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Abstract

Currently, data from multiple sensors and the Internet of Things (IoT) provide essential
mobility information for both governments and industries. They use this information to support
smart city planning, medical care, and transportation domains. Recently, the transportation
domain has played an essential role in the era of digital eCommerce, especially in transport
logistics. The rapid growth of logistics demand also reflects the cost and profit of the logistics
industry.

Historical statistics show that in 2019, the logistics industry had only 56% fleet utilization
in the United States and 54% in Europe. The lack of efficiency in vehicle route optimization
caused difficulties in transportation planning and management and created a direct impact on
operational costs. To solve this issue, logistics agencies use the data obtained from the IoT
to support their operations, for instance, transportation scheduling, planning, and resource
allocation. Their goal is to obtain a suitable policy that can minimize agency operational costs
and reveal the potential of route optimization.

The policy described in this study is used for managing the vehicle route optimization
process. Therefore, numerous methodologies have been introduced to extract rich information
from these data. Furthermore, anomaly detection and root-cause analysis are performed to
understand the transport operation characteristics. However, these data come from multiple
sources. Therefore, conventional methods cannot handle these data directly because of different
data formats, and the data are also dependent on spatial-temporal contexts and behavior
attributes.

To address these problems, this study provides a novel methodology for performing anomaly
detection (e.g., temporal and static anomalies) and root-cause analysis for transportation logis-
tics (e.g., explanation of anomaly in transportation logistics). Later on, the anomaly detection
models contributed to analyzing both transportation environment and reinforcement learning
(RL) agent’s behavior in optimizing daily vehicle routing for the logistics agency. This phe-
nomenon is presented in the case studies. The author assumes that the RL agent has the same
role as humans. Suppose that the optimal vehicle route is obtained by the RL agent, it denotes
that when a human follows this recommended route pattern provided the optimal decision.

The methodology consists of five models. They are used in two different stages: (1) the
detection stage and (2) root-cause analysis stage. In the first stage, anomaly detection using
Long Short-Term Memory (LSTM)-based and unsupervised hybrid anomaly detection models
is proposed. These two models are designed to detect point, contextual, and collective anoma-
lies. In the second stage, forward and inverse problem analysis models are proposed. They are
also compared with the machine learning-based model to derive the root cause of the detected
anomaly. These outcomes will increase the reliability and interpretability of the anomaly de-
tection result. The obtained outcomes also increase anomaly detection rates and significantly
reduce the bias of labeling the data.

The data from multiple sensors are preprocessed and transformed into structured data, and
the features are extracted using feature engineering to perform this experiment. A different set
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of anomaly detection methods is then used to distinguish between regular operation patterns
and disturbances. Its outcome is further used as an input to analyze the root cause of distur-
bances. Finally, root-cause analysis is performed. Thus, these steps are employed to analyze
environmental changes. The analyzed information is then used to adjust the RL agent’s be-
havior when it optimized vehicle routes. The vehicle route optimization solution is therefore
adapted to environmental changes by doing so.

To demonstrate the practicality of the proposed methodology, the experimental results are
validated with real data and compared against state-of-the-art models. Once the model for
detecting anomalies in transportation is developed, the model was also applied to the other
application domains to demonstrate the model’s generality. The results show an accuracy of
up to 0.83 (0.88 of the area under the RoC curve) with less processing time than that required
by other existing methods. The model is also general and can be employed in other application
domains with minor modifications. Finally, real case studies are presented to demonstrate the
practical significance of anomaly detection and root-cause analysis in assisting vehicle route
optimization tasks.

The real case studies’ results implied that the interconnection between RL, behavior analy-
sis, and reward processing of the proposed model increased the ability of the agent to perform
vehicle route optimizations in a similar way as humans for routine daily scheduling. Further-
more, when uncertain changes (e.g., the sudden change of customer demand, road-network
traffic condition, and fleet resources) occurred in the environment, the agent also outperformed
the humans when making rescheduling decisions. Thus, this proposed methodology improved
the vehicle route optimization solution up to 57.91% of profit improvement when compared
against the optimal baselines.

Keywords: Anomaly detection, Deep learning, Logistics, Root-cause analysis, Transportation.
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Chapter 1

Introduction

1.1 Introduction and Theoretical Framework

Currently, data from multiple sensors and the Internet of Things (IoT) provide essential
mobility information for both governments and industries. They use this information to support
smart city planning, medical care, and transportation domains. Recently, the transportation
domain has played an essential role in the era of digital eCommerce, especially in transport
logistics. The rapid growth of logistics demand also reflects the cost and profit of the logistics
industry.

Historical statistics show that in 2019, the logistics industry had only 56% fleet utilization
in the United States and 54% in Europe [1]. The lack of efficiency in vehicle route optimization
causes difficulties in transportation planning and management and creates a direct impact on
operational costs [2]. To solve this issue, the data obtained from IoTs is used by logistics
agencies to support their operations, for instance, transportation scheduling, planning, and
resource allocation. Their goal is to obtain an appropriate policy that can minimize agency
operational costs and reveal the potential of route optimization.

The policy denoted in this study is used for managing the vehicle route optimization pro-
cess. Therefore, various methodologies are introduced to extract rich information from these
data. Furthermore, anomaly detection and root-cause analysis are performed to understand
the transport operation characteristics. However, these data come from multisensors. There-
fore, current methods cannot handle these data directly because of different data formats and
reliance on different contexts, as mentioned in [3, 4, 5]. These critical attributes derived from
the literature and industry motivate the author to investigate and propose a new methodology
for anomaly detection and root-cause analysis. The proposed methodology monitors vehicle
route optimization processes in logistics management. It implements machine learning (ML)
and artificial intelligence (AI) to address environmental uncertainties and disturbances.

1.2 Problem Statement

By investigating the operation of a logistics agency in Thailand, it was discovered that the
agency has various types of data flows to the system. For instance, data from multiple sensors
and IoTs installed on vehicles. These data are crucial for assisting in decision-making, such as
developing management policies for transportation scheduling, planning, resource allocation,
and production. However, these data are massive, fast, and variable. These are data charac-
teristics of big data. Moreover, the data contain outliers and noise. The data attributes are
also not clearly separate when projecting high-dimensional data into a low-dimensional space.
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Furthermore, some information is mistakenly removed when the data dimensions are reduced.
Therefore, it is difficult for staffers in the logistics agency to manually analyze these data or
use conventional analysis techniques.

These issues are also widely discussed in academic research. As a result, the low utility
and productivity of these data usages also cause the agency to lose opportunities to discover
crucial insights for policy development and eliminate disturbances in their fleet management.
There is also a high risk of making an incorrect decision when a critical event occurs. Thus,
the solutions proposed by conventional methods are not always guaranteed to be feasible to
address this study’s problem.

1.3 Purpose of the Study

This study proposes a new methodology that can effectively monitor and detect disturbances
in the vehicle route optimization process of logistics management. This process takes large-scale
data for analysis. The methodology for this study consists of two parts.

The first part entails behavior analysis (anomaly detection), which detects temporal and
static anomalies that occur when the vehicle route optimization process is performed. The
result is also used to assist in root-cause analysis and further optimization tasks.

The second part entails the root-cause analysis, which determines the root cause of the
detected anomaly and validates it using case studies. Therefore, when anomalies are detected,
the cause of the anomaly is forwarded to an administrative person in the logistics management
division, which can help logistics agencies avoid a critical event that disrupts the vehicle route
optimization process.

This study aims to help agencies develop a sustainable operation monitoring and distur-
bance detection technique for vehicle route optimization by leveraging two expected outcomes.
First, it provides information about the ability and efficiency of a fleet to evaluate an agency’s
operational performance. Second, the obtained data are taken as inputs to support the vehicle
route optimization process. As a result, the vehicle route optimization solution is returned
with a minimum operational cost. Furthermore, an appropriate policy for managing route
optimization is also obtained.

The author believes that this research will have a remarkable impact if the methodology
can provide recommendations on the tasks to be set by agencies by presenting rich information
related to feasibility compared with the fleet operational capacity in terms of regular and
disturbance operation states. The use of ML and AI helps in the detection of disturbances and
extracts rich information related to the disturbances, which can be utilized as a guideline for
performing vehicle route optimization.

1.4 Significance of the Study

In recent years, the transportation logistics problem has become a crucial task for both
academia and industry. They aim to understand the behavior of transportation operations
to assist in developing appropriate management policies. The most popular methodologies
that are widely used are anomaly detection from large-scale data. Accordingly, a considerable
number of solutions and methodologies have been introduced. Each methodology has achieved
its goal of problem solving in transportation logistics. However, the real-world problem is much
more complicated than ever before. Therefore, implementing these methodologies directly in
real-world applications is not feasible.
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With respect to the anomaly detection problem, most methodologies have a problem when
large-scale and noisy data are streamed into the process. This problem directly impacts the
reliability of the detection result. Furthermore, the methods that reveal the causes of the
anomaly are also in the development stages. Therefore, it is necessary to have a methodology
that can perform two tasks in sequence and handle large-scale streaming data from multiple
sources.

Fortunately, the deployment of ensemble, two-stage anomaly detection and root-cause anal-
ysis methods has attracted researchers’ interest in recent years. Unfortunately, those method-
ologies cannot be applied directly because of the following gaps.

1. The data are from many sources that contain noise and outliers. In addition, they also
have different shapes and dimensions and are not linearly separable (e.g., the distance
between points and the reconstruction error of the anomaly event is similar to that of
the normal event). Therefore, it is not easy to detect anomalies using general single-level
approaches (e.g., clustering, statistical analysis, or classification techniques) directly.

2. Detecting anomalies that are correlated with different data contexts are limited by the
current methodologies. The anomalies are correlated by spatial-temporal contexts (e.g.,
time and location) and behavior attributes. For simplicity, behavior attributes are a
record of actions performed in the environment or by the computer system (e.g., speed,
usage, and incidents).

3. The components that discover the cause of the anomaly are still under development, as
mentioned in [4].

4. The pattern of data continues to change over time. Therefore, when new data patterns
are inputted into the model, the model must be rebuilt to consider these new changes.

If these issues still exist, it is difficult for the logistics agency to obtain a reliable vehicle
route optimization solution. Moreover, if the decision is made based on inaccurate information,
it might reduce the agency’s profit and opportunities to compete in the market.

This study proposes a novel methodology for anomaly detection and root-cause analysis to
fill the gaps in the current studies. This methodology was initially designed for transportation
logistics domains. However, it can also be expanded to other research domains to detect
anomalies and their root causes with minimal changes.

1.5 Dissertation Organization

This dissertation contains 7 chapters, as follows:

• Chapter 1 introduces anomaly detection and its application, the problem statement, the
purpose of this study, its significance, and the chapter organization of this dissertation.

• Chapter 2 provides a literature review to introduce the research background and liter-
ature review of behavior and root-cause analysis (e.g., the temporal anomaly detection
problem, multilevel anomaly detection problems, and root-cause analysis). A summary
of the remaining research gaps and motivations is included in this chapter.

• Chapter 3 presents a methodology for detecting a temporal anomaly in logistics agency
operations. At the end of the chapter, the experimental results are discussed.
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• Chapter 4 presents a methodology for anomaly detection and root-cause analysis using
joint learning and ensemble methods. At the end of the chapter, the experimental results
are discussed.

• Chapter 5 presents a case study that applies behavior and root-cause analyses in vehicle
route optimization. At the end of the chapter, the experimental results and case studies
are discussed.

• Chapter 6 presents the contributions of this study to this domain, including the practical
and theoretical implications and knowledge science contributions.

• Chapter 7 concludes the dissertation and discusses future works.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, the related literature is reviewed based on the defined problem statement.
The works are grouped into two subcategories: 1) works that review anomaly detection from
a data series and 2) those that review methods and approaches for root-cause analysis to
determine the causes of the anomalies. A review of these related works highlights the remaining
gaps and areas for improvement that are essential for this research.

2.2 Previous Work

Anomaly detection refers to the problem of finding patterns in data that do not conform
to expected behavior. These patterns are referred to as anomalies, outliers, observations, and
disturbances. The most famous terms are anomalies and outliers that are used in anomaly
detection studies. Anomaly detection can also be called behavior analysis. This technique
analyzes the behavior of data points that flow into the system. Anomaly detection is also
widely used to support system administration in monitoring information technology (IT) [6]
and industrial manufacturing infrastructures.

In Figure 2.1, the critical differences between anomaly detection and behavior analysis are
visualized.

In addition to anomaly detection, an anomaly explanation study is also presented. Note
that the author uses the term root-cause analysis for the term anomaly explanation in this
dissertation.

2.2.1 Anomaly Types

According to [7], the authors stated that anomalies can be classified into three types: point,
contextual, and collective anomalies. The details of each anomaly type are described as follows:

Point Anomalies

If a data point is different from the remaining data points in terms of distance and density,
this data point is then defined as a point anomaly. A real example of this type of anomaly is
credit card fraud. In this research field, fraud detection is developed to detect data points that
show a character that is different from others.
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Figure 2.1: Demonstration of the differences between anomaly detection and behavior analysis
approaches.

Contextual Anomalies

If a data point is an anomaly in a specific context, but for another context, it is not, then
this kind of data point is defined as a contextual anomaly. This can also be called a condition
anomaly. This type of anomaly uses two attributes to determine anomalies. It consists of
contextual and behavioral attributes.

The contextual attributes are used to determine the context of the data point. For example,
in spatial datasets, the coordinates of latitude and longitude are contextual attributes. For time-
series datasets, time is a contextual attribute that determines the position of the data point in
the time series.

The behavioral attributes define the noncontextual characteristics of the data point. For
example, in a spatial dataset describing the average rainfall of the entire world, the amount of
rainfall at any location is a behavioral attribute [7]. Therefore, if the rainfall is over the average
of the specific threshold, then it is defined as an anomaly. Usually, the threshold is defined as
µ+nσ, where µ is a mean of the data sequence’s value, n is the size of the standard deviation,
and σ is the standard deviation of the data sequence’s value.

Collective Anomalies

If a collection of related data points is anomalous concerning the entire dataset, it is classified
as a collective anomaly. The individual data instances in a collective anomaly may not be
anomalies by themselves, but their occurrence together as a collection is anomalous [7]. To
determine this kind of anomaly, the most efficient method is to perform the sliding windows
technique.

Therefore, if a group of data points in a sliding window has the same pattern and differs
from other data records, then this group of data points is considered an anomaly. An example
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of this kind of anomaly is shown in Figure 2.2. Note that Figure 2.2 is taken from [7]’s study.

Figure 2.2: Demonstration of collective anomalies; the red line illustrates the collective anomaly,
which has more frequency and differs from the other data patterns.

2.2.2 Behavior Analysis in Large-scale Data

According to a survey of the current research in terms of behavior analysis, the results and
findings can be grouped into two categories: efficiency and reliability.

Generally, businesses use behavior analysis to detect abnormalities in business processes. For
instance, management systems [6], industrial and manufacturing [8, 9], financial [10, 11, 12],
health-care monitoring, and transportation systems [13]. Behavior analysis is also used for
smart city planning [14] and IoT and networking control [15, 16].

Behavior Analysis for Solving Detection Efficiency

Recent studies have applied supervised, semisupervised, and unsupervised detection ap-
proaches. Real-world data have limitations related to labels. Therefore, unsupervised ap-
proaches are more suited for this research problem because they do not require information
about the data point to perform detection.
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Ko and Comuzzi proposed a statistical leverage method to detect anomalies in business
system log files. The authors showed that the proposed anomaly detection thresholds can
handle variable case anomaly ratios more effectively than other recent literature methods [17].

For time-series data, Hundman et al. applied LSTMs to detect unexpected behaviors from
a temporal correlation and proposed a dynamic threshold. The results showed that the defined
threshold can detect most of the abnormalities in the data. However, it still exhibited a high
rate of false detection [18].

Similar to Hundman et al.’s study, Elsayed et al. proposed an LSTM autoencoder to detect
anomalies in a computer network. However, instead of using LSTMs, the author proposed
an LSTM autoencoder (LSTM-AE) because it can learn the representations of the network
dataset better than using LSTM-based models with prediction error thresholds. Threshold-
based LSTMs do not easily manually handcraft and extract discriminatory features [19, 20].

Xu et al. proposed a model called “DONUT”. It is an unsupervised anomaly detection
model based on a variational autoencoder (VAE) [21]. The VAE was leveraged to model the
reconstruction probabilities of normal time series. Assuming that the reconstruction error was
larger than a threshold, the data points were then defined as abnormal points. Xu et al.
proposed a concept drift adaptive method for enhancing the LSTM detection result [22].

Furthermore, Wang et al. discovered that examining anomalies from LSTM prediction error
does not always guarantee that the error can represent the anomaly. Therefore, the authors
proposed an encoder-double decoder model that uses an attention technique. The attention
model enables the encoder to effectively summarize the information of the time series input
by automatically detecting parts of the input data that are more relevant in reconstructing
the data at different time steps. Unfortunately, this model also has a disadvantage. It relies
on human experience in tuning the criteria to monitor the trends of reconstruction errors.
Statistical analysis is required to analyze the reconstruction error [9].

Ding et al. proposed anomaly detection based on an LSTM and the Gaussian mixture
model (GMM). The author called their algorithm LSTM-BP and showed that using LSTM
alone cannot achieve a good result for all datasets [23]. Therefore, LSTM-BP was proposed
for improving the detection results using the benefit of GMM. The GMM is inputted by the
prediction result from the LSTM to cluster the data points and reveal the uncorrelated data
points. The author also proposed the system health factor α to denote whether joint detection
between the LSTM and GMM is required. They reduced the time complexity of the computa-
tion. Assuming that the LSTM-based model is a perfectly detected anomaly, it is unnecessary
to use the GMM model to detect anomalies as redundant tasks. As a result, the detection result
improves compared to the traditional LSTM-based model—unfortunately, the author focused
on the low-dimensional data.

More approaches that used LSTMs for detecting abnormalities from time-series data are
shown in [3, 4, 24, 25, 26, 27]. Kim et al. also mentioned that using only statistical anal-
ysis is not efficient for detecting anomalies as it contains different data distributions among
data points. The author also stated that using unsupervised learning has a drawback because
unsupervised learning methods cannot properly detect anomalies with the same statistical dis-
tribution as normal data. Thus, the author proposed C-LSTM to overcome this issue [28]. The
C-LSTM combines benefits from convolutional neural networks (CNNs), LSTMs, and deep neu-
ral networks (DNNs). In addition to the LSTM and its variants, Ahmad et al. used hierarchical
temporal memory (HTM) for dealing with real-time anomaly detection in streaming data. The
model detection result is impressive. However, it also has room for improvement. The author
showed that the prediction error is not always correlated to the anomaly.
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Therefore, the model suffered from providing a more accurate detection than the ensemble
method [29]. This technique was also used by Wu et al. The author used HTM to deal with
real-time changes in the data pattern since it incorporates contextual information from the
past to improve prediction results [30]. Some studies used reconstruction-based frameworks,
for instance, deep autoencoder (DAE), stacked autoencoder (SAE), and LSTM autoencoder,
for anomaly detection. Because the data are derived from multiple sources and are highly
dimensional, various autoencoding (AE) models have proven to be more suitable for performing
dimensional reduction tasks than principal component analysis (PCA) models or their extended
types. AE was also found to be efficient in detecting system abnormalities [31, 32, 33]. Unlike
PCA-based models, it assumes that the abnormalities do not always appear with a high degree
of differences from another cluster.

DAEs have also been used to represent data in low dimensions before performing joint
learning with clustering methods (e.g., K-means) [34] and density estimations (e.g., Gaussian
mixture model (GMM) [5] and density-based spatial clustering of applications with noise (DB-
SCAN) [35]).

To increment the model with every new data pattern, Zhou et al. [36] proposed contextual
hidden Markov models (HMMs) for temporal-spatial data analysis. The model continues up-
dating and predicting the next event regarding the temporal dependencies, current situation,
and context. The computations are based on the HMM definition.

Behavior Analysis for Solving Detection Reliability

Recent research shows the development of a hybrid model with a multilevel detection ap-
proach to bridge the gap caused by some of the research questions. Selim et al. [37] trained a
neural network and used the output in a decision tree to adopt the intrusion detection model.
The experimental results showed that combining the advantages of each model can lead to
higher accuracy and that detection becomes more reliable by connecting these two models. In
other words, it is a two-step approach. However, if we compare the two-step approach with
joint learning approaches, especially when performing dimensional reduction before clustering,
the performance is less efficient than simultaneously training and performing classification or
clustering, as shown in the study by [7].

To combine multiple models, which aims to increase the model reliability, an ensemble
method is a suitable choice. The most famous ensemble methods are the majority vote [38],
median, and weighted average [39, 40]. The ensemble methods combine a weak learner classifier
prediction to decide the final detection results, as shown in [41]. They combined an average-
based classifier, autoregressive linear predictor-based classifier, and neural network based on
the weighted majority voting algorithm to achieve a reliable result. This procedure is also
similar to Krawczyk et al. [42]. The authors proposed a clustering-based ensemble to utilize
individual classifier advantages based on feature space partitioning. In addition, [43] used the
ensemble method to combine a stacked autoencoder with a probabilistic neural network.

The results showed high accuracy and reliability. [44] also proved that ensembles are gener-
ally helpful to avoid the influence of bad decision makers but do not help to maximize ranking
performance. They also contrasted with the use of ensemble strategies in machine learning,
where the explicit goal is to achieve better performance than that of any individual classifier.
Chen et al. proposed an ensemble randomly connected AE for detecting a disturbance. Mul-
tiple AE model architectures were constructed and used to perform the detection. After all
AE models were executed, the process ensembled the result for the final detection result. The
author measures the degree of disturbance from the reconstruction error of the AE. A higher
degree means a high possibility that this data object is a disturbance [45]. The hidden AE
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layers consist of fewer neurons. These neurons are used to reconstruct the input as closely as
possible. The weights in the hidden layers capture only the most representative features of the
original input data. However, they discarded the detailed specifics of the input data, such as
outliers [46]. Zhang et al. [47] proposed a multistage ensemble to improve outlier detection
output. The authors showed that the hierarchical process in feature extraction is efficient in
interpreting the features and reducing noise from the dataset.

Moreover, the bagging strategy enhances the efficiency in detecting outliers. Finally, the
author proposed a stacking-based ensemble learning method to improve the reliability of the
detection result. They selected appropriate base classifiers by performing the self-adaptive
parameter optimization method. The classifiers that have the most optimized parameters are
selected. Ensemble learning is also used at double levels for unsupervised anomaly detection
as presented by [48]. The authors reduced the loss of information produced by the single-level
ensemble method when it generates multiple subspaces from the dataset.

Furthermore, in this research area, a dynamic ensemble anomaly detection approach dy-
namically chooses the models for final detection from the change in the data object. Wang et
al. [49] proposed a dynamic ensemble outlier detection model based on an adaptive k-nearest
neighbor rule. The results showed an improvement over the static ensemble method. The ratio-
nale behind this is that the dynamic ensemble methods dynamically select suitable classifiers by
majority voting and store them in a list. It stores the model until there are no further updates.
After that, it averages the output of the classifiers from the list as the final detection result.
They also improved the methodology of [50]. The authors proposed a procedure that trans-
forms the outputs of all base classifiers to the form of a Bayesian probability rule. Krawczyk et
al. [51] proposed three measures of classifier competence (e.g., minimal difference measure, full
competence measure, and entropy measure) for performing dynamic classifier selection. They
aimed to prevent the situation of choosing the weakest model.

Anomaly Detection Challenges

An analysis of the previous studies shows 6 challenges. This finding is also supported by
[4]. The challenges in the anomaly detection research area are listed as follows:

1. Low anomaly recall rate: Since anomalies rarely occur, it is difficult to detect all types of
anomalies. Many normal data points are accidentally detected as anomalies. As a result,
the false alarm or false positive rate is increasing.

2. Anomaly detection in high-dimensional and/or nonindependent data: Anomalies always
reveal evidence of abnormal characteristics in a low-dimensional space. However, it be-
comes hidden and unnoticeable in a high-dimensional space. High-dimensional anomaly
detection has been a long-standing problem.

3. Data efficiency for learning normality and abnormality: Due to the cost of producing
data labels for a large-scale dataset, fully supervised anomaly detection is not practical
for daily usage because it requires labeled training data with both normal and anomaly
classes. Therefore, in recent years, the research direction has focused on unsupervised
anomaly detection that does not require any labeled training data. However, unsupervised
methods do not have any prior knowledge of true anomalies. Therefore, the reliability of
the detected results remains an issue.

Moreover, the data patterns change constantly. Therefore, it is necessary to retrain
the model. This issue is impacted by all anomaly detection models (e.g., supervised,
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semisupervised, and unsupervised). It is necessary to have a new model that can adapt
to new data patterns and not rely on massive data labels. The interesting studies that
addressed this issue are Wu et al. [30], Hundman et al. [18] and Zhou et al. [36]. They
also include other studies that address temporal anomaly detection, such as [29, 28].

4. Noise-resilient anomaly detection: Many models assume that the inputted data are clean.
In this case, there is a risk that the model is mistakenly labeled for each class. At this
point, it is impacted by the accuracy of the detection result. The main challenge is that
the amount of noise can be significantly different from the datasets. Moreover, the noisy
data points may not be regularly distributed in the data space [4].

5. Detection of complex anomalies: As shown in the reviews section, most of the detection
models are for point anomalies that cannot be used for contextual anomalies and collective
anomalies since they have completely different behaviors from point anomalies. One main
challenge is to include the concept of contextualized and group anomalies into anomaly
detection models. Additionally, current methods mainly focus on detecting anomalies
from single data sources, while many applications require anomaly detection with multiple
heterogeneous data sources [4].

6. Anomaly explanation: When black-box models are used for anomaly detection, the data
have labeled either normal data or abnormalities. In this case, assigning data labels can
be biased. This is because in some cases, data are rarely assigned as anomalies, but are
normal data points. Therefore, it is crucial to have an algorithm to explain the reason
or give some clues as to why a data point is assigned as an anomaly. This algorithm can
also enhance the detection result to be more accurate and directly address the location
of the anomaly in the data.

Unfortunately, the explanation algorithm for anomalies is still under development and is
still limited. Most existing anomaly detection studies focus on only accurate detection models.
They ignore the capability of explaining the identified anomalies. The main challenge is also
to balance the model’s detection performance with the explanation.

The literature review motivates us to develop a methodology to fulfill the gaps in these six
challenges. In the next section, the review of anomaly explanations, or root-cause analysis in
this study, is presented.

2.2.3 Root-Cause Analysis

The root-cause analysis consists of the explanation of the abnormal behavior, that is, the
root cause that makes it happen. In the study by [52], the weight of the activation function in a
generalized neural network was used to describe the root cause of the detected abnormality from
the influence of the factors in a Spark cluster. It could determine the type of abnormalities and
the influence of the factors. Root-cause analysis was also employed to analyze alarms occurring
in a thermal power plant using the Bayesian network, as shown in [53].

Furthermore, the analysis of false processes in industrial manufacturing using an extreme
learning machine (ELM) was adopted and presented in the study of [54]. [55] detected stragglers
by Spark speculation and analyzed the root causes by the extracted features. It leveraged
the experience rule (rule-based) to extract features for each task from the application log and
monitoring data. Recently, Cauteruccio et al. [15] proposed a framework for anomaly detection
and root-cause analysis. The authors proposed a distance-based and calculated node arc degree
technique to detect anomalies in the IoT.
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After an anomaly is detected, in the second stage, forward and inverse problems are intro-
duced. This stage analyzes the cause of the detected anomalies. For instance, given a source
IoT node, the connected node is analyzed by the degree of the anomaly. In other words, there
is a network and the cause of action is observed, and computing continues until the anomaly
node is reached. For the inverse problem, instead of starting with a node connected to the
anomaly node, the process starts from the anomaly node and traces back to the origin nodes;
it starts from the effect (observable) a continues to the cause of the event (model). From these
techniques, the cause of the anomaly is revealed. The author showed that these techniques are
not widely used for anomaly detection and root-cause analysis.

2.3 Problem Solving

Refer to the anomaly detection and root-cause analysis mentioned in the previous literature.
The theory behind this problem-solving process is the so-called forward problem and inverse
problem. These two problems have different methods and objectives for these tasks. For
instance, if the author already has a model for detecting anomalies and wants to observe which
data point is an anomaly, then the forward problem formulation is applied. However, if the
author already observed the anomaly and wants to know what caused it, then the inverse
problem formulation is applied. A summary of this problem formulation is shown in Figure 2.3.

Figure 2.3: Problem formulation

2.3.1 Forward Problem

The forward problem is formulated from the model parameters (m) and sources (s) to
observe output (o) as computed in Equation (2.1):

o = As(m) (2.1)

where As is the forward problem depending on a source (s). This technique is regular problem
solving in which we have a question, and we want to find the answer to that question.
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2.3.2 Inverse Problem

In the context of root-cause analysis, the inverse problem is formulated from output (o) to
obtain suitable source (s). In other words, this theory attempts to find the suitable source of
output (o) [56], as computed in Equation (2.2):

s = A(−1)
s (o) (2.2)

where A
(−1)
s is the inverse problem operator. This assumes that the source parameters are

known. Next, in the solution of any inverse problem, there are 3 important questions that
should be considered [57].

• Does a solution exist?

• Is it unique?

• Is it stable?

The formula of the solution that exists is related to Equation (2.2). The uniqueness of the
solution can be demonstrated as Equation (2.3):

A(m1, s1) = o0, A(m2, s2) = o0 (2.3)

where m1 and m2 are two different models and have two different sources denoted as s1 and s2

that produce the same output. In this case, it is difficult to determine the uniqueness of the
model. Therefore, uniqueness is crucial for the inverse problem.

The last part is the stability of the solution. The stability is formulated as Equation (2.4):

A(m1, s1) = o1, A(m2, s2) = o2 (2.4)

where m1 and m2 are two different models and have two different sources denoted as s1 and
s2 that produce different outputs. Assume that the two models and sources are completely
different; however, the difference in output is between the noise level ε. |(|δm|)| = |(|(|m1 −
m2|)| > C, |(|δs|)| = |(|s1− s2|)| > C, |(|δo|)| =)||o1− o2|| < ε,C � ε where |(|.|)| denotes some
norm or measure of difference between two models, sources and outputs.

