) (array[2]: false) (place[p1]: 0) (place[p2]: 2) (place[pd]: 1) (po[pi]: ws) (po[p2]: rs) pe[p3]: ws)
(next: 2 {array[0]: true) (array[1]: false) (array[2]: false) (place[p1]: 0) (place(p2]: 2) (place[p3]: 1} (pclp1]: cs) (pc[p2]: rs) pc[p3]: ws)
(next: 0 {array[0]: true) (array[1]: false) (array[2]: false) (place[p1]: 0) (place[p2]: 2) (place[p3]: 1} (pclp1]: os) (pc[p2]: ws) pc[p3]: ws)
(next: 0 {array[0]: false) (array[1]: true) (array[2]: false) (place[pl]: 0) (place[p2]: 2} (place(p3]: 1 (polpil: rs) (po[p2l: ws) pelp3]: ws)
(next: 0 (array[0]: false) (array[1]: true) (array[2]: false) (place[p1]: 0} (place[p2]: 2) (place[p3]: 1) (pclpl]: rs) (pc[p2]: ws) pe[p3]: cs)
(next: 1 {array[0]: false) (array[1]: true) (array[2]: false) (place[p1]: 0) (place[p2): 2) (place[p3]): 1} (polp1l: ws) (po[p2]: ws) pclp3]: os)
(next: 1 {array[0]: false) (array[1]: false) (array[2]: true) (place[pl]: 0} (place[p2]: 2) (place[p3]: 1} (pclp1]: ws) (pc[p2]: ws) pc[p3]: rs)
(next: 1 (array[0]: false) (array[1]: false) (array[2]: true) (place[pl]: 0} (place[p2]: 2) (place[p3]: 1} (pelp1]): ws) (pelp2]: cs) pelp3]: rs)
(next: 1 {array[0]: true) (array[1]: false) (array[2]: false) (place[pl]: 0) (place[p2]: 2) (place[p3]: 1} (pelp1]: ws) (pc[p2]: rs) pc[p3]: rs)
(next: 1 {array[0]: true) (array[1]: false) (array[2]: false) (place[p1]: 0) (place[p2]® 2) (place[pd]: 1} (po[pi]: cs) (po[p2]: rs) pe[p3]: rs)
(next: 2 {array[0]: true) (array[1]: false) (array[2]: false) (place[pl]: 0) (place[p2]: 1) (place[p3]: 1} (pclp1]: cs) (pc[p2]: ws) pcp3]: rs)
(next: 0 {array[0]: true) (array[i1]: false) (array[2]: false) (place[pl]: 0) (place(p2]: 1) (place(p3]: 2} (pclpl]: os) (pc[p2]: ws) pc[p3]: ws)
(next: 0 {array[0]: false) (array[1]: true) (array[2]: false) (place[p1]: 0) (place[p2]: 1) (place[p3]: 2} (pclp1]: rs) (pc[p2]: ws) pc[p3]: ws)
(next: 0 {array[0]: false) (array[1]: true) (array[2]: false) (place[p1]: 0} (place[p2]: 1) (place[p3]: 2} (pclpll: rs) (pc[p2]: cs) pe[p3]: ws)
(next: 0 {array[0]: false) (array[1]: false) (array[2]: true) (place[p1]: 0} (place[p2]: 1) (place[p3]: 2} (pclpi]: rs) (pc[p2]: rs) pc[p3l: ws)
(next: 0 {array[0]: false) (array[1]: false) (array[2]: true) (place([pl]: 0} (place[p2]: 1) (place[p3]: 2} (pclpl]): rs) (pc[p2]: rs) pe[pd]: cs)
(next: 1 (array[0]: false) (array[1]: false) (arrav[2]: true) (placelpl]: 0) (place[p2]: 1) (place[p3]: 2} (pcp1l: ws) (pc[p2]: rs) pclp3l: cs)

Figure 5.11: Input files used in Anderson

Figure 5.13 shows the various states; given that there is at most one process
in cs, the Anderson protocol described in this chapter satisfies mutual exclu-
sion.

By using Figure 5.13 and SMGA, we can infer the following three charac-
teristics about the Anderson protocol.

(1) There is at most one process in cs.

(2) The number of processes does not increase during the execution of the
protocol.

(3) There is only one process that takes the value “true” in all arrays.

5.4 Model Checking Using Maude(Anderson)

In this chapter, we describe model checking using Maude, which allows us
to examine the changes in all state machines from one state to another, as
specified by the user. We will use an example to illustrate.

