
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Left-normal Translation for Applicative Term

Rewriting Systems

Author(s) 鈴木, 裕佑

Citation

Issue Date 2021-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/17136

Rights

Description

Supervisor: Nao Hirokawa, Graduate School of

Advanced Science and Technology, Master of

Science (Information Science)



Left-normal Translation for Applicative Term Rewriting Systems

1910251 Yusuke Suzuki

Term rewriting is a computation model based on directed equations. Sets
of such equations are called term rewriting systems (TRSs); especially, TRSs
over constant symbols and a single binary function symbol ◦, an applica-
tion symbol, are called applicative term rewriting systems (ATRSs). ATRSs
underlie functional programming languages and proof assistants and enable
them to model higher-order functions.

Consider the following ATRS R that computes Fibonacci numbers.

1: + 0 x → x

2: + (s x) y → s (+ x y)

3 : tail (: x xs) → xs

4: nth (: x xs) 0 → x

5: nth (: x xs) (s y) → nth xs y

6: zip f (: x xs) (: y ys) → : (f x y) (zip f xs ys)

7 : fibs → : 0 (: (s 0) (zip + fibs (tail fibs)))

For instance, the term nth fibs (s (s 0)) is rewritten to the second Fibonacci
number. However, a naive computation may cause an infinite rewrite se-
quence like:

nth fibs (s (s 0)) → nth (: 0 (: (s 0) (zip + fibs (tail fibs)))) (s (s 0))

→ nth (: 0 (: (s 0) (zip + (: 0 (: (s 0) (zip + fibs (tail fibs)))) (tail fibs)))) (s (s 0))

→ · · ·

whilst another computation yields the finite rewrite sequence:

nth fibs (s (s 0)) → nth (: 0 (: (s 0) (zip + fibs (tail fibs)))) (s (s 0))

→ nth (: (s 0) (zip + fibs (tail fibs))) (s 0) → nth (zip + fibs (tail fibs)) 0

→ nth (zip + (: 0 (: (s 0) (zip + fibs (tail fibs)))) (tail fibs)) 0

→ nth (zip + (: 0 (: (s 0) (zip + fibs (tail fibs))))

(tail (: 0 (: (s 0) (zip + fibs (tail fibs)))))) 0

→ nth (: (+ 0 (s 0)) (zip + (: (s 0) (zip + fibs (tail fibs)))

(: (s 0) (zip + fibs (tail fibs))))) 0

→ + 0(s 0)

→ s 0

1



Underlines indicate rewrite positions. Comparing the two rewrite sequences,
they rewrite the same position at their first step, whilst different positions
thereafter. In the latter, subterms are needed to be rewritten at every un-
derlined position in order to obtain the second Fibonacci number. On the
other hand, in the former, subterms are not needed to be rewritten at un-
derlined positions but ones at the first step. Such positions that are needed
for results of computations are called needed positions, and the strategy that
rewrites subterms at needed positions are the needed strategy. However, it
is known that needed positions are uncomputable in general [2], and thus we
cannot use the strategy readily.

As for another strategy, O’Donnell [3] showed the Normalization Theo-
rem: in left-normal TRSs, the leftmost-outermost strategy always leads a
term to a computational result. Left-normality is the property that no func-
tion symbols occur on the right of variables in a term. If every left-hand side
of a TRS is left-normal, also the TRS is called so. Recalling the ATRS R,
the rules 4, 5 and 6 are not left-normal because of the underlined subterms,
neither is R.

4: nth (: x xs) 0 → x

5: nth (: x xs) (s y) → nth xs y

6: zip f (: x xs) (: y ys) → : (f x y) (zip f xs ys)

In this thesis, we propose left-normal translation for ATRSs, which trans-
lates non-left-normal ATRSs into left-normal ATRSs and enables us to obtain
results of computations with the translated ATRSs. For example, the previ-
ous TRS R is translated into the following left-normal ATRSs.

1: + 0 x → x

2: + (s x) y → s (+ x y)

3 : tail (: x xs) → xs

4: fibs → : 0 (: (s 0) (zip + fibs (tail fibs)))

5 : nth (: x xs) y → nth1 y x xs

6: zip f xs ys → zip1 xs f ys

7: nth1 0 x xs → x

8: nth1 (s y) x xs → nth xs y

9: zip1 (: x xs) f ys → zip2 ys x xs f

10: zip2 (: y ys) x xs f → : (f x y) (zip f xs ys)

With this left-normal ATRS, we get obtain the term s 0 from nth fibs (s (s 0))

2



by the leftmost-outermost strategy.

nth fibs (s (s 0))

→ nth (: 0 (: (s 0) (zip + fibs (tail fibs)))) (s (s 0))

→ nth1 (s (s 0)) 0 (: (s 0) (zip + fibs (tail fibs)))

→ nth (: (s 0) (zip + fibs (tail fibs))) (s 0)

→ nth1 (s 0) (s 0) (zip + fibs (tail fibs))

→ nth (zip + fibs (tail fibs)) 0

→ nth (zip1 fibs + (tail fibs)) 0

→ nth (zip1 (: 0 (: (s 0) (zip + fibs (tail fibs)))) + (tail fibs)) 0

→ nth (zip2 (tail fibs) 0 (: (s 0) (zip + fibs (tail fibs))) +) 0

→ nth (zip2 (tail (: 0 (: (s 0) (zip + fibs (tail fibs)))))

0 (: (s 0) (zip + fibs (tail fibs))) +) 0

→ nth (zip2 (: (s 0) (zip + fibs (tail fibs))) 0 (: (s 0) (zip + fibs (tail fibs))) +) 0

→ nth (: (+ 0 (s 0))

(zip + (: (s 0) (zip + fibs (tail fibs))) (zip + fibs (tail fibs)))) 0

→ nth1 0 (+ 0 (s 0))

(zip + (: (s 0) (zip + fibs (tail fibs))) (zip + fibs (tail fibs)))

→ + 0 (s 0)

→ s 0

Meanwhile, this translation moves needed positions to leftmost-outermost
positions, which the leftmost-outermost strategy rewrites. Hence, by the
translation, we can simulate the needed strategy by the leftmost-outermost
strategy.

There is an existing work: left-normal translation was originally devel-
oped by Hashida [1]. Hashida’s translation translates constructor systems to
left-normal constructor systems. This is the pioneering work using an ap-
proach that simulates the needed strategy by the leftmost-outermost strat-
egy. Our study is aimed to extend Hashida’s translation to ATRSs and to
enlarge the class of TRSs that can be left-normal.

Our contribution is two-fold. Firstly, we establish left-normal translation
for ATRSs, and then realise simulating the needed strategy by the leftmost-
outermost strategy in computations of applicative terms. Secondly, we show
that our translation for ATRSs includes Hashida’s translation [1]: functional
TRSs that can be translated by left-normal translation for functional TRSs

3



can be translated by left-normal translation for ATRSs after currying, a
procedure that translates functional TRSs into ATRSs. The translation also
can handle ATRSs including higher-order function. We therefore succeed
in extending the class of TRSs with which terms can be computed by the
needed strategy.

References
[1] A. Hashida. Transformation-based normalization analysis for term rewrit-

ing. Master’s thesis, JAIST, 2019.

[2] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems,
II. In Computational Logic – Essays in Honor of Alan Robinson, pages
395–414. The MIT Press, 1991.

[3] M. J. O’Donnell. Computing in systems described by equations. 1977.

4


