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Abstract

The deep neural network has been wildly used in various fields in recent

years, since it has excellent performance and is easy to use in classification and

prediction tasks. It is also applied in real-time systems, such as self-driving and

object tracking systems, etc. However, the problem of it is the huge amount

of multiplication and accumulation operations make a neural network task

become a heavy task in real-time systems. This may bring a huge impact on

the performance of the system in the real-time property. Because of this, most

of the real-time systems which include the neural network task must make the

compromise to the accuracy of the result of the neural network task and the

real-time requirement of the system.

BranchyNet [13] and MSDNet [2] were proposed in 2017. These two neural

networks are different from the typical neural network model. They have more

than one exit-point instead of only one exit-point. Different exit-points are

inserted into different places in the neural network model. Since the insertion

locations in the model are different from each other, the execution times from

input-point to each exit-point are also different. The later exit-point will take

more time to finish compared with earlier exit-points. Each of the exit-points

in the multiple exit-point models gives the output of the classification result

on one input picture.

In Chapter 2, we briefly introduce the CNN(Convolutional neural network),

and how the feature map flows as the input and output data between each

layer. For the BranchyNet, it was proposed for the fast inference via finish-

ing its execution from earlier exit-points if the system already has enough

confidence with the generated classification results. One of our proposals uti-

lizes a BranchyNet model based on the VGG-16 for Cifar-10 dataset. This

VGG-16 based BranchyNet has 3 exit-points. From the entry of the model

to the first exit-point ”EXIT1”, it has 9 layers. In addition, it has 12 layers

from entry-point to second exit-point ”EXIT2”, and 16 layers from entry-

point to the third exit-point ”EXIT3”. The accuracy for ”EXIT1” on Cifar-10

is 87.22%, for ”EXIT2” is 88.51%, and for ”EXIT3” is 88.57%. MSDNet,

which was proposed for the similar purpose to the BranchyNet considers the

impact of the accuracy of the final exit-point by inserting early exit-points

into the model. The MSDNet for Cifar-10 has 24 layers, and an exit-point



is inserted after every 2 layers. The accuracy for ”EXIT1” in MSDNet is

84.45%, for ”EXIT2” is 86.55%, ”EXIT3” is 87.95%, ”EXIT4” is 88.93%,

”EXIT5” is 90.11%, ”EXIT6” is 90.17%, ”EXIT7” is 90.28%, ”EXIT8” is

90.55%, ”EXIT9” is 90.6%, ”EXIT10” is 90.61%, and ”EXIT11” is 90.77%.

In Chapter 3, we regard the neural network task which is implemented with

the multiple exit-points model in real-time systems as the imprecise compu-

tation [9] task. We show three scheduling methods for real-time systems that

have one neural network task in their taskset. The first scheduling method

is the typical real-time scheduling algorithm with the single exit-point neural

network task. The second method ”IC” includes the neural network task with

a multiple exit-points model and regard this task as the imprecise computation

task. In this scheduling, we decide the exit-point to finish the execution of the

neural network based on the system load, instead of choosing by the confi-

dence of classification results of each exit-point. If the time resource that the

neural network task received from the system is long enough to exit from the

later exit-points, then the system uses the classification result of the later exit-

point. The later exit-point will give a result with higher accuracy. The third

method ”SIC” is a server-based imprecise computation scheduling method. It

is proposed as an enhanced imprecise computation scheduling. With ”SIC”,

the response time of each exit-point will be improved. Since ”SIC” is a server-

based method, we present a way to decide the server’s priority in the systems, a

way to compute the budget of the server, and when this server will be released

to the system.

In Chapter 4, we show experiments to evaluate these 3 scheduling methods.

We compare the accuracy of the classification result of the task among a single

exit-point model, multiple exit-points model with ”IC”, and multiple exit-

points model with ”SIC”. In addition, we compare the response time of each

exit-point in ”IC” and ”SIC”. In experiments, we implemented the multiple

exit-points model for neural network task with the VGG-16 based BranchyNet

and the MSDNet model for Cifar-10 dataset. The basic scheduling algorithms

we used are EDF(earliest deadline first) and RM(rate-monotonic).

In Chapter 5, we implemented the binarized VGG-16 based BranchyNet

on FPGA with VHDL. We show the structure of the neural network model

and the way we are using it to implement the batch normalization operation.

Then, we compare the execution result between the binarized BranchyNet

and its software implementation, for checking the correctness of the hardware

implementation. Furthermore, we show the accuracy and execution of it.
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In Chapter 6, we draw a conclusion on our research. From our research,

we can know the efficiency of applying the multiple exit-points neural network

models and treating the neural network task as the imprecise computation

task. It can improve the accuracy of the neural network task without making

other tasks miss their deadline.
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Chapter 1

Introduction

1.1 Background

In the past of few years, Neural Network has become the most popular and

state-of-art in deep learning field, since it can achieve a high accuracy by

extracting and learning features from data by itself. Because of this advantage,

it is also applied on real-time systems, for example the self-driving system and

object-tracking system.

In most of the condition, when the neural network task is integrated in the

system, system developers desire to get a higher accuracy from the neural

network task, and it requires relatively larger models and spends longer time

to execute it. According to this, if the system utilization is already high

enough, a neural network with a longer execution time may overload the system

utilization, and cause one or more tasks to miss their deadline.

For handling the overload condition, imprecise computation [9] was pro-

posed. In the imprecise computation model, it separates a task into mandatory

phase and optional phase. The mandatory phase takes less execution time but

gives a less acceptable result. The optional phase takes longer execution time

than mandatory phase to finish , but a relatively higher precision(or accuracy)

than the result from mandatory phase will be produced.