In this case, it is not possible to distinguish these two models from the observed output.
This is the reason why the inverse problem is more complicated than the forward problem.
Therefore, the inverse solution is computed based on an approximation, not an exact solution
[15, 57].

2.4 Preliminary Work

At the outset of this research, it is crucial to understand the business problem. Thus, a
survey was performed at one of the most famous logistics agencies in Thailand. Accordingly,
crucial information was acquired about the company’s needs and goals in terms of planning for
vehicle route optimization to deliver goods to customers. It also included how they monitored
these processes when they delivered goods to customers. This study collaborated and exchanged
ideas with an employee representative in the logistics management division. Therefore, a better
understanding of the business was obtained and used for this study.

Then, the business problem was modeled as an academic problem. The historical data
were analyzed, and the author discovered that it is necessary to understand the vehicle route
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optimization processes’ characteristics to help in decision making. Therefore, to evaluate the
efficiency of operations, the author sought to understand the data pattern. Accordingly, the
author performed a behavior analysis of large-scale data. Subsequently, previous studies were
reviewed to determine a solution that could deal with the multidimensional data involved in
this research.

However, this review elucidated that most methods cannot be applied directly to monitor the
vehicle route optimization process because most of the previous works were based on detecting
point disturbances and lacked an explanation of the detected result. Unfortunately, the logistics
management data are correlated to each other and are dependent on the location–time context
and event behavior (e.g., vehicle usage, a cycle of vehicle maintenance, absence of human
resources, or incidents in order cancellation and postponement). Therefore, if the previous
methodologies are applied to these data, it can lead to incorrect decision making.

Figure 2.4: The types of anomalies in transportation logistics.

Figure 2.4 demonstrates the different types of anomalies that are involved in the logistics
agency workflow. In addition to the general type of anomalies (e.g., point and collective),
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the anomalies in the transportation domain are also classified as “contextual anomalies” and
considered in 3 perspectives. The first is the fleet management perspective. This kind of
anomaly occurs when there is numerous vehicle shortage than usual because of the maintenance
cycle or absent of drivers. It also includes the overused of vehicles from the vehicle route
assignment. This phenomenon is considered as abnormal when compared to the routine vehicle’s
fleet status.

The second is the demand perspective. This anomaly occurs when there is an unusual
increase in demand from customer input into the system.

The third is from the potential client perspective. This anomaly occurs when there is an
unusual surge in order cancellation and postponement from potential customers.

Figure 2.5 demonstrates the Andrews curves for transportation logistics data. The Andrews
curves present a feature space of high-dimensional data. It is based on the Fourier series and
provides information about the dataset structure. Each curve shows an observation (e.g.,
representing each row in the data record) in the dataset. For more detail about the Andrews
curves, please refer to [58, 59].

Figure 2.5: Demonstration of the separability between anomalous (black) and normal (copper)
events in the transportation logistics dataset.

Figure 2.5 demonstrates that the two events in the dataset are not clearly separable, as
shown by the curves that intersect with each other. This indicates the high degree of inher-
ent nonlinearity in the feature space. Therefore, anomaly detection from conventional ML
approaches cannot be used directly in this case.
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This problem motivated the author to propose a novel methodology to fill the gaps in
previous studies. It is evident that in this research domain, significant improvements can be
made to support the development of logistics management.

2.5 Remaining Question

Refer to the problem statement. Generally, logistics agencies use these data to support
their decision making, such as transportation planning, human and fleet allocation, production,
and manufacturing tasks. In addition, they also want to understand the transport operating
characteristics of the data that flow into the system.

Unfortunately, it was mentioned that the logistics management data come from multiple
sources. They are also conditionally dependent. Therefore, analysis cannot be performed
manually by a staffer or using black-box software to perform these tasks. As a result, the
remaining question is, what kind of methodology should be used to support logistics agencies
in transportation planning?

2.6 Restatement of Research Question

The related work shows that anomaly detection and root-cause analysis are required to
assist the logistics agency in better understanding the transportation planning situation, es-
pecially vehicle route optimization tasks, from the data. Performing anomaly detection and
root-cause analysis aims to distinguish normal data from anomaly data effectively. As a result,
the anomalies are revealed making it feasible to eliminate them before they cause a critical
problem in transportation planning and directly impact the route optimization process.

However, anomaly detection methodologies have some limitations in dealing with high-
dimensional and conditional data. As a result, it raises a reliability issue for the detection
result. Furthermore, they can only detect anomalies. Unfortunately, the explanation of the
cause of the anomaly that can be traced back to its origin anomaly is still under development.
Therefore, it is not easy to prevent anomalies before they occur. Anomalies can only be detected
after they have occurred. Last, the lack of explanation of anomalies can cause the data to be
labeled based on bias. This limitation also increases the chance of incorrectly labeling anomalies
as normal and vice versa.

Therefore, the remaining questions are restated as “What kind of anomaly detection method
is suitable for dealing with high-dimensional and condition-dependent data?” and “How can
the cause of the anomalies be explained?” If there are no suitable models to detect the anomaly,
then what is the appropriate solution?

2.7 Limitation and Delimitation

According to the problem statement and challenges in anomaly detection and root-cause
analysis, two limitations to this study exist. First, the study has limitations in automatically
dealing with unstructured data, such as text reports and spreadsheets from different types of
data formats. Therefore, more preprocessing steps are required to format the data to be ready
before analysis. Second, the noise in the data remains; however, it remains at a low percentage.
Therefore, it results in false alarms in the detection result.

The delimitation of this study includes monitoring and detecting anomalies in transportation
planning. Thus, this study only considers the transportation planning task, especially the route
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optimization process. However, this is also somehow linked to manufacturing and production
tasks. These tasks use a multicriteria study on selected suitable preferences to adjust for the
route optimization model.

However, multicriteria decision making in manufacturing and production is beyond the
scope of this research. Instead, the scope of this study is limited to understanding vehicle route
optimization behavior and eliminating the actions that degrade the transportation planning
solution. The author plans to explore the multicriteria decision-making domain to assist in this
anomaly detection task in future work.
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Chapter 3

Detecting Abnormal Behavior in the
Transportation Planning using Long
Short-Term Memories and a
Contextualized Dynamic Threshold

3.1 Introduction

This chapter presents a methodology for detecting temporal and conditional anomalies from
time-series data. As mentioned in Chapter 2, the gaps and challenges are essential to detect
anomalous dependence on conditional attributes. The conditional attributes in this context are
the spatiotemporal (e.g., location and time) and behavioral attributes (e.g., usage, speed, and
incident statistics) that were performed in the environment. These actions are also recorded in
the data. Unfortunately, general models mainly designed to detect point anomalies cannot be
used for this purpose [3, 4]. Moreover, when general models are used (e.g., LSTM or LSTM
with thresholds), they cause a false alarm or an increase the false-positive rate [18].

Furthermore, point-type anomalies seem to be a simple type of anomaly that depends on
distance- and density-based data points. They are easy to detect using time-series analysis
or a clustering-based approach. However, the logistics anomalies do not contain only point
anomalies. As mentioned in Chapter 2, besides the general type of anomalies (e.g., point and
collective), the anomalies in the transportation domain are considered in 3 perspectives (e.g.,
fleet management, demand, and potential client). Based on the principle of anomaly detec-
tion domain, anomalies in transportation are defined as “contextual anomaly.” Nevertheless,
instead, they are heavily related to conditional and occurrence attributes. It is because the
data come from multisources. Therefore, each attribute relies on the other. In this problem,
it is necessary to have a new methodology that can simultaneously detect various types of
anomalies. As a result, the detection result is enhanced and more accurate than using previous
approaches.

In this chapter, a novel anomaly detection model for detecting temporal and conditional
anomalies is proposed. This model contributes to [18]’s study. The contextualized dynamic
thresholds are added to analyze the time-series data. The aims of adding contextualized thresh-
olds are to detect conditional anomalies, which are related to various contexts. For instance:
time, location, and frequency. The second purpose is to reduce the false-positive rate. These
procedures also support the review paper’s findings in [3, 4]. The authors mentioned that adding
conditions to analyzing the data can enable the model to detect more complicated anomalies.
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These anomalies are related to conditional and behavior attributes.
The author has an observation for the study in Chapter 3 as follows. Suppose the predic-

tion error from the forecasting model cannot efficiently represent anomalies from the time-series
data. It implies that the anomalies are concordant to external real-world elements, and con-
textualization is required to support the analysis.

If this observation is valid, when the author adds a method for analyzing the environmental
conditions will enhance the model’s detection efficiency and improve the detection rate.

The procedures of the proposed anomaly detection model of this chapter consist of two stages
for detecting anomalies from time-series data. In the first stage, the author used a forecasting
model to detect any data points that exceed the defined threshold. This step analyzed the
prediction error of the Long Short-Term Memory (LSTM) model using the 3-sigma threshold
method. The outcome from this analysis is normal data points, points, and collective anomalies.

Unfortunately, using the 3-sigma threshold method for analysis also has a disadvantage. For
example, suppose that the anomalies are dependent on environmental conditions. Referring
from the definition, this kind of anomaly is so-called contextual anomaly. Then, the prediction
error approach might not be practical to detect such anomaly. Similarly, the issue was also
discovered in [49]. Therefore, the author resolved this problem by adding the second stage
analysis, which defines the thresholds for context and behavior attributes of the data.

The context consists of time, and behavior attributes consist of vehicle availability, inci-
dent, and customer demand. This second stage analysis was done separately from the first step
analysis. Therefore, for detecting anomalies from the input time-series data, the model detects
anomalies from the prediction error together with the conditional contexts. As a result, the
efficiency of the model is significantly improved, as shown in the results and discussion section.
The author believed that the ability to detecting anomalies for all aspects of the real-world
elements could be enhanced by doing so. In the last part of this chapter, the practical appli-
cations and limitations of the proposed model are presented. The author aims to demonstrate
how general the proposed model was for expanding to other application domains. For further
details, they are presented in the “Methodology” section.

3.2 Methodology

3.2.1 Data Collection and Pre-processing

First, the author collected data from GPS tracker equipment and agencies’ operational
reports. The collected data from these two modules consists of a GPS probe from sixty trucks
with installed GPS tracker equipment and a client order. Note that the data collection period
is 3 years (from the year 2017 - 2019). Then, the author divided it into four data formats.
These data formats consisting of order confirmation, vehicle statistic, driver statistic, and order.
These datasets were used to preprocessing and feature engineering using a business intelligence
framework, as the data come from multi-sources. At this stage, the data were standardized and
reshaped to match with ML prediction model requirements.

Second, to acquire all necessary features, a data acquisition is performed to extract features
and prepare for analysis. The author then loaded the data to store it in data storage. The
author used a Power BI to determine the data relationships. These relationships were used for
measuring the fundamental statistic of each feature. They also created a linkage to other data
attributes within various perspectives, as shown in Figure 3.2. Power BI is a software used to
discover relationships in multi-sources data. It also helps us to understand multi-sources data
coherency and can be used to perform data visualization tasks.
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The statistics are obtained from the previously described operations. The described oper-
ations consist of the number of vehicles used, available vehicles, drivers, relationship between
vehicle and assigned driver, including their orders, and more. These statistics are shown in the
form of multivariate time-series, as in Table 3.1 and Figure 3.3.

Figure 3.1: A framework of business intelligence

Table 3.1: Data specification used in this study.

Attribute(s) Value Unit
Date 2/10/2018 -

Number of available vehicles 45 Vehicles
Number of occupied vehicles 7 Vehicles

Number of vehicles with no assigned driver 8 Vehicles
Number of vehicles with back order work 0 Vehicles

Number of vehicles in maintenance 0 Vehicles
Number of vehicles with driver taking leave 0 Vehicles

Number of total requested from client 45 Orders
Number of requests received 45 Orders

Number of orders canceled or postponed (import) 0 Orders
Number of orders canceled or postponed (export) 0 Orders

Quarter of the year Q4 -

From Table 3.1, the author described the definition of import and export as follows:

• Imports are tasks that deliver goods or products from local agencies to overseas destina-
tions.

• Exports are tasks that deliver goods or products from overseas to local destinations.
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Figure 3.2: Demonstration of data relationship from multi-sources data.

In addition, the variables relationships of the collected data are shown in Figure 3.4.
After obtained all necessary features, the data have also been organized into groups to train

and test the models presented in section 3.2.3. Note that the author separated the input data
(e.g., train and test) into two subsets. The first data subset was for input into the Long Short-
Term Memory (LSTM). The second data subset was used for analyzing the behavior attributes
(e.g., vehicle availability, incidents, and customer demand) of the contextual anomalies. The
required data attributes for the second data subset were the number of available vehicles, orders
canceled or postponed, and total requested from customers. To analyzing these attributes,
contextualization is required. Therefore, the contextualization process is presented in the next
section.

3.2.2 Preliminary Experiment on Anomalies Contextualization

From [7]’s study, the authors showed that the contextual anomalies required a context link
with a behavior for detection. Therefore, this finding motivates us to conduct this experiment
further. The author discovered that the method that can fulfill this task was the Bayesian
network. The Bayesian network can define the linkage between data attributes. It is among
the type of methods in the graphical model used to represent the dependency between the
event and evidence in the dataset. The model formulation is described in section 3.2.2. The
assumption is that suppose the linkage has a low probability, then that data connection is rarely
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Figure 3.3: Visualization of collected data.
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Figure 3.4: Demonstration of the variables relationships from multi-sources data.

occurring. Thus, the origin and destination of that linkage are used to be the context and the
threshold. Therefore, the anomalies are defined by this context and threshold.

Define data attribute dependency using Bayesian Network

After the data was obtained, the dependencies and set of rules are determined to define
anomalies from the dataset. The author used Bayesian Network-Based Approaches for anomaly
contextualization as in Equation (3.1):

Pr(e|m) (3.1)

where e is an event (or evidence for an event) and m is the model. To determine the anomaly’s
context, the threshold (t) is needed to specify, as represented in Equation (3.2):

Pr(e|m) < t→ anomalous (3.2)

For time-series or data that have a sequence of events, a process to contextualize the anomaly
(aggregated) is required. The equation is modified based on [60] as Equation (3.3):

1

N

∑
i

Pr(e|m) < t→ anomalous (3.3)

where N is a time-step i and m is the model. Suppose that we would like to determine conflicts
within a set of evidence, the “conflict measure” [60] is used to detect possible non-coherence in
evidence E = {E1 = e1, ..., Em = em} as in Equation (3.4):

C(E) = log
Pr(E1 = e1)× · · · × Pr(Em = em)

Pr(E)
(3.4)

After using the Bayesian Network, the context and behavior for the defined anomalies are
obtained. The context and behavior are set based on the low probability of the linkage and
defined as Equations (3.5) – (3.7). For more detail about the benefit of these contexts, the
author provided further discussion in the results section.
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For the condition, vehicle (V ) usage has exceeded the threshold of a vehicle usage
range. This threshold denotes the thresholdv. It is computed as Equation (3.5):

y1 =

{
1, if V > thresholdv
0, otherwise

(3.5)

The condition is activated as anomalies when the value of the received request (R)
exceeds a vehicle usage threshold. This threshold denotes the thresholdv for vehicle
usage. It is computed as Equation (3.6):

y2 =

{
1, if R > thresholdv
0, otherwise

(3.6)

The condition is activated as anomalies when the incident (I) is more than 0 and
exceeds the incident threshold. It is computed as Equation (3.7):

y3 =

{
1, if I > thresholdI
0, otherwise

(3.7)

If any of these conditions are satisfied, then contextual anomalies have occurred during
the operational process. From these contexts, the definition to define possible anomaly and
not-anomaly points are grouped, as shown in Table 3.3.

After the contexts were defined for detecting contextual anomalies, now ready to develop
the anomaly detection model, the development is presented in section 3.2.3.

3.2.3 Proposed Model for Anomaly Detection

The author used the proposed novel unsupervised anomaly detection method to determine
and detect a fleet management transaction. It was used to check whether or not it results
in any critical errors. It also included the defined contextualized threshold that represents an
anomaly’s operation from the multivariate time-series data. This study was motivated by a
previous study’s challenge. It consists of addressing temporal dependency data and reducing
the false-positive rate. From [18]’s study, the author discovered that a dynamic 3-sigma thresh-
old for analyzing prediction error of LSTM was able to detect the majority of the anomalies.
Unfortunately, the false-positive rate still remained high. The model was efficient in detecting
some anomalies that can be represented by the prediction error but are not capable of other
variants such as conditional anomalies. This kind of problem was also discovered by [9]. Fur-
thermore, numerous environmental factors can also influence the creation of anomalies. Hence,
the LSTM with a dynamic threshold cannot detect all types of anomalies in the system.

To solve aforementioned issues, the contextualization thresholds are proposed for the model.
It increases the capability of detecting specific anomalies from a high-level perspective of an
urban transportation logistics operation. These anomalies could not determine by a prediction
error and statistical threshold. However, they depend on context and behavior attributes, as
mention earlier. Therefore, conditional attributes’ thresholds are required in this case. For
example, anomalies can be revealed from the client(customer), operation, asset, and human
resource contexts. Furthermore, these contexts helped to identify the cause of the anomalies in
the initial step. Thus, the proposed model is shown in Figure 3.5.

From this point, the elements shown in Figure 3.5 are presented in detail in the following
sections.
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3.2.4 Multivariate Time-series Prediction using LSTM

At this stage, the data were taken from section 3.2.1 as inputs. The fundamental principle of
a recurrent neural network (RNN) is to predict the following information’s input. The author
used the LSTM to train the sequences of the time-series data. However, in a conventional
neural network, inputs and outputs are independent of each other. Therefore, when the LSTM
made a prediction, it is important to recognize the previous time steps. This type of neural
network is called recurrent. The same computation is performed for all elements in a sequence
of inputs, and the output of each element depends on stored state data [61].

The basic principle is to improve the network by providing it with a clear memory. The
special hidden units are also equipped in these frameworks. The resultant behavior is that
prior input can be memorized for a long time. Therefore, the author used multivariate time-
series forecasting with LSTM to predict the received request from the customer and vehicle
availability in the fleet. The author evaluated the model’s root mean squared error (RMSE)
and the absolute error, computed as Equation (3.8). The prediction reflected the temporal
dependencies based on the observation as follows. If the time sequences have a high error
rate of prediction, then it denotes that the new time-step did not regularly occur. The author
assumes that it did not have any learning patterns from the prior time-step attributes to predict
new data. As a result, the model makes a wrong prediction.

e(t) = |yt − ŷt| (3.8)

where et represents the prediction error of each time-step, yt represents a true observation, and
ŷt represents the prediction result from the input features.

Once the LSTM model is constructed, the thresholds for analyzing the output of the LSTM
and environment information are presented in the next section. These thresholds are used to
analyze the LSTM prediction error for detecting point and collective anomalies together with
contexts and behavior attributes for detecting contextual anomalies.

3.2.5 Contextualized Dynamic Threshold

After the prediction result was obtained, in the first stage, the dynamic threshold approached
proposed by [18] was utilized and modified for use in this chapter. The prediction error in each
time-step represent one-dimensional vector errors:

e = [et−h, ..., e(t−ls), ..., e(t−1), e(t)]

where h is the historical error of the prior time step. The author smoothed the set of errors
e. The author aims to reduce the spike error generated from the LSTM model. In some cases,
the LSTM model was not correctly predicted when the not-abnormal state data point was
inputted, as shown in the [18] experiment. The exponentially weighted average (EWMA) is
used to generate smoother errors. Each data point’s weight was determined from the prior
time-step (t− 1). The smoothed error is then obtained:

e = [et−hs , ..., e(t−ls)
s , ..., e(t−1)

s , e(t)
s ]

To evaluate whether or not that the values are non-anomaly, the threshold for smoothed pre-
diction errors is set using 3-sigma principle. The smoothed errors’ values above the threshold
were classified as anomalies. In this chapter, the proposed thresholds defined as the context
from section 3.2.2 and the smoothed error described previously were used to fill the gap of spe-
cific anomalies. These specific anomalies required a context of behavior to make a detection.
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Therefore, the author proposes an unsupervised model that does not require any data labels.
First, the thresholdp (smooth error threshold) was defined as Equation (3.9):

thresholdp = µ(es) + zσ(es) (3.9)

where z represents a positive value of standard deviation above µ(es). From the experiment,
the author discovers that the number of z greater than two was increasing the detection rate.
It also reduces the number of positive errors.

In the second stage, the author defined thresholds for context and behavior attributes of
the data. This stage was done separately from the first stage. Therefore, the author defined
the threshold for an incident context in each time step (t), as Equation (3.10). The author
used this threshold to determine the period that the number of incidents exceeds the regular
transaction in transportation logistics operations.

thresholdI = µ(i) + zσ(i) (3.10)

where z represents the positive values of standard deviation above µ(i). Furthermore, the author
defined the threshold for the vehicle usage context in each time step (t), as Equation (3.11).
The author used this threshold to determine the period that several vehicle usages exceed the
regular transaction in the transportation logistics operation. From the defined thresholds, the
decisions of defining an anomaly are computed as Equations (3.5), (3.6), and (3.7).

thresholdv = µ(v)± zσ(v) (3.11)

Finally, the author utilized Equations (3.5), (3.6), (3.7) and (3.9) to determine the anomaly
score. The anomaly score was computed from the average outcome from those thresholds. A
weighted average method [62] was used and computed as Equation (3.12):

scorei =

∑n
i=1(yiwi)

n
(3.12)

where n represents the number of contexts for a specific anomaly, w represents the assigned
weight for each context and y is the decision variable in each context represented in Equations
(3.5), (3.6), and (3.7). Note that the author assigned the weight equal to one for this chapter
because each context was equally important. Suppose that the score exceeded the threshold,
then the data point is classified as an anomaly.

A sliding window approach is also applied. It was used to make a detection in the series
of anomalies that occurred in the time-sequence. It was based on the observation as follows.
Suppose that the majority of data points in the windows have a scorei exceeding the average
score of all data points, then the author classified all of the points as anomalies. In the exper-
iment section, the author will present how the detection performance impacted the window’s
size. In addition, an experiment is also conducted on the dependencies of the previous data
points. The author has an observation that previous data points can influence the current
data to become anomalies. Therefore, the different percentage (d) of scorei and scorei−1 was
computed as Equation (3.13):

di =
|scorei − scorei−1|

scorei
(3.13)

where i is the time-step, suppose di exceeded the average of all sets of di in the specific windows,
then all of the data points are classified as anomalies.
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From the statement above, the procedure’s summary is shown in Figure 3.6. The author
first slides the window from the beginning of the series. The anomaly score is then calculated as
in Equation (3.12). This equation was supported by threshold and decision conditions. These
threshold and decision conditions were previously described. Then, the change between the
time-step (t) and the previous time-step (t− 1) is determined. It assessed whether or not each
factor’s values violate the threshold. After that, an anomaly score was assigned to each data
point in the windows. The procedure is repeated until the end of the time sequence. The
outcome of this process is to reveal the anomalies and normal data points in the time sequence.

In addition, the author also updated the model every time that the sliding windows approach
was performed, as Equation (3.14):

Reft =

{
Reft−1 − obvnew−w + obvnew, if ewobvnew

> thresholdp
Reft−1 + obvnew, otherwise

(3.14)

where Reft is a reference group of data at time (t), w is window size, and obvnew is newly ob-
served data that streamed into the system. Thus, the previous model has transferred knowledge
combined with new information to train the new model.

In this section, the process and methods of performing the anomaly detection were presented.
After the detection result is obtained, it is time to evaluates the model efficiency using the
evaluation metrics. These metrics are presented in section 3.2.6.

3.2.6 Evaluation Metrics

In this section, the detection capability of the proposed model is evaluated using an Area
Under the Roc Curve (AUC), precision, and recall. The evaluation also including F1-score. The
author used these metrics due to the unbalanced data (e.g., with numerous percentage of actual
negatives, such as data with normal and abnormal are not equally distributed). The accuracy
metric is not feasible to evaluate in such a case. The AUC measures the whole 2-dimensional
area under the whole receiver operating characteristic curve (ROC). The ROC was computed
by applying a different threshold comparing True Positive Rate (TPR) and False Positive Rate
(FPR). The TPR and FPR are computed as Equations (3.15) – (3.16).

TPR =
TP

TP + FN
(3.15)

where TP represents the number of true positives and FN represents the number of false
negatives.

FPR =
FP

FP + TN
(3.16)

where FP represents the number of false positives and TN represents the number of true
negatives.

The author also validated the experimental result using ground truth data. It was validated
in terms of its detection accuracy, precision, and recall. The precision and recall evaluation
metrics are computed as Equations (3.17) – (3.18).

Precision =
TP

TP + FP
(3.17)
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Figure 3.6: Demonstration of the sliding window with contextualized dynamic threshold pro-
cesses.

where TP represents the number of true positive and FP represents the number of false positives.

Recall =
TP

TP + FN
(3.18)

where TP represents the number of true positives and FN represents the number of false
negatives.

Once the anomaly detection model for the transportation domain was developed, the author
also wants to demonstrate how the developed model can be extended to other application
domains. Therefore, the procedures for doing so are presented in section 3.2.7.
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3.2.7 Practical Applications and Limitations

In this chapter, the author also used other application data (e.g., credit card transactions,
water manufacturing system transactions, and computer network) to performed anomaly de-
tection. Anomalies in this context are the system transactions that were different from the
routine usage of the user (e.g., high amount of usage than usual or different period of usage).

Besides, the data visualization (e.g., variables relationships and dependencies) of the credit
card, water manufacturing system, and computer network transactions are shown in Figures
3.7 - 3.9.

Figure 3.7: Demonstration of the variables relationships of the credit card dataset.

In the beginning, the proposed model was designed for the transportation domain. However,
the author also wants to demonstrate the generic of the developed model that can extend to
other application domains. If one wants to apply the proposed model with other applications,
some minor modifications are needed.

First, the input data is preprocessed and standardized. It is also required to order the data
record by time. The essential data attributes that are required are date-time and usage from
the targeted system.

Second, the feature engineering process is required before running the model—for instance,
the amount and the frequency of usage ratio. These features are used to define conditional
thresholds for detecting contextual anomalies. If more features are to be input into the model,
the LSTM input layer should be adjusted to meet with the new data. Also, the hyperparameters
(e.g., epochs, batch size, learning rate, and more) should be optimized concordant to the new
data input.

Finally, for the proposed model’s restriction and limitation, the model can handle the input
data ordered by time. Hence, the common attributes that are vital for this proposed model are
the time context and behavior attributes. The behavior attributes consist of usage, frequency
of transaction. In addition, suppose that the data comes in the form of unstructured data; the
data should be preprocessing before inputting into the model. It is because the model support
only structures data.
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Figure 3.8: Demonstration of the variables relationships of the water manufacturing system
dataset.

Figure 3.9: Demonstration of the variables relationships of the computer network dataset.

From this point, the author has demonstrated that each dataset is using the same data
attributes and format for detecting anomalies. Therefore, the anomaly detection models are
compared based on their efficiency by the area under the RoC curve metric. Thus, the practical
significance of the proposed model is demonstrated. In section 3.3, the results and discussion
of applying the proposed methodology are presented.
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3.3 Results and Discussion

According to the data labeling limitation in the dataset, it is crucial to determine contexts
and behavior attributes for detecting the anomaly in the urban logistics operation. In section
3.2.2, the result using the Bayesian Network is derived, as shown in Table 3.3.

From the experiment result, the author discovered that anomalies in the fleet management
system mainly occur from vehicle issues. Table 3.2 demonstrated that the connection between
the vehicle’s node to the received request(Actual delivery)’s node and point toward the inci-
dent’s node are most likely cause anomalies in the urban logistics operation. The results showed
that a low possibility to have a regular link between these nodes.

Furthermore, when Equations (3.3) and (3.4) are calculated, it cause a high anomaly score.
This phenomenon was showing that the anomaly scores were higher than those of other con-
nections. The criteria to determine anomalies are as shown in Table 3.3. Thus, the cause of the
anomalies in urban transportation logistics mainly occurs from vehicle issues. The event led
to abnormal business behavior. This phenomenon occurred when the logistics agency response
to potential requests from customers. After that, incidents occurred as a consequence. From
this outcome, the vehicle usage is set as a behavior attribute in each time step (time context).
Then, the author combined it with behavioral decision in Equations (3.5), (3.6) and (3.7),
respectively. Thus, the summaries of criteria for defined anomalies are shown in Table 3.3.

After the contextualization process was done, the next step is the LSTM model execution.
The model parameters are defined in the next section.

3.3.1 Model Construction and Parameter Evaluation

After the contexts and behavior attributes for anomalies are defined, the LSTM model is
then constructed and set up its parameters from hyper-parameter tuning. These parameters
are shown in Table 3.4.

To train and test the model, the author used real operational data between January 2017 to
April 2019 for training and May 2019 to July 2019 for testing. Also, each experiment is given 10
runs to make sure the sustainability of the results. Therefore, the mean values of the evaluation
metrics are presented. Note that all experiments of this chapter were performed using Python
3.6 with the Keras library. The TensorFlow backend was used and run on a google colab GPU.

The author input processed data into the model for training and testing. The model’s
training and testing stage is illustrated as Figure 3.10. In the next section, the results of
running the model are presented.

3.3.2 Experimental Results

After the LSTM model was already constructed and executed, the procedures described in
section 3.2.5 are performed. They are used to calculate prediction error and defined a set of
thresholds. In the experiment, the experiment is divided into sub-experiments. They consist of
the experiment of the model that detected the only point, contextual, and collective anomalies.
The last experiment was combined with both types of anomalies.

Table 3.5 shows the experiment result of detecting point and collective anomaly. The result
is obtained when applying only a prediction error threshold and sliding windows approach.