Maude> search [1] in ANDERSON : init =>* {(pc[I:Pid]: cs)

62

place[p1]

place[p2]

O
]
rs ws
‘next] ‘

| ||
aray | [l

cs

State 0 : (next: 0) (array[0]: true) (array[1]: false) (array[2]: false) (place[p1]: 0) (place[p2]: 0)
(place[p3]: 0) (pe[p1]: rs) (pe[p2]: rs) (pc(p3]: rs)

Figure 5.12: Diagram showing the initial conditions using SMGA (Anderson)

(pc[J:Pid]: cs) (pc[K:Pid]: rs) 0OCs} .

No solution.

The above command searches for the state of “{(pc[l:Pid]: ¢s) (pc[J:Pid]: cs)
(pc[K:Pid]: rs) OCs}.” from the conditions “init” in module “ANDERSON”.
“No solution.” indicates that the state “{(pc[l:Pid]: ¢s) (pc[J:Pid]: cs)
(pc[K:Pid]: rs) OCs} .” does not exist in module “ANDERSON”.

I, J, and K represent the ID of the process and take the values pl, p2, and
p3, respectively.

As explained above, Maude is able to search for user-specified states, and
since there is at most one process in cs, we can see that the Anderson protocol
satisfies mutual exclusion.

Maude> search [1] in ANDERSON : init =>x {(pc[I:Pid]: A:Loc)
(pclJ:Pid]: B:Loc) (pcl[K:Pid]: C:Loc) (pc[L:Pid]: D:Loc) 0OCs} .

No solution.

The above command searches for the state of “(pc[l:Pid]: A:Loc) (pc[J:Pid]:
B:Loc) (pc[K:Pid]: C:Loc) (pc[L:Pid]: D:Loc) OCs .” from the conditions
“init” in module “ANDERSON”.

“No solution.” indicates that the state “(pc[l:Pid]: A:Loc) (pc[J:Pid]: B:Loc)
(pc[K:Pid]: C:Loc) (pc[L:Pid]: D:Loc) OCs.” does not exist in module “AN-
DERSON".

In this chapter, the number of processes is three. As explained above, the
use of Maude indicates that the number of processes does not increase to

63

four during the execution of the protocol.

Maude> search [1] in ANDERSON : init =>* {(array[N:Nat]: true)
(array[N1:Nat]: true) (array[N2:Nat]: false) 0Csl} .

No solution.

The above command searches for the state of “(array[N:Nat]: true) (ar-
ray[N1:Nat]: true) (array[N2:Nat]: false) OCs .” from the conditions “init”
in module “ANDERSON”.

N, N1, and N2 represent natural numbers and take the values 0, 1, and 2.
“No solution.” indicates that the state “(array[N:Nat]: true) (array[N1:Nat]:
true) (array[N2:Nat]: false) OCs .” does not exist in module “Anderson”.
As explained above, Maude is able to search for user-specified states, which
means that only one of all arrays can take the value “true”.

64

iid

@G

piscelpt] | [T]
piacelp2] | []

o =T

et

O

State 1 (next: 1) (arry0] true) (array{1] false) (array{2] false) (place]pt] 0) (place|p2] O)
(piace(p3]: 0') (pefp1]: re) (pelp2) we) (pelp3): rs)

placelpt] | [C]

piacelp2] | [T]

place(n3) (|

State 3 . (nesd: 2) (array(D]. true) (array{1]: false) (amay(2]. fabie) (placelpt]. O] (Place(p2] 0)
{place(p3] 1} (pcfpd]: s } {pc{p2]: cs) (pe[pd] we)

[| iraiceiq

a [Sajsceiy

O o
aw

© 5w

=

22

(S [Sajecaiq) (0 |rojoasia) | see! [Sheme) { oot | Fjone) | seiel [Ofvens) {0 ton) : 2 star2

=lm

State 2 ! (rest: 2) {oeray{O]. true) formy{1). taise) (smayf2]: aise) (piscefp] 0) (place{2] 0)
(Piaceip3] 1) (pelo] 18) (peip] ws) (pelo3] ws)

"®®

pasceet] | [

phacefo2) |]

placefp3) O

State 4 (red 2) (aerayf0] fabse) forray(1] true) (army{2]. false) (placelpl] O) (place(p] 0)

(place(p3]: 1) (pefpt] /s) (pefp2] 18) (pofpd) we)

placelpt] | [

place(p3]

piace(pd] (|

[O

State § - (nead: O) (array(0]: lalse) (array]1) true) (arrayi2] talse) (placedp1] O) (placefp2) 2}

=] w1

cs

(o 12aloa) { ow (9000 {1 [1alo) (P18 (uaceioa) 1) pofpt]: e) (peip2: we) (pelp] 68)

Figure 5.13: Visual representation of various states using SMGA

65

Chapter 6

Lessons Learned

In this chapter, we describe how to create good diagrams for graphical ani-
mations and how to observe graphical animations and look for protocol char-
acteristics. Section 6.1 describes how to create good diagrams for graphical
animations, and Section 6.2 describes how to observe graphical animations
and look for protocol characteristics. Section 6.1 describes how to create
good diagrams for graphical animations, and Section 6.2 describes how to
observe graphical animations and look for characteristics of protocols.