In 2017, BranchyNet [13] was proposed by Surat Teerapittayanon and MS-

DNet [2] was proposed by Gao Huang. These two neural network models all

considered the resource-limited and energy-sensitive application, and they all

give the solution for fast exit from the execution of neural network by design-

ing several early exit-points in the model. This means several exit-points are
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inserted in different places in the network model. Some of the exit-points are

inserted in the early layers, so that they have a short path, and take shorter

execution time to finish even though they give a lower accuracy.

In the neural network model like BranchyNet and MSDNet we mentioned

above, the shortest path can be regarded as the mandatory phase and the

other exit-points inserted in the later layers can be regarded as the optional

phase in the imprecise computation.

Binarized Neural Networks were proposed [1]. Such neural network model

uses two values (+1 and -1) to represent the values of weight parameters instead

of using floating point values as a normal neural network model. By simplifying

the weight parameters to +1 and -1, Binarized Neural Network will get a

relatively lower accuracy than a normal floating point implementation, but

decrease the utilization of memory. Since it uses only +1 and -1, if we use 1 to

represent +1 and 0 to represent -1, then we can improve the execution time by

using XNOR operation instead of floating point multiplication to implement

the basic calculation of neural network.

For the speed and energy-efficiency of neural network, a Binarized Neural

Network accelerator for BranchyNet model which runs on FPGA is considered.

1.2 Objectives

In this research, our target is to use a larger deep neural network model in

real-time system even in overloaded situations, without making other tasks

miss their deadline. The following things are the objectives.

• Train a BranchyNet and a MSDNet as a neural network task in the

real-time system.

• Implement a real-time scheduling simulator and two scheduling algo-

rithms which are Earliest Deadline First(EDF) and Rate Monotonic(RM).

• Run the designed neural network task in the scheduling simulator as an

imprecise computation task and observe the accuracy when the utiliza-

tion of system and utilization of neural network task are changed.

• Implement a Binarized version of BranchyNet on FPGA.
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1.3 Outline

The rest of the thesis is organized as follow:

• Chapter 2 describes the basic knowledge of Convolutional Neural Net-

work, the BranchyNet, and MSDNet.

• Chapter 3 proposes 3 scheduling strategies.

• Chapter 4 shows the scheduling result with the three different scheduling

strategies.

• Chapter 5 describes the Binarized implementation of BranchyNet.

• Chapter 6 Concludes this research and presents future work.
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Chapter 2

Related Work

2.1 Convolutional Neural Network

Convolutional Neural Network [8] is a class of feedforward neural networks.

It is wildly used now in various fields including computer vision, audio pro-

cessing, and natural language processing and etc because of its outstanding

performance of prediction or classification accuracy. A typical convolutional

neural network consists of more than one convolution layer which is applying

convolution operation on input data for automatically extracting features. Af-

ter one convolution layer, a pooling layer (Max pooling, Average pooling, or

Global pooling) follows as an option. The pooling layer is for reducing the di-

mension and preventing the overfitting to the training data. A fully connected

layer is commonly applied in the very last layer as a classifier to generate the

output of the prediction or classification result. Figure 2.1 shows an image of

the structure of the convolutional neural network.

Figure 2.1: The structure of the Convolutional Neural Network [8].
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In this figure, it includes 5 parts: input data, subsampling, convolutional

operations, full connection layer, and output.

The input data is a raw picture. Input pictures can be a monochrome picture

or a 3-channel RGB picture. And the first convolution layer will compute its

output feature map from this input picture.

For the subsampling and convolutional operations, convolution layers with

tanh activation function are for the convolution operations and pooling layers

are for the subsampling.

Before the output data from the last convolution layer is input to the first full

connection layer, it will be flattened, because as shown in the figure, whatever

the input or output feature maps for convolution and subsampling layer are

2-dimensional data, but the full connection layer only accepts 1-dimensional

input. After the last full connection layer, the classification result is produced.

2.2 BranchyNet

2.2.1 Introduction

Considering the high resource consumption for Convolutional neural network,

it is still a problem to apply it on resource-restrictive and energy-sensitive

application. The most straightforward solution for solving this problem is the

fast inference which tries to finish the execution of the convolutional neural

network in the early-stage instead of finishing processing layer by layer of the

complete model. According to this, the idea of inserting some early exit-

points to a complete Convolutional neural network model is designed. One of

the simple designs of BranchyNet [13] which is based on AlexNet [6] is shown

in Figure 2.2.
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Figure 2.2: An BranchyNet implementation based on the AlexNet [13].

The origin AlexNet has 8 layers, 5 of them are implemented with a con-

volution layer, and the rest of the 3 layers are fully connected layers. In the

figure above, the original AlexNet structure is from the convolution layer at

the bottom as the entry to the ”EXIT3” as the exit, and we also call it the

main branch. Two side branches are inserted on the main branch. One is

inserted after the first convolution layer. Its execution path is from the first

convolution layer until the ”EXIT1”. The second one is inserted after the third

convolution layer. It is from the first convolution layer until the ”EXIT2”.

In this network structure, the classifier of ”EXIT3” is a full connection layer.

For ”EXIT2” and ”EXIT1”, each of them consists of 1 max-pooling layer and

1 full connection layer as the final layer.