The experiment result shows that when the window size increased, the AUC also increased.
However, the values of the AUC were not significantly high. It is a consequence of the false
positive and true positive rates. This phenomenon shows that the data points contained depen-
dencies between time-steps. The change of the previous time-step, as computed as Equation
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Table 3.4: Parameter setting for the LSTM model.

Model parameter(s) Values
Hidden layer 2

Unit in hidden layer 80
Sequence length 730

Training Iteration (epoch) 1,000
Dropout 0.3

Batch size 72
Learning rate 10−3

Optimizer adam
Input dimension 12

Figure 3.10: Training the model with time-series data.

Table 3.5: Experiment results when the changes between each time window and the dynamic
threshold are applied.

Window size AUC Precision Recall FPR F1-score
1 0.572 0.714 0.189 0.047 0.299
2 0.573 0.673 0.209 0.063 0.319
3 0.582 0.673 0.234 0.070 0.347
4 0.588 0.667 0.253 0.078 0.367
5 0.588 0.646 0.266 0.090 0.377
6 0.590 0.638 0.278 0.098 0.387
7 0.588 0.646 0.266 0.090 0.377
8 0.597 0.632 0.304 0.109 0.411
9 0.593 0.615 0.304 0.117 0.407

10 0.593 0.615 0.304 0.117 0.407

(3.13), influences the status of the current time-step data point in the window for defining
anomalies. The change is represented by the anomaly score in Equation (3.12). The anomaly
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score was based on a threshold defined earlier in section 3.2.3. Thus, it was combined as anomaly
scenarios as in Table 3.3. Unfortunately, when the author increased the window size, it also
causes a high false-positive when anomaly detection is performed. The window is set with a
size equal to 1. This window size has a high chance to correctly detect anomalies compared to
other window sizes.

From this experiment, the context and estimated the different changes are required. It is
because they can effectively reveal whether or not the next time step is anomalous. They also
enhance capability in the detection. In the next experiment, only the context is specified. The
author did not consider changes of the previous time-step values, as shown in Table 3.6.

Table 3.6: Experiment results when the contextualized threshold of each time window is applied.

Window size AUC Precision Recall FPR F1-score
1 0.504 0.88 0.696 0.059 0.777
2 0.689 0.619 0.608 0.230 0.613
3 0.658 0.549 0.639 0.324 0.591
4 0.597 0.471 0.627 0.434 0.538
5 0.563 0.437 0.614 0.488 0.511
6 0.534 0.409 0.614 0.547 0.491
7 0.525 0.402 0.633 0.582 0.492
8 0.526 0.403 0.595 0.543 0.481
9 0.522 0.399 0.614 0.570 0.484

10 0.504 0.385 0.614 0.605 0.473

Table 3.5 demonstrated that each time-step data point does not contain any change de-
pendencies. Therefore, in this experiment, the model’s setting is changed to the context of
behaviors. These contexts and the decision condition are described and shown in Table 3.3.
They were supported by the threshold defined in section 3.2.5. It also included the anomaly
score in Equation (3.12).

Table 3.6 shows that after changing the model setting. It did not return a significant change
except when the window size is equal to 1. When the window size is set to 1, the precision
increased to 0.88 and the recall to 0.696. Thus, the author concluded that the optimal window
size for this experiment was equal to 1. It is because it had a high rate of precision and recall.
The FPR was also the lowest among others.

Unfortunately, the AUC result decreased by 4% on average from the previous experiment.
This phenomenon supported this study’s assumption that transportation logistics contained
conditional anomalies. Moreover, They required a specific context and behavior attributes to
detect it. This assumption led to the subsequent experiments. This time, the dependencies
between the time-step and the context for detecting data point behavior are combined. The
experiment result is shown in Table 3.7.

From the experiment result, the author discovered that combine these approaches improved
the AUC by 17% compared to the first experiment and 20% for the second experiment. Similar
to the previous experiment, the window size of 1 was suitable for detecting anomalies. It
provided the highest precision and AUC compared to other window sizes. The result also
shows that suppose the window size increases, then it reduces the detection performance. It
is because each data point does not depend on the other. The rationale behind this model
is that the mean anomaly score within the window is taken to define the threshold. Suppose
that the data points value in the window exceeds the threshold, then those data points are
classified as collective anomalies if the window size more than 1. Otherwise, it is classified as a
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Table 3.7: Experiment results when the contextualized and the dynamic threshold are applied
combine with each timestep’s changes.

Window size AUC Precision Recall FPR F1-score
1 0.799 0.831 0.684 0.086 0.750
2 0.728 0.633 0.709 0.254 0.669
3 0.730 0.599 0.785 0.324 0.680
4 0.691 0.556 0.753 0.371 0.640
5 0.690 0.553 0.759 0.379 0.640
6 0.697 0.554 0.785 0.391 0.650
7 0.677 0.567 0.671 0.316 0.615
8 0.684 0.571 0.684 0.316 0.622
9 0.680 0.561 0.696 0.336 0.621

10 0.670 0.551 0.684 0.344 0.610

point or contextual anomalies. However, it still has room to be improved the recall metrics. It
also a piece of evidence that the prior time-series did not influence the data point. Therefore,
the experiment is performed when the dependencies of time-step (t) and time-step (t− 1) are
removed, using Equation (3.13).

Table 3.8: Experiment results when the contextualized threshold and the dynamic threshold
are applied together.

Window size AUC Precision Recall FPR F1-score
1 0.870 0.836 0.842 0.102 0.839
2 0.754 0.647 0.766 0.258 0.701
3 0.713 0.646 0.646 0.219 0.646
4 0.692 0.574 0.709 0.324 0.634
5 0.693 0.583 0.690 0.305 0.632
6 0.698 0.614 0.646 0.25 0.630
7 0.699 0.587 0.703 0.305 0.640
8 0.693 0.592 0.671 0.285 0.629
9 0.688 0.596 0.646 0.270 0.620

10 0.672 0.561 0.665 0.320 0.609

Table 3.8 shows that the prior time-step data point did not influence the current prediction
time-step. Also, the precision and recall metrics were significantly improved over the prior
experiment. Similar to the previous experiments, the optimal window’s size was equal to 1. It
provided the most efficient detection when compared to other window sizes. This phenomenon
proved that each data point independently occurs. Therefore, anomalies in transportation
logistics are considered as a point or contextual, not collective anomalies in this case.

The recommendation to improve this chapter’s model would be the consideration of factors.
The author discovered that anomalies could originate from various perspectives. However, this
study focused on operational anomalies. Thus, in the future work, the capability to detect
anomalies in more aspects is expanded. This expansion also includes discovering the causes
that influence anomaly occurred during the vehicle route optimization process. In addition,
another essential part is the data points that appear with regular data points. They can cause
a low-recalled rate. This issue is one of the limitations of this chapter’s detection model.
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Moreover, the second limitation is the reliability issue. From Chapter 2, it was showing that
the statistic thresholds are not always appropriate to detecting abnormal patterns. Suppose
that the value does not increase over the threshold, then the anomalies were not detected.
Sometimes, a false positive detection happened when the data value is over the threshold.

To prevent these issue to happened, the contextualization of the data is proposed in this
chapter. However, to improve the result further, some specific contexts other than transporta-
tion planning—for instance, manufacturing and production timelines should be taken into con-
sideration also. Therefore, a connection between multi-factors was required to evaluate the
urban transportation logistics operational behavior.

In addition to the data contextualization and thresholds experiment, the proposed model
was also compared with the state-of-the-art models. It also includes the model that is optimized
the detection capability with the genetic algorithm (GA), up to 50 iterations. The results are
shown in Table 3.9. Note that the bold text model in Table 3.9 is the model that applied the
methodology of this study.

Table 3.9: Experiment results for temporal behavior analysis model.

Model AUC Precision Recall FPR F1-score
Hundman et al. [18] 0.572 0.714 0.189 0.047 0.3

Xu et al. (Donut) [21] 0.504 0.385 0.614 0.605 0.473
Average of Baselines 0.538 0.549 0.401 0.326 0.367

LSTM+GA with context. 0.845 0.881 0.753 0.063 0.812
LSTM with context. 0.870 0.836 0.842 0.102 0.839

In Table 3.9, after applying this study methodology, the precision and recall significantly
improved over the previous study model.

Furthermore, the context of the data point also crucial. The contexts and behavior at-
tributes must appropriately define. The rationale behind this is that in the traditional LSTM
with a dynamic threshold model from [18]’s study, it only takes prior input to predict the next
time-step. However, if the sequences always have a similar pattern, then the LSTM with a
dynamic threshold model is accurately predicted. Nevertheless, suppose the sequence’s pattern
has a variant and does not conform to any pattern. In that case, the LSTM might return
the wrong prediction and concluded that this data point is an anomaly. This problem also
happened to [21]. Note that to increasing capability of detection in [21] model. It is required
to have additional data labels. However, the author compares the models in the unsupervised
way. Therefore, the data labeled is discarded.

Unfortunately, this conclusion not always be valid. The reason to support this statement is
presented in terms of an example. For instance, at time-step (t), there is a high vehicle usage
in the fleet. This never happens before. If we used only the LSTM model to make predictions,
it would detect that this event is an anomaly.

However, suppose we add some contexts to the model, such as high demand from the
customers. In that case, this event is not the anomaly anymore because of the context high
customer demand is correlated with high usage of the vehicle. Therefore, it enhances the
prediction accuracy and lowers the false positive rate.

Moreover, the author also compared the proposed model with the model titled “LSTM+GA
with context.”, which was optimized the detection capability by GA. The experiment results
showed that our proposed model is more effective in detection because the GA approach per-
forms feature selection tasks. Therefore, some features that are important for detecting anoma-
lies are removed.
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Besides, the author also performed an additional experiment by testing the proposed model
with other data. The data consist of credit cards transactions [63], networking [64], water
manufacturing [65], and transportation logistics system. This experiment aims to reveal the
practical implication of the model on detecting anomalies. The experiment is presented as
Figure 3.11.

Figure 3.11: Experiment results of anomalies detection using the proposed model on other
applications data.

Figure 3.11 illustrated that the proposed model is practical for performing anomaly detection
in various applications with some modifications, as described in section 3.2.7. The model has
an AUC between 0.7 – 0.9, which is an acceptable result. The rationale behind this impressive
result is that most application data are dependent on a location-time context and behavior
attributes such as resource usages and transactions throughout the day. Therefore, the LSTMs
with contextualized thresholds are able to adapt to changes in the data usage pattern at a
specific time.

These procedures are done by computing prediction errors and anomaly thresholds/degrees
in each sliding window. The current window is compared with the next time windows. Suppose
there is a significant difference within each window. It is then denoted that there is an anomaly
detected. The computation started with the first data series. It continues to update the model
until the end, and the process is terminated. Lastly, the abnormality and normality are then
revealed.

In the future work, the author suggests combining the LSTM-contextualized dynamic thresh-
old approach with the multi-level-density-based approach. This suggestion is to increase the
model reliability. This improvement can also leverage the benefit of distance and statistical
approaches together to improving the model’s detection performance. The author discovered
from the literature review and the experiments that anomalies did not always result in a high
prediction error. It is also hidden and mix with regular data points. Thus, this is why the
anomaly study was vital to this research domain and comprehensive to find a feasible solution.

We reach the last part of this chapter, where the author concludes the study findings and
limitations. The conclusion is presented in the next section.

39



3.4 Conclusion

This chapter presents an important challenge in detecting abnormal behavior in a vehi-
cle route optimization process. It was obtained the benefits from novel anomaly detection
approaches. This chapter demonstrated that the LSTM-based approach was suitable for de-
tecting abnormal operational behaviors. At the same time, the author addressing the challenge
involved. It also included the remaining research question associated with unlabeled multi-
dimensional datasets.

As a result, the author proposed a novel contextualized with a dynamic threshold approach.
This approach does not depend on any labels and it is entirely unsupervised. This approach’s
capability was expanded to detecting complex anomalies. They are anomalies that have depen-
dencies between multi-dimensional factors. Consequently, the root causes are also identified.

The experimental result shows that the data points in the time-series do not depend on
each other. However, the anomalies are depending on environmental conditions. Therefore,
specific contexts and behavior attributes were required to detect these complex anomalies. The
experiment showed that the AUC, precision, and recall metrics increased significantly to 0.870,
0.836, and 0.842. This phenomenon occurred after the model included the spatial-temporal
contexts and behavior attributes. The author also identified the necessary factors behind the
improvement and furthered the model’s evaluation.

Lastly, the proposed approach’s applications were developed not limited to transportation
logistics areas but also include all areas that want to eliminate abnormal events and developing
optimal policies. This improved methodology will enable more reliable and efficient decision-
making.

In the future work, the author wishes to expand the proposed approach’s capabilities. This
expansion also includes implementing the framework, which takes other operational areas into
account. This area also involves the streaming of data.
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Chapter 4

A Novel Unsupervised Behavior and
Root-Cause Analysis Framework for
Transportation Logistics

4.1 Introduction

This chapter presents the procedures for performing the behavior and root-cause analy-
sis. As mentioned in the literature review chapter, it is essential to learn about a company
operation’s behavior, especially in the transportation planning process using data from mul-
tiple sources. Additionally, it is essential to comprehend how the environment impacts the
transportation planning results from this obtained information.

The behavior and root-cause analysis results are used as information for staffers in the
company to improve their assigned tasks. Moreover, the information is also used to train
autonomous transportation planning agents in performing vehicle route optimization tasks.
This task has become a crucial task influenced by the growth of the economy.

The autonomous transportation planning agent is similar to a human agent. It can perform
actions within a given environment. Generally, it is not feasible to recognize the actions of
the appropriate agents and those that should be avoided to achieve the optimal solution. This
chapter also investigates how an agent’s behavior can be effectively detected and its impact
on the environment can be judged. For example, the causes of the action and event include
their normality and abnormality. The outcome is then updated for the agent to preserve its
cumulative reward when performing the actions. Therefore, the appropriate action was chosen.

The behavior analysis in this chapter comprises 3 parts, i.e., temporal, static disturbance
detection, and anomaly explanation. After performing all detections, the analysis of the root
cause is performed. Finally, these procedures are combined into a hybrid behavior and root-
cause analysis model.

The purposes of developing this hybrid model are as follows. The first purpose is to reduce
the detector selection bias, as discussed in Chapter 2. [44] indicated that the detection methods
have different capabilities for detecting abnormalities from data points. Therefore, combining
the results can reduce the model selection bias and weak classifiers.

Moreover, the second purpose is to improve the detection results. It was mentioned in
the anomaly detection challenge in Chapter 2 that the noise-silence anomaly and anomaly
explanation are crucial tasks. This is because the data come from multiple sources and have
multiple dimensions. Therefore, the anomalies might look similar to a normal event, and they
do not reveal their identity. This phenomenon is called nonlinearly separable between data
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points. As a result, the detection model returns a low detection rate. For instance, anomalies
are detected as normal events, and normal events are detected as anomalies. This issue is a
limitation of conventional ML and threshold-based methods. They cannot effectively perform
the detection tasks, as reconstruction error does not easily calculate the separation boundary.
This statement is also supported by the finding of [19]’s study that simple thresholds are not
sufficient for detecting anomalies in nonlinear data.

In Chapter 3, the author also mentioned that thresholds are necessary to adapt to data
changes. This is the reason why the sliding window approach is proposed. Furthermore, the
reason and hint of the abnormality are given and therefore useful for further decision making.
The anomaly explanation (root-cause analysis) reduced the bias on labeling the datapoint [4]
and provided reasons for deciding whether this datapoint is normal or abnormal. Therefore,
the detection results are enhanced and accurately detected.

In the last part of this chapter, the practical applications and limitations of the proposed
model are presented. The author aims to demonstrate how general the proposed model was
for expanding to other application domains. For further details, they are presented in the
“Methodology” section.

4.2 Methodology

The overall framework of this study is shown in Figure 4.1. Therefore, in the upcoming
sections throughout this chapter, the processes in Figure 4.1 are explained in detail.

4.2.1 Data Preprocessing and Feature Engineering

As mentioned previously in Chapters 2 – 3 that logistics agencies’ operations consist of
impact features. They are required to be taken into consideration when performing behavior
analysis to detect disturbances and their root cause. Therefore, the pre-processed features (e.g.,
standardize, reshape, and transform) and extracted from spatial-temporal data consist of route
distance, traveling time, speed, location (latitude, longitude) based on time are essential for
this analysis. Table 4.1 shown the example from spatial–temporal data. They were used to
detect the driver’s behavior and determine the efficiency of the daily vehicle’s route assignment
process. Note that the dataset used in this chapter is the same as Chapter 3. In this section,
the data have been organized into groups. These groups of data are used to train and test the
models presented in section 4.2.2.

Table 4.1: Demonstration of the spatial-temporal data.

Name Value Unit
DeviceID “213L2017000968” -
Latitude “13.68691” -

Longitude “100.46526” -
Speed 45.4 km./hr.

Distance 69.2 km.
Time-spent 79 minutes

Time-stamp 2018-01-01 18:50:23 Hr:MM:SS

In addition to the spatial-temporal features, the raw operation dataset is shown in Table
4.2. When these data attributes are visualized. It is shown as Figure 4.2. It is possible to
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Figure 4.1: The proposed framework for behavior and root-cause analysis with applications in
urban route logistics optimization.

derive additional features in terms of operation perspective. Referring to supply chain man-
agement strategy [66], where the authors suggest those factors that are important to evaluate
the performance of the operation, the following new features were calculated as follows:

Human Resources Perspective

• Driver workload: This ratio aims to determine the workload assigned to each driver. A
ratio greater than 1 shows that the capacity of a particular driver is exceeded, which is
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Table 4.2: Demonstration of the raw operation report.

Name Value Unit
Date 2/10/2018 -

Number of available vehicles 45 Vehicles
Number of occupied vehicles 7 Vehicles

Number of vehicles with no assigned driver 8 Vehicles
Number of vehicles with back order work 0 Vehicles

Number of vehicles in maintenance 0 Vehicles
Number of driver has taken leave 0 Vehicles

Number of total requested from client 45 Orders
Number of requests received 45 Orders

Number of orders canceled (import) 0 Orders
Number of orders canceled (export) 0 Orders

Quarter of the year Q4 -

shown in Equation (4.1):∑n
j=1(clientrequestedj)∑n
i=1(driverassignedi)

(4.1)

where clientrequestedj denotes the request of service from each client, driverassignedi denotes
the individual driver assigned to handle the request, and n denotes the total population.
This ratio is represented for each day of the time series.

• Driver availability: This ratio shows the available drivers compared to the overall demand
from the client assigned to drivers. A ratio greater than 1 shows that some drivers have
no assigned work compared to the demand flow into the company. However, if the ratio
is less than 1, then the company has a shortage of drivers to deliver goods to the existing
and potential customers, as shown in Equation (4.2):∑n

i=1(driveravailablei)∑n
j=1(driverj)

(4.2)

where driveravailablej denotes the driver available to handle the work assignment, driverj
denotes an individual driver in the fleet and already has a task assigned, and n denotes
the total population. This ratio is represented for each day of the time series.

Resources Utilization Perspective

• Fleet utilization: This ratio aims to determine the usage of vehicles compared to the
overall work, as shown in Equation (4.3):∑n

i=1(completevehiclei)∑n
j=1(vehiclej)

(4.3)

where completevehiclei denotes the individual vehicle that completed the assigned task,
vehiclej denotes the individual vehicle available in the fleet, and n denotes the total
population.
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Figure 4.2: Data visualization

45



• Productivity ratio: This ratio reveals how well the fleet is working by comparing the
success rate with the overall work.∑n

i=1(completevehiclei)∑n
i=j(clientrequestedj)

(4.4)

where completevehiclei denotes the individual vehicle that completed the assigned task
from the planning division, clientrequestedj denotes the individual vehicle requested by the
client, and n denotes the total population.

Management Perspective

• Vehicle shortage ratio: This ratio shows how well the companies have planned to handle
the demand from the client. If the ratio is more than 1, it means there is a vehicle
shortage, and the work could not be handled as per the customer’s request.∑n

i=1(incompletetaski)∑n
j=1(clientrequestedj)

(4.5)

where incompletetaski denotes the required individual vehicle that overflows the capacity
of the fleet, clientrequestedj denotes the individual vehicle requested by the client, and n
denotes the total population.

• Incident ratio: This ratio shows the difficulty in transportation planning that may arise
from a potential client, such as postponement or cancellation request. Therefore, the
ratio is more than or equal to 1.∑n

i=1(incidentorderi)∑n
j=1(clientrequestedj)

(4.6)

where incidentorderi denotes the individual order that is postponed or canceled by the
client, clientrequestedj denotes the individual vehicle requested by the client, and n denotes
the total population.

4.2.2 Anomaly Detection

Unsupervised Hybrid Anomaly Detection Model

The unsupervised hybrid anomaly detection model is motivated by the previous research
challenge to deal with high dimensional data and to reduce false-positive rates that cause
from not linearly separable, as mentioned in the literature survey. The conventional ML and
thresholds-based are not efficient in detecting this kind of anomalies. Therefore, the author
experimented on well-known methods used for data dimension reduction, such as Principle
Component Analysis (PCA) and Autoencoder (AE). For PCA, the output is taken from the
model and applied density- and distanced-based methods. These procedures are used to detect
disturbances from the data. The AE is used as a Long Short-Term Memory Autoencoder
(LSTM-AE) because the data is in the form of time-series.

Furthermore, AE is capable of learning and preserving features representation of the dataset.
This feature representation is vital for adequate classification. Thus, the author changed the
conventional AE architecture from the feed-forward neural network into the LSTM recurrent
network. The model was trained with the collected data from section 4.2.1 using the procedure
as follows:
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The LSTM-AE was implemented, which used the LSTM layer run as an encoder. The
encoder encode the input (x), as computed in Equation (4.7). Also, another LSTM layer runs
as a decoder. The decoder reconstructed x′ from input (x) in the decoding step, as computed
in Equation (4.8). The squared error was also used to determine the difference between the
model’s input and output values. In this context, the square error is denoted as reconstruction
error, as computed in Equation (4.9). It should be noted that Wx and Wy are the weight matrix
of the encoder and decoder, while b1 and b2 are the bias vectors in each phase.

The LSTM-AE has equal input and output in a hidden layer. This layer is used to handles
the input units. The input is set equal to 12 for this study. In addition, the LSTM-AE model’s
architecture consists of one encoded layer and one decoded layer. According to the LSTM-AE
is based on a neural network, the reconstruction error was optimized. A back-propagation
algorithm is applied to optimize the reconstruction error. An error signal is computed by the
back-propagation algorithm. It then transfers the value back through a network. The model
was tuned at 5,500 epochs, 64 of batch size, adam optimizer, MSE loss function, and learning
rate of 10−4. The proposed LSTM-AE is shown in Figure 4.3.

Figure 4.3: Demonstration of LSTM-AE architecture.

h(x) = f(Wx + b1) (4.7)

x̂ = g((Wy × h(x)) + b2) (4.8)

L(x, x̂) = ||x− x̂||2 (4.9)

where h(x) denotes the hidden encoder vector calculated from input vector x and x̂ denotes
the reconstruction vector of the output layer. In addition, f and g denote the encoding and
decoding function.

47



While the model was running, the output was taken from the encoding layer. This encoded
layer’s output is used as the input of density- and distance-based models. For instance: Kmean,
One-Class Support Vector Machine, Isolate Forest, and Gaussian Mixture Model (GMM). In
this chapter, the GMM was proposed to perform the clustering task on the encoded value.
This encoded value is returned from the encoded layer. This procedure was shown by [5,
34] that the joint learning approach was much more effective for encoding features. It also
capable of projecting highly dimensional data into low dimensional space. Furthermore, it
can adequately define the different clusters’ regions when performing dimension reduction with
non-linear data. This model’s outcome aims to solve the detecting static disturbances problem
from high dimensional data. Thus, the data points that do not belong to any cluster are labeled
as a disturbance.

Dynamic Ensemble Weight Average Method

As seen so far, models have been developed to deal with temporal and context disturbances.
This model was presented in Chapter 3 and the detection model for point disturbances presented
in section 4.2.2. Note that in this chapter, the author replaces Chapter 3 LSTM-based model
with LSTM-AE. The reason is that the LSTM-AE is more capable of learning the features
representation of the dataset.

Each model has different advantages and disadvantages when used for behavior analysis to
detect disturbances. Suppose that we want to combine these models together, an ensemble
weighted average method is suggested. It shown in previous study [45, 43, 50] that it provided
efficient results. Therefore, the proposed weighted average method was computed the model’s
ensembleweight, as defined by Equation (4.10). The equation was computed based on the average
model’s prediction performance.

ensembleweight = 1− 1

m

m∑
i=1

(
falseipositive + falseinegative

n

)
× wi (4.10)

where n represents the total amount of data points, m represents the number of models in
the ensemble, falseipositive represents an actual value that is not a disturbance. However, the
model i-th falsely detected as disturbance, falseinegative represents the actual value which is a
disturbance, but the model i-th detected as not a disturbance, and wi represents the weight
or how important of the model i-th. For this study, wi is set to 1 as every model is equally
important.

In contrast, the model which has a high ensembleweight is the model that has a low prediction
error. Therefore, these model outputs are chosen to merge with others. However, suppose that
the model obtained a low ensembleweight; this phenomenon denotes that the model has a high
prediction error. Therefore, the outputs of weak detectors are discarded for the final prediction.

When the new data object is input into the system, the dynamic model selection process
is performed. This process of dynamic model selection was adopted from [67, 49]’s study. The
procedures are described as follow:

• Step one: The models’ inputs in section 4.2.2 are compared between the prior informa-
tion and new inputted information with sliding windows. Suppose that these two pieces
of information are different and cause a high prediction error. The models are then up-
dated and executed with respect to the new information. After that, the ensemble weight
average methods are computed using Equation (4.10).
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• Step two: The method chooses the model’s output with the topmost ensembleweight
(e.g., Top 2 to 6) to be stored in the ensemble list.

• Step three: Check whether all model’s weight is updated. Suppose not, go back to step
two; otherwise, go to step four.

• Step four: The process averages the output from the selected models as a final detection
result. If the average output of the ensemble model is more than 0.5, this value was
obtained by computing the mean in the ensemble list. In this event, the data point is
classified as an anomaly (1); otherwise, it is classified as normal (0).

In summary, the process which performed in Sections 4.2.1 – 4.2.2 are summarized as Figure
4.4 and are transformed to the computation algorithm, as Algorithm 4.1 to Algorithm 4.3.

Algorithm 4.1: Temporal behavior analysis

Input : Training set Tr = {F1, F2, . . . Fn} ∈ <; test point Fi ∈ <

Output: The prediction result of anomaly detection (Predn)

1: ŷt = LSTM(Tr) → Train LSTM model on Tr to derive the prediction error et %Chapter

3.2.4

2: et = |yt − ŷt|

3: es = EWMA(et)

4: for i = 1:N do

5: Thresholdp = µ(es) + zσ(es)

6: Thresholdv = µ(v)± zσ(v)

7: Thresholdi = µ(i)± zσ(i)

8: Scorei = 1
n

∑n
i=1(yiwi)

9: if Scorei > µ(
∑n

i=0 Scorei) then

10: [LSTManomaly, indexi]← 1

11: else

12: [LSTManomaly, indexi]← 0

13: end if

14: end for

15: Predn = {LSTM1
anomaly, . . . , LSTM

n
anomaly}

16: return Predn

4.2.3 Root-Cause Analysis

In the anomaly detection section, the hybrid model of anomaly detection was proposed. The
model aims to detect a temporal and static anomaly that is raised as challenged in Chapter
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Algorithm 4.2: Joint learning model of LSTM-AE and clustering method.

Input : Training set Tr = {F1, F2, . . . Fn} ∈ <; test point Fi ∈ <; Set of Prediction

error es = {e1, e2, . . . en}; Set of Clustering C = {C1, C2, . . . Cn}

Output: The prediction result of anomaly detection (LSTMAEanomaly)

1: ModelLSTMAE = LSTM-AE(Tr, es) → Train LSTM-AE model on Tr to derive the

encoded value %section 4.2.2

2: [encoded, index] = ModelLSTMAE(Fi) %use trained model to predict the test set.

3: for i = 1:N do

4: for j = 1:N do

5: [Clusteri, index] = Ci(encodedj) %used clustering technique to cluster the data into

groups

6: if Clusteri is false then

7: [LSTMAEanomaly, i, j]← 1

8: else

9: [LSTMAEanomaly, i, j]← 0

10: end if

11: end for

12: end for

13: LSTMAEanomaly = {LSTMAE1
anomaly, . . . , LSTMAEn

anomaly}

14: return LSTMAEanomaly
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Algorithm 4.3: Ensemble model for anomaly detection.

Input : Set of detection result Dt = D1, D2, . . . , Dn; Set of evaluation metric Em =

E1, E2, . . . , En

Output: The prediction result of anomaly detection (Predn)

1: for i=1:N do

2: Compute [ensemblei, index] = 1− 1
m

∑m∈Em

i=1

(
falseipositive+falseinegative

n

)
× wi %section

4.2.2

3: tmp ← 1 - argmin(ensemblei) Find the model which has ensemble weight close to 1

%top 2 to 6

4: [AV Gresult,index] ← average(tmp)

5: if AV Gi
result > 0.5 then

6: [ensembleanomaly, indexi]← 1

7: else

8: [ensembleanomaly, indexi]← 0

9: end if

10: end for

11: Predn = {ensemble1
anomaly, . . . , ensemble

n
anomaly}

12: return Predn
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Figure 4.4: The proposed dynamic ensemble models for disturbance detection.

2. Up to this stage, it is necessary to have a mechanism to explain the cause of the detected
anomaly. The one crucial reason is to reduce the bias of the detection and to increase the
detection model reliability. The review shown in Chapter 2 shows that the methodologies for
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performing root-cause analysis consist of three ways. For instance, forward problem analysis,
inverse problem analysis, and using machine learning. The explanation of these methodologies
in detail is shown in the following sections.

