JAIST Repository

https://dspace.jaist.ac.jp/

Title

iUy UUg o

googogo
Author(s) oo, O
Citation
Issue Date 2021-03
Type Thesis or Dissertation

Text version

aut hor

.net/101p9/ 17151

URL http:/7/7 hdl handl
Rights

L Supervisor: oo 0O4d,
Description

gooodd

goooooopd, o

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



EFOLEREIBHFEIC BT B BV FEA I S WHEE o IHINCEE 3 2 5%
1810008 FAfER fi

In the process of software development, the source code becomes compli-
cated every time specifications are added or changed. It becomes difficult to
grasp the contents. As a system development method, UML (Unified Mod-
eling Language) is a language that unifies the description when modeling a
system in object-oriented design, and because it is visualized, it is easier to
understand the contents than the source code. Model Driven Development
(MDD) is a method that automatically generates a source code template from
a UML model, and consists of a class diagram, sequence diagram, use case
diagram, etc. as a model. MDD makes it easy to maintain model and code
consistency in model development. However, UML itself may become com-
plicated and maintainability may deteriorate. The sequence diagram itself,
in which exceptions occur due to the addition and change of specifications
and their processing appears, becomes complicated, and the maintainability
deteriorates, which adversely affects the automatically generated source coat.

The purpose of this study is to propose a method to suppress the com-
plexity of software that should consider numerous exception sequences for
the addition of functions in MDD. The complexity of the sequence diagram
is measured using several complexity metrics, and the factors that increase
the complexity due to the addition of functions are clarified.

First a case study of system development is performed. Design the target
system and upgrade it by adding functions multiple times. As the configura-
tion becomes more complicated, the class diagram and sequence diagram be-
come more complicated, which affects the decrease in maintainability. There-
fore, each version evaluates this degree of complexity to identify the cause
of the rapid increase in complexity. The system developed in the case study
is a route search problem. There is a moving body and a mesh-like movable
area, and the current position of the moving body can be obtained from
the position detection device. The direction of movement is limited to four
directions, north, south, east, and west, and the start point and end point
of movement are given from the outside. In addition, the movement of the
moving body to the movement start point is excluded. The functional re-
quirement of version 1 is to move in the shortest path, and the constraint is
not to go back. Class diagrams and sequence diagrams designed to meet this
requirement were created, and the complexity of the sequence diagrams was
measured using RFC(Response for a Class). As a result of measurement for
each UC (Use Case), the complexity of all UCO, UC1 and UC2 was 1.

The functional requirement of version 2 is that the required time is set
for each route and the sum of them is minimized. Also, as a constraint,



"required time” is added as information required for route calculation.The
functional requirement of version 2 is that the required time is set for each
route and the sum of them is minimized. Also, as a constraint, ”required
time” is added as information required for route calculation. As a result of
RFC measurement for each UC, the complexity was unchanged for UC0 and
UC1 and UC2 was 3. This value is three times that of V1.

The functional requirement of version 3 is that the required time changes
depending on the time of day. In addition, ”current time” is added as in-
formation required for route calculation. As a result of RFC measurement
for each UC, the complexity was unchanged for UCO and UC1 and UC2 was
5. This value is five times that of V1. In addition, when measuring with
RFC considering the parameters, V3 was 11 for UC2, showing a significant
increase.

When exception handling was added in version 4, the complexity in-
creased sharply due to the increase in execution paths. Therefore, the reason
for the rapid increase is that there are many messages with arguments in the
execution path that accompanies the occurrence of an exception.

In order to suppress the increase in complexity, we propose a method of
grouping the objects that appear in the sequence diagram. It was confirmed
that this method can reduce the complexity.