6.1 How to create a good diagram for graph-
ical animation

There are four ways to create a good diagram for graphical animation. These
methods are explained below.

+ Use as many figures as possible for the necessary elements (processes, sec-
tions, etc.) to represent the state.

Figure 6.1 shows the state of the protocol without using any figures. In this
case, it only describes which section each process exists in, making it difficult
to understand the changes. However, just by using the various figures dis-
cussed in this paper to represent the process, it is easy to visually understand
how the process has changed. Also, by expressing the state of the protocol
using figures, it is easy to compare the state before and after the change,
which is helps read not only the movement of the process but also which
other values have changed.

* A process that changes frequently, such as a process, should be color-coded.

66

In this paper, when there are multiple processes, each process is color-coded,
and in SMGA, state changes can be checked like an animation from a series
of images. If there are multiple processes and we want to find characteris-
tics from the animation, it will be difficult to find characteristics if all the
processes are the same color. For example, when you pay attention to how a
single process is moving through a section, you may lose track of the process
you are paying attention to because the animation changes its state every
time the state changes. If each process is color-coded, it is easy to instantly
determine the process you are focusing on. In this way, color coding is useful
for instantaneous judgment of things (processes, etc.) that change frequently.

* Use not only one type but several types of shapes.

Take the example of Qlock in Chapter 4, which uses circles, squares, and
pentagons. In Qlock, we use circles, rectangles, and pentagons to represent
the data. Using several types of shapes to represent the data helps to orga-
nize what kind of values are stored in each data.

* Labeling

All processes, sections, etc. that make up a protocol must be labeled. The
reason for this is that it becomes difficult to determine state changes and to
find characteristics. Also, if the labeling is not done properly, the protocol
will not know what is being executed. Also, it is important for this paper
that the protocol satisfies mutual exclusion. However, if each section is not
labeled properly, it is not possible to determine from the graphical animation
whether mutual exclusion is satisfied.

locked: false

pelpt]: S
pcip2]: rs
pclp3]: rs

Figure 6.1: Graphical animation without graphics.

67

6.2 How to Observe Graphical Animations
and Look for Protocol characteristics

There are four ways to look for protocol characteristics by observing graph-
ical animations. These methods are explained in this section.

* Through a series of graphical animations, look for differences before and
after the image changes.

In SMGA, graphical animations are generated from multiple consecutive im-
ages. There is a difference in each successive image. By paying attention to
what kind of differences exist, we can discover what kind of characteristics
exist in the protocol. In addition to the process, other parts change. By
simply considering under what conditions the parts other than the process
are changing, we can not only look for characteristics of the protocol, but
also help to understand it. Then, once we can find the characteristics in
the graphical animation, we can use Maude to perform model checking to
understand if the characteristics we have found are indeed correct.

* Focus on one process and make sure that you have moved through all the
sections that exist.

In this paper, to satisfy mutual exclusion, there must be at most one proto-
col that can exist in cs. By using graphical animations, it can be instantly
determined that mutual exclusion is not satisfied when more than one pro-
cess exists in ¢s. However, when multiple processes are present, it is difficult
to determine whether each process is moving through all sections. For this
reason, after confirming that the protocol satisfies mutual exclusion, we focus
on one of the multiple processes that exist. After confirming that the focused
process was able to move all the processes, we focus on another process and
confirm that it was able to move all the processes. This method will help
you understand the protocol without being confused.

+ Use graphical animations against the pseudo-code of the protocol.

Each of the protocols discussed in this paper has its pseudo code. The pro-
tocol is executed according to the pseudo code. However, if there is an error
in the generated input file, the protocol will not be executed according to
the pseudocode. In such a situation, when looking for characteristics from
the graphical animation, the wrong characteristics may be found. To prevent

68

this, we use the graphical animations while comparing the protocol with the
pseudocode; SMGA not only allows us to see the sequence of the generated
graphical animations, but also to see the images in their changed states. This
usage allows us to take time to pay attention to each image, which helps us
to look for characteristics in comparison to the pseudo-code of the proto-
col. Another advantage of this method is that it also helps in understanding
the protocol. Since we are getting information about the protocol visually
through graphical animations, we can check what is happening in each part
of the pseudo code.