Forward Problem Analysis

As presented in Chapter 2, the definition of the “forward problem” is formulated from the
model parameters (m) and sources (s) to observe output (o). This technique is similar to how
the human solves the problem from the given environment input. The overall statement is
formalized as Equation (4.11):

o = As(m) (4.11)

where As is the forward problem depending on a source (s).
To solve the forward problem, the greedy algorithm and stack operator are used to construct

the algorithm. This section’s methodology starts with the model using a greedy algorithm to
pick up the daily routing plan (P ) from the logistics agency. The anomaly degree and cost are
then computed, respectively. Note that the procedures in this section are adapted from [15]’s
study. The anomaly degree is computed as Equation (4.12):

Anomalyidegree =

∑n
i=0 Operation

i
attr(t)

|SiPOA|
(4.12)

where Operation attribute (Operationattr) denotes as utility and productivity record from the
routing planning of the logistics agencies and SiPOA is the set of Operation attributes in plan P .
The operation attribute for this study consists of six attributes that are referred from the “Sup-
ply Chain Strategies” book written by [68]. The operation attributes consist of driver workload
ratio (dwlratio), driver availability ratio (daratio), utilization of the fleet (uof), productivity of
the fleet (pratio), incident (Incidentratio) and shortage (shortageratio) respectively. Also, these
attributes are presented as presented in Equation (4.13) to Equation (4.18).

The driver workload ratio (dwlratio) is a computation of the portion between the received
request from customers and the vehicle’s availability in the fleet at a current time. This attribute
demonstrated how well the drivers are assigned to work compared to the number of unassigned
drivers represented via a number of available vehicles. Therefore, the dwlratio is computed as
Equation (4.13):

dwlratio =
Receivedreg
V ehicleavali

(4.13)

where Receivedreg denotes as a number requested of a vehicle from the customers and
V ehicleavail denotes the number of remaining vehicles in the current fleet at time (t). The
driver availability ratio computes the portion between the vehicle in use and the total vehicle
in the fleet. This attribute demonstrated how much drivers are unassigned to work respected
to the workload. Therefore, the daratio is computed as Equation (4.14):

daratio =
V ehicleused∑

(V ehicleavail, Runanotherfleet, Backorderwork, V ehiclemain.)
(4.14)

where V ehicleused denotes the number of the vehicle used in the current fleet at time (t),
Runanotherfleet denotes the number of drivers that are working in another fleet. Further,
Backorderwork denotes the number of drivers who are not ready to receive a new task.
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V ehiclemaintenance denotes the number of the vehicle in maintenance, and V ehicleavail denotes
as the number of available vehicles in the fleet currently at time (t).

The uof computes the portion between the total received requests from the customer and the
fleet’s total vehicle. This attribute aims to demonstrate how much fleet utilization performed
when compared to the requests from customers. Therefore, the uof is computed as Equation
(4.15):

uof =
Receivedreg∑

(V ehicleavail, Runanotherfleet, Backorderwork, V ehiclemain.)
(4.15)

where Receivedreg denotes as a number requested of the vehicle from the customers,
Runanotherfleet denotes the number of drivers that are working in another fleet. On the other
hand, Backorderwork denotes the number of drivers who are not ready to receive a new task and
has not finished their previous tasks, V ehiclemaintenance denotes the vehicle in maintenance, and
V ehicleavail denotes the number of the available vehicle in the fleet at the current time (t).

The pratio computes the portion between the actual requested and the successfully received
request from the customers. This attribute aims to demonstrate the productivity of the fleet
when performing delivery tasks. Therefore, pratio is computed as Equation (4.16):

pratio =
Receivedreg
Actualreg

(4.16)

where Receivedreg denotes a number requested from the customers and Actualreg denotes the
actual requested from the customers that submitted to the system. The incident ratio com-
putes the unsuccessful delivery compared to all requests received submitted to the logistics
agency. This attribute aims to determine the unsuccess rate and demonstrate how incidents
and disturbances impact transportation planning. Therefore, the incidentratio is computed as
Equation (4.17):

incidentratio =
incident

Actualreg
(4.17)

where incident denotes as a number of incidents and disturbances occurred while transportation
planning is in process and Actualreg denotes as all of the requested from the customer that is
submitted to the system. The shortage ratio computes the number of tasks that are not assigned
to the vehicle compared to the total requested submitted by the customer. This attribute aims
to demonstrate how efficient the transportation planning tasks are performed. Therefore, the
shortage ratio is computed as Equation (4.18):

Shortageratio =
Shortagevehicle
Actualreg

(4.18)

where Shortagevehicle denotes the number of tasks that cannot be served by the vehicle in the
fleet and Actualreg denotes an actual request from the customers that submitted to the system.

After the anomaly degree of each operation’s attribute was computed. It then used an
input to compute the ranking (R) of importance to the corresponding anomaly. Note that this
process is adapted from the page rank algorithm. The ranking is computed as Equation (4.19):

R(OAi) = 1− d+ d

∑
Pday∈P Anomaly

degree
OA ×OA∑

day∈P OA
(4.19)
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where OA1, . . . , OAN are the operation attributes under consideration. AnomalydegreeOA denoted
how related of the anomaly to the operation’s attribute (OA), d is the dampling factor that
generally used in page rank algorithm. It ranges between the real interval [0,1].

Refer from Figure 4.5, the algorithm for performing forward problem is starting from the
anomaly degree is first computed and then ranked it for the pickup OA. The author pickup OA
by random pick and stored it to “tmp” list. Next, starting picking OA from the list and check
whether or not it belongs to the routing plan (P ). Second, the ranked of these two variables
are compared. The comparison is split into two cases. Note that the ranking is ordered by
Ascending order.

Figure 4.5: The proposed methodology for forward problem analysis.

The first case is when the ranking of OA value is less than or equal to the tmp value.
Therefore, tmp is taken from the routing plan list. The cost is then computed and insert
together with tmp’s value into the “plan observed (PO)” list. The PO is a list that stored the
attributes that makes comparison and computation already. The second case is when the OA
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value is more than the value that stored in tmp then the OA is taken from the plan P list. The
cost is then calculated and put together with OA into the PO list. The process is continuing
until all OA in the plan (P ) is computed. After the process is finished, the optimal sequence is
returned. At this point, the algorithm took the last index of the sequences and check whether
or not the value of OA is similar to the maximum of anomalydegree in PO. Suppose that it is
equal, then the OA is then defined as a “rootcause” of the revealed anomaly. Otherwise, the
next OA is taken for evaluation. Therefore, it is denoting as the origin of the sequence after
the anomaly has occurred.

The overall process for performing forward problem analysis which converted Equation
(4.11) into an algorithm is presented in Figure 4.5 and pseudocode in Algorithm 4.4.

Inverse Problem Analysis

In the previous section, the forward problem analysis for determining root cause was pre-
sented. This problem solving is similar to how humans tried to solve the problem from the given
environment. Unfortunately, in this section, the way of problem-solving is different. Instead
of analysis from the starting point until the abnormality is revealed. However, this problem
solving is starting to solve the problem from the revealed abnormality and inverse back to the
origin. Note that the procedures in this section are adapted from [15]’s study. As mentioned
in the review section in Chapter 2, the inverse problem analysis is more complicated than the
forward problem analysis. It is because of these reason as follow:

1. The returned solution is uncertain. In some cases, the solution is not returned.

2. The returned model’s solution is duplicated with another model’s solution. Therefore, it
is not easy to differentiate the characteristics of each model from the given output.

3. The solution is based on approximation. Therefore it is required to have a benchmark to
compare to increasing the solution confidentiality.

In general, the inverse problem is formulated as Equation (4.20):

s = A(−1)
s (o) (4.20)

where A
(−1)
s is the inverse problem operator. This assumed that the source parameters are

known. Next, in the solution of an inverse problem, there are 3 important questions that
should consider [57].

From this point, the inverse problem analysis is converted to the computer programming as
shown in Figure 4.6 and Algorithm 4.5. Note that the operation attributes and the anomaly
degree are computed using Equation (4.12) to Equation (4.18).

Refer from Figure 4.6, the algorithm will pick up the operation attribute that has the
maximum anomaly degree using a greedy algorithm and then pushed it into the data structure
stack. While the plan is not empty, it is then continuing similar to the previous step until plan
P is empty. After finishing these steps, the model then returns the optimal sequences that
are respected to the anomaly. As a result, the root cause of the inverse problem is denoting
as a last node of the sequence because it is input at the stack’s first index. Therefore, it is
denoting as the origin of the sequence before the anomaly has occurred. The overall process for
performing inverse problem analysis, which Equation (4.20) was converted into an algorithm,
is presented in Figure 4.6 and pseudocode in Algorithm 4.5.

56



Algorithm 4.4: Root-Cause Analysis by Forward Problem Analysis.

Input : Dataset P = P1, P2, . . . , Pn;
Set of detection result Dt = D1, D2, . . . , Dn ∈ P ;
Set of operation attributes OA = OA1, OA2, . . . , OAn ∈ P

Output: The analysis result of the root-cause (Rootcause); Modelaccuracy
1: tmp ← rand(OA, Indexi)
2: Planobserved = NULL
3: pred ← Array()
4: lastnode = 0
5: for i = 1 : P.size do
6: for j = 1 : OA.size do

7: Anomalyjdegree = Anomalyidegree =
∑n

i=0Operation
i
attr(t)

|Si
POA|

%using Equation (4.12)

8: Rankingj = R(OAi) = 1− d+ d

∑
Pday∈P Anomaly

degree
OA ×OA∑

day∈P OA

% using Equation (4.19)
9: = OAj.concat(Anomalyjdegree, Ranking

j)
10: end for
11: OA = OA.orderby(Ranking,asc)
12: if OA = 1 : P.size then
13: for i = 1 : OA.size do
14: OA = OA.pop()
15: if OA.Anomalydegree <= tmp.Anomalydegree then
16: tmp = OA.pop(tmp.index)
17: totalval = totalval + tmp.value
18: totalcost = total cost + tmp.value
19: PO.push(tmp)
20: else
21: tmp = OA
22: totalval = totalval + tmp.value
23: totalcost = total cost + tmp.value
24: PO.push(tmp)
25: end if
26: end for
27: while lastnode.Anomalydegree= max(PO.Anomalydegree) do
28: lastnode = PO.pop()
29: end while
30: pred.push(lastnode)
31: else
32: pred.push(“No”)
33: end if
34: end for
35: Rootcause = [pred1, pred2, . . . , predn]
36: Modelaccuracy = eval(P, predn)
37: return Rootcause, Modelaccuracy
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Algorithm 4.5: Root-Cause Analysis by Inverse Problem Analysis.

Input : Dataset P = P1, P2, . . . , Pn; Set of detection result Dt = D1, D2, . . . , Dn ∈ P ;

Set of operation attributes OA = OA1, OA2, . . . , OAn ∈ P
Output: The prediction result of the root-cause (Rootcause); Modelaccuracy

1: tmp ← rand(OA, Indexi)

2: Planobserved = NULL

3: pred ← Array()

4: lastnode = 0

5: for i = 1 : P.size do

6: for j = 1 : OA.size do

7: Anomalyjdegree = Anomalyidegree =
∑n

i=0Operation
i
attr(t)

|Si
POA|

% using Equation (4.12)

8: OAj.concat(Anomalyjdegree)

9: end for

10: OA = OA.orderby(Anomalydegree,dst)

11: if OA ∈ P then

12: for i = 1 : OA.size do

13: OA = OA.pop()

14: totalval = totalval + OA.value

15: totalcost = total cost + OA.value

16: PO.push(OA)

17: end for

18: lastnode = PO.pop()

19: pred.push(lastnode)

20: else

21: Pred.push(“No”)

22: end if

23: end for

24: Rootcause = [pred1, pred2, . . . , predn]

25: Modelaccuracy = evalmetrics(P,Rootcause)

26: return Rootcause, Modelaccuracy
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Figure 4.6: The proposed methodology for inverse problem analysis.

Using Machine Learning for Root-Cause Analysis

After performing disturbance detection successfully, an experiment on a machine learning
model using the probability distributions insides the model was performed. This model is used
to discover the root cause of the disturbances. This method was adopted from Lu’s framework
[52]. They use machine learning for performing root-cause analysis. The motivation behind
this experiment is to use the information organized from the disturbance detection as the root
cause’s input. The author also considered it as one feature in the root-cause analysis model
combined with other features. The author believes that such information can help us perform
root-cause analysis more feasible than perform these two tasks separately.

The reasons behind this statement are as follows. First, the data is non-linear. Second,
the data points did not separate from each other. Therefore, The author uses the output from
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the disturbance detection model to filter the data. It also makes distinct data extractions.
The assumption is that if the author inputs the data point directly without information of the
disturbance into the root-cause analysis model, then the root-cause analysis model will not
have any prior knowledge about the disturbance during training.

Consequently, the results will be a mix between normal events and disturbance data points.
Moreover, it will not effectively distinguish between a normal event or a disturbance. To
conclude, the model with the highest performance is recommended for root-cause analysis in
practical scenarios. The crucial steps for this are as follows:

• The data and its features obtained from the feature engineering process were used in
combination with disturbance status from the behavior analysis model. The status of
the data points was trained and extracted. This status was then used to assist in the
root-cause analysis process. In other words, the author pre-extracted information from
the data and used it as one of the features to assist in the root-cause analysis task. The
data was non-linear; thus, adding more features to the existing ones could improve the
model’s feasibility. It also added the capability to differentiate between disturbance and
non-disturbance data points effectively in the clustering process.

Then, numerous features are put into the Gaussian Mixture Model (GMM). These features
are vital for clustering the data into different groups that have the same data character-
istics. Five components in GMM were chosen for this study. These values were derived
from information criterion techniques. The Akaike information criterion (AIC) was used.
The AIC penalizes the model based on its complexity, as defined in Equation (4.21).
Hence, there are five types of disturbances’ root cause in the vehicle route optimization
task.

AIC(θ) = −2 log Pr(X|θ) + 2k (4.21)

For complete details, refer to [69]. The Bayes information criterion [70] is defined in
Equation (4.22):

BIC(θ) = −2 log Pr(X|θ) + k log(n) (4.22)

Accordingly, the components that minimize both AIC and BIC were selected.

• The Probabilistic Neural Network (PNN) was then connected to learned and classified
the data pattern stored by a PNN’s pattern layer. These patterns are sum together in
the summation layer. The PNN is a well-known ML model for doing pattern recognition,
such as handwriting detection. Therefore, the author adapted the benefit of performing
pattern recognition to the root-cause analysis problem.

The model used in this study consists of four layers (e.g., the input, pattern, summation,
and output layers). According to the structure of the data, the input layer consists of six
neurons. They are used to indicates the dimension of the extracted input feature vector
(F1, F2, . . . , Fn). The pattern layer is fully connected. It consists of neurons that have
six neurons similar to the input data. The summation layer followed the pattern layer.
Lastly, at the output layer of the PNN, it gives a prediction result for each root cause.
The prediction result was based on the probability distribution.

The author used the softmax function to convert the output into a normalized form and
selected the high-probability class as the final output. The transfer function Fi in the
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pattern layer is defined in Equation (4.23), where XN is the input data, and σ is the
smooth parameter. The author set σ to 0.1 according to the experiment. The hyper-
parameter (σ) is used to control the model’s smoothness. When the σ is very large,
it is increasing the variance of the Gaussian density distribution. The Gaussian density
distribution smoother the transition between different categories. In the summation layer,
the Gaussian kernel of each known input is added from the pattern layer as Sj =

∑n
i=1 (Fi),

where i denotes the number of input data and Sj denotes the jth S neuron output.

Finally, the output layer calculates the class probability as yj = 1∑n
i=1(Fi)

× Sj, where n

is equal to the size of input from the data and i = 1 : n to obtain the classification
output for the root cause. The label (output layer) is a 5-dimensional one-hot vector
with two indicating normal, and the other three are the causes of abnormalities in freight
transportation. Owing to the probability of the root cause’s representation, at the output
layer of the PNN, the author adds a softmax layer to convert the 5-dimensional output
to 1. The PNN is trained with one-thousand epochs with sixty-four batch size.

For other models to compete with PNN, the author trained Deep-learning and Back-
propagation Neural Networks with one-thousand epochs, three hidden layers and the
same input and output as PNN. The extreme learning machine (ELM) was also trained
in our experiment. The weight of the activation function has been analyzed as the data is
propagated through the network to determine the root cause with possible probabilities.

Fi =
1

(2π)d/2σd
1

m
exp[
−(XN −Xi)

ᵀ · (XN −Xi)

2σ2
] (4.23)

where i denotes the pattern number, m denotes the total number of training patterns, Xi

denotes the ith data that belongs to data category (C), σ is the smooth parameter (0.1),
and d denotes the dimension of the measured space (1,2,3,4,5).

From the above defined equations, the overall model for the PNN is shown in Figure 4.7.
The methodology is shown in Figure 4.8. The author also converted it to the programmable
algorithm as Algorithm 4.6.

To train and test the model, the author used real operational data. The data between
January 2017 to April 2019 were used for training and May 2019 to July 2019 for testing. The
model of [52, 21, 5, 34, 19, 18, 43, 45, 49, 54, 15]’s were used as baselines for performance
comparison and validation.

Also, each experiment is given 10 runs to make sure the sustainability of the results. The
mean values of the metrics are presented. Note that in all experiments of this chapter, the
author used Python 3.6 with the Keras library. The author also used the TensorFlow backend
and ran on a google colab GPU.

After the experiments were conducted, the results are evaluated with the well-known evalu-
ation metrics. Therefore, the detail of these evaluation metrics is presented in the next section.

4.2.4 Evaluation Metrics

In this section, the proposed model’s detection capability was evaluated using the area
under the ROC curve (AUC), precision and recall. The evaluation also including F1-score.
The author used these metrics due to the unbalanced data (e.g., with numerous percentage of
actual negatives, such as data with normal and abnormal are not equally distributed) where
the accuracy metric is not feasible to evaluate in this case. The AUC measures the whole
2-dimensional area under the whole receiver operating characteristic curve (ROC). The ROC
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Algorithm 4.6: Root-Cause Analysis by ML.

Input : Dataset DF Set of detection result Dt = D1, D2, . . . , Dn; Set of evaluation

metric Em = E1, E2, . . . , En

Output: The prediction result of the rootcause : Rootcause =

{Rootcause1, . . . , Rootcausen}; ModelAccuracy

1: DataProcessing = concat(DF ,Dt)

2: Train, Test = split(DataProcessing)

3: FeatureTrain = Makefeature(Train) % Section. 4.2.1

4: FeatureTest = Makefeature(Test) % Section. 4.2.1

5: Train = concat(Train, FeatureTrain)

6: Test = concat(Test, FeatureTest)

7: if Train[′status′] = 1 then

8: for i=1:N do

9: [Traini, Cluster] = GMM(Train, AIC, BIC) % Section. 4.2.3

10: PNN = model([Traini, Cluster])

11: [RootcauseTrain, indexi] = PNN(Train)

12: [Rootcause, indexi] = PNN(Test)

13: end for

14: Accuracytrain = eval(RootcauseTrain,em)

15: Accuracytest = eval(Rootcause,em)

16: Rootcause = [Rootcause1
anomaly, . . . , Rootcause

n
anomaly]

17: ModelAccuracy = [Accuracytrain, Accuracytest]

18: else

19: for i=1:N do

20: [Rootcause, indexi] = ’Normal’

21: end for

22: Rootcause = [Rootcause1
normal, . . . , Rootcause

n
normal]

23: end if

24: return Rootcause

62



Figure 4.7: Demonstration of probabilistic neural network (PNN) for root-cause analysis with
application in urban freight transportation planning.

was computed by applying a different threshold comparing True Positive Rate (TPR) and False
Positive Rate (FPR). Thus, the higher of these values indicated that the model is efficient in
detecting abnormal and normality events.

The author aims to demonstrate the practicality of the proposed methodology. Therefore,
the experimental results were validated using the provided metrics with real data of disturbances
in route optimization. These data were reported by company staff.

Once the methodology for detecting anomalies and root causes for transportation was devel-
oped, the author also wants to demonstrate how general the proposed methodology was when
employed in other application domains. Therefore, the detail of the applications, modifications,
and limitations is presented in the next section.

4.2.5 Practical Applications and Limitations

In the beginning, the proposed hybrid model was developed for the transportation domain.
However, the author also wants to demonstrate that the proposed hybrid model was general
and can be employed with minor modifications to other application domains. Therefore, other
application data (e.g., credit card transactions, water manufacturing system, and computer
network) were also used to performed anomaly detection and root-cause analysis. Note that
these data are the same as presented in Chapter 3.

The anomalies in these applications’ context are the system transactions that were different
from the routine usage of users (e.g., growing usage than the usual or different usage period).
These anomalies were detected by the ensemble of the detection results from the models in
Chapters 3 – 4. The integration of the models is because the anomalies of credit card trans-
actions were not effectively detected using only distance-, and density-based characteristics.
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Figure 4.8: Methodology for performing root-cause analysis.

However, it also depends on the contexts, such as time and location, and conditional behavior
(e.g., usage and frequency). Therefore, the root-cause analysis plays an essential role in dealing
with the data characteristics at this stage. Similar procedures were also applied to the network-
ing anomaly and water manufacturing dataset. The anomalies were the usage that concordant
by time.

Before, the anomaly detection model detects anomalies from the data, which are subjected
to preprocessing and standardizing. Then, these data were ordered based on time. The common
attributes that are vital for this proposed model are the time context and behavior attributes.
The behavior attributes consist of transaction usage and frequency. From this point, the author
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has demonstrated that each dataset is using the same data attributes for detecting anomalies.
Therefore, the anomaly detection models were compared based on their efficiency by the area
under the RoC curve metric.

Furthermore, the data have different characteristics. However, using only one model to
detect anomalies may not be feasible because some data characteristics may be discarded.
Therefore, in this study, the author combines model detection capability using ensemble learning
methods and root-cause analysis to enhance detection efficiency and increase the interpretability
of the result. The candidate detectors for each data characteristic consist of temporal-, distance-
, density-, reconstruction-, and anomaly explanation-based.

The temporal-based detector is capable of detecting anomalies that are dependent on time.
In addition, the distance-, density- and reconstruction-based detectors can detect characteristics
of data points that can be measured by distance, density, and degree of reconstruction (e.g.,
input and output should be nearly identical). Finally, the anomaly explanation-based can
detect anomalies that depend on behavior conditions (e.g., usage, frequency, and duration).

This part has driven the proposal of a hybrid model that combines the detection capability of
each model. Thus, the model consists of detection and root-cause analysis stages. Furthermore,
the author discovered that each model has a different capability in dealing with different data
characteristics. Therefore, the integration of these capabilities can significantly enhance the
final detection. This finding was also discovered by [44, 43].

The author believed that integrating these detectors’ capabilities could increase the model’s
efficiency as it incorporates all aspects of anomalies represented in each data characteristic.

Finally, the limitation of the proposed hybrid model is that it can only handle the structured
data ordered based on time as inputs. Therefore, data preprocessing is required when the data
is unstructured. In addition, the feature engineering process is required before executing the
model—for instance, the amount and the frequency of the usage ratio. These features are used
for performing the root-cause analysis. If more features are to be input into the model, the
model’s input layer should be adjusted to meet the new data. Also, the model hyperparameters
(e.g., epochs, batch size, learning rate, and more) should be optimized concordant to the new
data input. Hence, the common attributes vital for this proposed model are the time context
and behavior attributes, which consist of the transaction usage and frequency.

After the methodologies for detecting anomalies and root causes were presented, the exper-
imental results of these methodologies are presented in the next section.

4.3 Results

In this section, the experiment results are presented in two sub-sections: disturbance de-
tection and root-cause analysis. In addition, Figure 4.9 illustrated the training performance of
the LSTM-AE based model with a learning rate 10−4.

4.3.1 Behavior Analysis

Unsupervised Hybrid Anomaly Detection Model

In the previous section, the author performed anomaly detection for temporal and context
disturbances. The author used the same dataset as presented in section 4.2.1. The difference is
that this time the author detected the static disturbances from the dataset using joint learning
between the data dimension reduction method and clustering technique for behavior analysis.
The experiments were conducted with numerous models (e.g., PCA and AE). The author
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Figure 4.9: Training the model with multidimensional data.

utilized the one that returned the highest detection result for practical use. The experiment
result is shown in Table 4.3.

Table 4.3: Experiment results when dimension reduction and joint learning methods were
applied for detection models.

Model AUC Precision Recall F1-score
Yang et al. [34] 0.546 0.425 0.557 0.482
Zong et al. [5] 0.790 0.76 0.722 0.741

Xu et al. [21] (Donut) 0.504 0.385 0.614 0.473
Hundman et al. [18] 0.572 0.714 0.189 0.3

Phiboonbanakit et al. [13] 0.870 0.836 0.842 0.839
Elsayed et al. [19] (LSTM-AE) 0.577 0.943 0.137 0.239

Average of Baselines 0.763 0.736 0.652 0.667
PCA with Kmean 0.543 0.585 0.152 0.241

PCA with One-SVM 0.5254 0.5 0.133 0.210
PCA with Isolate Forest 0.5613 0.667 0.177 0.280

PCA with GMM 0.658 0.523 0.722 0.607
PCA with GMM (estimator) 0.614 0.466 0.778 0.583

LSTM-AE with One-SVM 0.621 0.498 0.652 0.565
LSTM-AE with Isolate Forest 0.618 0.493 0.646 0.559

LSTM-AE with GMM 0.790 0.76 0.722 0.741

Dynamic Ensemble Weight Average Method

As shown in the previous sections, multiple models for detecting anomalies in transportation
logistics operations were presented. It was shown that these models have different capabilities
of detecting disturbances. Therefore, it is essential to integrate these detection results into
consideration for final decision-making. Therefore, the dynamic ensemble weighted average
method was used to perform this task.
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In addition, the experiment on the state-of-the-art models was conducted and compared
against the proposed model. The author aims to illustrate the practical significance of the
proposed model. The experiment results are as shown in Tables 4.4 - 4.5. Note that the bold
text models in Tables 4.4 - 4.5 are the models that applied the methodology of this study.

Table 4.4: Experiment results when the ensemble weighted average method was applied to
combine detection’s result.

Model AUC Precision Recall F1-score
Chen et al. [45] 0.769 0.589 0.768 0.667

Chakraborty et al. [43] 0.756 0.882 0.536 0.667
Wang et al. [49] 0.355 0.245 0.323 0.279

Average of Baselines 0.627 0.572 0.542 0.538
Temporal-LSTM-AE with Kmean 0.734 0.806 0.551 0.655

Temporal-LSTM-AE with One-SVM 0.761 0.814 0.608 0.696
Temporal-LSTM-AE with Isolate Forest 0.778 0.866 0.614 0.719

Ensemble LSTM-AE 0.59 0.32 0.44 0.371
Temporal-LSTM-AE with GMM 0.784 0.868 0.627 0.728

After the suitable model was obtained, the author then conducting an experiment on other
application data. The author aims to demonstrate the practical usage of the model in detecting
anomalies with various application data. The data used in this experiment consists of credit
cards transactions [63], networking [64], water manufacturing [65] and transportation logistics
system dataset. Some of these data are open data from Kaggle competitions. The experiment
results is illustrated as Figure 4.10.

Figure 4.10: Experiment results when detecting anomalies using the proposed ensemble model
on other applications data.
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4.3.2 Root-Cause Analysis

Root-Cause Analysis using Forward Problem Analysis

In the previous section, the anomaly detection model was performed in the logistics oper-
ation data. The model returned the label of the data point. It was checked whether the data
point is anomalous or normality. However, if the author wants to explain the reason why these
data point was detecting as an anomaly, root-cause analysis is required to perform. In this
section, the root-cause analysis using the forward problem analysis was performed. The result
is shown in Table 4.6.

The effectiveness of the methodology was evaluated with the area under the curve (AUC),
accuracy, precision, and recall, including the computational time when running the model of
RA. To demonstrate the practicality of the methodology, the analysis results were validated with
real data collected through interviews with the company staff. Table 4.6 summarizes the results
of the AUC, accuracy, precision, and recall, including the computational time, when compared
against state-of-the-art models such as [52], the deep neural network (DNN), backpropagation
neural network (BP-NN), and extreme learning machine (ELM). Note that the bold text models
in Table 4.6 are the model which applied the methodology of this study and choosing forward
problem analysis to explain the cause of the abnormalities.

Root-Cause Analysis using Inverse Problem Analysis

In the previous section, the experiment on the forward problem analysis was presented. In
this section, the approach is changed in an inverse way. The main difference is the starting of
the process is starting from the detected anomaly and traces back to its origin.

In this section, the root-cause analysis using the inverse problem analysis was performed.
The result is shown in Table 4.7.

The effectiveness of the methodology was evaluated with the area under the curve (AUC),
accuracy, precision, and recall, including the computational time when running the model of
RA. To demonstrate the practicality of the methodology, the analysis results were validated with
real data collected through interviews with the company staff. Table 4.7 summarizes the results
of the AUC, accuracy, precision, and recall, including the computational time, when compared
against state-of-the-art models such as [52], the deep neural network (DNN), backpropagation
neural network (BP-NN), and extreme learning machine (ELM). Note that the bold text models
in Table 4.7 are the model which applied the methodology of this study and choosing inverse
problem analysis to explain the cause of the abnormalities.

Root-Cause Analysis using ML

In the previous sections, the anomaly detection in logistics operation data was performed.
Following that, the author performed clustering using Gaussian Mixture Model (GMM) to
segregate the types of disturbances using their characteristics. The reason for the use of GMM
is non-linear data that cannot be clearly separated [34]. Using Kmean could not counteract
this issue. After clustering, all of the features, including the disturbance types, were used as
inputs for the machine learning model, which uses weight propagation in the network. The
information from the disturbance detection task was considered as input for the second model
for determining the root cause from the flow of data. This section also presents the practical
use of this methodology.

The author tested the accuracy of the proposed methodology by using a cross-validation
strategy. Specifically, k-fold cross-validation was performed. The author evaluated the effec-
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tiveness of the methodology with the area under the curve (AUC), accuracy, precision, and
recall, including the computational time when running the model of RA. To demonstrate the
practicality of the proposed methodology, the analysis results were validated with real data
collected through interviews with the company staff.