BranchyNet is proposed for fast inference, which means if the condition is

met, It tries to exit from the execution of BranchyNet via early exit-point

as early as possible. According to this, a procedure or mechanism for mak-

ing the decision to exit from early exit-point is necessary. In their paper, a

”confidence” is defined for doing such duty. The ”confidence” is calculated by

entropy. The following formula calculates the entropy:
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entropy(y) =
∑
cεC

yclogyc,

where y is the vector of classification result from an exit-point which is a set of

values, containing the possibility that input data belongs to the corresponding

class, and C is a set of possible classes.

A procedure named BRANCHYNETFASTINFERENCE is defined as Algo-

rithm 1.

Algorithm 1: BRANCHYNETFASTINFERENCE

1 for n = 1, 2, . . . N do

2 z = fexitn(x)

3 ŷ = softmax(z)

4 e← entropy(ŷ)

5 if e < Tn then

6 return MaxIndex(ŷ)

7 end

8 return MaxIndex(ŷ)

In the procedure above, x is one input data. Assume there are N exit-points

in the neural network model. In each iteration, one classification result from

exit-point exitn is marked with z. Then it calls the function of softmax and

entropy until we get a value e. In the final step of this for-loop, a comparison

is performed: if the entropy of the current classification result is less than

Tn. The definition of Tn is the threshold for the n-th exit-point. It is checked

whether the entropy of a prediction result from an exit-point is less than its

threshold. For example, if the result of i-th exit-point is less than Ti, then they

think this prediction result is confident enough to finish the execution, so exit

the execution of this neural network model from this exit-point. The details

of calculating Tn is also showed in the repository of BranchyNet [7].

2.2.2 VGG-16 Based BranchyNet

In our research, we modified one BranchyNet based on VGG-16 [12] and the

dataset for training and testing is Cifar-10 [5]. The basic VGG-16 consists of

13 convolution layers and 3 fully connected layers. The details for its structure

are shown in the ”C” column in Figure 2.3.
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Figure 2.3: Baseline of VGG-16 in the C column [12].

After the modification, the structure of the BranchyNet based on VGG-16

is showed in Figure 2.4.

8



Figure 2.4: VGG-16 based BranchyNet [12].
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In the VGG-16 based BranchyNet, 2 side-branches are inserted. Branch 1

is from ”Entry” to the ”Exit 1”. Similarly, branch 2 is from ”Entry” to the

”Exit2”. Each of these two side branches consists of 2 convolution layers, 1

max-pooling layer, and 3 full connection layers.

Accuracy for the evaluation data in Cifar-10 dataset for all of the exit-points

in this model is showed in Figure 2.5. According to the evaluation result, the

accuracy of the later exit-point is relatively higher than the earlier exit-point.

Figure 2.5: Accuracy of VGG-16 based BranchyNet [12].

2.2.3 Training BranchyNet

In this subsection, we show the training procedure of BranchyNet. Assume the

input is x, and a function fexitn generates the output from the n-th exit-point,

and y is the classification result.

y = fexitn(x). (2.1)

Then apply the softmax operation on y to get ŷ. C in this formula is the

set of all the possible labels. The Formula2.2 is

ŷ = softmax(y) =
exp(y)∑
c∈C exp(yc)

. (2.2)

When the one-hot ground-truth label vector is z, the loss function to calcu-

late the error of this classification result y is as Formula2.3

L(ŷ, z) = − 1

|C|
∑
c∈C

zclogŷc. (2.3)
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The formula to calculate the error of BranchyNet is Formula2.4

LBranchyNet(ŷ, z) =
N∑
n=1

wnL(ŷexitn , z), (2.4)

where N is the total number of exit-points, and wn represents the weight of

loss value of n-th exit-point in the total loss value. The sum of weight values

of all exit-points should be 1.0.

The gradient of each weight parameter in the BranchyNet is calculated based

on loss value LBranchyNet(ŷ, z). The optimizer we are using is Adam.

2.3 MSDNet

2.3.1 Introduction

The full name of MSDNet [2] is Multi-Scale Dense Networks. The MSDNet

is proposed for the situation of limited computation resource in the platform,

which is quite similar to the BranchyNet. But the main difference between

MSDNet and BranchyNet is that MSDNet considers the effect of insertion of

early exit-point to the accuracy of the final classifier. The accuracy of the final

exit-point is reduced because of the inserted exit-point. This happens because

the early exit-point makes the features generated by early convolution layers

optimized for the short-term, but for long-terms, the final classifier requires

some ”high-quality” features which might have no high contribution to the

early exit-point but are good for the latest exit-point, and this effect is more

obvious when the early-exit point is appended to the earlier exit-point.

For the reason above, the MSDNet is implemented based on the DenseNet

[3]. The DenseNet connects all of the feature maps generated by previous

layers and uses them as the input for the next layer, so in the later layers, it

will receive the feature map with ”high-quality” features and the feature maps

which are good for the early exit-point. The connection is shown in Figure

2.6.
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Figure 2.6: Example of structure for DenseNet.

In this figure, xi is the feature maps generated by Hi,

xi = Hi([x0, x1, . . . , xi−1]).

When i = 0, then:

x0 = input data.

When i = 1, then:

x1 = H1(x0).

The structure of MSDNet has multiple MSDNetlayer, each MSDNetlayer

consists of multiple scales of feature maps as in Figure 2.7. In this figure,

the horizontal axis is the depth of the network, and the vertical is the scale

of the network of each layer. For the first MSDNetlayer, the feature map of

layer 1 and scale 1 is generated first, then the feature maps of scale 2 are

generated based on scale 1, and scale 3 is calculated based on scale 2 in layer 1

with the stride convolution operation. The stride convolution operation means

the stride for this convolution operation is 2, and relatively there is a regular

convolution operation defined with a stride of 1.
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Figure 2.7: Example of structure for MSDNetlayer.