+ Use as few processes as possible when looking for characteristics in a pro-
tocol that is new to you.

It is difficult to find characteristics in a protocol that is handled for the first
time. To avoid this, use as few processes as possible. To avoid this, it is easier
to use as few processes as possible (two or three) to look for characteristics.
Then, when you can find the characteristics, you can increase the number of
processes as needed.

69

Chapter 7

Conclusion

In this chapter, we summarize what we have learned through the research
report and the research project.

In Section 7.1, we summarize what we described in the research report, and
in Section 7.2, we describe our future tasks based on the research report.

7.1 Summary of the research report

1. Protocol description

In executing a protocol, we explain how each protocol is described, how many
different sections the process executes, and where the values are stored. In
this paper, FTAS, TAS, FQlock0, FQlockl, Qlock, and Anderson protocols

will be explained.

2. Explanation of state transitions

This section explains how the states that satisfy the conditions are tran-
sitioned by the rewriting rules. In this case, a state transition diagram is
described, with circles for states and arrows for transitions. In this way, the
state transitions can be read visually.

3. Description of the state machine

This section explains how the elements necessary to create a state machine
can be represented using diagrams. Explain how to use diagrams for pro-
cesses and sections when adapting diagrams to SMGA. The figures should
be labeled so that they can be distinguished.

4. Using SMGA

70

We will use SMGA to create graphical animations. In this case, we will use
the information explained in “State Machine Description”. We will also de-
scribe what characteristics we found in the graphical animation. The initial
state of each protocol, the series of graphical animations, and the character-
istics found will be described using images.

5. Model checking

From the graphical animations using SMGA, we perform model checking
to find out what characteristics are present. The main command used in
Maude is the search command. The main command used in Maude is the
search command, which allows us to check whether the characteristics we
find are correct or not.

7.2 Future Issues

This section describes the future tasks that we were able to find through
our research. In the research project, we covered “protocol description,”
“explanation of state transitions,” “description of state machines,” “use of
SMGA,” and “model checking,” and we found four issues to further deepen
these contents. The first one is to perform theorem proving. Model checking
is excellent for finding defects, and model checking alone cannot completely
prove that software works as intended. On the other hand, theorem proving
can guarantee that the designed software will work as intended. In other
words, both model checking and theorem proving are necessary to realize that
software works as intended. By using both, we can prove that the software
works as intended. In fact, a software called Café OBJ is used in my lab.
In this paper, we learned about FTAS, TAS, FQlock0, FQlockl, Qlock, and
Anderson protocols. In fact, there are many protocols such as MCS protocol,
Suzuki-Kasami protocol ,and so on. By learning more protocols, we can learn
more about software design, which will help us in our future studies. Third,
we will use various commands in Maude to perform model checking. The
third is to perform model checking using various commands in Maude. The
third is to perform model checking using various commands in Maude. In
our research, we used the search command for model checking. However,
model checking is not enough to know all the defects in a protocol. There
are more commands in Maude than just the search command, and by using
the various commands, we can not only check the protocol for defects but also
learn more about the characteristics of the protocol. The fourth task is to

71

improve the graphical animations generated by SMGA. The fourth task is to
improve the graphical animations generated by SMGA. In this paper, we used
various figures to represent the protocol states. In this paper, we used various
graphical representations for the states of the protocol, and we found that
there was a difference in the detection of state changes and characteristics
between those using and not using the graphical representations. However,
we do not know how good they are at discovering characteristics, etc. by
recruiting subjects, etc. In addition, it is not clear what kind of expressions
are added to the graphical animations to make feature detection easier. It is
also important to investigate what kind of expressions are needed to improve
graphical animations by recruiting subjects.

72

Bibliography

[1] D. D. Bui, K. Ogata: Graphical Animations of the Suzuki-Kasami Dis-
tributed Mutual Exclusion Protocol, JVLC, 2019 (2): 105-115, (2019).

[2] M. T. Aung, T. T. T. Nguyen, K. Ogata: Guessing, Model Checking
and Theorem Proving of State Machine Properties — A Case Study on
Qlock, IJSECS, 4(2): 1-18, (2018).

[3] T. T. T. Nguyen, K. Ogata: Graphical Animations of State Machines,
15th DASC, pp.604-611 (2017).

[4] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer
and C. Talcott: All About Maude, LNCS 4350, Springer, (2007).

[5] Kazuhiro Ogata: 1613 algebraic formal methods. In: Term 2-2 course at
JAIST, Japan. (2017)

73