Tables 4.8 – 4.9 summarize the analysis’ results with the F1-score, AUC, accuracy, preci-
sion, and recall, including the computational time. This experiment also compared the proposed
model against state-of-the-art models such as [52], the deep neural network (DNN), backprop-
agation neural network (BP-NN), and extreme learning machine (ELM). Note that the bold
text models in Table 4.8 are the model that applied this study’s methodology.

Table 4.10, the author determined the root cause based on their characteristics and in Figure
4.11 demonstrates proportions of the root cause that cause difficulty in transportation planning.

Figure 4.11: Proportions of the root cause of planning setting behavior in the freight trans-
portation planning system classified by probabilistic neural network (PNN).

Finally, the result of using anomaly detection and root-cause analysis of the proposed model
is also presented. It is presented in term of the effectiveness of detecting each type of anomaly,
as shown in Figure 4.12 and Figure 4.13.

Besides, the author also performed an experiment to demonstrate the practical significance
of the proposed model by adding anomaly detection in various applications. The data for
testing is similar to Chapter 3. Thus, the experiment result is demonstrated as Figure 4.14.

After the experimental results were presented, it is now ready to discuss the findings from
those experiments.
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Table 4.9: The model’s performance in detecting various root causes in transportation logistics
operation.

Root cause Precision Recall F1-score
Fleet management 0.79 1 0.89

Demand 0.70 0.91 0.79
Potential clients 1 1 1

Normal (Mild) 0.99 0.78 0.88
Normal (Peak) 0.66 0.79 0.72

Figure 4.12: Misdetection of each anomaly types.

4.4 Discussion

4.4.1 Behavior Analysis

Unsupervised Hybrid Anomaly Detection Model

The comparison between two well-known dimension reduction techniques used to deal with
high dimensional data is shown in Table 4.3. For the anomaly detection model, the transformed
data were used as input. The PCA model was discovered that it did not outperform the LSTM-
AE model. The reason being, in PCA, the components are essential to be optimally selected;
otherwise, vital information will be lost, which may be required by the anomaly detection
model. Additionally, we did not know which information is vital to the anomaly detection
model as it requires a pre-training process.

Fortunately, it is not required to pre-training the LSTM-AE and remove any dimension.
It is because the LSTM-AE encoded all data into a single encoded value. The encoded data
represented the high dimensional data as single value data. Also, they are stored in the model’s
hidden layer. Hence, in each dimension, all the information was preserved. They also input
into density- and distance-based detectors. Accordingly, the best fit detection model was the
LSTM-AE with GMM. It provided the highest results in terms of AUC, precision, and recall,
respectively. It also outperformed most baseline models. For instance: state-of-the-art models,
One-SVM, and Isolate Forest. This phenomenon has reflected the benefit of dealing with non-
linear data of the GMM. This capability is limited to other models (e.g., Kmean, One-SVM,
and Isolate Forest). Furthermore, the proposed procedure from [5] was adapted by replacing
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Figure 4.13: Performance comparison

Figure 4.14: Experiment results when detecting anomalies and analyzing the root cause using
the proposed hybrid model on other applications data.
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Deep AE with LSTM-AE. However, the experiment result did not change significantly from
[5]’s model. Unfortunately, the model of [34, 18, 19, 5] and the LSTM-AE with GMM are
limited to detecting contextual anomalies. It cannot overcome the model of [13], as presented
in Chapter 3. Therefore, [13]’s model is used as a based development for the dynamic ensemble
model.

Dynamic Ensemble Weight Average Method

From Table 4.4, a model in which there is a balance between the temporal-context distur-
bance and static disturbance detection during daily transport logistics operations was obtained.
The integrated output between the temporal, LSTM-AE, and GMM models is selected for prac-
tical use. The reasons to support this statement are as follows: First, GMM performed the best
with the non-linear data. Second, this study used non-linear data; therefore, it is the limitation
of Kmean, where it supports only linear data. On the other hand, non-linear data also has
noise and unwanted data attributes. Therefore, it reduced the detection performance of the
One-SVM and ensemble AE models. These models are not robust to noises from the data.

Further when the model of Wang et al. was applied to this study data. It also suffers
from the problem that anomalies and normal events are not linearly separable from a high-
dimensional data projection space. For simplicity, the distance of the data point from a radius
of the decision boundary is similar for both abnormal and normal events, as shown in Figure
4.15. Therefore, the distance between points from centroid strategies used by most clustering
methods (e.g., Kmean, k-nn, or its variants) cannot be used to determine whether the set of
data points are an anomaly or not. As a result, this model has the evaluation metrics result
(e.g., AUC and F1-score) lowest among all models.

Figure 4.15: Demonstration of the use of Support Vector Data Description (SVDD) for detecting
anomaly in the transportation logistics dataset.
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Finally, disturbances in the logistics environment are correlated with location and time (spa-
tial and temporal) contexts. Therefore, using the only ensemble of density- and reconstruction-
based detection is not practical to detect disturbances that correlated with those contexts.
These were the limitation of [45, 43]’s studies.

Fortunately, in the proposed methodology, the author ensemble each model’s output to-
gether. It also includes the output of temporal detection from the LSTM with dynamic con-
textualized thresholds, as presented model of Chapter 3. Therefore, Table 4.4 depicted that
the proposed approach was successful. It is because the detection rate increases after including
temporal detection in the anomaly detection framework.

It also proved the assumption that the disturbances in transportation logistics are correlated
with behavior attributes. Further, the result also overcomes the single model shown in Table
4.3 and the ensemble model of [45, 43]’s studies.

Unfortunately, the recall metric still had room for improvement. Hence, more classifiers
were added to the model, as depicted in Table 4.5.

From the experiment result, the author discovered that the number of classifiers in the
model is significant. As mention previously, each model has various capabilities to detect
different types of an abnormal events. This finding shows the reason why some proposed model
has low accuracy than some baselines in Table 4.4. Therefore, when the outcome of each model
was combined, then the detection rate is increasing. As presented in Table 4.5, when the
author added more classifiers, it improved all evaluation metrics. Especially the model titled
“temporal-LSTM-AE with 4 (GMM/Kmean/IS/...)”. It provided the best detection rate.

To prove this claim, instead of using the dynamic ensemble method for selecting detectors
and combine detection results, the author proposed to used GA and PSO. The detector selection
by GA and PSO and ensemble the detection result approach are presented. The experiment
results show that the optimal detector recommended by GA and PSO provided the most efficient
anomaly detection with 5 detectors. It is the same as a result suggests by the proposed model.

Therefore, the model titled “temporal-LSTM-AE with 4 (GMM/Kmean/IS/...)” is confi-
dently selected for the final disturbance detection. Its detection result is also further used as
input for the root-cause analysis model.

Unfortunately, Figure 4.10 shown that when the LSTMs join learning with clustering was
applied, it reduces the overall detection performance for all datasets. This phenomenon occurred
because the LSTMs join learning with clustering is truly unsupervised learning. It does not
have any assumptions about the abnormality in terms of contexts and behavior attributes.
The model is classified abnormality based on the data point density only. Suppose that the
data point does not belong to any clusters; in this case, it then labels that data point as an
anomaly. However, in the real-world application, the data are correlated with location–time
contexts. Also, the behavior attributes such as resource usages concerning the time. Therefore,
the LSTMs join learning with the clustering approach are not capable of handling this kind of
problem.

To enhance the detection result, the dynamic ensemble method was applied to combine
the temporal anomaly detection model from Chapter 3 with an LSTM-AE with the clustering
model presented in this chapter. As a result, the detection rate is increasing. The rationale
behind the improvement is that the proposed dynamic ensemble method enables the model
to decide which detector is used to classify the data. For instance, temporal with context,
density-based, or both of them. Therefore, the data point is labeled individually depending on
its characteristics. As a result, the detectors’ majority vote is used to assigns the label. For
simplicity, suppose that we have five detectors, then three detectors defined the data point as
an anomaly. On the other hand, two detectors defined data points as normal. Therefore, the
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final detection result is returned as the data point is an anomaly. It is because most detectors
are detecting it as an anomaly.

However, it still has room for further improvement. In Figure 4.10, shows the disadvantage of
using ensemble methods. If the detector results conflict with each other. They cause degrading
the overall detection result. Therefore, in the following section, the author continued to improve
the model. Also, the root-cause analysis or anomaly explanation is considered to enhancing the
detection result. The author aims to reduce the misdetection rate and bias when the detectors
are performed. These actions strengthen the anomaly detection results. This process also
included adding the ability to detect and eliminate the anomalies until their origin before they
cause any disruption to the transportation planning processes.

4.4.2 Root-Cause Analysis

Root-Cause Analysis using Forward Problem Analysis

The result in Table 4.6 shows that the forward problem analysis cannot outperform the
root-cause analysis using ML is because of these two reasons. The first reason is that the
model ranked the degree of an anomaly in the ascending order. Therefore, the computation is
selected the data point to be expanded base on the maximum ranking value. The characteristics
of selecting data points are the same as a greedy algorithm.

The greedy algorithm is efficient and fast. However, it has some limitations. The heuristics
function selects the closest node that has maximum value to be expanded. This action leads
to the uncertain of the result because the computation can lead to the dead-end or be caught
in the infinite loop.

The second reason is that it degrades the model’s efficiency, as the algorithm chooses the
closest data point with maximum value to expand. In some cases, the closest maximum data
point is not always the origin that causes abnormalities. Therefore, it is increasing the chance
to define a root cause with an incorrect searching location.

From the disadvantages mentioned earlier, the forward problem analysis also degrades the
overall detection result because of the anomaly’s misclassification. The result shows that it
has only 0.539 of AUC. On the other hand, the precision and recall are on 0.278 and 0.318,
respectively.

The author would suggest that this model’s efficiency is not practical to derive a root cause
in practical usage. The reason is that the lower of the precision and recall denotes that the
model has a limitation in capturing the data characteristics and behavior from the input data.

Root-Cause Analysis using Inverse Problem Analysis

The result in Table 4.7 shows that the inverse problem analysis could not outperform the
model proposed by [52]. The main difference between the inverse problem analysis and the
forward problem analysis is that the inverse problem analysis used approximate strategies
to derive the solution. The model started from the outcome and estimated the connected
causes—however, the forward problem analysis using exact strategies for deriving the problem.
The model starts based on the observed environment and traces to the effect of the cause.
Therefore the solution is returned based on different assumptions.

The model that is used ML is also based on an approximation of the solution. The rationale
behind that makes ML performed better than the inverse problem analysis is that the ML was
trained based on the real data and had a label the characteristics of the cause of the events. On
the other hand, the inverse problem analysis is based on search strategies. Therefore, it does
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not have any clue or assumption about the events. Unfortunately, the result is purely based on
searching strategies and does not guarantee that the returned solution is actually the cause of
the abnormalities.

From the issues mentioned earlier, the inverse problem analysis degrades the overall detec-
tion result because of the anomaly’s misclassification. The result shows that it has only 0.519 of
AUC. On the other hand, the precision and recall are on 0.237 and 0.173, respectively. Similar
to the forward problem analysis, the author would suggest that the efficiency of this model is
not practical for derive a root cause in the practical usage for the real-world problem.

Root-Cause Analysis using ML

From Table 4.9, the experiment result shows that the PNN in the proposed methodology
was the most effective in determining the cause of the abnormal event in urban transportation
logistics.

The PNN is a well-known ML model for doing pattern recognition. Therefore, the author
adapted the benefit from pattern recognition to the root-cause analysis problem. Instead of
searching for the relationship between data attributes like inverse and forward analysis prob-
lems, the PNN stored the route optimization process pattern in the pattern layer and summed
it together in the summation layer. The model further makes classification the type of root
cause using a probability distribution. As a result, the root cause from the route optimization
process is returned.

It is also simple, with only 0.080 s. of computational time. To discuss the root-cause analysis
further, the PNN is selected and recommended for practical use. In the following statement
are reasons for the selection of PNN instead of other approaches. The first reason is that the
PNN is an uncomplicated and efficient network. It has a high performance in computation.

The transfer function at the pattern layer is a Gaussian function that can obtain local
approximation with low computational time. It does not require any backpropagation training
operations. In contrast, classic neural networks and deep neural networks require more effort to
fine-tune hyper-parameters. Hence, they are not capable of small datasets. The second reason
is that traditional classification and regression models, such as CART, did not return the
output’s probability. Therefore, it is not feasible to analyze the data probability distribution
throughout the process. In other words, the PNN is more transparent to understand the
model’s behavior and underlying relationships between the model’s input and output. These
components built up the case for the root-cause analysis than other models. In theory, it is
similar to the general additive model (GAM). Therefore, the output at the PNN’s output layer
is influenced by the input of data pattern while the classification is performed. The stored
pattern is propagated from pattern to summation layer. The relation behind the effect to the
output was also understandable by the users. The third reason is that rule-based statistics
provided an acceptable explanation for the class probability of root cause, as shown by [55].

Unfortunately, the relationship between data characteristics is not always a linear correla-
tion. It is not possible to create all possible rules to handle this type of data distribution. On
the other hand, the Bayesian Network is also well-known for performing root-cause analysis.
However, it requires supporting data and prior knowledge to determine the influence output,
as shown in the study by [71]. Thus, this is the reason why the author used GMM to group
the data pattern by its characteristics first before inputting it into the PNN model instead of
creating all possible handcraft rules.

Furthermore, the proposed methodology also outperforms [52]’s framework in determined
the abnormality root cause. It is because of the efficiency in detecting abnormalities in the
series of data. In [52], the process done separately between anomaly detection and root-cause
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analysis. Therefore, it is difficult to obtain the root causes when the data points are overlap to
each other.

In this study, the joint learning between anomaly detection and root-cause analysis is per-
formed. As a result, the information is shared between these models to determined the root
cause.

Table 4.9 presents how well the PNN classified the root cause each day from analyzing the
probability of the stored data pattern throughout the network. Fortunately, the performed
clustering process is able to separate data into groups.

The data are finally classified as five types of root cause and the factors that influence
the root cause are shown in Table 4.10. Three of those are causes of disturbances to route
optimization (e.g., fleet management, demand, and clients) and the remaining two are normal
cases. The difference between “Normal (Mild)” and “Normal (Peak)” is the usage of vehicles
where mild means the usage is not more than half of the fleet’s capacity at the current time,
whereas peak means the usage is more than half of the fleet’s capacity. However, it has not
yet exceeded the capacity limit. For example, on a certain day, the cause of the disturbance
was the fleet management (e.g., inefficient route assignment for delivering goods to customers
because of the shortage of vehicles due to maintenance or absence of the driver).

The results show that the root cause was efficiently determined with up to 0.79 precision
and 1 recall. Furthermore, the author examined the case where the disturbance is caused by
the demand overflow capability of the fleet. The results, in this case, were similarly effective,
with up to 0.70 and 0.90 of precision and recall, respectively, including the normal case where it
efficiently detected the normal situations out of the abnormalities. The results are satisfactory.
However, some issues are worth noting: For the human resource management case, the result
seems to be accurate. However, its frequency of occurrence is very low, as shown in Figure 4.11.
Thus, further experiments need to be conducted for the cases where it happens more often.

In this section, the effectiveness of combining anomaly detection and root-cause analysis
together is presented. This approach is also recommended for a practical use. It is shown that
combining hybrid anomaly detection and root-cause analysis can enhance the detection result.
As in Figures 4.12 – 4.13, the proposed model that performing hybrid detection (e.g., point,
contextual, and collective anomaly) is outperformed other models. It is because the number of
misclassification is reduced for all types of the anomaly. The rationale behind this is that the
root-cause analysis part revealed the cause of the abnormality.

It led to the discovery of the origin components that are the cause of the anomalous. The
anomalous can be eliminated at the root cause before it occurred and cause any disruption to
the overall route optimization process. This also solved the problem of detecting data points
that are depending on the behavior attributes. The contexts and behavior attributes must
appropriately define. Therefore, the data point is labeled with respect to the origin of the
causes.

As a result, the model returned the detection result more accurately than the model that
determines the anomalous based on distance, density, and statistical analysis. On the other
hand, in the detection part, the model can detect conditional behavior. Therefore, when these
two capabilities are combined, the anomaly’s data points are mostly detected and free from
bias on labeled the data. In short, the user can have confidence in the detection result. As the
decision of the detection is being explained, it makes the user to clearly understand the relation
why the model reached this such decision.

It was also shown that the model based on ML is more practical and efficient in revealed the
cause of abnormality than the exact (e.g., Forward Problem Analysis) and approximate (e.g.,
Inverse Problem Analysis) approaches. Nevertheless, the proposed model is typically general
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and can also be used for any other anomaly detection problems with minimal changes. For
instance, minimal changes in location-time contexts (e.g., event at the location and specific
time) and thresholds of behavior attributes (e.g., resources usage, amount of workflows, and
transactions). Figure 4.14 demonstrated that using anomaly explanation enhances the final
detection result. The experiment results improve from the prior detection models between 0.7
– 0.9 of AUC for all real-world applications. The results are admirable. It was demonstrated
that the proposed hybrid model of this study is simple and only minor modifications were
required when used in other applications domain. It can be utilized with other applications
while the model still maintains a high computational performance.

The rationale behind this success is that the detection result is enhanced by combining
numerous detectors with different capabilities in detecting anomalies. Also, the proposed hybrid
model is capable to reveals the root cause of the anomalous. Therefore, the chance of assigning
the anomalies labeled with bias and mistaken is reduced.

It is clear that performing anomaly detection is crucial to consider the anomalies’ context
and their causes. Suppose we compare to humans. This process is similar to when we consult
the experts to get supporting information before making a decision.

Further, each expert has a different level of expertise in this research field. Therefore, the
more result that returns in the same direction made the decision to be more confident than
consult only a single expert. The decision is also free from bias.

From the experiments, the author discovered that combination of detectors and revealed its
root cause could enhance the anomaly detection performance. The procedure makes the final
detection result to be more accurate and reliable than the single model approaches. While the
detection’s decision is being explained, it makes users clearly understand the relation why the
model reached this such decision. Also, the anomalies are detected and eliminated until their
origin. It is done before they cause any consequence failures to the transportation planning
processes. This chapter’s finding provides a direction to investigate more in improving anomaly
detection with anomaly explanation using ML for further studies. It also contributes further
to a path for knowledge discovery.

Figure 4.11 demonstrates that the root cause of difficulty in transportation planning lies
mostly in the management of the vehicle fleet, as it has a higher proportion when compared to
that of other causes such as potential client or demand from the market.

For this methodology’s practical usage, the logistics agency can use the proposed method-
ology to analyze the root cause of the detection stage’s outcome. Therefore, the disturbance
can be eliminated at its origin, and also, the cause of the disturbance is revealed. For instance,
if the disturbance is detected, the PNN returns the weight from the activation function caused
by disturbances. The weight which is higher than others denotes that the features in which the
weight is associated are the cause of the disturbance.

However, there may be few limitations for analyzing the root cause, such as the overlapping
of some factors. More factors have to be segregated for it to be clearer. Although the data
which the author obtained contained full information, it was not sufficiently rich given that
all the data needed to be linked together. However, it is not easy to analyze all root causes’
types by using only sensor data and reports. This is because some root causes such as driver
availability and delivery accuracy have environmental factors behind them.

Moreover, as some of the factors are dependent on humans, it results in unpredictability
and difficulty in determining the root cause. This is the reason the author focuses on deter-
mining the root cause of disturbances for route optimization through the proposed model. The
goal is to assist the decision-makers in their final decisions through proper evaluation of their
transportation planning.
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After the experimental results were discussed, it is now ready to conclude this chapter’s
contents, as shown in the conclusion section.

4.5 Conclusion

This chapter presents an unsupervised methodology for detecting anomalies and their root
causes in urban freight transportation. This methodology aims to fulfill the conventional ap-
proach to dealing with anomaly detection problems, as mentioned at the beginning.

In this study, the author only concerning anomalies in route optimization tasks. From
the results, there are two mains findings. First, the experiment result shows that the proposed
methodology can detect a disturbance and involving root cause in the route optimization process
with up to 0.88 of AUC. Hence, the proposed methodology can precisely determine the root
cause. At the same time, it can enhance the detection result compared to state-of-the-art
models. The reason is that the model took the benefit of performing dynamic two-stage analysis.
This analysis perfectly revealed vital feature representations of the data. Therefore, the ability
of the classifiers is enhanced. These classifiers are used to detected anomalies in the high-
dimensional data.

Second, using a hybrid model provided the highest analysis results without additional mon-
itoring and prior knowledge. The model is capable of handling non-linearly separable and
conditional dependent data. It also biases-free when the detection result is finalized. The root-
cause analysis part provides essential information to classify the data correctly. It also enhanced
the overall detection performance. Thus, the detection result is more reliable than only doing
detection of anomalous based on density and distance. As the detection’s decision is being
explained, it makes the user clearly understand the relation why the model reached this such
decision. It also added the ability to prompt staffers to eliminate the anomalous at its origin.
It is done before the anomaly occurred and caused any consequence failures. To strengthen
the finding of this study, these experimental results are validated with actual operational data
provided by company staff.

The experiment also showed that the proposed hybrid model is general and can also be used
for any other anomaly detection problems with minimal changes.

Finally, this study has certain limitations. It only can handle structured data and delimit to
the transportation research domain. Therefore, additional data preprocessing procedures and
external operational factors are required for further considerations. The proposed methodology
has reduced an amount of noise in the data, but it is still observed at a low percentage.

In the future, the author will improve the proposed methodology. Also, the author will
consider more complex scenarios. For instance: dealing with production and manufacturing
processes besides transportation planning. The author believes that doing so will make the
proposed methodology more robust for behavior and root-cause analysis in real-world applica-
tions. The author will also apply this behavior analysis methodology to detect the reinforcement
learning (RL) agent’s behavior. The RL agent will perform the vehicle route optimization tasks
in the entire operation instead of humans, as presented in Chapter 5.
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Chapter 5

Case Studies of applying Behavior and
Root-Cause Analysis for
Transportation Planning

5.1 Introduction

In this chapter, case studies applying the methodology of behavior and root-cause analysis
are presented. The case studies consist of routine vehicle route optimization tasks and when
disturbances occur while vehicle route optimization is performed.

This chapter aims to present the practical and significance of behavior and root-cause anal-
ysis that assist in the transportation planning process, especially vehicle route optimization
tasks. Vehicle route optimization tasks for logistics have become a crucial task since the rise of
the digital eCommerce market. Therefore, it is necessary to have accurate planning and policy
development. Therefore, in this chapter, the benefit of the proposed methodology is presented
and demonstrated to enhance the accuracy and improve the vehicle route optimization solution.

The study assumed that a transportation planning agent is developed based on Reinforce-
ment Learning (RL). They have equal responsibility as humans, starting from the initial learning
stage. Therefore, each agent is trained based on the information provided by the methodology
of behavior and root-cause analysis, described in Chapters 3 – 4. The author observes that if
the information obtained from analyzing the transportation environment is instructive, it will
improve the optimization solution suggested by RL when dealing with uncertain environmental
changes.

The motivation for these case studies can be attributed to the increasingly complicated
vehicle route optimization tasks of recent years. In addition, they are considerably affected by
uncertain environmental changes (e.g., the sudden change of customer demand, road-network
traffic conditions, and fleet resources).

However, traditional approaches cannot be applied because they are limited to extracting
and monitoring the operation characteristics from multisource data. This results in the vehi-
cle route optimization task not responding dynamically to uncertain situations or providing
targeted solutions. Therefore, the proposed methodology of behavior and root-cause analysis
presented in this study aims to enhance the accuracy of the information provided by the mul-
tisource data. The normality and abnormality of the transportation planning process are then
revealed. Finally, the explanations of the cause of the abnormality are also used to assist in
improving the detection result.
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After the information is obtained, it contributes to the RL vehicle route optimization model
by communicating through a dynamic reward function that is connected with the behavior and
root-cause analysis models. This process is a hybrid model because the agent determines the
solution via an RL trial-and-error strategy. Then, they evaluate the actions that interact with
the environment using the behavior analysis models described in Chapters 3 – 4. Finally, the
results of the behavior analysis are transmitted to the reward processing unit. Therefore, the
information is used to train the agent on the chosen appropriate action and which action to
avoid when performing the vehicle route optimization.

The agent’s goal is to maintain the cumulative reward. In this study, the appropriate action
means an agent is chosen to make delivery without violating any constraints. Therefore, a
positive reward is given to the agent. Otherwise, a negative reward is given to reduce its
reward. The process remains in this step until all customers are assigned to the vehicles.
Finally, the optimal solution with the highest reward is returned. This chapter also presents
the improvement of the result when behavior root-cause analysis is used together with the
vehicle route optimization tasks and when optimization tasks are performed individually.

The author chose RL to perform vehicle route optimization instead of other algorithms
because the author aims to develop the optimization model driven by the multisource data.
Furthermore, it was shown that the model driven by the data could significantly reduce the
complexity of defined constraints and also enhance the adaptability of the model according
to the environmental changes. Thus, the method that fulfills this objective is to use the RL
approach.

After the study introduction was presented, it is time to formulate the research problem
definition.

5.2 Problem Definition

Recently, there were numerous vehicle route optimization solutions that might not be prac-
tical to deploy into the transportation planning operation. It causes by the disturbance and
the lack of understanding of the current situation, whereas the optimized solution should be
adapted. Those conventional models were not fully capable of compensating for such issues. In
this chapter, a split delivery VRP (SDVRP) is solved by using RL. The RL approach is more
flexible and accessible to adapt according to the environmental changes than the mixed-integer
linear programming approaches.

Typically, the SDVRP is formulated as a graph G = (V , E) with a set of vertex V =
{0, 1, . . . , n}, where 0 represents a depot, the other vertex represents a customer location. This
location requires each vehicle to visit, and E represents a set of edges. Furthermore, each vehicle
should start and end at the depot. In addition, each vehicle can visit a specific customer more
than once until the demand is satisfied. The indices, parameters, and variables for this problem
formulation are defined in Tables (5.1–5.3).

The purpose of this problem is to minimize the traversal cost obtained while making multiple
deliveries to each customer until all demands are satisfied. The objective function is defined as
Equation (5.1):

min
n∑
i=0

n∑
j=0

m∑
v=1

cijx
v
ij (5.1)
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Table 5.1: Set of indices

Notation Description
i, j The origin i and destination j ∈ V
n, p n is the number of nodes in V , p = 0, . . . , n
K The number of goods units that need to be delivered
k Goods unit k ∈ {1, . . . , K}
m The number of vehicles that need to be used
v Vehicle v ∈ {1, . . . ,m}
V+ Vertices in the set of vertex V except the depot, i.e., V+ = V \ {0}
V The subset of vertices in V+, i.e., V ⊆ V+

T Limit of working hours per trip by limiting consecutive hours

Table 5.2: Set of parameters

Notation Description
cij The traversal cost of route i to j
tij The travel time of route i to j
cti The current time at vertex i ∈ V
yiv The demand of i delivered by vehicle v
dmi The demand of vertex i ∈ V+

dtv The accumulative working hours of vehicle v
dlvij The deadline for visit vertex j from i of vehicle v
sei Service time of delivery vehicle at i

[lij, l̂ij] Arrival time at vertex j from vertex i, where lij is the best arrival time and

l̂ij is the maximum arrival time that the customer can accept
Qv The vehicle v’s capacity

Table 5.3: Decision variables

Notation Description

xvij Route selection =

{
1, if v travel from i to j
0, otherwise

hvik Goods selection =

{
1, if v delivers goods unit k to customer i
0, otherwise

subject to:

n∑
i=0

m∑
v=1

xvij ≥ 1; j = 0, . . . , n (5.2)

n∑
i=0

xvip −
n∑
j=0

xvpj = 0; v = 1, . . . ,m; p ∈ V (5.3)

∑
i∈V

∑
j∈V

xvij ≤ |V | − 1; v = 1, . . . ,m; V ⊆ V+ (5.4)
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n∑
i=0

xvip =
n∑
j=1

xvpj; v = 1, . . . ,m; p ∈ V (5.5)

yiv = hvi1dm
1
i +, . . . ,+ hvikdm

k
i ; i = 1, . . . , n; v = 1, . . . ,m (5.6)

m∑
v=1

yiv = dmi; i = 1, . . . , n (5.7)

n∑
i=1

yiv ≤ Qv; v = 1, . . . ,m (5.8)

dtv =
n∑
i=0

sei + tij,∀j ∈ V ; v = 1, . . . ,m (5.9)

dtv ≤ T ; v = 1, . . . ,m (5.10)

cti + tij ≤ l̂ij, cti + tij ≤ dlvij; i = 0, . . . , |V|; j = 1, . . . , |V+|; v = 1, . . . ,m (5.11)

Constraints (5.2) to (5.4) are routing constraints. Constraint (5.2) requires each customer
location denoted as i to be visited at least once by vehicle v until the customer demand is
satisfied. Constraint (5.3) is a comparison of routing similarity, where the result is equal
to 0. The routes are then considered as the same route. This constraint aims to prevent
simultaneously recommending identical routes with inverted directions for vehicle v, whereas
Constraint (5.4) eliminates sub-tours of other recommended routes by comparing the current
route sequence. It should not match the previously recommended route except the depot
location.

However, Constraints (5.5) to (5.8) are customer demand constraints. Constraint (5.5)
indicates that a customer demand can be delivered to customer i only if vehicle v has passed
through route i. Moreover, the delivery by vehicle v is less than or equal to the demand at the
customer’s location i. This constraint aims to avoid situations where the vehicle is far away
from the customer location, but is selected for recommendation. Constraint (5.6) allows the
demand of customer i can be split, but each order is not detachable. Constraint (5.7) ensures
that all demands for each customer i are satisfied with the delivery of cargo k from vehicle v.
The summation of delivered items from all vehicles v that go to customer i should be equal to
the customer’s demand i. This constraint aims to avoid situations where the customer demand
is not satisfied with the solution provided by the model. Constraint (5.8) indicates that the
delivery taken by each vehicle v does not exceed vehicle capacity (Qv), i.e., the delivery should
be less or equal to the vehicle capacity. This constraint tries to avoid situations where a vehicle
that cannot match the delivery size is chosen. In this case, the delivery should be split and
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shared among vehicles. Notably, the logistics fleet vehicles considered in this study are similar,
with no differences in vehicle capacity. For this study, the capacity is set to 2,700 cubic feet.