The input data for the first MSDNetlayer is a picture. For the later layers,

the input of the convolution layer Hi,j for getting feature map xi,j in layer

i with scale j is the concatenation result of the feature maps from previous

layers with the same scale, which means [x0,j, x1,j, . . . , xi−1,j, xi−1,j−1]. So the

formula is

xi,j = Hi,j([x0,j, x1,j, . . . , xi−1,j, xi−1,j−1]).

The exception is the first scale in each layer. The input feature map in each

layer in scale 1 is

xi,1 = Hi,1([x0,1, x1,1, . . . , xi−1,j]).

The concatenation operation is rarely found in other neural network struc-

ture. An example to simply explain the concatenation operation is as follows.

a is defined as a = [3.0, 4.0, 5.0, 6.0] and b is defiend as b = [1.0, 2.0, 7.0], then

after the concatenation we get a set c = [a, b] = [3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 7.0].

2.3.2 MSDNet for Cifar-10

The structure of MSDNet for Cifar-10 dataset has 24 MSDNetlayers and 11

classifiers. Layers 1 to 8 have 3 scales in each layer, layers 9 to 16 have 2 scales
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and after layer 16, there is only one scale in each layer. 11 classifiers are inserted

in the model; the first classifier is inserted after the fourth MSDNetlayer. After

the fifth layer, 1 classifier is inserted after every 2 layers. Each classifier consists

of 2 convolution layers and 1 fully connected layer.

Feature map size is 32x32 in scale 1, 16x16 in scale 2, and 8x8 in scale 3.

The structure is shown in Figure 2.8.
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Figure 2.8: Structure for MSDNetlayer on Cifar-10.

The evaluation accuracy for MSDNet on Cifar-10 is showed in Figure 2.9.
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Figure 2.9: Structure for MSDNetlayer on Cifar-10.

2.3.3 Training MSDNet

For training the MSDNet model, when we use fk to represent the k-th classifier

in the model, the loss function on this classifier is denoted as L(fk). We are

using the cross-entropy as the loss function. The optimization target is to

minimize the loss value LMSDNet(x, y) calculated with Formula 2.5.

LMSDNet(x,D) =
1

|D|
∑

(x,z)∈D

∑
k

wkL(fk), (2.5)

where D is the training set, since we are using the batch training method. For

each time, multiple data will be input and computed by the neural network.

wk is the weight for k-th exit-point.
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Chapter 3

Scheduling Strategy

In this chapter, I show 3 scheduling strategies for scheduling the neural network

task in the system. The first strategy is scheduling with a single exit-point

neural network task model. The second one is a scheduling strategy that

schedules the neural network model with multiple exit-point as the imprecise

computation task. I call it ”IC” as the simplified name. In the third strategy

we use a server-based mechanism to schedule the neural network task with

multiple exit-point as the imprecise computation task. We simply call it ”SIC”.

3.1 Basic concept for real-time scheduling

Before I start to show these 3 scheduling methods, some basic concepts about

real-time scheduling will be introduced. For each real-time system, it has some

computation resource, and a taskset consists of some tasks for utilizing the

computation resource. In our research, we assume the computation resource is

a single-core CPU. All of the task τi in this taskset τ , including neural network

task, are periodic task and each of τi has its own worst-case execution time

WCETi, the relative deadline Di and the period Ti. Only one neural network

task is executing in the system.

The worst-case execution time, WCETi is the longest execution time taken

for finishing one job instance of a task. But in some cases, a job instance

of a task will go to execute a branch which requires less execution time than

the branch with the longest execution time, according to the system condition

or input data of that moment. One thing that should be noticed is that the

system designer cannot predict the exact execution time spent by this task
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because it is decided dynamically.

The relative deadline Di means the longest time interval for finishing the

job of task τi should be less than or equal to Di. For example, assume a job

instance ji of task τi is released at time t then the ji should be finished before

time t+Di. If ji is finished later than t+Di, then the calculation result of ji
is meaningless. We call this the deadline miss.

The period Ti means for each system time Ti passed, one job instance of

task τi will be released into system. The task τi’s worst case execution time

WCETi should be less than or equal to its relative deadline Di and period

Ti(WCETi ≤ Di ≤ Ti). In our problem, we consider the period and relative

deadline are equal(Di = Ti).

Besides these 3 basic factors, utilization Ui for task τi is calculated by the

formula

Uτi
=
WCETi

Ti
.

For each task, its utilization should be less than or equal to 1.0. Otherwise,

it means its worst-case execution time WCETi is longer than the period Ti ,

and a new job instance of τi will be released before the old one is finished even

if processor is only running this task. No feasible execution strategy exists for

this task on this processor.

Besides the utilization defined for individual task, a total utilization of U is

defined as

U =
∑
τ∈τ

Uτ,

where τ is the taskset. From this formula, we can know the definition of

total utilization of U of the system is the summation of all of the tasks in the

taskset. If a taskset with a total utilization U larger than the upper-bound of

the scheduling algorithm 1, then there will be no scheduling strategy for this

task set without causing any deadline miss.

