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Abstract

Voice conversion (VC), in a wide sense, is a method aims to modify the
para-/non-linguistic information conveyed in the speech waveform while
preserving the linguistic content. Some para-/non-linguistic information of
speech can be mentioned as speech expressiveness and speaker individuality
features such as age, gender, and accent. In this research, a VC model that
focuses on the speaker individuality aspect of speech is studied. In a special
case when the source and target voices are in different languages, a cross-
lingual VC (CLVC) model that can efficiently work in multi-lingual must
be used. This type of VC model is very useful in various applications such
as personalizing speech-to-speech translator or language-learning platform.
Due to the unavailability of parallel source and target data, conventional
mapping methods cannot be applied. To solve this problem, non-parallel
VC models have been actively studied in recent years. In contrast with
the conventional mapping approaches, these non-parallel VCs aim to disen-
tangle the linguistic information and speaker individuality from the speech
waveform. After that, the source speaker individuality is swapped with
the target one while the linguistic information in the target is preserved.
The most straight-forward approach for CLVC is by cascading automatic
speech recognition system and text-to-speech system. As speaker identity
and text transcription are both required during the training process, this
type of VC model can be referred to as a supervised approach. As another
way, semi-supervised CLVC can be trained without text transcription, hence
avoiding the use of expensive transcribed speech corpus. Although the semi-
supervised CLVC approach can yield better applicability comparing with the
supervised CLVC model in practice, however, its performance is often lower
compared with the supervised approach. The common approach for semi-
supervised CLVC is based on Variational Autoencoder (VAE), which can
factorize the linguistic information and speaker information from acoustic
features by applying regularization on the latent variables representing the
linguistic information. However, most of the previous CLVC methods only
focus on mimicking the target speaker individuality without being able to
generate new speaker individuality. For some practical applications, such
as accent conversion, the ability to actively generate new voice individuality
as well as passively mimicking a particular target voice is much more useful
than solely mimicking the target voice. Considering the pros and cons of
previous studies, the objective goal of this study is to design a semi-supervised
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CLVC, which is capable of both mimicking voice and continuously controlling
the voice characteristics of generated speech. When modeling continuous
controllable degrees of voice characteristics in CLVC, two primary problems
must be addressed: (1) how to reliably extract and modify speaker voice
individuality from different languages and (2) how to generate high quality
speech waveform with desired voice characteristics in cross-lingual setting.
To this end, the four following sub-tasks were carried out, in which the first
three ones correspond to the first problem and the fourth one corresponds to
the last problem:

• Method for non-parallel VC: investigate an effective VC model to
mimic a target voice by factorizing linguistic information and speaker
individuality information (passive VC).

• Controllable speaker individuality: investigate a method to extract
voice characteristics and to generate new speaker individuality (active
VC).

• Cross-lingual setting: investigate methods to apply the proposed non-
parallel VC for cross-lingual settings with controllable voice character-
istics.

• Methods for improving speech naturalness and speaker similarity:
investigate methods to improve the performance of the CLVC model.

The main contribution of this study was providing an effective method
for controlling the speaker individuality and several enhancements for CLVC.
This study can be directly applied in various applications such as customizing
audiobook and avatar voices, dubbing, movie industry, teleconferencing,
singing voice modification, voice restoration after surgery, and cloning of
voices of historical persons. Besides, the results from this study are beneficial
for other VC fields such as providing a method for controlling speech
intelligibility of speech enhancement models.

Keywords: Voice Conversion, Variational Autoencoder, Unsupervised
Learning, Speaker Embedding, Controllable Voice Quality
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Chapter 1

Introduction

1.1 Overview of Voice Conversion

Being the most convenient way for human to communicate, speech contains
various information including the linguistic-, para- and non-linguistic infor-
mation. The linguistic information convey the discrete information which
can be explicitly represented by written language. Besides, para-linguistic
information refers to the speech prosody that is intentionally added by the
speakers to alter the meaning of the sentence, such as intonation, intention,
and attitude. Finally, the remaining information in speech is regarded as
non-linguistic information, which is often unconsciously added by the speaker
such as speaking styles, emotion, and speaker individuality.

With the advent of artificial intelligent, speech is becoming a common
human-machine interface for many smart devices, such as virtual assistant
and humanoid robot. Speech perception and speech production are the
two key technologies to achieve an effective speech communication between
human and machine. On one hand, speech perception technique related to
the extraction and processing of the information in the speech waveform.
On the other hand, speech production technique aims to producing speech
waveform that can be easily perceived by the listener. Despite much progress,
the speech communication between human and machine is still by far from
perfect. In the recent years, the speech production technologies have put
more attention on personalized speech synthesis, which can generate speech
with different voice characteristics by modifying the para- and non-linguistic
information. As stated in [1], the para- and non-linguistic information
are crucial for an effective human communication. Thus, the personalized
speech can help to improve the user experience when communicating with
the machine.