Constraints (5.9) to (5.11) are the time constraints. Constraint (5.9) refers to dtv, and is the
accumulated travel time when vehicle v arrives at customer j. Constraint (5.10) ensures that
no incidents have occurred and drivers are not exceeding the limit of working hours per trip by
limiting consecutive hours of vehicle v to eight hours, preventing it from being unnecessarily
overused. Constraint (5.11) is the time window limit for each customer j, requiring the vehicle
to arrive before a given deadline (dlvij). Therefore, the accumulative travel time should be less
than or equal to the time window limit; otherwise, the trip is not recommended.

Up to this point, the general SDVRP problem formulation already took up to 10 constraints.
Suppose one wants to include more elements from the real-world problem, the model will
get more complicated. Therefore, we omitted this part and included it into the RL problem
formulation instead, which much easier to interpret.

To perform the model construction in RL, the combinatorial optimization problem formu-
lated in Equations (5.1)–(5.11) is transformed via the RL problem formulation [72]. The RL
problem formulation consists of tuple < S, I, A, T,G,R,C > and their definitions are defined
as follows:

• States (S): S is a finite set of the state (s) of the environment.The elements in the envi-
ronment state are defined as s = [latitude, longitude, demand, vehicleavail., driveravail.,
vehiclemaintenance]. For simplicity, states are the current environment that the RL interacts
with and provides a set of partial solutions to the problem (e.g., a partially constructed
route for the VRP problem).

• Initial state (I): Current vehicle location with current fleet availability status specified
by the company. At this stage, the element consists of 6 dimensions: latitude, longitude,
demand, vehicleavail., driveravail., vehiclemaintenance.

• Actions (A): A is the possible actions performed by RL (e.g., choose, swap, and skip).
In this context, A is the RL agent’s actions by choosing customer location to be visited,
rearranging visiting order, and making a delivery from the current location in the current
state s. The delivery should satisfy customer requirements.

• Transition model (T ): T is the state transition probability from S × A × S → [0, 1].
This statement is defined in the “Formulation of Reinforcement Neural Vehicle Route
Optimization” section in Equation (5.29). Therefore, in each state s ∈ S, the best
possible action to chose computed from optimal policy π∗(s) ∈ A.

• Goal test (G): Do all deliveries satisfy customer requirements, and is the traversal cost
of each trip minimized as defined in Equation (5.1)? Do the actions also satisfy the
evaluation from Equations (5.2) to (5.11)?

• Reward (R): For each state transition, the author defines the reward function as S ×
A× S → G(Z). The G(Z) defined as Equation (5.16) in the “Reward Processing for the
RL Agent” section.

• Path cost (C): C is a traversal cost from S × A× S defined in Equation (5.12).

Note that the RL problem formulation did not represent the mechanism for the SDVRP at
the moment. Therefore, the mentioned mechanism will be carried on to present in the “The
Proposed Model” section. In addition, the dynamic elements of the real-world problems, which
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are taken into consideration for the RL formulation of the SDVRP, consist of customer demand,
road-network traffic, operation status (e.g., fleet availability, resources’ utility, and productiv-
ity). These elements are also included incidents (e.g., order cancellation or postponement).

The behavior analysis models in Chapters 3 – 4 were used to analyze these elements for any
abnormalities. This event is done when the RL agent’s behavior interacts with the environment.
The information obtained is then used to train the RL agent in the next episode. Therefore,
the model trained the RL agent to perform the appropriate actions and dynamically adapted
to the current transportation environment while performing daily vehicle route optimization
tasks. At the end, when the terminated condition is satisfied, the optimal result is returned.
For the path cost, the author calculates the traversal cost and profit per day as in Equations
(5.12) and (5.13), respectively.

traversaldowcost =
N∑

vr=1

((dvr ×mt) + insvr

+ (dvr × de) + scvr + (dvr × f) +

((
tdvr × 20

1, 000

)
× fprice

)
+ (trvr × l) + (trvr × al) + (ovtvr × wt))

(5.12)

where dow denotes a calendar day, vr denotes a vehicle used in the current route, N denotes the
total number of daily use vehicles, d denotes the distance (Km.), wt denotes the waiting time
needed to complete the delivery (Hrs.), tr denotes the traveling time (Hrs.), and td denotes
traffic congestion time of the road link (Mins.). Note that this equation has the same role as
parameter cij in Equation (5.1).

For this chapter, the author uses Thai Baht (THB) as a base currency. However, when
applied this model formulation to optimizing vehicle routes in other regions, the currency must
only be adjusted. The remaining parameters remain the same. These parameters are general
and used to compute costs of the vehicle by various agencies, as described below.

Further, mt denotes maintenance cost (THB/Km.); ins denotes insurance cost (THB); de
denotes the depreciation cost of the vehicle (THB/Km.); sc denotes the service cost of handling
goods from the containers (THB); f denotes fuel cost (THB/Km.); fuelprice denotes fuel price
(THB/Liter); l denotes labor cost (THB/Hrs.); al denotes the additional labor cost for driver
assistance (THB/Hrs.); and ovt denotes overtime payment (THB/Hrs.), in cases where the
vehicles are required to wait at the customer site (e.g., waiting for more than regular working
hours). If the time is less than 60 Mins, it is count as 1 Hr.

Equation (5.12) calculates the total traversal cost of the routing in each day. It is denoted as
dow. This cost is the sum of the traversal cost incurred from vehicles. These vehicles are used
for delivery on the day dow. Therefore, the cost of each vehicle vr is calculated and summed
as the total traversal cost.

profitdow = incomesdow − traversaldowcost (5.13)

where incomesdow denotes a payment retrieved from the customer, the customer paid the
delivery fee to the logistics agency and dow denotes a calendar day.

For instance, in the case-study conducted, these values given in Equation (5.12) were ob-
tained from the company’s actual operational report. They are described in Table 5.4 below.

After the problem definition was already formulated, it is now ready to present the proposed
model in the following section.
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Table 5.4: Notation and values that used to calculate the profit and traversal cost.

Notation Value Description
d From the routing in Km. Distance of travel
wt From the routing in Hrs. Waiting time required until the delivery is completed
tr From the routing in Hrs. Travel time aggregated from GPS data
td From the routing in mins Traffic congestion time aggregated from GPS data
mt 1.35 THB/Km. Maintenance cost
ins 105 THB Insurance cost
de 2.8 THB/Km. Depreciation of vehicle cost
sc 100 THB Service cost of handling the containers
f 7.29 THB/Km. Fuel cost of each trip
fprice 19.89 THB/Litre Fuel cost per litre
l 300 THB/Day or 12.5 THB/Hrs. Labor cost of the driver
al 200 THB/Day or 8.33 THB/Hrs Additional labor cost for driver assistance
ovt 1,000 THB/Day or 41 THB/Hrs. Overtime cost

5.3 The Proposed Model

In this chapter, the proposed model’s implementation consists of four crucial steps. It
consists of travel time estimation for vehicle routing, reward processing unit for the selected
agent, and receiving the agent’s action value, reinforcement neural model formulation for vehicle
route optimization. Additionally, the behavior analysis model described in Chapters 3 – 4 are
applied to the proposed methodological framework. The overall procedures for formulating the
model are illustrated in Figure 5.1.

At this point, the author gave a brief introduction to the proposed model. Therefore, in the
following sections, the processes shown in Figure 5.1 are presented in detail.

5.3.1 Travel Time Estimation Model for Vehicle Routing

In this section, the author computes the road-network traveling time using the framework’s
traveling time estimation model. The model architecture is the deep neural network model
that has seven input neurons, five hidden layers, and one of the output layer. The model was
constructed with a batch size of 64, a learning rate of 10−3, and 1,500 epochs. It also pre-trained
using the GPS probe data. This model architecture was obtained from the hyperparameter
tuning process. To estimate the traveling time on the road network, the author collected
data over 1 year from multiple trucks registered at a logistic agency fleet. The traveling time
estimation model was developed because, generally, the route of a delivery truck is not similar
to that of a regular vehicle. Suppose that the travel times presented by Google Maps were used,
then they would reflect the passenger-vehicle travel times rather than the truck travel times.
Doing so would cause significant differences between the traveling speed and duration gaps.

For this study, the origin and destination were input into the model, and the outcome is
the travel time of the vehicle route from those origins and destinations. The travel times were
computed from the speed on a specific road network on the current day of the week at the
current time. The agent used this road network information to support their selected customer
to make deliveries in the route optimization module. This information is communicated to the
agent via the reward processing unit.
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Figure 5.1: Methodology to perform the behavior analysis and new reinforcement neural model
for vehicle route optimization.

5.3.2 Reward Processing Unit for the RL Agent

This section presents the reward processing unit. This unit helps in calculating rewards for
the evaluated agent when optimizing the vehicle routes. For example, the positive reward is
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given to the agent when it returns the optimal solution. Otherwise, a negative reward is given
when the solution has violated any problem constraints. It also communicated with the agent
by updating the actor–critic gradient with these values. This process is presented in Equations
(5.30)––(5.31).

To construct the reward processing unit, the information collected from the multi-sensory,
operation reports, and model of Chapters 3 – 4 are taken as inputs for this unit. This informa-
tion is then used to compute RL agent reward using the new reward function, as expressed in
Equation (5.16).

The author designs the reward function to consider the operational feasibility and fairness
for the goods deliveries and road-link factors of task assignment. The stated factors are given
as inputs to the multiplicative utility function. It is used to express the behavior of an agent
when it interacts with an uncertain environment. The corresponding action’s outcomes involve
multiple data attributes. These attributes represent as X = 〈x1, . . . , xn〉, where each xi rep-
resents a data attribute for each involving factor from the environment. For instance, traffic
condition, customer demand, fleet availability, incidents, and more.

The uncertainty environment problem can be solved by the multi-attribute utility theory
[72]. The author assumes that the agent returns better results when it has a higher utility value.
Therefore, the author evaluates the properties of each utility function’s result. This evaluation
is to ensure that the RL agent understands the action selection’s outcomes. Thus, the expected
preferences were determined from each property in the utility functions. The objective is to
maximize the value of the utility (u) from the agent’s behavior. This objective is described
using Equation (5.14):

u = argmax (F [ f1 (x1 ), . . . , fn (xn ) ] ) (5.14)

where F calculates the utility function of each data attribute, as mention earlier. The multi-
plicative utility function is a part of the reward function. Normally, the multiplicative utility
function (MU), is formulated as Equation (5.15):

MU = k1u1 + k2u2 +, . . . ,+ knun (5.15)

where ki is the weight of the utility (ui), it is the weight of each data attribute. Hence, the
higher utility values indicate that the agent is doing in the appropriate direction.

The proposed reward function in this section was adapted from [73]. It also includes the
theory that was adapted from [72], as shown earlier in Equation (5.15). These changes to the
function were to be applied to the VRP. The reward function was also modified to consider
the logistics management strategies. Therefore, each function focuses on solving a particular
aspect using RL.

The new reward function G(Z), is formulated in Equation (5.16). This function consists of
four main components. For instance: the traversal cost of the vehicle routing (traversalcost),
the function that evaluates the number of vehicles used (U(Z)), the number of delayed and
undelayed deliveries (T (Z)), and the fairness (I(Z)). These last three components are multi-
plicative utility functions. They are transformed into a mathematical equation, represents as
Equation (5.15).

G(Z) = traversalcost + β U(Z) + δ T (Z) + γ I(Z) (5.16)

where Z is the transportation logistics system under evaluation. U(Z) and T (Z) indicate
the usage and delivery performance, respectively. I(Z) indicates the daily tasks distribution
fairness. This value is due to the actions taken. Moreover, β, δ, and γ are the weights to match
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100%. They are used to indicate how each utility evaluation function is important. Thus, these
utility evaluation functions are expressed in Equations (5.17)–(5.23).

Operation evaluation function: to compute efficiency p(x) in the work assignment for each
period x, as represented in Equation (5.17):

p(x) = Θ ( c−W (x) )( c−W (x) ) (5.17)

where c is the maximum vehicle’s capacity to manage the deliveries and W (x) is the number of
tasks assigned to the vehicle (v) in period x. x is a period under analysis. Θ is a function that
returns zero, in the case that the input is less than zero. It denotes that the vehicle capacity
was exceeded.

The capacity was proportionally exponential to the capability of handling goods deliveries.
Therefore, the larger p(x) value denotes that the vehicle (v) can handle more goods deliveries.
Thus, the total usage (U(Z)), as indicated in Equation (5.18):

U(Z) =
∑
x∈Z

p(x) (5.18)

Delay evaluation function: to evaluate the delay in operation processing (ddt(v)), as indicated
in Equation (5.19):

ddt(v) = Θ (1 + ( t− ∝ ( tad, taed ) ) ) (5.19)

where t denotes the current time, tad denotes the actual departure time, and taed denotes
the estimated departure time. Furthermore, ∝ is the function used to calculate the road
network travel times by inputting the departure and arrival times together with the origin and
destination to the traffic estimation model. Θ is a function that returns zero, in the case that
the input is less than zero. It denotes that the deliveries were delayed. The summation of the
delivery performance (T (Z)) with delay and no delay is indicated by Equation (5.20):

T (Z) =
∑
x∈Z

∑
v∈x

ddt(v) (5.20)

Operation feasibility evaluation function: to evaluate the operation feasibility and fairness
I(Z), as indicated in Equation (5.21):

I(Z) =
∑
x∈Z

( dad(x) + Oat(x) ) (5.21)

where dad(x) is the impact on the distribution of delivery delay or cancellation, and Oat(x) is
the operation loss due to the delivery delay or cancellation in all vehicles.

Task distribution evaluation function: to evaluate the fairness (dad(x)) as indicated in Equa-
tion (5.22):

dad(x) =
∑
v∈x

(
dat(v)

size(delivery)
)× 100 (5.22)

where dat(v) is the number of vehicles used to deliver the customer demand, and size(delivery)
represents the number of deliveries that flow into the transportation logistics system. This
function is affected by the imbalance of deliveries’ distribution among vehicles.

Feasibility evaluation function: to determine the operation feasibility, the author discovered
that the unsuccessful deliveries were a proportionally exponential impact on the logistics agency
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income. Therefore, the Oat(x) function is quantified based on the delay time and the number
of incidents, as indicated in Equation (5.23):

Oat(x) =
∑
v∈x

Θ (O(v) − d̂at(v) )( Θ (O(v)− ˆdat(v) ) ) (5.23)

where O(v) indicates the expected delivery cargo that a vehicle should be load, and d̂at(v)
indicates the total delay or delivery cancellations in the vehicle (v). Θ returns 0 in the case
that the delivery of vehicle (v) has been delayed and not successfully delivered. Therefore,
the larger Oat(x) value denotes that the logistics agency can earn more income from goods
deliveries. Note that x for all equations presented earlier indicates the period for delivering
goods to customers.

After the reward for an agent is obtained, as defined in Equation (5.16), the reward is
given according to the agent’s behavior when optimizing the vehicle routing. Suppose that the
behavior analysis model detects any abnormalities in the behavior of the agent. This condition
also includes unusual changes in the fleet capacity from the LSTM model’s forecast result; then,
the negative reward is returned. Otherwise, the positive reward is returned.

The reward mentioned earlier is sent to update the actor–critic gradient, as defined by
Equations (5.30)–(5.31). Lastly, to make the programmable algorithm, all mathematics equa-
tions presented in this section are transformed into the reward-function algorithm, presented
in Algorithm 5.1.

Algorithm 5.1: New reward function to evaluate the RL agent.

Input : input tour samplesolution,
samplesolutiontitled

← Stack(samplesolution),
feature set F1, F2, . . . Fn,
flag ← true,
vehicleused ← count(samplesolutiontitled

)
Output: reward
1: for n = 1 , 2 , . . . do
2: dn ← calculatedist ( samplesolution, samplesolutiontitled

)
3: traveln ← dn/modeltraff (F, F, . . . Fn )
4: behaviorstat ← modelbehav (V ehicleused, F, F, . . . Fn )
5: evaluatefeasibility (β, δ, γ )←

∑n
i=0( β × evaluateutil (work) ) +

↪→ ( δ × evaluateutil (delay) ) +
↪→ ( γ × ( evaluateutil (operation, fairness) ) )

6: β, δ, γ ← modelmdcm (V ehicleused, F, F, . . . Fn )
7: if behaviorstat is true then
8: reward = −(dn + waitingtime + evaluatefeasibility ( β, δ, γ ) )
9: return reward
10: else
11: reward = dn + evaluatefeasibility ( β, δ, γ )
12: return reward
13: end if
14: end for

samplesolution denotes the route selected by the agent, samplesolutiontitled
denotes the inverse

order of samplesolution, dn denotes the traveling distance, modeltraff denotes the travel time cal-

94



culation in Chapter 5.3.1, modelbehav denotes the behavior analysis model described in Chapters
3 – 4.

evaluatefeasibility is the function that transforms from Equation (5.16), and modelmdcm is
the multi-criteria analysis model used to select an appropriate logistics management strategy,
as discussed in the next section.

5.3.3 Criteria and Method of Selecting Appropriate Logistics Strat-
egy for Vehicle Route Optimization

In this section, the mechanism to activate the utility functions of the reward processing unit
is presented. The utility functions are activated concordant to the current environment and
based on the given logistics management strategy. For example, suppose that the optimization
task is focused on the efficiency of the delivery plan. The U(Z) and T (Z) utility functions in
Equation (5.16) should be activated with β, δ, and γ set to [1,1,0]. To make it adaptive, the
author used the multi-criteria ABC analysis method to perform this task.

In the study of decision making, multi-criteria ABC analysis is a well-known method of
selecting strategies. It is also used to recommend a cost-effective solution during logistics
management. The multi-criteria ABC analysis methods are based on the Pareto principle [74].
This principle is initiated by Vilfredo Pareto.

The principle of multi-criteria ABC analysis was developed based on the assumption that
the majority of economic productivities (80%) are attributable to only a small part (20%) of the
economy. The outcome shows that the relationship between input and output is unbalanced.
In this chapter, the principle is applied to the ABC class as follows.

• Class A: The solution selected by the agent represents approximately 15–20% of the set of
solutions presented. However, these solutions represent 80% of the value of the company
cost. The solutions in this class represent the actions responsible for the highest value of
the annual cost.

• Class B: The solution represents 30–35% of the set of solutions provided by the agent and
approximately 15% of the profit of the company. The solutions in this class denote the
actions representing the medium cost returned from the optimization process.

• Class C: The solution represents 50% of the set of solutions provided by the agent, but
only 5% of the cost returned to the company. The solutions in this class denote the vehicle
route optimization solutions with the lowest cost.

To select an appropriate reward function and logistics management strategy, the author
used multi-criteria ABC analysis written in the python programming language to perform this
task. The essential steps included in [75] were modified. Thus, the procedure for performing
multi-criteria ABC analysis is comprised of six steps as follows:

1. Calculate the operational cost for transportation logistics by evaluating the summation
of demands, multiplied by the transportation cost per unit.

2. Concatenate the obtained operation cost with fleet utilization and productivity ratio per
date reflected from the logistics operation.

3. Sort the transactions in descending order of the operational cost of transportation.

4. Calculate the cumulative operational cost and the percentage.
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5. Divide the operational cost of each transaction into classes.

6. Perform the analysis and decision making.

In this section, the traversal cost and profit per day were calculated similar to equations in
section 5.2.

To select appropriate logistics strategies from the profit analysis of various strategies, the
methodology of [76, 77] were applied. The author used ML models to classify each situation of
the environment into classes. This classification is considering the dynamic information from
the environment. ML was performed because the model is dynamic optimization. Therefore, it
is not practical to manually evaluate a class for each task. Consequently, it also increases the
computation time. However, an accurate classification has also reflected the efficiency of the
multi-criteria model when selecting the evaluation factors.

Furthermore, the author used five-fold cross-validation to evaluate the model performance.
Accordingly, the following classification criteria were considered: the value of the profit per
date after deducing the traversal cost and fleet utilization with the productivity ratio per date,
as reflected from the logistics operation. This ratio was discussed earlier in Chapter 4. A
summary of multi-criteria ABC analysis and ML strategies is presented in Algorithm 5.1 and
illustrated in Figure 5.2.

While reward function was computed using Equation (5.16), the multi-criteria ABC analysis
set the learning parameters, β, δ, and γ. These parameters were set for selecting the strategies
of rewards that should be given to the agent according to the current fleet situation. In the
next section, the author will present mechanisms for performing vehicle route optimization
using RL.

5.3.4 Formulation of RL Neural Vehicle Route Optimization

After the reward function was defined in the prior section, RL’s vehicle route optimization
model is now ready to be formulated. Note that this section represents as “Construct/Update
Vehicle Route Optimization Model using the Reinforcement Learning” component of Figure
5.1.

In this section, RL is used to formulate the vehicle optimization problem. The reason
behind this decision is that the author aims to reduce the model’s complexity while maintaining
a high-efficiency solution. Every time the new customer requirement and route information
are taken as inputs, the conventional models must be reconstructed for adapting to the new
environment changes. These inputs are presented in the form of constraints. If there are
numerous constraints, then it is not feasible to alter the model’s structure. This problem
motivated us to replace the mixed-integer linear programming part with ML and RL. The
model utilized the data to adapt rather than input fix constraints.

In the model, the set of inputs are defined as X = {xi}, i = {1, . . . , M}. The inputs
indicate the customer information (e.g., coordinates and demand) flow into the transportation
logistics system.

The model updates elements in X during the decoding stage, where goods (d) are delivered
to the customer at time t and location in state s. Each input of X is represented as xi and
denoted by a sequence of nodes expressed as xt

.
= ( si, di ), where t = 0, 1, . . . , n. The author

follows the same concept as that of the model presented in [78].
To make the model support the split-delivery VRP, the author uses the masking scheme

introduced by [78] to label the nodes as follows:

1. Customer nodes with no goods delivery requests will not be visited.

96



Figure 5.2: Methodology to perform the logistics management strategies selection for vehicle
route optimization.
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2. Customer nodes with goods delivery requests higher than the vehicle capacity are masked.

3. All customer nodes will be masked if the remaining vehicle capacity is 0.

These conditions are related to classical VRP constraints. Suppose that the problem is formu-
lated as a split-delivery VRP, then condition (2) should be relaxed to allow a vehicle to visit
a customer more than once. Therefore, all customer delivery requests are satisfied when the
traveling plan is set under these masking scheme conditions.

In [78]’s study, they set the log-probabilities of infeasible solutions to −∞. In other words, a
solution is forced in the case that a particular condition is satisfied. However, for this study, the
author uses the reward function and Nazari et al. defined conditions together in the masking
scheme. The author aims to make the masking scheme label the customer’s node according to
the logistics management strategies and the general VRP conditions.

After a brief introduction about the mechanism to perform the vehicle route optimization,
the author starts from the input, X0, where a pointer is used. The pointer is denoted by y0, to
refer to the input. At each decoding step at time t, where t = 0, 1, . . . , n. yt+1 are the pointers
to the remaining inputs, Xt. The topmost adjacent node is then selected as the next decoder
step. The process evaluates the current obtained solution with the goal test condition and
continues until a termination condition is satisfied (e.g., reach the maximum process iteration
or a feasible solution is obtained with optimal iteration).

In the RL model, the policy (π) is determined by the policy-gradient method. The policy-
gradient is calculated and used by the actor and critic network. The author uses the actor-
network to predict the probability of the following action to be chosen at a given decision step.
On the other hand, the critic network is used to calculate the value of the action performed in
the current state. It is generated from the sequences of Y to minimize the loss of the objective
function.

The optimal policy (π∗) generates the optimal value with a probability of 1. Therefore, to
determine the optimal solution, π and π∗ must be as nearly identical as possible. Similar to
the process in [78], the author uses the probability chain rule to determine the state transition
probability of generating sequence’s (Y ) from the next given sequence (yt+1), and decoded node
(Xt) based on Equation (5.24):

Pr (Y |X ) =
T∏
t=

Pr ( yt+, Xt ) (5.24)

The state is repeatedly updated with the state transition function (f), as indicated in Equa-
tions (5.25)–(5.26). While performing this step, the current node’s sequence (e.g., location1,
location3, location2, and vice versa) was send to the reward function unit to evaluated in terms
of its utility, productivity, and feasibility.

Xt+ = f ( yt+, Xt ) (5.25)

Pr (Yt+ |Yt, Xt ) = softmax ( g (ht, Xt ) ) (5.26)

where g is the function that calculates the distance between the input vectors and ht is the
state of the RNN. The outcome indicates the probability that the previously given decoded
step will transition into the next decoder node. The probability is obtained from the softmax
function. Thus, this part denotes as transition model of the RL problem.

After the model performs these steps and the termination condition is reached, the output
is the sequence of routing (e.g., location1, location3, location2, and vice versa). It is a tour
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that each vehicle in the fleet is assigned to make goods delivery to customers. Furthermore, the
model returns the minimum traversal cost and feasible for recommendations into the operation.
Therefore, the objective function is satisfied, as presented in Equation (5.1).

In conclusion, at this step, the minimum traversal cost is obtained concerning the vehicle
route’s distance, time, and operational attributes (e.g., fleet capability, efficiency, and fairness).
This output is also recommended and chosen by the RL agent in solving the VRP. Additionally,
when new information is input into the model, the model is dynamically updated follows the
new information.

In this section, the author demonstrated the mechanism to create the optimal solution.
Generally, VRP was modeled as a graph consists of nodes and edges. However, using the
machine learning approach to do in a similar way required further modifications. Therefore, in
the next section, the author will present how the RNN is modeled as a graphical network.

Proposed Network for Managing a Sequence of Inputs

Generally, the neural network neurons do not have any references showing which neuron is
adjacent and connects to them. Therefore, using the neural network to model the vehicle route
required a mechanism that connects each network’s node together as a graph. This section
presented how a graphical network is constructed and how each network node is connected.

To begin, the input is embedded as described previously instead of using the RNN hidden
states because the author wants the network node to represent the customer location and the
demand information. This approach differs from those of previous works because the inputs are
non-arranged customer locations, and the demands are dynamically updated. Unfortunately,
when the RNN hidden states technique is used, each location’s index is not essential when a
random change is applied to the locations. Thus, it has the same form as the original input
sequences. Also, it is not easy to update the customer demand to the hidden states directly.

To solve the issue mentioned above, the proposed model consists of two components. The
first is a set of embedding processes that connect the input’s attributes and project them into
a D-dimensional vector space.

On the other hand, the second model component is a decoder layer that points to an input. It
is used to determine the next visited node at every decoding step. This procedure is also similar
to the process presented in [78]’s study. The author uses an RNN to constructing the decoder
network. The decoder network is used to determine the next visiting node from the sequence of
remaining nodes using Equation (5.26). After identifying the next node to be visited by each
vehicle, it is necessary to update the delivery information. It is because the number of deliveries
changes over time while goods are continuously delivered to the customers. The question raised
at this step is, “where shall we stored the demand and coordinate information?” It is because
it is not possible to store these pieces of information into the network node directly. To answer
this question, the author adopts the attention mechanism of [79, 78] to assist in updating and
storing the delivery and customer coordinate information.

In this section, the author has presented how the RNN is modeled as a graphical network.
In the next section, the attention mechanism is described in detail on how each node’s demand
and coordinate are updated when the vehicle is successfully delivered goods to the customer or
when a new customer request is inputted into the system.

Attention Mechanism

In this section, the author presents the attention mechanism. This attention mechanism is
used to store the demand information of each network node and connect independent network
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nodes together as a graph. Therefore, every time the vehicle comes to make goods delivery at
each customer location (e.g., [latitude, longitude]), the remain demand information is updated
on the “attention layer” instead of the network itself. Therefore, the model is not necessary to
be rebuilt again by doing so. The process described earlier is shown in Figure 5.3.

Typically, an attention mechanism is a component used to reference inputs at the decoder
step. It is denoted by i and used to calculate the probability that the adjacent node is the
next node of the current network node. This mechanism is vital because it connected the
independent nodes as a graph. The nodes are also updated when the goods delivery requests
from customers change due to goods being successfully delivered. As mentioned earlier, the
pointer network must be reconstructed, and the node sequences must be rearranged. However,
Suppose that the attention mechanism is used, the network structure remains the same. The
amount of remaining goods delivery requests is updated through the attention layers rather
than moving the node location. Therefore, the reference pointer is used to point to the node.

To perform this process, the encoded input is denoted by x̄it = ( s̄i, d̄it ). t and ht ∈ <D indi-
cate the RNN state memory at the decoding step t . For example, x0 represents the beginning
of the tour, and the attention mechanism is used to determine the remaining nodes. They are
nodes that are suitable to be the next node of the current decoded node. The context value is
computed to support this decision. The attention layer is denoted as attentt. It is defined in
Equation (5.27):

attentt = attentt ( x̄it, ht ) = softmax (ut ) (5.27)

where uit = vTa tanh (Wa [x̄it; ht ] ) is the compatibility between two adjacent nodes, and M
denotes the set of nodes in sequence Y . Moreover, va and Wa are the training variables.

After obtaining the attention value, the author determines the node context (contextt).
The context value is used to select the possible next-visited node. It is determined by Equation
(5.28):

contextt =
M∑
i=

attentitx̄
i
t (5.28)

With the encoded input, the values are normalized using the softmax function, where
Pr ( yt+1 ) denotes the next sequence in Y , given the current sequence Yt and decoded node Xt,
as indicated in Equation (5.29):

Pr ( yt+ |Yt, Xt ) = softmax ( ũit ) (5.29)

where ũit = vTc tanh (Wc [ x̄it; contextt ] ) denotes the compatibility between two adjacent nodes.
Moreover, vc and Wc are the training variables.