1The upper-bound of schedulability depends on the scheduling algorithm. For example,

the upper-bound is 1.0 for earliest deadline first, while 0.69 for rate-monotonic.
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3.2 Imprecise computation

Imprecise computation [9] was proposed for handling the overload condition

in a real-time computation system, so it is focusing on solving the timing

faults in a real-time system instead of the quality of the computation result

from a real-time task. In the imprecise computation, a task is separated into

the mandatory phase and optional phase. The mandatory phase will give the

lowest accuracy or precision of the computation result but utilize the least ex-

ecution time compared with finishing the task until the optional phase. When

the task finished the optional phase, it will get a relatively higher precision

result. And according to the system conditions, the precision of computa-

tion result can be determined at different levels, so there can be two or more

optional phases for the task in an imprecise computation model.

3.3 Example of task set

For helping me to explain these 3 scheduling methods, I will use a taskset

example shown in Table 3.1. In this taskset, there are normal task τ1, τ2 and

τ3, and a neural network task named τNN . In the first scheduling method, τNN

is a task with a single exit-point neural network model, and the worst-case

execution time is 2 system time units. But in the ”IC” and ”SIC”, τNN is a

neural network task which is running with a multiple exit-point(to be specific,

2 exit-points in the example). In this condition, since we need to guarantee the

shortest path of the neural network should be finished, we define worst-case

execution time WCETNN for it of 2, and there is a later exit-point as the

optional one which requires one more system time to exit from it.

WCET T U

τ1 2 4 1
2

τ2 2 8 1
4

τ3 2 16 1
8

τNN 2 16 1
8

Table 3.1: Table of taskset.

When the system is running with the task set above, the actual execution

time AETi,j for j-th job instance of task τi is generated as
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AET1,1 = 1 AET1,2 = 2 AET1,3 = 1 AET1,4 = 2

AET2,1 = 1 AET2,2 = 2

AET3,1 = 2

AETNN,1 = 2

Actually, for the task τNN , its AETNN,j should be WCETNN all the time,

because as we know, once the structure of the neural network is fixed, its

execution time should be a constant.

3.4 Scheduling with single exit-point model

The first scheduling strategy is the schedule with a single exit-point neural

network model. When the system designers considered using the single exit-

pint model in the real-time system, they must be aware of the total system

utilization, which is a hard requirement for the taskset running on the system.

The largest model that can be used in the system must guarantee that when

the system is running, no task can miss its deadline(the total utilization of

system load is less than the upper-bound of the applied scheduling algorithm),

so the procedure for choosing the model is compromised with the worst-case

execution time calculated as:

UPPER−BOUND WCET = (U − Uoth)TNN ,

where the Uoth is the total utilization of the tasks in taskset except the τNN ,

and the period TNN should satisfy the required FPS(frame per second, some

of the self-driving systems require up to the 63 FPS), Tnn = 1sec
FPS

. Any of the

models which requires longer execution time than the calculated UPPER −
BOUND WCET cannot be applied. Other tasks in taskset will not always

run for their worst-case execution time. So the CPU might be free at some

times because of this.

A scehduling exmaple is shown in Figure 3.1. In this example, the scheduling

algorithm is the EDF, and the utilization of this taskset is the upper-bound of

EDF. But, there is some empty slot appear at 11-12 and 14-16, which happens

since the actual executed time AET1,1, AET1,3 and AET2,1 are not equal to

their worst-case execution time.
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Figure 3.1: Schedule example with single exit-point model.

3.5 Scheduling with multiple exit-point model

3.5.1 Neural network model changed to multiple exit-

point model

With the scheduling example in the previous section, we noticed even the

calculated theoretical total utilization for the taskset is the upper-bound of

the EDF 1.0. There are some empty slots not utilized by any task. If those

empty slots can be utilized by neural network task, we can use a larger model

to get a higher accuracy for classification. But as we mentioned before, the

empty slot happens dynamically and cannot be predicted by the developer, so

it becomes a problem.

In the second scheduling strategy ”IC”, we apply the neural network model

with multiple exit-points. When we are using the multiple exit-point models,

since each exit point is inserted into a different place in the model, finishing

the execution of the neural network from different exit-point requires different

execution times. If it exits from the later exit-point, it will spend a longer time

than the earlier exit-point but the later exit-point gives higher accuracy. We

think this behavior is similar to the concept of imprecise computation in the

real-time computation field if we regard the shortest path exit from the earliest

exit-point as the mandatory phase, for example the ”EXIT1” in VGG-16 based

BranchyNet model, and the later exit-point ”EXIT2” as optional phase 1 and

”EXIT3” as optional phase 2.

After we applied the imprecise computation model for the neural network
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model, the worst-case execution time for the neural network task has become

the execution time required by the mandatory phase. The reason for making

this design is when the developer is doing the off-line analysis on taskset, he

or she has to make sure that all of the tasks will finish their execution before

their deadline, and neural network task has to finish its mandatory phase to

give an acceptable result. The optional phase is regarded as a kind of ”reward”

for the system condition with enough empty slots, where those empty slots are

got from the early finish of other tasks.

3.5.2 Scheduling for imprecise computation

In the scheduling, all of the tasks will be scheduled based on their priority in

the system including the neural network task. The neural network task will

be scheduled with only two conditions:

1. It is the task which has the highest priority in the system at that time.

2. There is some empty slots which are not utilized by any task and the

neural network task did not miss its deadline, and did not finish until its

last optional phase.