The two main technologies for personalized speech synthesis are the
text-to-speech (TTS) and the voice conversion. The main task of text-
to-speech technology is to generate speech with the linguistic information
provided from the input text. Methods for TTS may vary from the simplest
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Text-to-speech Voice conversion“Hello world”

Synthesized
speech

Personalized 
speech

Input text

Figure 1.1: Typical process chain of personalized speech synthesis system.

unit-concatenation approach to the more sophisticated neural-network based
approach. Initially, the TTS system is only capable of generating speech with
a specific speaker individuality. Creating new speaker individuality usually
requires re-training the whole TTS system with new data. Recently, studies
in TTS area have proposed different multi-speaker models that can vary the
speaker individuality in synthesized speech. However, these multi-speaker
TTS models often require a large multi-speaker speech database, which is
not ideal in practice due to the high cost.

Another technique for personalized speech synthesis is voice conversion,
which aims at the control of non-linguistic information in the speech signal
while maintaining other information unaffected. Differs from TTS system,
the VC system takes the the speech waveform as input and produce another
speech waveform with different speaker individuality. Since the VC system
itself cannot produce the linguistic content, it is often located after the TTS
system system. Figure 1.1 illustrates a typical chain for personalized speech
synthesis. The VC system often require fewer speech data for adapting to a
new speaker, hence it is more preferable for personalizing speech synthesis.

With the focus on controlling the non-linguistic information, an effective
voice conversion system need to understand both the process and mechanism
of speech production and speech perception. Due to this requirement, the
voice conversion task is often more challenging comparing with the TTS task,
which mostly focus on speech production side. At one end, a voice conversion
system needs to extract the cues that are relevant to voice individuality from
the speech signal. At the other end, the extracted information must be
modified in the way that the converted speech sounds natural. Therefore,
the speech model of voice conversion system should be capable of representing
and modifying these cues efficiently.

The main objective for voice conversion system is to transform the
identity of source speaker to that of target speaker while maintaining the
naturalness of the converted speech. In practice, the constraint in the training
data also poses several challenges for developing a good voice conversion
system. In the early years, most voice conversion models based on the popular
spectral mapping approach, which requires the parallel data for training
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process. The parallel data consist of several pairs of utterance from source
speaker and target speakers that share a same sentence. The voice conversion
model then learn an individuality transform function by minimizing the error
between the synthesized waveform and target waveform. Since parallel data
is not always available in practice, recent voice conversion studies have put
more efforts on non-parallel approaches [2].

The non-parallel voice conversion is a more flexible but challenging
framework. In this framework, the source and target utterances are not
necessarily have the same linguistic content. There are two typical approach
for non-parallel voice conversion: 1) construct the parallel data from non-
parallel data [3,4], and 2) speech features disentanglement approaches [5–9].
The first approach aims to find the source-target frame pairs from the
non-parallel utterances using unit-selection [3] or iterative frame alignment
method [4]. However, the performance of these approaches still need more
improvement due to the imperfect alignments [4].

On the other hand, the speech features disentanglement approaches focus
on finding a function to separate the linguistic information and non-linguistic
information from speech features. The speech features disentanglement
approach can be further divided into two categories: 1) the text-dependent
approach (i.e. supervised approach) and 2) text-independent approach (i.e.
semi-supervised approach). The first approach is usually a simple cascade of
a Automatic Speech Recognition (ASR) system and a Text-to-Speech (TTS)
system [5–7]. The ASR system takes the input speech waveform and extract
the linguistic information represented as text or phoneme-related features.
The TTS system then re-synthesizes the speech waveform from the extracted
linguistic information and a label that represents speaker identity. This
voice conversion approach requires a speech database with text-annotation
for the training process. In the second approach, the linguistic information
have to be extracted without any supervision from the text label, hence
making it much more difficult than the first approach [8–10]. Therefore, the
current performance of text-independent approaches are often lower than
those of text-dependent approaches. The advantages of text-independent
approach over text-dependent one is that it can be trained on non-annotated
data, which can be easier to obtained in practice. Moreover, with the
rapid advancement and growth of social media, an enormous amount of
un-annotated speech data will be publicly available on the Internet. For
these reasons, improving the performance of text-independent approach is
becoming an essential topic for voice conversion research.