A single Long Short-Term Memory (LSTM) layer for a decoder is used to implement this
RL model. Based on the hyperparameters tuning, the author discovered that an appropriate
decoder and vector size that can store all vital information is 128. It is because the model
accuracy is unchanged after increase size to 129 and beyond. In this study, the author stores
customers’ coordinates and demand in each node of the network. Therefore, suppose that more
information is required, then the decoder’s and vector’s size must be adjusted.

Furthermore, the customer location is embedded in a vector size of 128. The demand dit is
updated at step time t as deliveredi − dit. After that, it is mapped to the attention layer. To
train the actor–critic networks, the Asynchronous Advantage Actor–Critic (A3C) algorithm is
used for the SDVRP [78] and the Adam optimizer with a learning rate of 10−4. The dropout
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Figure 5.3: RL model architecture for vehicle route optimization.

with a probability of 0.1 is set at the LSTM decoder. After obtaining and setting up all
necessary parameters, the author then trains the model on the NVIDIA Tesla P100 GPU. The
model architecture is illustrated in Figure 5.3.

From this section, the author presented how the network is dynamically updated when the
environment changes. In the next section, the training algorithms for training this network are
described in detail.

5.3.5 Training Algorithm

In this chapter, two algorithms are presented for training the RL agent, i.e., the actor–critic
algorithm and the A3C algorithm. The author trained the actor–critic and A3C algorithms
with 120,000 and 100,000 steps for testing. The algorithms are trained with three years of
historical data (from 2017 – 2019) and test with three-month route optimization data during
May – July 2018. Note that during May – July 2018 data period was reserved for testing and
was not included in the training stage. This period was reserved because the site survey is
conducted at the logistics agency. Also, validation data were obtained from both drivers and
staffers from the agency during this period. In the following sections, each training algorithm
is described in detail.
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Actor–Critic Algorithm

According to the model architecture presented in Figure 5.3, the author used the actor–critic
algorithm to train the agent. The model integrates the benefits of the policy- and value-based
approaches for evaluating the agent’s action. For updates, the actor gradient is defined by
Equation (5.30), and the critic gradient is defined by Equation (5.31).

dθ ← 

N

N∑
n=

(Rn − V (Xn
 ; φ ) )5θ log Pr (Y n |Xn

 ) (5.30)

where dθ represents the actor gradient and Rn represents the reward from solution n. Reward
Rn was obtained from the reward processing unit presented in Chapter 5.3.2. Figure 5.4
illustrates how the reward was used to update the agent behavior.

dφ← 

N

N∑
n=

5φ (Rn − V (Xn
 ; φ ) ) (5.31)

where dφ represents the critic gradient and R represents the reward from solution n. Reward
Rn was obtained from the reward processing unit presented in Chapter 5.3.2.

Figure 5.4: Actor–Critic algorithm architecture

A3C Algorithm

In this section, the author applies A3C to train multiple agents. Each agent is initialized
and trained in parallel on a different copy of the environment. The policy and value estimations
are similar to those of the general actor–critic algorithm. However, the policy is communicated
to the “global agent” of the upper level. Thus, all experiences are collected from each agent.
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Each agent also learns other agents’ experience from the information provided by the global
agent at each time step [80].

Moreover, A3C increases the opportunities for agents to obtain experiences shared by local
agents. When agents obtain experiences in this manner, their action-selecting behavior is
updated. This phenomenon increases the efficiency in comparison to the learning from only
one agent in a broad environment. Figure 5.5 illustrates how the experience is shared among
agents. The experience is also inherent to the other agent’s behavior.

Figure 5.5: Asynchronous actor–critic algorithm architecture

In summary, the model is updated dynamically. The customer delivery request changes
over time. Therefore, the attention mechanism is used to determine the node that should be
decoded for the next visit. Unlike a traditional pointer network, it is unnecessary to rebuild
the model for each change occurring during each decoding step. The model is transformed
into a programming algorithm, as presented in Algorithm 5.2. In [78]’s study, the authors
defined a constraint using the tour’s negative rewards to guide the agent’s actions. However,
it is necessary to consider the external factors regarding the logistics agency’s capability and
environmental information in real applications. Therefore, using only defined constraints and
a negative tour length for the agent reward might not feasible for addressing this problem.
Numerous constraints cause problems in achieving the optimal solution. In some cases, the
agent returns the same solution for all different transportation logistics environments.

Consequently, the author modified the algorithm of [78] and the new reward function was
equipped into it as operation state information. This step is described in the previous section.
The modification aims to overcome the issues, as mentioned earlier. In addition to the devel-
opment of the reward-function unit, the behavior analysis defined in Chapters 3 – 4 is used
to assist in selecting the direction of the given reward. It determines whether a positive or
negative reward should be given to the agent. Furthermore, it was determined with respect to
the agent’s behavior when it performed an action. In this context, the agent was performing
the vehicle route optimization. To train the RL agent, three years of historical data were used.
The RL agent learns how to perform the vehicle route optimization and adapt to changes in
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the environment. The author evaluates the trained model in terms of action values and routing
results while vehicle route optimization tasks were performed.

This process is similar to a human (e.g., trainee and trainer). Every time an action is
chosen, the trainer evaluates the result and provides feedback. The trainee then tries to avoid
any actions that reduce his/her performance.

Additionally, the author applied search strategies to search for nodes. They are nodes that
should be visited from the current nodes. The search strategies consist of the greedy best-first
search (GD) and beam search (BS). Stochastic beam search (SBS) was proposed to solve the
limitation of heuristic and local search strategies. This issue was mentioned in [72].

Algorithm 5.2: RL with model-based integration algorithm.

Input : random weight θ, θn, φ, φn

Output: Route sequence (Y n) for vehicle vn
1: initialize the actor network with random weight θ
2: initialize the critic network with random weight φ
3: initialize N thread-specific actor and critic networks with weights θn and φn

↪→ associated with thread n.
4: for each thread n do
5: for iteration = 1 , 2 , . . . do
6: reset gradient: dθ ←0, dφ←0
7: sample N instance according to ΦM
8: for n = , . . . , N do
9: initialize step counter t←  and select vehicle vn
10: repeat
11: select ynt+ refer to Pr ( ynt+ |Y n

t , X
n
t )

12: Xn
t ← Xn

t+

13: t← t+ 
14: until terminated condition is matched
15: reward Rn ← modelbehav (Y n, Xn

 )
16: end for
17: dθ ← 

N

∑N
n=(R

n − V (Xn
 ; φ ) )5θ log Pr (Y n |Xn

 )

18: dφ← 
N

∑N
n=5φ (Rn − V (Xn

 ; φ ) )

19: update θ, φ
20: end for
21: return Y n

22: end for

Finally, using the formulated model in Chapters 5.2–5.3 and the methodologies outlined in
Chapters 3–4, vehicle route optimization was ready to perform and test using case studies.

5.4 Case Studies

In this section, the author presents the model benchmarks and validation. The model was
evaluated in terms of effectiveness and ability. The author also compared the proposed model
optimization result against the real vehicle route optimization result. It is a result that a
logistics agency performs.

The relationship between problem formulation and problem-solving in case studies is that
each customer demand may contain multiple containers. In this case, it cannot be fulfilled
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by one vehicle. Therefore, the demand should be split and taken care of by other vehicles or
the same vehicle if it is available until demand satisfies customer requirements (e.g., quantity
and delivery time). Thus, the problem that the author solved and presented in this section is
SDVRP.

According to the operation dataset for validation, it consisted of real vehicle task assign-
ments from January 1–December 29, 2018. This dataset was used to evaluate how well the RL
agent performed the vehicle route optimization tasks compared to the ground truth.

Furthermore, the agent selected appropriate actions for vehicle route optimization based
on the newly inherited reward processing unit within the model. This unit also updates the
reward to the actor and critic gradient function. The summary of the criteria to enable the
reward function by multi-criteria ABC analysis is described in Table 5.5. This function was
used by the agent.

Table 5.5: List of the reward function and parameter settings used by the RL agent.

Mode(s) Function(s) β δ γ
Feasibility Reward G(Z) = traversalcost + βU(Z) + δT (Z) + γI(Z) 1.0 0.0 0.0
Efficiency Reward G(Z) = traversalcost + βU(Z) + δT (Z) + γI(Z) 0.0 1.0 0.0

Feasibility and Effic. G(Z) = traversalcost + βU(Z) + δT (Z) + γI(Z) 1.0 1.0 0.0
Fairness Reward G(Z) = traversalcost + βU(Z) + δT (Z) + γI(Z) 0.0 0.0 1.0
Balance Reward G(Z) = traversalcost + βU(Z) + δT (Z) + γI(Z) 0.33 0.33 0.33

In Table 5.5, the definitions of reward modes are described as follows. First, the feasibility
function indicates the feasibility’s degree of the solution being performed in the current envi-
ronment. Therefore, a weight equal to 1 was assigned to β. Second, the efficiency function
indicates that the optimized solution is considered to be efficient. This result answers whether
or not the solution returns the maximum profit. However, it did not consider the feasibility
of applying the solution. Third, the feasibility and efficiency function indicates that a feasible
solution is returned. They were also maintaining the maximum profit. Forth, the fairness
function indicates that all delivery requests are distributed equally amongst all drivers. Lastly,
the balance function denotes that all factors are equally considered.

This gives rise to the question, “How does the agent select the mode to be performed?” The
answer is that the author uses the multi-criteria ABC analysis to select the logistics strategy
mode for the optimization process. It is when the optimization process dealing with daily
optimization requirements. The methodology of [76, 77] were applied, as discussed in Chapter
5.3.3.

To demonstrate the practicality of the model, the author provided case studies to evaluate
the task assignments of container trucks. These trucks are assigned to making deliveries across
all regions in Thailand. An example of task assignment is shown in Figure 5.7, and there were
two case studies listed in the following sections.

In addition, to demonstrate how the experimental results cause impact to the transportation
logistics business, Figure 5.6 shown the basic statistics of deliveries from the year 2017 until
2019. From Figure 5.6, the transportation planning done by the company had the success rate
of only half of the goods’ total amount that it should make delivered to the customer.

5.4.1 Case Study with no Uncertain Changes

In this case study, vehicle route optimization was performed based on reinforcement neural
model. This model deals with situations wherein no sudden uncertain changes and incidents
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Figure 5.7: The example of routine route assignment performs by the logistics agency.

occur during daily operations. For instance: no delivery request postponement, cancellation,
vehicle shortages, or human resources issues.

Generally, the logistics agency’s fleet that handles the delivery is considered to be in the
medium and long-haul range container delivery. Therefore, for this case study, the test data has
a number of container deliveries starting from 21 deliveries with 37 vehicles available (per day)
from May to July 2018. This amount of delivery refers to the actual deliveries performed by the
company, as presented in Figure 5.6. Furthermore, the author obtained incident information
from the report of ordering and fleet status, as shown in Table 4.2.

In the model, a new reward processing unit was used to estimate the reward for the agent
that concordant to the current environment. While the reward processing unit computes the
reward, it also takes the dynamic information from the environment and considers the logistics
strategies. All reward settings were considered with the traversal costs, as presented in Table
5.5. The reward activation settings were selected by performing the multi-criteria ABC analysis.
The author aimed to determine the suitable optimization strategy for the current industry
situation by taking the dynamic information from the environment into account.

To perform this case study, the author employed the A3C and the general actor–critic
algorithms with new reward processing units to perform the vehicle route optimization tasks.
The author also evaluated the results of each model in terms of the profit compared with the
framework in [78, 79], a well-known optimization model from the operation research that uses
the local search algorithm with ML [81], and OR-Tools OSS [82]. Therefore, the efficiency of
the proposed model is demonstrated. Note that the author reproduced these models and also
enabled the capability for supporting split delivery tasks.
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In this section, the routine vehicle route optimization tasks were performed by RL. In the
next section, these tasks become more complicated because it involving uncertainties from the
environment.

5.4.2 Case Study with Uncertain Changes

In this case study, uncertain changes disturbed the operations (e.g., vehicle shortage, sudden
change in demand, accident, and more). Therefore, the effectiveness of the model was tested in
managing the situation. Therefore, in this case, the amount of deliveries is adjusted to 60. Like
the first case study, the incidents’ information is obtained from the report of ordering and fleet
status, as shown in Table 4.2. The incident in this scenario involved the number of vehicles
that could not feasibly manage all deliveries. Therefore, the model was evaluated on how it can
solve the situation. All reward settings were considered with the traversal costs, as presented
in Table 5.5. The multi-criteria ABC analysis was performed for this task as well. The goal of
this case study also the same as the first case study.

To perform optimization tasks using RL, the author used the training algorithm for the RL
agent. It consisted of multiple agents using A3C and a single agent using the general actor–
critic algorithm. The A3C method used tree-based regression and the new reward processing
unit is compared. The author also evaluated the results of each model in terms of the profit
improvement compared with the baselines. These baselines are also the same set as presented
in the first case study. Thus, the evaluation result is to demonstrates the efficiency of the
proposed model. This case study also included an incident that had been solved. In the next
section, the performance evaluation metrics are presented to compared these models’ solutions.

5.4.3 Performance Evaluation Metrics

In this section, the performance of the proposed model is evaluated in two stages, as follows.
First, the author evaluated the RL agent by the cumulative reward and the agent’s action

value, as shown in [83, 84, 85]. These outcomes indicate that a better RL model can be obtained
when these metrics tend to the maximum value. The cumulative action value (CAV ) can be
computed using Equation (5.32):

CAV =
N∑
i=0

dφ (5.32)

where i indicates the training step, N indicates the total training step, and dφ indicates the
action value of the RL agent defined in Equation (5.31).

Second, the author used the performances of humans and state-of-the-art models as baselines
for evaluation. The author aims to determine the improvements when performing the same
optimization tasks against the proposed RL agent. In previous studies, an improvement was
called an “optimal gap.” This optimal gap can be calculated using Equation (5.33):

OptimalGap(%) =

∑N
i=1Baselinei/N − currentsolution∑N

i=1Baselinei/N
× 100 (5.33)

where i represents the baseline index, Baselinei represents the result of the state-of-the-art
model, and currentsolution represents the proposed model’s result.

Therefore, in this chapter, the author evaluated the RL model using the CAV of the agent
at each training step. It is defined as in Equation (5.31). Furthermore, the optimization results

108



were compared with those of the state-of-the-art models using Equation (5.33). The author
also used the CI to determine the boundaries of the optimization result. CI can be computed
using Equation (5.34):

CI = X̄ ± z sd√
n

(5.34)

where X̄ represents the mean of the optimization result, z represents the CI values selected
from Table 5.6, sd represents the result’s standard deviation, and n is the number of test
samples. Note that Equation (5.34) and Z-values (z) are referred from [86, 87].

Table 5.6: Z-Value for the confidence interval.

Confidence Interval z
80% 1.282
85% 1.440
90% 1.645
95% 1.960
99% 2.576

99.5% 2.807
99.9% 3.291

Finally, the author evaluated the multi-criteria ABC analysis task using the AUC, precision,
and recall. The AUC measured the whole 2D area under the whole ROC. The AUC applies a
different threshold for a comparison between the TPR and the FPR. The TPR and FPR can
be calculated as Equation (5.35) and Equation (5.36), respectively.

TPR =
TP

TP + FN
(5.35)

where TP denotes the number of true positives and FN denotes the number of false negatives.

FPR =
FP

FP + TN
(5.36)

where FP denotes the number of false positives and TN denotes the number of true negatives.
The classification result was also validated using the ground-truth data. It was evaluated in
terms of its accuracy, precision, and recall. The precision and recall evaluation metrics are
calculated as Equations (5.37) and (5.38), respectively.

Precision =
TP

TP + FP
(5.37)

where TP denotes the number of true positives and FP denotes the number of false positives.

Recall =
TP

TP + FN
(5.38)

where TP denotes the number of true positives and FN denotes the number of false negatives.
Additionally, the author used the accuracy, F1-Score, and Cohen’s kappa (k) to evaluate the

proposed model. The metrics are defined in Equations (5.39), (5.40), and (5.41), respectively.
The higher the evaluation value returned from these metrics, the better the model.
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Accuracy =
TP + TN

Total
(5.39)

F1-score = 2× Precision× recall
Precision+Recall

(5.40)

k =
po − pe
1− pe

(5.41)

where po represents the relative observed classification among the data points and pe represents
the hypothesis probability of the correct classification.

Correspondingly, the proposed hybrid model’s efficiency was evaluated using these evalu-
ation metrics. It was evaluated when dealing with routine and uncertain changes from the
environment. Therefore, results are presented in section 5.5.

5.5 Results

After the new reward processing unit was integrated into the reinforcement neural model
for the vehicle route optimization, the author executed the experiment. The author presents
the results here in terms of the profit returned and compared them with the baselines.

The first baseline comprised the vehicle route optimization framework proposed by Nazari
et al. [78], denoted as Baseline1. The second baseline was the conventional optimization model
(i.e., the vehicle route optimization model that used the local search algorithm with ML [81]).
The model performed optimization using the same parameter settings, denoted as Baseline2.
The third baseline was the open-source software suite for routing optimization (e.g., OR-Tools),
denoted as Baseline3. The fourth baseline was the vehicle route optimization result performs
by the company, denoted as Baseline4. Finally, the vehicle route optimization framework
proposed by Kool et al. [79] was used, denoted as Baseline5. These baselines and the solutions
obtained from the model were given as input to Equation (5.33). This equation was used to
calculate the optimal gap in percentage.

The author used the optimal gap to analyze the results of the proposed model. The gap
was used to determine whether it improved or degraded the overall optimization performance
in comparison to both the state-of-the-art operational results from the company and software
suite models (e.g., OR-Tools OSS).

Consequently, the average baseline for this experiment was computed. The average baseline
is 20,575.70 THB considering the average of Baseline1–Baseline5. The author tested results
against 1,000 samples. Therefore, the results are presented as the average of the recommended
profit (THB) ± 95% of CI and the standard deviation shown in the Resultmean and SD
columns, respectively.

Furthermore, the third column illustrates the training time when the model was trained
with 120,000 steps. The fourth column presents the prediction time when a set of customer
coordinates was input into the model. Finally, the fifth and sixth columns present the optimal
gap between the baseline and solution suggested from the model. It also includes the analysis
results.

In addition to the vehicle route optimization experiment, the author also experimented to
determine the appropriate classification method for the multi-criteria ABC analysis method.
These results are presented in the following sections.
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5.5.1 The Experimental Results from the Multi-criteria ABC Anal-
ysis method

The author used Multi-criteria ABC analysis to select the logistics management strate-
gies. These strategies were used for the vehicle route optimization process when dealing with
daily optimization requirements. The multi-criteria ABC analysis was used instead of other
approaches. It is because it is simple and easy to interpret. It is also an active research area of
logistics management that deals with inventory and cost analysis problems. This research area
also utilizes the data to determine the strategies to be applied. Unlike the analytic hierarchy
process (AHP), AHP highly depends on a system expert for the weights’ assignment of data
attributes and share experiences. Therefore, the methodology presented in section 5.3.3 was
applied. The results are presented in Table 5.9.

After the experiment of multi-criteria ABC analysis was performed and already presented
the result. Now, it is ready to presented the result for the vehicle route optimization experi-
ments, as following sections.

5.5.2 Experimental Result of New Hybrid Reinforcement Neural
Vehicle Route Optimization

Experimental Result

In this section, the author presents the experimental results of vehicle route optimization.
These results are shown when the proposed vehicle route optimization model integrated with
multi-criteria ABC analysis method is trained with three years of data from January 2017 –
April 2019. Furthermore, the model is also tested to perform route optimization with three
months of goods delivery tasks.

For the model comparison, the author compared the proposed model with the state-of-the-
art models such as models from Nazari et al., Kool et al., and Musolino et al. The author
reproduced these models and also enabled the capability for supporting split delivery tasks.
Therefore, these models were compared in terms of efficiency and profit improvement provided
to the company. Thus, the experimental results are presented in Table 5.10. Note that the
model with bold color is the model that applied this study methodology. Also, “+” denotes an
improvement from the baseline, otherwise “-” is given. Baseline1 denotes an actual profit that
the company earned when setting up the transportation plan by the staffer in the company.
Later on, in the next section, these models are tested on dealing with routine and uncertainties
from the environment.

Case Study with No Uncertain Changes During Vehicle Route Optimization

In this section, the experiments were performed according to the previously described rein-
forcement neural optimization model. The model was discussed in section 5.3.4. The weights,
β, δ, and γ, of the modified reward function, presented in Table 5.5, were set to 0.33 each,
with a total sum of 1. It is because each partition was equally important recommended by the
multi-criteria ABC analysis method. Therefore, the author established a balance between the
reward function’s efficiency and fairness strategies due to the experimental results presented in
Table 5.8.

After the methodology presented in Chapter 5.3.3 was applied, it demonstrated that the
logistics management operations could be segmented into three classes. These processes were
done by using multi-criteria decision-making. Multi-criteria decision analysis demonstrated that
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the current information obtained from the current transportation logistics environment did not
have any vehicle maintenance records and the situation also provided the highest values of
profit. It also returned the lowest operational cost. In addition, due to the imbalance between
the number of actual and successful goods delivered requests. Therefore, the situation of this
case study was classified into the balance strategy. It is a segment of class “C.”

As discussed previously, this case study’s experiment follows the guideline of section 5.4.1.
The results of each model are presented in terms of the number of profits improved compared
to the baselines.

The results are presented in Table 5.11 and Figure 5.10. The results in Table 5.11 denote
the returned profit (THB). Table 5.11 comprising six columns. The “Resultmean±CI” column
represents the model optimization result from a given set of customers. The CI is computed to
present the reliability of the returned solution. A lower CI indicates that the model is stable.

Next, the SD column presents the standard deviation of the optimization result; a lower SD
denotes a stable model. The third and fourth columns present the computational time when
the model was trained and tested. Finally, the fifth and sixth columns show the efficiency of the
optimization model. The “OptimalGap” column shows how optimal the solution in the form of
a percentage. It was compared against the optimal baseline (e.g., “+” denotes positive increase
and “−” denotes negative decrease). The bold text in the first column indicates the proposed
models that applied the proposed methodology in this chapter.

Figure 5.8: Number of remaining incidents using the actor–critic algorithm.

Figure 5.9: Number of remaining incidents using the A3C algorithm.

Figure 5.11 illustrated how the RL agent was used to solves the VRP problem in each step
using this chapter’s proposed methodology.
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(a) Training Stage

(b) Testing Stage

Figure 5.10: The training (a) and testing (b) stage regarding to the situation in which no
uncertain environmental changes occur using the hybrid RL model.

After the case study for the routine environment was presented, it is time to presented the
case study that includes uncertainties from the environment when the vehicle optimization task
is performed, as shown in the next section.

Case Study with Uncertain Changes During Vehicle Route Optimization

In this section, the experiment is discussed further. It is conducted following the guideline in
section 5.4.2. It considers the case where uncertain changes occurred during the daily schedule
of a vehicle. The learning parameters, β, δ, and γ of the proposed reward function, were set to
0.33 each, with a total sum of 1. The author set this setting for the same reason, as described
in the previous section.

Additionally, the results of each model are presented in terms of the number of profits
improved compared to the baselines. The results are presented in Table 5.12, and the training
values are illustrated in Figure 5.12. The results in Table 5.12 represent the returned profit
in THB. In Table 5.12, the same procedure was used for analyzing the result of Table 5.11.
The bold text in the first column denotes the proposed models that applied the methodology
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(a) Non-Incident Stage

(b) Incident Stage

Figure 5.11: Non-Incident case (a) and Incident case (b) stage regarding to solving VRP.

introduced in this study. Additionally, the incidents solved by the models are displayed in
Figure 5.9.

Demonstration of Practicality of New Hybrid Model when Vehicle Route Opti-
mization is Performed in Advance

In the previous section, the author compared the models’ performance when the vehicle
route optimization was done on day to day basis. In this section, the author uses the model to
manage a situation when the goods delivery schedule is assigned in advance.

Unlike in the previous experiments, that the deliveries were planned at least 3 days in
advance. This time the vehicle route optimization is performed 1 or 2 weeks in advance. The
company also used this strategy in its routine operation. Thus, the author aims to demonstrate
the model’s efficiency in managing such complex situations. They are situations when the
available information for future route planning is only the number of deliveries and the current
fleet capacity. Therefore, the results are shown in Figure 5.13.

After all experiment results were presented, in section 5.6, the discussion of those experi-
ments is presented.
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(a) Training Stage

(b) Testing Stage

Figure 5.12: The training (a) and testing (b) stage regarding the situation in which uncertain
environmental changes occurred using the hybrid RL model.

5.6 Discussion

5.6.1 The Multi-criteria ABC Analysis

From Table 5.9, results indicate that the decision tree is recommended for practical use. It
is because it returns the best predictions. Each class can be described as follows.

First, for class “A”, the result showed that the number of vehicles in maintenance increases
significantly over time. Therefore, this increases the consumption cost of the fleet, and the
profit percentage holds at 17.19%. Suppose that this situation was to occur, then the vehicle
route optimization process should consider efficiency as a top priority factor. This action is to
increase the profit. Thus, the multi-criteria analysis model applied the feasibility and efficiency
strategies.

Second, for class “B”, the author discovered that there are some vehicles in maintenance
cycles. However, it does not affect the fleet capacity. The result shows that the fleet maintained
a profit of 32.96%. It reflects that the fleet has a medium consumption cost, and 24.89% of this
situation occurred during the vehicle route optimization process. Therefore, the multi-criteria

121



Figure 5.13: Demonstration of vehicle route optimization when plan is executed in advance.
In (1), the result when vehicle route optimization is performed 1 week ahead of the schedule
is shown. The red circle denotes the current dates and the arrow denotes the direction of the
schedule. In (2), the result when vehicle route optimization is performed 2 weeks in advance is
shown.

analysis model applied the feasibility and efficiency strategies.
Finally, for class “C”, the result showed that the number of actual vehicles requested is more

than the number of deliveries to manage. Additionally, there are no vehicles in maintenance.
Hence, the fleet consumption cost is low, providing the highest value profit of 49.89%. This class
had the most significant portion of task quantity up to 59.72% in comparison to other states. In
this situation, the multi-criteria analysis model suggested that the logistics agency must consider
the optimization efficiency. It is because the successfully delivered tasks and actual customer

122



delivery requests tasks are imbalanced. Furthermore, the logistics agency must be fair to all
drivers. The reason is that some drivers will not have a task, according to the high competition
among drivers. Thus, the multi-criteria analysis model applied the balanced strategies between
the efficiency and fairness strategies to the vehicle route optimization process.

From this point, it is evident that the main objective of vehicle route optimization is effi-
ciency. The add-ons or the second and third essential factors are the fairness and feasibility
strategies, respectively. Unfortunately, the fairness and feasibility strategies cannot be applied
separately. This phenomenon is demonstrated by the result shown in Table 5.7. It is because
they impact the profit returned from the model. Based on the supporting information, fairness
should be applied to an upper level, such as the company and organization level.

With vehicle route optimization, the main objective is to focus on earning more profit rather
than attempting to distribute task assignments equally among drivers. However, suppose that
we move to the upper company level, it becomes evident how the distribution of tasks sent
to company A, . . . , N is more critical than its efficiency. In addition to these strategies, the
feasibility strategy takes action as a constraint, i.e., the solution should not violate the fleet’s
capability.

In conclusion, the case studies presented in this chapter are fit in Class “C” when per-
forming the procedures presented in Chapter 5.3.3. Also, the decision tree classification model
is suitable to classify the given information about the current environment. Therefore, the
multi-criteria analysis model applied a balanced strategy between efficiency and fairness in the
reward function. The suitable weights (β, δ, and γ) were also returned. These weights were
used to tune the optimization agent in different sets of environments discussed in section 5.6.2.

5.6.2 Experimental Result of New Hybrid Reinforcement Neural
Vehicle Route Optimization

Experimental Results

In this chapter, the author proposes a new hybrid model for solving vehicle routing opti-
mization. The model is not only performing the optimization tasks. However, it also reduces
the model complexity. Unlike conventional optimization models, these models require numerous
constraints. Thus, it is difficult to modify the model architecture to support a new customer
requirement and route information. To handle this issue, the model using ML and RL agent
used historical data to trained and performed the vehicle route optimization instead. Therefore,
the agent who has the same role as humans can learn how to handle the situation when a new
requirement from a customer is inputted into the model.

Table 5.10 shows that the trained model that used this study’s methodology returned the
near-optimal result compared to the baseline. However, the solution returned from Nazari et
al. and Kool et al. are still far more behind. This phenomenon happened because these models
optimized the route by considering only minimizing cost. Suppose that some uncertain events
occurred at the current time, the recommended solution that did not take any uncertainties
factors into account might not be practical and suffer from penalties fee (e.g., waiting and
delay costs shown in Equation (5.12)). It is the reason why the profits returned from these two
models are less than the proposed model. Note that the data inputted in Nazari et al. and
Kool et al. models are the same as those inputted into the proposed model.

Similar to the proposed model, their models also used RL-based for solving the route op-
timization problem. The critical difference is that their models are based on a model-free RL
strategy. The limitation of the model-free RL principle is that the model does not include
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an external environment as the model-based RL does, so the model cannot fully adapt to the
current situation changes. The statement presented earlier is similar to when we were running
in the gym and at the park. So the activities that we do in the gym (e.g., closed or internal
environment) might not be available when we were in the public park (e.g., open or exter-
nal environment). However, the proposed model combined both benefits from model-free and
model-based principles together. It is the reason why the proposed model provided a significant
improvement and is so-called “hybrid.” For more detail about model-free and model-based RL
strategies, please refer to [80].

The rationale behind this process can be explained considering the initial steps of RL. The
RL agent search for the solution using SBS search strategies. It then evaluates the solution
provides from the behavior analysis component. This component is part of the new hybrid
model. Therefore, the behavior analysis component’s results provide information to the reward
processing unit, i.e., whether an agent should be rewarded or penalized.