3.5.3 Example of IC-EDF

Assume that in the previous task example, the neural network task is imple-

mented with the model which has 2 exit-points like shown in Figure 3.2. This

model is based on the model we ever used in the example of single exit-point

and now we call the original exit-point as ”EXIT1”, while a long branch with

”EXIT2” is inserted into it for higher accuracy, which will ask for more execu-

tion time. After this operation, the worst-case execution time is the execution

time for exiting from ”EXIT1”, that is 2, while the additional execution time

for finishing the inserted longer branch up to ”EXIT2” is 1.
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Figure 3.2: Image of model for IC-EDF

The scheduling result will be like the Figure 3.3.

Figure 3.3: Image of model for IC-EDF

In the scheduling result, τNN is chosen to run based on its priority, and after

that execution, τNN finishes its mandatory phase(marked with red frame) and

gets a relatively rough classification result. At system time 11 to 12, the τNN

is scheduled again because it is the second condition, and this time the τNN

finishes its optional phase(marked with blue frame) and gets a relatively higher

accuracy than the result from ”EXIT1”.

3.6 Improved scheduling strategy with multi-

ple exit-point model

In the previous section, all of the tasks are scheduled based on their priority,

and some of the tasks did not spend all of their determined worst-case execution
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time. The reason why we can let the neural network task finish until the later

exit-point to get a high accuracy is some of the job instances of the task do

not take all of its worst-case execution time. For example, j1,1 is the first job

instance of τ1, but it only spends 1 system time unit although system preserved

2 system time unit for it, and the j2,1 can be executed earlier and an empty

slot is got later. The empty slot happens because of the early finish of j1,1.

If we can run the τNN once any of the job instances finished early, an earlier

response time of a job instance of τNN will be achieved.

3.6.1 Server for imprecise computation

For making this possible, we designed a server mechanism that is scheduled

in the system background. To define a server mechanism, we need to consider

the following questions:

1. when this server is released,

2. the priority for this server,

3. the budget for this server, and

4. what this server will do.

For question 1, the server is released at system time t, when a job instance

ji,j finishes its running and the actual executed time AETi,j < WCETi.

For question 2, once the server appears, it will have the highest priority in

the system. Before it consumes all of its budgets, no job can be scheduled.

For question 3, the budget for the server is calculated dynamically by the

system. Developers can not predict how much the server can run in the off-

line analysis. If the budget for the server is exhausted, the task with the

highest priority is scheduled. The budget will be updated when a job instance

is finished earlier. It is calculated as below.

BDG = WCETi − AETi,j,

where the BDG is the budget for the server, and AETi,j is the actual execution

time for ji,j which is finished at that time.

For question 4, whenever the server is released to the system, it will run the

τNN if it did not miss its deadline and did not finish until the last exit-point.
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If τNN finished until the last exit-point but the server still has some budget, it

releases the computation resource.

3.6.2 Scheduling condition for neural network task

With this server-based mechanism, the neural network task will be scheduled

to run in 2 conditions.

1. The neural network task is the task with highest priority at that time.

2. A server is released and neural network task has not finished until the

last exit-point.

3.6.3 Example of SIC-EDF

The scheduling result for ”SIC-EDF” is shown in Figure 3.4. The basic schedul-

ing algorithm is the EDF, and the server mechanism is implemented based on

this algorithm. Taskset example is the same as the task example in the previ-

ous sub-section.

Figure 3.4: Image of model for SIC-EDF.

At t = 0, all of the job of tasks are released. At t = 1, j1,1 is finished and the

AET1,1 = 1. Since AET1,1 < WCET1, so the server is released into system,

and BDG at t = 1 is 1. Since server has the highest priority once released into

the system, so it will utilize the processor and run the neural network task

now. At t = 2, the budget for server is become 0, so it releases the processor

to other tasks. At t = 3, j2,1 is finished and AET2,1 < WCET2, so server is
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released and BDG = WCET2−AET2,1 = 1. The server will run the τNN until

t = 4.

From the figure, we can know the τNN ’s mandatory phase(marked with red

frame) is executed in time slot 1-2 and 3-4 and finished at t = 4. Compared

with the IC-EDF which is finished at t = 8, the response time of ”EXIT1”

for SIC-EDF is earlier than for IC-EDF. The response time of ”EXIT2” for

SIC-EDF is also earlier than the response time of ”EXIT2” for IC-EDF.
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Chapter 4

Evaluation

In this chapter, we show the experiment result of applying the single exit-

point and the multiple exit-point with ”IC” and ”SIC”. The VGG-16 based

BranchyNet and MSDNet for Cifar-10 introduced in chapter 2 are used as the

multiple exit-points model in the experiment. Accuracy of neural network task

is the factor for comparing the single exit-point model and the multiple exit-

points model in different scheduling strategy ”IC” and ”SIC”. And another

comparison is performed between the ”IC” and ”SIC”. The response time is

the factor when we are comparing these two strategies.

4.1 Experimental setup

4.1.1 Taskset profile

Tasksets for experiments are generated randomly. Each taskset has two pa-

rameters, total utilization U and the utilization for neural network task UNN .

For the generated taskset τ , it is

τ = τoth ∪ τNN ,

where τoth are tasks other than neural network task in the taskset.

When we calculate the total utilization, we used formula:

U =
∑
τ∈τ

Uτ,
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as shown in chapter 3.

For each combination of U and UNN , there are 10 tasksets. The range for

U and UNN for taskset is decided as follows:

1. when the scheduling algorithm is the EDF, then U is from 0.7 to 1.0

2. when the scheduling algorithm is the RM, then U is from 0.5 to 0.7

3. the UNN is from 0.1 to U − 0.1

Since we used the specific neural network model, the execution times of all

phases for τNN are fixed, and they are collected by using the real execution

time unit on CPU(Intel(R) Xeon(R) Silver 4116).

