JAIST Repository

https://dspace.jaist.ac.jp/

iUy UUg o

Title goooosuouoooooooooo
Author(s) oo, 00

Citation

Issue Date 2021-03

Type Thesis or Dissertation

Text version

ETD

19/ 17480

URL http://hdl . handle.net/ 101
Rights
Description Supervisor: goooag, ooooooo

HEN

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



K I RS S

oL o FOE R AERE)

¥ i & 5 MIEH 43 5

FALR G AN B FM3E3H24A

A Study on Automatic Generation of Embedded Processors and
Real-Time OS Adapted to Applications

F& BT OESL R RI R R Hif%

S S |

m

0

i A EE

/

o = [F] Hiz
ol €05 [7] iz
et [F] iz
ik E RER TR e

X DRNEDEE

In recent years, the use of embedded microprocessors has been increasing with prevailing IoT
(Internet of Things) and RTOSs are commonly used to develop a real-time system effectively. By
using an RTOS, a complicated procedure can be divided into tasks with real-time scheduling
based on the preemptive and priority-based task scheduling, and a real-time application can be
developed easily with using RTOS functions such as task management, task dependent
synchronization, synchronization and communication. While there are advantages for using an
RTOS, an RTOS itself consumes additional memory, computational resources and power. Based
on these points, our research objectives are as follows: (1) Build an application adaptive processor
core. (2) Remove unused codes in RTOS kernel, while leaving necessary functions such as
checking possible errors. (3) Implement hardware RTOS to reduce the amount of software
resources and execution time. (4) Remove unused codes in a hardware RTOS as well as a
software-only RTOS. (5) Build automatic development environment with which we can perform

the items above.

In order to achieve the objectives, we adopted MIPS32 architecture for a processor core and
illustrated the method for analyzing an application program and generating the application
adaptive processor core circuit. In addition, we implemented two- to eight-core multi core
processor on an FPGA and showed eight-core processor can be implemented on a relatively small

FPGA with application adaptive processor cores.

Regarding RTOS, we proposed a framework to generate application adapted hardware RTOS
and software-only RTOS. For the specification of an RTOS, we adopted #xITRON4.0 for the
research as it is widely used and its specification is open in public. We propose the methods,
“Removing Unnecessary Codes Caused by Fixed Attributes” and “Removing Unnecessary Codes
Caused by the Way of Calling”, for generating an application adaptive RTOS kernel. For the
former method, as each system call is specified with attributes through parameters in a
configuration file, functions which are not specified in the configuration file can be deleted from
the RTOS kernel. For the latter method, error codes for system calls are defined in the RTOS




specification whereas codes for checking errors which never occur in the application program
remain in some cases. Since those codes are redundant when an application program is fixed, it
is shown that how unnecessary error checking can be removed. In addition, we explained the
structure of the hardware RTOS, which consists of RTOS Hardware Wrapper and RTOS
Hardware Core. We propose an environment to generate an application adaptive processor core
and a hardware/software-only RTOS kernel in a fully automatic manner.

For the evaluation of the effect of the proposal, we applied the proposed methods to several
application programs and measured FPGA resources, RTOS kernel execution time and the size of
the software parts. As a result, it can be seen that the hardware resources and the size of a
software part of an RTOS kernel are reduced, and that the system call execution time is

improved.

Keyword: processor, MIPS, RTOS, uITRON, configuration, system call, FPGA, adaptation

MXBEOERENES

KEGSLE Y TAE A DAIH VAT AZBWCHEBEa sy R—xr b LTSNS vt
HBLRNY TV ALOSIZH L, 77V r—3 3 2 UTRER 2 MR Tl b3 5 Tk
EXENERBT D HBMEMEREAZREL WL 00D T T r—rarras T MR LT
RFREZBEA LR E#HR L bOTHD, XTI (1) 77V 7r—va Vb Lz Gt
GT TV r—a NGB E T HmEREE TNEFITT D7D O E/MER O FRELE] B O % FF
D) wFarratyhaTOHBERE, Q) VT AXA LOSNTHRET U r—ain
WEEE L7 W HERER 22— R LV CTHIBR T2 FiE, 3) V7 bU = 73 A X & FATIRER] 2 Hi
W HNN—R7=7 VT NEALOSDFEE @) Eioe<TszT7 7Y r—yvaryy—RAa—FR
NHERHBICER T HHBBREOME, BIQ ) BETIEEMALT 7Y r—y a2
WA L7285 E0MEilic >V CRER LT 5,

Tuty PEMEFEOREE FIET D 72012, MIPS32 sk v M-S~ ArF a7 7 n
ot Eoa— Ry = 7R SEE TG L. EERIC FPGA #FH L7cdHliicks W Tonn— Ky =7
B EE 53~T6%HIKAIRETH D Z EWRENTND, o, UTZA L OS Di)bFik
(2B L C, WITRON4.O fEARICHEHL L 72V 7 b 7 =7 RTOS (¥ A7 A=a—/ff) BELON— KD
=7 RTOS ZBA% L, IRETLEEEAT 2 EBRICEB T, ¥ 7 v =7 RTOS DA K 63%
D a— KA ZHE, ~— F 7 =7 RTOS DA ITIRK 42% D 72— KA XHFAAETH D
ZEMNRENTWD, AT, /»~— K7 =7 RTOS HAIZ L 5 ¥ AT L =3— /)LD FEL TR O FHE
R L SRR L D7 re vy B X OVN— K7 =7 RTOS OBIEEIM 2R b rSh
TW5,

TERWNA & [REROMESLIIPAFEE S FIERETIT O 2 L b RETH D25, AH Y D& - #E5R & IF
FINKETH D, —77, AFFEO TR A BEEREEIT 2280 THEEFH TITV., O FEEDS



BDOEIBARERICL D AT EADORNR 2 OVENMEN TN D, LLARRN G, EFER ST
WAHHDIAL T vty FEA FPGA ZFIHT 25 v A7 JMIKT 2EBAMEICE L THa 2B %
TN TELT Elon—RU =7 a— KA XOHIEEREDO 2 2 MEEIC £ OREEEHR
ARETHDOMITEIES N TW R Z &R ENHEE LTS TV,

DL b, AT, 2 2 MR OEE LWELAL Y 2T ARSI B W T AN— Ry 2T &L V7
Fy =7 a— RY A X2HICHTET 2 FREZRELZLDOTHY (FINNERDOA L LT
ERCHTHIEMD RiAEN D, Lo Tl (FHAS) OFimXeE LTHMIESH S LD &
b=,