Additionally, the author designs the reward processing unit follow the guideline of logistics
management strategy (e.g., utilities, productivities, and feasibility). It also considers the current
information from the fleet. For instance: the availability of the vehicle or driver and the number
of incidents. These strategies were used for evaluating the reward values. This reward is given
to the agent when it was performing the vehicle route optimization task. After the reward is
processed, it updates to the agent using the actor–critic gradient. It is a channel to informing
the agent about the direction of action to be performed. It also includes the actions that
should be avoided. The process is to ensure that the cumulative reward and action values are
not reduced.

The processes mentioned above are different from the conventional RL models. The con-
ventional models using only the trial–error strategy and constraints. Also, the reward is given
based on the random location selection. Suppose that the chosen location minimizes the over-
all distance, then the positive reward is given. Otherwise, the penalty is given and the total
reward is reduced. The conventional model also does not consider the environmental infor-
mation. Therefore, the model only optimizing the route based on minimum distance. The
provided solution seems to be acceptable. However, it is unlikely to be usable in the real-world
scenario.

Furthermore, the model from Musolino et al. has shown that the multimodal network
information is crucial for solving VRP. It has reduced the gap of the suggested solution to 2.42%
when compare to the baseline and model that did not use external environment information
(e.g., Model of Nazari et al. and Kool et al.). Unfortunately, [88]’s model is developed on mixed-
integer linear programming. Therefore, it is not easy to include all environment elements as the
RL does. Thus, it is the reason why the author developed the model combined benefits from
[78, 88]. This decision also contributed to an improvement of the route optimization result.
The proposed model is simple and can also be used for any other route optimization problems
with minimal changes.

In the next section, the practical usage of the trained hybrid model is presented in terms of
case studies.

Case Study with no Uncertain Changes During Vehicle Route Optimization

Figure 5.10 shows that the agent stopped increasing the CAV s when the values started to
converge. This phenomenon started in the 2,400th step of the actor–critic model. The model
denoted as “Actor” in Table 5.11. Furthermore, in the 3,600th step of the remaining model in
the A3C algorithm. The values were calculated using Equation (5.32). The experiment results
showing that the “A3C-feas model” provided the highest values according to the performed
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actions. This indicates that the RL agent presented good performance while optimization was
performed.

Furthermore, a comparison in terms of the profit suggested from the model presented in
Table 5.11 demonstrated that all actor–critic models failed for these tasks. It is because they
required more time steps than the A3C algorithm to gain experience from the environment. As
a result, the obtained profit and agent’s CAV were also reduced in most cases.

Moreover, the use of tree-based regression did not provide better results. From the finding,
the author suggests that the use of prior experience for training an agent’s behavior did not
guarantee the adaptation of the agent to future environmental changes. Therefore, it is evident
that when the proposed hybrid model combined the RL’s strategies with the dynamic environ-
ment information, the proposed model can enhance the optimization result. These strategies
consist of trial and error accompanied by dynamic information. Therefore, this combination
made the behavior analysis model can capture the new environmental patterns. After the in-
formation of agent behavior is processed in the behavior analysis model, it then sent a signal
to communicate the RL agent via Equations (5.30)–(5.31). Therefore, the agent’s behavior is
adjusted with regard to the new information. Thus, the vehicle optimization task performed
by the RL can adapt to new environmental changes by doing so.

Consequently, the result obtained from the model provided a profit improvement of 42.97%
over the models used in [78] and [79]. Furthermore, the author discovered that there are
profit improvements of 11.98% and 26.38% for the models of [81] and [82], respectively. The
models utilized by [78, 79, 82] were optimized the route with respect to minimize the traversal
cost and assume that the logistics agency resources and environment are feasible for making
goods deliveries. Unfortunately, there is a pitfall of doing so. In the real world situation, it is
not guaranteed that the logistics agency resources and environment will always be feasible for
delivered goods to customers. Therefore, when this solution was in use, the penalty fee (e.g.,
waiting and delay costs shown in Equation (5.12)) applied and reduced the profit because the
vehicle failed to deliver goods to the customer. This is the rationale behind the reason why the
obtained profits from those models were less than that of the proposed model.

The results further indicate that the recommended profit by the proposed model was close
to the company’s actual profit by up to 0.02%. This finding supports the proposition that this
model can replace human resources in a company. The replacement can be done without any
modification or monitoring. It is because the agent can be trained with human experiences
based on historical data patterns and dynamic environment information.

The rationale behind this process can be explained as follows. First, the initial steps of RL
were considered. Then, it searches for the solution using search strategies such as GD, BS, and
SBS. Second, the environment is analyzed using the behavior analysis component’s solution in
the new hybrid model. Third, the behavior analysis component results then provide information
to the reward processing unit (i.e., whether an agent should be rewarded or penalized when
interacting with the environment).

As discussed in the previous section, the reward processing unit also considers the fleet’s
current information. After the reward is processed, it communicates to the agent using the
actor–critic gradient. It is a channel to informing the agent about the direction of action to be
performed and also includes the actions that should be avoided to ensure that the cumulative
reward is not reduced.

The experiment results show that the SBS provided the highest result of up to 27,381.35±0.43
THB. It also has an improvement of 24.86%, on average. Thus, the RL neural model using
SBS is suggested for practical use. The results from Table 5.11 also demonstrate that the
actor–critic algorithm could not outperform the A3C algorithm in terms of profit and action
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values. The reason is similar to those already discussed in the previous section.
Additionally, the A3C algorithm was trained in different environments and it also consists

of multiple agents. Therefore, it can explore various environments and gain more experience.
The result also showed that when the author was applying this technique, it can reduce the
learning time.

In the next section, the result of the case study when the uncertainties disturb the vehicle
route optimization task is discussed.

Case Study with Uncertain Changes During Vehicle Route Optimization

Table 5.12 presents that the proposed hybrid model with the new reward processing unit
was effective. The model provided a profit improvement of up to 68.06%. It also outperformed
the models of [78] and [79]. On the other hand, the author compared the proposed model
with the vehicle route optimization model using the local search algorithm with ML [81]. The
result showed that the proposed model provided an improvement to the current result of ap-
proximately 50.71% of profit improvement. Furthermore, it provided an improvement of up to
58.78% of profit improvement when comparing with a solution obtained from OR-Tools OSS.

The experimental results show that the state-of-the-art models returned identical optimiza-
tion results similar to the first case study. The results were optimized toward the minimum
distance and assume that the resource and environment are feasible for making goods deliver-
ies. The environmental information was also discarded from the computation of the optimal
solution. Therefore, these models can not adapt to the environmental changes and return the
exact solution for every iteration. This outcome resulting in penalty fees (e.g., waiting and
delay costs shown in Equation (5.12)) applied and reduced profit. These results were also less
than the result of the proposed hybrid model when optimization was performed.

The rationale behind this improvement is that when the proposed model performs the
optimization tasks using different case studies, it also considers the environmental information
and adapt concordant to the new environment and management policies. This change is made
by the new dynamic reward function.

To demonstrated the phenomenon presented above, Figure 5.9 shown that when the pro-
posed model was used, the number of the incident was significantly reduced compared with
other model designs. Figure 5.11 supports the prior statement by illustrated that the proposed
model is efficient to learn the current environment and solve VRP. It is because the model can
maintain a high profit across the performing iterations. For the incident case, the number of
the incident is significantly reduced from 32 to 10 remaining incidents.

Therefore, it can be concluded that this model effectively manages the uncertain environ-
mental changes to some extent. The experiment result also demonstrated that the reward
function was vital when the model is applied to the real-world scenario. It was clear that the
agent’s rewards impacted how an agent’s action was selected during the training step.

Figure 5.12 demonstrated the RL agent’s behavior in each training step. The use of the
A3C algorithm for training the agent with the proposed methodologies and reward function
returned the highest action values. This training algorithm provided the action value up to
25,000 and more than the A3C algorithm using tree-based regression methods. However, the
tree-based regression methods predicted the rewards according to prior experience but discarded
the current environment information. Therefore, the RL agent cannot fully adapt to the new
environment, resulting in a reduced cumulative reward.

Furthermore, the proposed model provided the highest profit recommend to the company,
up to 48,895.68±0.57 THB with an improvement of 57.91%, on average. This solution was
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obtained using the SBS strategy for RL agent. Thus, the new reward function is significant for
the RL neural optimization model and provides the best solution for two reasons.

First, the information required to evaluate the solution was based on logistics strategies. It
consisted of the feasibility, efficiency, and fairness of the optimization solution. Furthermore,
prior experiences were used to determine whether a reward or penalty should be given to an
RL agent.

Second, the agent actions were not selected for the network nodes to decode based on the
traveled distance. For the proposed model, the author designs the agent to select nodes from
the availability of fleet capacity, number of orders flowing into the system, available drivers,
traffic, and the vehicle’s current position in addition to the traveled distance. The RL agent
also used prior actions as experiences for dealing with incidents. These experiences influenced
the decisions while it is limited to the conventional optimization model.

At this point, this gives rise to the question, “How does the agent know the current status
of the fleet?” The answer to this question is that the agent uses trial and error to explore and
interact with the environment in the first step. After that, the environment is analyzed using
the behavior and root-cause analysis model, as shown in Figure 5.1. The behavior analysis
model used obtained data from multisources to model the current transport environment. This
model is also used to inform the RL agent on how well it handles an unusual incident (e.g.,
accident, vehicle shortage, absence of drivers, or order postponements and cancellations from
customers). It also includes the newly assigned task in the current environment. The behavior
analysis model informed the agent whether its action is suitable for optimizing the vehicle route
in the current environment or adjustment was required. The way to inform the agent of its
behavior is discussed as follows. First, this information from the behavior analysis model was
transmitted through the reward processing unit to evaluate the vehicle route suggested by RL
in terms of feasibility, efficiency, and fairness with respect to the current environment. Second,
the reward processing unit used multi-criteria ABC analysis with a decision tree to determine
the appropriate logistics strategy that could be implemented in the reward function and for
adjusting the optimization strategies used by the RL agent. This selection was made with
respect to logistics management criteria. Finally, the reward processing unit sent a signal to
update the actor–critic gradient, computed as Equations (5.30)–(5.31). Hence, the RL agent’s
action for optimizing the vehicle route was adjusted concordant to the new strategy.

The RL agent performed the vehicle route optimization task until a feasible solution was
returned or the terminate condition was satisfied. The question posed above is the rationale
behind the process that makes the proposed model more efficient when dealing with dynamic
information and uncertain environmental changes.

From the findings, the author discovered that in real-world applications, the vehicle route
optimization process must consider the utility and productivity of the deliveries together with
the minimum traversal cost. It should be noted that the minimum traversal cost is not always
guaranteed to be the optimal solution. To strengthen the findings, the results were validated
against the company’s actual profits. The experimental results show that the proposed model
improved up to 43.99% of profit improvement when the real company operations were com-
pared. Thus, it was clear that the RL agent in the model can seamlessly replace the human
resources. This outcome does not require any further modifications. The author also discov-
ered that using previous vehicle route optimization solutions as RL agent experiences could
help the agent determines optimal nodes. They are nodes that should be visited in the current
environment. Unfortunately, in some cases, the situation is significantly different from the past;
only prior experience was not always practical. Therefore, past actions cannot be applied in a
similar manner to different environmental situations. It can be concluded that essential infor-
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mation that is updated dynamically and management policies is required to manage different
environments. This presents gaps that are fulfilled by the new hybrid model.

Thus, this is the motivation behind the hybrid model proposed in this chapter. The ex-
perimental results also indicate that a hybrid A3C algorithm model using the SBS strategy is
suitable for practical use. It is because it exhibits excellent performance compared to other
approaches for the optimization of delivery tasks in most cases.

In this section, the author presented the experimental results and case studies for test the
RL agent when performing vehicle route optimization tasks in different situations. In the next
section, more complicated tasks are presented.

New Hybrid Model when Vehicle Route Optimization is Performed in Advance

From the previous section, the hybrid A3C algorithm model using the SBS strategy was
chosen for performing the vehicle route optimization tasks. In this section, the same model
was used to perform the advanced planning of the vehicle route optimization. The planning is
about 1 – 2 weeks in advance.

Figure 5.13 showed that the new hybrid model could manage the situation when the plan is
appropriately set in advance. This advanced planning was also dealing with the deliveries that
have incidents. The results indicated that the differences between the proposed model’s and
actual planning’s results are 2.90% and 6.46%, on average. These results are 1 and 2 weeks of
advanced planning, respectively.

This experiment results can be explained by the fact that the agent is trained based on
the experience of the staff. It also includes the information required for forecasting the fleet
capacity. This forecasting was done in the behavior analysis component. Therefore, when
dealing with routine situations, the agent behaved similarly to humans.

Unfortunately, the staff obtained the information of the incident on the day that the tasks
had to be executed. Therefore, the staff could only utilize past experiences to support their
decisions. This is supported by the fact that the staff and the A3C-tree model results are
similar. This phenomenon is shown in (2) of Figure 5.13. The ML model used by the A3C-tree
was trained based on prior experiences. Therefore, the agent used the ML model to predict the
outcome of the selected action.

However, the strategy was different for the proposed model (the “A3C-feas” model), shown
in (2) of Figure 5.13. The model managed the situation more efficiently than the A3C-tree. It
is because it used the behavior analysis component results to forecast the situation in the next
time step. For example, the model considered the trends of customer demands, such as “Will
it increases or reduces?”, “Will it be normal or abnormal?”, “Where are the fleet’s vehicles
in the maintenance cycle?”, and “Is the number of vehicles sufficient to manage the customer
demands?” Thus, the “A3C-feas” model maximized utility from the solution using the logistics
management strategies according to the forecasting’s result of the observed time step.

In conclusion, this section’s findings supported the proposition as follows. If the company
planned the vehicle route optimization in advance, then the forecasting result from the fleet’s
capacity would be crucial. It is because it significantly improves the result of vehicle route
optimization than those models that were only used the prior knowledge. This knowledge
was extracted from past actions. Thus, companies can understand a situation beforehand and
accordingly prepare the resources.

After the experimental results were discussed, it is now ready to conclude this chapter’s
contents, as shown in the conclusion section.
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5.7 Conclusion

In this chapter, the author presented a hybrid model based on RL for optimizing vehicle
routing. This routing is a route of logistics agency container delivery in Thailand. The author
aims to solve the model complexity and efficiency issues with the proposed hybrid model.
These issues occur when route optimization is performed in the real-world scenario. After the
methodology of RL was applied, in the initial step, the RL agent performed a solution search
using a trial-and-error strategy. The action of the agent made to the environment was then
evaluated through the behavior analysis model in the next step. These results were inherited
to compute the reward for the agent using MUI. Lastly, to select the type of reward to give,
a multi-criteria ABC analysis was utilized. It then updated the actor and critic gradient to
prepare the solution search in the next time step. This process was known as a channel for
communicating with the RL agent.

The experiment results showed that the proposed hybrid model with the proposed method-
ology was superior. This phenomenon happened when performing vehicle route optimization
tasks in comparison to previous approaches. The proposed hybrid model provided the opti-
mization result close to optimal up to 0.548% gap.

The findings from this chapter show that the use of dynamic information from the envi-
ronment with prior experience and trial-and-error strategies increased the ability of the agent.
The agent was able to return improvements on vehicle route optimization’s solution. These
improvements were shown for both routine and non-regular cases.

The essential part of improving the experimental results is the behavior analysis component.
It is a deep neural network that was constructed and executed to reveal the RL agent’s and
operation’s behavior. This behavior information was used to assist and adjust the RL agent
when the vehicle route optimization process was performed. After numerous time steps had
passed, the knowledge was discovered by the agent. Thus, the route optimization process was
performed using the obtained knowledge. This knowledge was further used to train the RL
agent in the current time step. The agent then continues in the optimization tasks until the
terminate condition was reached.

This study revealed that the insights from the data and the current information from the
environment are crucial for training the RL agent and compulsive RL agent behaviors in the
route optimization process. Therefore, the agent is then adapted to avoid selecting the actions
that reduced its value and reward.

To demonstrate the practical significance of the proposed model, the experimental results
were validated using real operational data. These data were given by the company staff. They
consist of reports on vehicle scheduling and disturbances in the vehicle route optimization
process. In this chapter, the author also reproduces the state-of-the-art models. Finally, these
models were used to compare with the proposed model.

The author performed and demonstrated the practical significance of using case studies.
The experimental results indicated that a new hybrid model of the proposed methodology with
A3C is suitable for practical use. It is because the model has significantly improved results over
other approaches.

Furthermore, the hybrid model was efficient for optimizing vehicle routing, mainly when
uncertain changes occurred. These cases are also compared to previous frameworks and well-
known optimization algorithms. For instance: the local search with ML. The hybrid model rec-
ommends an optimal route with profit for the company up to 27,381.35±0.43 and 48,895.68±0.57
THB. It also includes a profit improvement of 24.86% and 57.91%, on average, for the non-
incident and incident cases, respectively.
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This study delimits only the transportation planning perspective. Nevertheless, it is a
part of logistics management. In the future, the author will consider using the multi-criteria
approach to select route optimization criteria that are not limited only to transportation. These
criteria referred to users’ preferences and manufacturing factors (e.g., production timeline and
manufacturing requirement). This modification would make the proposed optimization model
more robust for routing optimization problems. Furthermore, they consist of situations when
dealing with the upscale uncertainty from the environment.

From the obtained findings, the potential for transportation does not only rely on the
transportation level. However, manufacturing and production processes are also essential parts
of being considered to increase operational efficiency.

130



Chapter 6

Dissertation Contribution

6.1 Practical Implication

(a) More accurate abnormality detection in the transportation planning process increases
opportunities for logistics agencies. It enables logistics agencies to better understand
operation behavior so that policies to manage transportation logistics are distributed
effectively. This benefits the agency because the more feasible the policies are to handle
goods delivery to potential customers with the optimal route, the lower the operational
costs to the logistics agency performing the deliveries.

(b) This dissertation proposes methodologies that can support logistics management deci-
sion making involving optimizing vehicle routing (e.g., fleet utilization, productivity, and
difficulties).

(c) Logistics agencies can use the proposed methodologies to make suitable policies and take
appropriate actions to assist or substitute expert staff in eliminating any disturbance
before it causes difficulties in the transportation planning process.

6.2 Theoretical Implication

1. The first academic contribution of this dissertation is the development of a new behavior
analysis model for detecting temporal anomalies from time-series data using LSTM.

(a) Recent research proposed an LSTM to analyze time-series data for abnormalities
[3, 4, 24]. LSTM has a dynamic threshold for detecting anomalies in time-series
data [18], uses AE to enhance LSTM results as LSTM-AE [19] and the concept
drift adaptive method for improving detection results [22]. However, the proposed
model suffers from false alarms or increases in the false positive rate. Additionally,
detecting anomalies that are conditional on spatial-temporal context and behavior
attributes is still limited. Therefore, this study proposes thresholds that include
conditional and behavioral attributes. It enables the detection model to detect more
complicated anomalies that are correlated to spatial and temporal conditions.

(b) In most studies of temporal anomaly detection, the models are efficient in detecting
point anomalies. However, these same models cannot be used to detect contextual
and collective anomalies. Therefore, the LSTM with the contextualized dynamic
threshold proposed in this dissertation enhances the detection result and reduces the

131



false positive rate. It also expands the ability to detect various types of anomalies
in the same model.

2. The second academic contribution of this dissertation is the development of a new hybrid
model for behavior analysis jointly using LSTM and LSTM-AE with clustering. This
methodology is essential in assisting the RL agent described in Chapter 5 in tuning its
behavior while optimizing its fleet vehicle routing.

(a) Recent research proposed a model that used LSTM-AE to perform data dimension
reduction and input the low-dimensional data to clustering (e.g., K-means and GMM
[34, 5]). However, this would be more accurate if the model was to combine the
result with another model to reduce bias and false detection rates. This process also
added the capability to deal with high-dimensional and nonlinearly separable data.
Therefore, this dissertation proposes an ensemble method.

(b) In most studies of hybrid models for detecting abnormalities, the models combine
different detection strategies. This study proposes a hybrid model that takes the
unique advantages of distance-based, cluster-based, and statistical-based ideas to
combine the detection results, making them more accurate than when using a single
model.

3. The third academic contribution of this dissertation is the development of root-cause anal-
ysis. In previous studies, this process is also called anomaly explanation. The development
of the root-cause analysis in this study consists of forward and inverse problem-solving
techniques and the ML approach.

(a) In recent research, it was shown that processes that describe or provide some hint
of an abnormality in the system are still limited and currently under development.
Therefore, sometimes there is a bias in defining data points regardless of whether
they are abnormalities. In the worst case, the data point is mistakenly defined as
abnormalities. Therefore, the false positive rate is increasing significantly. These
issues also impact the information returned to support agency decision making. It
contains a high risk of making an incorrect decision from inaccurate information. In
addition, performing a root-cause analysis adds the capability to trace back to the
origin of the anomalous events. Therefore, anomalies are detected and eliminated
until their origin. This action prevents any disruption and failure of the transporta-
tion planning processes.

(b) The effectiveness of the proposed methodology was presented through case stud-
ies. The findings indicate when the root cause of the abnormalities is effectively
revealed. The proposed solutions for the transportation planning process performed
by the hybrid RL model can overcome the general reinforcement neural optimization
model proposed by Nazari et al. and Kool et al. It also includes the vehicle route
optimization model using local search algorithm and ML by Giovani et al., and the
OR-Tools on handling an uncertain change in the logistics transportation environ-
ment. Furthermore, when compared to the case in which vehicle route optimization
is performed by staff, the information regarding the abnormalities and root causes
can alert the model to avoid choosing an action that reduces the cumulative profit.
Therefore, the solutions returned from the hybrid RL optimization model have a
higher percentage of optimal and overcome the solution provided by the company.
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6.3 Contribution to Knowledge Science

(a) The methodologies in this study enhance the knowledge in the data mining and artificial
intelligence research area. They are enhanced by the new novel methodologies.

(b) Novel methodologies for detecting anomalies and their root causes contribute to knowledge
discovery from multisource data, such as real-time data streaming from multiple sensors
and the IoT.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In Chapter 2, the author presented and defined a fundamental challenge in detecting an
anomalous event in a vehicle route optimization process for transport logistics. It leverages the
benefits of innovative anomaly detection approaches.

In Chapter 3, the LSTM approach was proposed and is suitable for detecting temporal
anomalies in time-series data. Simultaneously, the author addressed the challenge involved
and the remaining research question associated with unlabeled multidimensional datasets. The
process also includes their interpretability. It was shown that the problem is related to de-
tecting anomalies from nonstationary data series with numerous anomaly scenarios in urban
transportation logistics. To address this problem, a novel contextualized dynamic threshold
approach was proposed. It does not depend on any labels and entirely unsupervised. This ap-
proach’s capability was also extended to detect complex anomalies involving multidimensional
factors. The proposed approach also identifies the causes of abnormal events.

The empirical results showed that the data do not have any dependencies between time
steps; furthermore, the anomaly detection model required a specific context to detect anomalies,
as the AUC, F-Score (F1-score), precision, and recall metrics increased significantly to 0.870,
0.839, 0.836, and 0.842, respectively. The obtained result significantly improves the detection
result from the model proposed by [18].

Nevertheless, the proposed model is simple and can be applied for any other anomaly detec-
tion problem with minimal changes. For instance, minimal changes in location-time contexts
(e.g., events at a location and specific time) and thresholds of behavior attributes (e.g., resource
usage, number of workflows, and transactions) should be considered.

In Chapter 4, the hybrid unsupervised model was proposed to detect and identify the
cause of anomalies in the route optimization process of urban freight transportation. From the
study of behavior and root-cause analysis, it was discovered that each model has a different
capability when detecting abnormalities from the dataset. Moreover, the anomaly explanation
is still under development. Therefore, the author proposed LSTM-AE to reveal the significance
of the data’s feature representation (e.g., latent features). After that, the data’s significant
feature representations are input to the distance- and density-based detectors. This procedure
solved the problem of high-dimensional and nonlinearly separable data. The problem previously
mentioned is limited to the conventional ML and threshold-based approach (e.g., reconstruction
error does not easily find boundaries for separation between normal data points and anomalous
data points).
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The author combined the results of multiple detectors from different properties to signifi-
cantly increase the effects of the detection rate. Additionally, models for explaining the cause
of anomalies were proposed to reduce bias in detecting datapoints. The root-cause analysis
models were proposed. The approach consists of forward and inverse problem analysis, includ-
ing root-cause analysis using ML. These three models were executed and compared with the
baselines. The author selected the model that had the highest performance (e.g., AUC, F1-score
and the computational time) in detecting anomalies and defining their root causes. Note that
the GPS probe data presented in Chapter 3 were used as input into these detection models.

From the empirical results, the detection rate increased and was more accurate than using a
single model. The author discovered that the optimal number of classifiers or detectors is five.
This number had the best performance when detecting abnormalities in both temporal and
static types. Therefore, temporal LSTM-AE with four detectors (i.e., GMMs EM/PCA-EM-
DATA/Kmean/IS) was suggested when deploying the model because it obtained the highest
AUC, F-Score (F1-score), precision, and recall. This information was crucial for later chapters
because it was used to predict the trend from the data. For example, if vehicle route optimiza-
tion was performed in advance, the behavior analysis model predicted the outcomes from the
given solution of the RL agent, determining whether there would be abnormalities in customer
demand or fleet capability, for instance, vehicles in maintenance or a high level of demand from
the customer. Therefore, the agent adapted to these changes and alerted the company to revise
its fleet planning to match the demand if the current number of vehicles was insufficient.

After the anomaly detection results were obtained, they were used as an input in the root-
cause analysis model. The result shows that the model using ML outperformed the exact and
approximate-based model, such as forward and inverse problem analysis, proposed by [54, 52].

The reason is that the PNN is a well-known ML model for performing pattern recognition.
Therefore, the author adapted the benefit of pattern recognition to the root-cause analysis
problem. Instead of searching the relationship between data attributes such as inverse and
forward problem analysis, the PNN stored the data pattern in the pattern and summation
layers. It further classifies the type of root cause using a probability distribution. Thus, a more
accurate classification result is returned.

The experimental results are validated with real data from reports of disturbances in the
route optimization process by company staff, showing an accuracy of up to 0.83 (AUC of
0.888) with less processing time than that required by other existing methods. The cause of
the anomaly is perfectly revealed. As the detection decision is explained, it makes the user
clearly understand the relation as to why the model reached this such decision.

The anomaly is also detected and eliminated until its origin. This procedure is performed
before the anomaly causes any disruption to the transportation planning processes. The ex-
perimental results also showed that the proposed hybrid model is typically general and can
be applied to other applications with some modifications. The model still maintains a high
performance up to 0.88 AUC in numerous anomaly detection applications.

In Chapter 5, case studies applying behavior and root-cause analysis were presented. The
author demonstrated how behavior and root-cause analysis played an important role in vehicle
route optimization in real company operation. The first case study was when the optimiza-
tion was performed based on the neural reinforcement optimization, which handles situations
wherein no sudden and uncertain changes occur during the daily operation. The case study
used a normal environment (no traffic congestion) with no incidents occurring in the trans-
port container fleet (e.g., no order postponement, cancellation, vehicle shortages, or human
resources issues). The author also tested the model with an environment where uncertain
changes occurred in the second case study.
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This study assumes that the RL agent has a role similar to humans for performing daily
vehicle route optimization. Therefore, training is required to achieve the goal. The model
equipped with the proposed behavior and root-cause analysis was compared with the model
that does not have behavior and root-cause analysis. In addition, the experimental results were
also compared to state-of-the-art approaches.

In the experiment, the result implied that the interconnection between RL, behavior analy-
sis, and reward processing of the proposed model increased the ability of the agent to perform
route optimizations in a similar way as humans for routine daily scheduling. When uncer-
tain changes occurred in the environment, the agent outperformed the humans when making
rescheduling decisions. This is because the route optimization model not only considered the
prior experience and search for the solution but also factored in dynamic information from the
environment when evaluating which customer should be visited and which delivery should be
performed.

Furthermore, A3C provided an impressive result when training the agent compared with the
general actor-critic algorithm, which measures using baselines [78, 79], well-known local-search
optimization algorithms with ML [81], and an open-source software suite for optimization (e.g.,
OR-Tools). The improvement in the route optimization result implies that there are benefits
to combining the RL trial-and-error strategy, behavior analysis, and a reward processing unit
when fine-tuning the agent’s behavior while selecting actions to perform. Furthermore, the
model also tested the use of vehicle route optimization to plan schedules. The results showed
that the proposed hybrid model is robust in deciding both the next time step and daily routine
planning.

7.2 Future Work

According to the limitations of the experiments presented in this dissertation, there are
opportunities for further studies to improve this methodology for behavior and root-cause
analysis with application to transportation logistics. They are listed as follows:

1. The proposed model in Chapter 3 only used an LSTM-based model. However, there are
many time-series prediction models that can be explored further.

2. The essential factors in Chapter 3 can still be improved and further evaluated. There are
more features in logistics management strategies (e.g., human resources, production and
supply, and manufacturing timelines) that can be further explored. The author aims to
expand the proposed approach’s capabilities. This expansion also includes implementing
the framework, which takes other operational areas into account. This area also involves
the streaming of data. This improved methodology will enable more reliable and efficient
decision-making.

3. In Chapter 4, the noise that influences the false positive rate remains. It also causes
anomaly misclassification, including determining its cause. Therefore, methods to address
this issue are required for further investigation in future work.

4. The scenario of determining root-cause analysis in Chapter 4 was considered when the
disturbance occurred in transportation planning. However, it is worth exploring and
improving the model. The improvement will increase the model’s ability to deal with a
scenario in which the disturbance occurs in other components of logistics management
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(e.g., production, demand, and resources planning). The explanations of the causes are
also included and more precise than before.

5. In Chapter 5, the author tested the behavior and root-cause analysis model with real
case studies. These case studies were conducted with the logistics agency in Thailand.
The case studies also covered only vehicle route optimization tasks. However, it is worth
exploring and investigating more in future work when vehicle route optimization tasks
consider the manufacturing and production timelines. The supply chain’s efficiency relies
not only on manufacturing and production but also on the effectiveness and potential of
transport logistics. Therefore, the proposed model can expand the capability to handle
these tasks. As a result, the potential in-vehicle route optimization can be improved.
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