JAIST Repository
https://dspace.jaist.ac.jp/

Title FPGAOOOOCKYOOOOOOOOO

Author(s) oo, 00

Citation

Issue Date 2003-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl.handle.net/ 10109/ 1710
Rights

Description Supervisor: oo 04, ooooooo o0

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Accelerating the CKY Parsing Using FPGAs

Yasuaki Ito (110015)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 14, 2003

Keywords: CKY Parsing, FPGAs, Reconfigurable architectures, Reconfigurable
computing.

The main contribution of this paper is to present an FPGA-based implementation of an
instance-specific hardware which accelerates the CKY (Cocke-Kasami-Younger) parsing
for context-free grammars.

An FPGA (Field Programmable Gate Array) is a programmable VLSI in which a hard-
ware designed by users can be embedded instantly. The user’s hardware logic design can
be embedded into the FPGAs using the design tools supplied by the FPGA vendor. Our
goal is to use the FPGAs to accelerate the CKY parsing. In particular, the challenge
is to develop FPGA-based solutions which are faster and more efficient than traditional
software approaches.

Parsing find its application in various fields, such as pattern recognition, programming
languages, natural language processing, etc. A number of applications could profit if
efficient ways to accelerate parsing was available. Real time speech-recognition is an
example of such applications.

Our approach to accelerate computations using FPGAs is inspired by the notion of
partial computation. Let f(y,x) be a function to be evaluated in order to solve a given
problem. Note that such a function might be repeatedly evaluated only for a fixed y. When
this is the case, the computation of f(y,z) can be simplified by evaluating an instance-
specific function f, such that f,(r) = f(y,z). Our novel idea is to build a hardware that
is optimized to compute f,(x) for a fixed y and various 2. More specifically, our goal is to
present an FPGA-based instance-specific solution for problems that involves a function
evaluation for f(y,) satisfying the following properties:

1. The value of a fixed instance y depends on the instance of the problem, and
2. The value of f(y,) is repeatedly evaluated for various = to solve the problem.

The main contribution of this paper is to present an instance-specific hardware which
accelerates the parsing for context-free grammars using the FPGA-based approach de-
scribed above. Let f(G,z) be a function such that G is a context-free grammar, z is
a string, and f(G,z) returns a Boolean value such that f(G,z) returns TRUE iff G de-
rives x. For the purpose of instance-specific solution for parsing context-free languages, we

Copyright © 2003 by Yasuaki Ito

present a hardware generator that produces a Verilog HDL source that performs the CKY
parsing for any given context-free grammar GG. The key ingredient of the produced design
is a hardware component to compute a binary operator ®¢ such that 2V x 2V — 2V,
where [V is the set of non-terminal symbols in G. More specifically, let U and V' be a set
of non-terminals in GG that derive strings o and [, respectively. The operator U ®q V'
returns the set of non-terminals that derive a5 (i.e. the concatenation of o and). Let n
denote the length of the input string that is n = |z|. The CKY parsing algorithm repeats
the evaluation of ®¢ for O(n?) times.

The generated Verilog HDL source is compiled using the Xilinx design tool, and the ob-
ject file obtained is downloaded into the Xilinx Virtex-1II series FPGAs. The programmed
FPGA compute fg(x), i.e. determines if G derives x for a given string x. In our hardware
CKY parsing system, given strings x,zs, x3,... by the host PC, the FPGA computes
and returns fg(x1), fa(22), fa(xs3),. .. to the host.

From the theoretical point of view, our instance-specific solution is much faster than the
software solutions. To evaluate the performance of our CKY parsing system, we compared
it with traditional software. Traditional software approach evaluates ®¢ by checking all
p production rules in O(p) time. The CKY parsing using the algorithm runs in O(n?p)
time. On the other hand, our instance-specific solution evaluates ®¢ in O(logb) time
and the CKY parsing using this approach runs in O(n®logb) time, where b represents
the number of non-terminal symbols. Since b < p always hold, our solution is faster than
these software approaches from the theoretical point of view.

We have evaluated the performance of our instance-specific solution using the Virtex-II
series FPGA. In order to evaluate the performance of our instance-specific solution, we
also have implemented some software solutions and measured the performance using IBM
PC-compatible(Xeon processor). The results show that our instance-specific hardware
attains up to 3,000 speed-up factor over the software solutions.