The execution times from entry-point to each exit-point for VGG-16 based

BranchyNet are shown in Table 4.1.

exit-point time (millisecond)

1 11

2 22

3 34

Table 4.1: Execution time required by each exit-point for BranchyNet.

The execution times from entry-point to each exit-point for MSDNet for

Cifar-10 are shown in Table 4.2.
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exit-point time(millisecond)

1 27

2 52

3 79

4 114

5 133

6 149

7 164

8 179

9 186

10 193

11 201

Table 4.2: Execution time required by each exit-point for MSDNet.

4.1.2 Scheduling simulator

For the scheduling simulator, the basic scheduling algorithm we used is Rate-

Monotonic or the EDF,

The actual execution time for each job is generated on-line by the scheduler

simulator with the formula:

AETi,j = RAND(
WCETi

2
,WCETi),

where the RAND(a, b) is generating the random integer in range a to b.

4.2 Result for VGG-16 Based BranchyNet

4.2.1 Based on EDF

The experiment results for the VGG-16 based Branchynet with the EDF are

in Figure 4.1, which shows the accuracy of the neural network task in different

scheduling methods.
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Figure 4.1: Accuracy of τNN for single exit-point, ”IC” and ”SIC”, with the

EDF.

The result we showed is when the U is 85%. The x-axis is the utilization

of neural network task. The y-axis is the accuracy of the classification result

from the neural network task.

According to Figure 4.1, we can conclude that the accuracy of the single

exit-point model is constant. And for the ”IC” and ”SIC”, if the U is fixed

and UNN is decreased, then the accuracy of the classification result of τNN is

increased. This is because in the ”IC” and ”SIC”, the execution time from

entry to each exit-point is a constant. And less utilization for τNN means a

longer period for it, and therefore more chance to get the empty slot happens

due to the other tasks which finished early.

The next shown in Figure 4.2 is about the response time of each exit-point in

”IC” and ”SIC”. The results in Figure 4.2 are when U = 85% and UNN = 10%.

According to this figure, the response time of each exit-point in ”SIC” is shorter

than in the ”IC”.
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Figure 4.2: Comparison of response time between ”IC” and ”SIC”, with the

EDF.

4.2.2 Based on RM

An experiment similar to the previous subsection was conducted where the

basic scheduling algorithm is RM. The result in Figure 4.3 is generated when

U = 65%.
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Figure 4.3: Accuracy of τNN for single exit-point, ”IC” and ”SIC”, with the

RM.

Figure 4.4 is the comparison of the response times of each exit-point when

U = 65% and UNN = 10%. From this figure, we can get the same conclusion as

when we use the EDF as the basic scheduling algorithm, that is the response

time of each exit-point in ”SIC” is shorter than in the ”IC”.
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Figure 4.4: Comparison of response time between ”IC” and ”SIC”, with the

RM.

4.3 Result for MSDNet for Cifar-10

4.3.1 Based on EDF

The accuracy of τNN which is implemented with MSDNet where the basic

scheduling algorithm is the EDF is shown in Figure 4.5. In this experiment,

U = 85%.
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Figure 4.5: Comparison of accuracy, with the EDF.

In Figure 4.5, the x-axis is the UNN and the y-axis is the accuracy of the

classification result.

The comparison of response time is shown in Figure 4.6. This result is when

U = 70% and UNN = 10%. Response time is 0 on some exit-points, which

means no exit from that exit-point in scheduling. From this figure, we can see

the response time of each exit-point in ”SIC” is shorter than in ”IC”.
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Figure 4.6: Comparison of response time, with the EDF.

4.3.2 Based on RM

When the basic scheduling algorithm is RM, we got a similar result which is

shown in Figure 4.7. The U is 65% and UNN is from 55% until 10%.

Figure 4.7: Comparison of accuracy, with the RM.
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The response time comparison is in the condition of U = 50% and UNN =

10%.

Similar trends to the previous subsections can be found.

Figure 4.8: Comparison of response time, with the RM.
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Chapter 5

Implementation of Hardware

BranchyNet

In this chapter, we show the implementation of binarized BranchyNet in hard-

ware on an FPGA board with the hardware description language VHDL. The

network structure that we implemented is the VGG-16 based BranchyNet that

we introduced in Chapter 2. It has 18 convolutional layers and 9 full connection

layers. The BNN(binarized neural network [1]) uses ’1’ and ’0’ as the weight

parameters, and the values in feature maps generated from each layer are also

represented by a binary value. In BNN, the multiplication operations used in

the typical neural network are replaced by the XNOR operation, and the ac-

cumulation of multiplication result is also replaced by the popcount operation.

The XNOR and popcount operations can be simply implemented with a few

logic gates, so the performance and resource usage of BNN are much better

than the typical neural network.

The architecture of the hardware implementation referred to the implemen-

tation by Guo Jiajun [4]. The only difference is the implementation of batch

normalization. We referred to Manuele [11]’s paper for batch normalization.

When we use the formal way to do the batch normalization in the inference

phase, we perform the operation like Formula 5.1. Assume the input data of

batch normalization is X, and there are m values in X. Formula 5.1 as follows.

µ =
1

m

m∑
i=1

xi,
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σ2 =
1

m

m∑
i=1

(xi − µ)2,

x̂i =
xi − µ√
σ2 + ε

,

yi = BatchNormγ,β(xi) = γx̂i + β. (5.1)

yi is the i-th output from the batch normalization, and γ and β are the

parameter which are trained by the backpropagation algorithm [10].

In Manuele [11]’s paper, the calculation of batch normalization in the infer-

ence phase uses Formula 5.2. In the formula, ϕ(m,x, y) is the popcount result

of the pixel [x, y] in m-th channel. thresh(m) in the formula is the calculated

threshold.

pixel(m,x, y) =


ϕ(m,x, y) ≥ thresh(m) if γ ≥ 0,

ϕ(m,x, y) ≥ thresh(m) if γ < 0,

1 if γ = 0 and β ≥ 0,

0 if γ = 0 and β < 0.

(5.2)

The pixel(m,x, y) is the calculated pixel located at coordinate [x, y] in m-th

channel of the feature map.

The formula used for calculating the threshold thresh(m) is Formula 5.3:

thresh(m) =

{
bµm − β · σ/γc if γ > 0,

dµm − β · σ/γe if γ < 0.
(5.3)

By applying Formula 5.2, we can get the binarized result with only compar-

ison operation. This operation does not utilize too much LUTs on FPGA, but

bring less impact to the performance compare with the formal batch normal-

ization calculation.

The execution result from the software is in Figure 5.1. Figure 5.1(a) is

the output of ”EXIT1”, Figure 5.1(b) is the output of ”EXIT2” and 5.1(c) is

output of ”EXIT3”. In Figure 5.1, the left side is the class number, and on

the right side is the output of the final layer of BranchyNet. In figure 5.1(a),

this result is from ”EXIT1”. The largest number of output in this figure is

282.0, and the corresponding class is class 3, so the classification result is class

3. Similar results can be seen in Figure 5.1(b) and Figure 5.1(c).
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(a) EXIT1 (b) EXIT2 (c) EXIT3

Figure 5.1: Output from software.

The result from hardware implementation is in Figure 5.2. The first line of

output from hardware corresponds to class 0, the second line corresponds to

class 1, and so on for the rest of the lines of the classification result.

(a) EXIT1 (b) EXIT2 (c) EXIT3

Figure 5.2: Output from hardware.
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By comparing the execution result of the last layer of the network, we can

know the BranchyNet in hardware implementation is the same as the output of

software implementation. The hardware implementation of FPGA is correct.

The accuracy for each exit-point of the hardware implementation is shown

in Table 5.1.

Exit point Accuracy

Exit1 0.7947

Exit2 0.8091

Exit3 0.8111

Table 5.1: Accuracy for each exit-point

Here is the execution time for each exit-point in Table 5.2, where the unit

of time is in seconds.

Exit point Time(sec)

Exit1 0.04068265

Exit2 0.040690265

Exit3 0.04751765

Table 5.2: Execution time for each exit-point

FPGA device we choose for running this BranchyNet is xcvu440-flagb2377-

1-l(Xilinx Ultra Scale series). The detail of the resource usage is in Table

5.3.

Resource Available Utilized Utilization(%)

LUTs 2532960 1857461 73.33

Registers 5065920 374341 7.39

CARRY8 316620 876 0.28

F7 Muxes 1266480 170875 13.49

F8 Muxes 633240 38091 6.02

BRAM36 2520 1151 46.15

BRAM18 5040 24 0.48

Table 5.3: Available resource and utilization.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

The use of CNN will be increased even in the computation resource critical

environment.

In our research, we used the untypical CNN, i.e., BranchyNet and MSDNet

as the neural network model to implement the neural network task in a real-

time system, and considered the scheduling of neural network tasks from the

real-time computation view, instead of using the typical way. We found that

when we apply the neural network model which has multiple exit-point and

regard it as an imprecise computation task, it will give us a higher accuracy

than the typical CNN model. And within the scheduling method in ”IC” and

”SIC”, we found the ”SIC”(the server-based imprecise computation) method

gives a shorter response time than IC.

Besides the scheduling method for the multiple exit-point, we also imple-

mented the BranchyNet on FPGA with VHDL with the consideration of the

hardware implementation being faster than the software implementation on

general-purpose CPU.

6.2 Future work

For future work, the implementation of BranchyNet on FPGA. Our implemen-

tation is slower than other’s, so as one of the future work, refine the imple-

mentation of the hardware implementation to increase the speed and reduce

the resource utilization.

41



Bibliography

[1] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks

with weights and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016.

[2] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Multi-scale dense convolutional networks for efficient prediction.

CoRR, abs/1703.09844, 2017.

[3] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional

networks. CoRR, abs/1608.06993, 2016.

[4] Guo Jiajun. Study on lightweight deep neural network with quantization and ensemble

methods. 03 2019.

[5] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny

images. 2009.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with

deep convolutional neural networks. Neural Information Processing Systems, 25, 01

2012.

[7] kuanglab. branchynet, 2019.

[8] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

[9] Jane Liu, Wei-Kuan Shih, Kwei-Jay Lin, Riccardo Bettati, and Jen-Yao Chung. Im-

precise computations. Proceedings of the IEEE, 82:83 – 94, 02 1994.

[10] David Rumelhart, Geoffrey Hinton, and Ronald Williams. Learning representations by

back-propagating errors. Nature, 323:533 – 536, 10 1986.

[11] Manuele Rusci, Lukas Cavigelli, and Luca Benini. Design automation for binarized

neural networks: A quantum leap opportunity? CoRR, abs/1712.01743, 2017.

[12] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[13] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference

via early exiting from deep neural networks. CoRR, abs/1709.01686, 2017.

42