A special application of non-parallel voice conversion is the cross-lingual
voice conversion [11–14], in which the target speaker does not speak the same
language as the source speaker. This type of voice conversion is very useful
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in various applications, such as personalized speech-to-speech translator [1]
or computer-assisted language learning leveraging accent conversion [15].
In the cross-lingual voice conversion, the phonetic system of source and
target speaker are different, hence, parallel training data is impossible. A
cross-lingual voice conversion should be able to efficiently model the speaker
individuality in a multi-lingual setting. Therefore, the cross-lingual voice
conversion is regarded as a more difficult task comparing with the intra-
lingual voice conversion [15]. Due to this reason, the performance of cross-
lingual voice conversion still remains to be improved.

1.2 Research Motivation

Despite the rapid development of non-parallel voice conversion technique,
there are two major problems that still exist. The first issue is that most
previous study on non-parallel voice conversion only focus on mimicking a
particular target voice without the ability to change the voice characteristics.
For some practical applications, such as accent conversion, the ability to
actively generate new voice individuality as well as passively mimicking a
particular target voice is much more useful than solely mimicking the target
voice. The earliest attempt on controlling the voice characteristics in voice
conversion system is the Eigenvoice-GMM model [16, 17], which model the
speaker identity vector as the mixture of basis identity vectors. This model
can flexibly control the speaker individuality by setting the weight parameter
of the basis vectors. However, the Eigenvoice-GMM model still requires the
availability of parallel training data, which only suitable for intra-lingual
task.

The second issue that exists in most non-parallel voice conversion is the
degradation in quality of converted speech. In general, over-smoothing prob-
lem is the major cause for this degradation. The over-smoothing problem is
the result of using Mean-Square Error (MSE) [18,19] or maximum likelihood
function [20] as the optimizing criteria. These optimizing objective function
based on the assumption that the distribution of speech features follows the
simple normal distribution. This over-simplified assumption causes the loss
of spectral detail and makes the converted speech sound unnatural. One
of the successful method to alleviate this problem is Generative Adversarial
Network (GAN), which can avoid explicitly model the likelihood function
of the data. However, the current state-of-art GAN-based voice conversion
[21–23] does not support for speaker individuality control.
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1.3 Research Objective

From the motivations mentioned in Section 1.2, the primary objective of
this research is to design a semi-supervised cross-lingual voice conversion
(CLVC), which is capable of both speaker individuality mimicry and contin-
uously control of the voice characteristics. The proposed cross-lingual voice
conversion can be advantage in various applications. For example, the voice
from speech-to-speech translator device can be personalized to sounds like
the input voice, hence improving the communication experience. With the
ability to control the voice characteristics, such as pitch and gender, the
proposed voice conversion model can be used to protect the privacy of the
source speaker by modifying the original voice individuality.

To achieve the primary goal of this thesis, these two problems must be
addressed: (1) how to continuously modify the speaker voice individual-
ity from different languages and (2) how to generate high quality speech
waveform with desired voice characteristics in cross-lingual setting. To solve
these two problems, this thesis concentrates on designing a high-quality text-
independent speech features disentanglement model. For the first problem,
method to control the voice characteristics via a continuous speaker indi-
viduality representation for intra- and cross-lingual tasks is investigated. To
improve the performance of voice conversion, this thesis focuses on methods
for enhancing the spectral features and the prosody features of converted
speech.

1.4 Research Methodology

In this thesis, the two problems mentioned in Section 1.3 are addressed by
3 sub-tasks: 1) propose a non-parallel voice conversion with controllable
speaker individuality, 2) extend the proposed framework to cross-lingual
domain, and 3) improve the performance of cross-lingual voice conversion.
As listed below is the detail of 3 sub-tasks in this thesis, in which the first
two sub-tasks related to the first problem and the last sub-task related to
the last problems.

• Non-parallel voice conversion with speaker individuality con-
trol: The first study proposes a flexible non-parallel voice conversion
(VC) system that is capable of both performing speaker adaptation
and controlling speaker individuality. The proposed VC framework
aims to tackle the inability to arbitrarily modify voice characteristics
in the converted waveform of conventional VC model. To achieve this
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goal, the speaker embedding learned during the training process is used
instead of one-hot encoded vectors to represent and modify the target
voice’s characteristics. Neither parallel training data, linguistic label
nor time alignment procedure is required to train the proposed system.
After training on a multi-speaker speech database, the proposed VC
system can adapt an arbitrary source speaker to any target speaker
using only one sample from a target speaker. The speaker individu-
ality of converted speech can be controlled by modifying the speaker
embedding vectors; resulting in a fictitious speaker individuality.

• Cross-lingual voice conversion with hierarchical discrete latent
vector quantized variational autoencoder: In the second study,
the non-parallel voice conversion (NPVC) is improved with hierarchical
discrete latent vector-quantized variational autoencoder (VQVAE).
The speech signal conveys several levels of information that localized
at different temporal scale. However, previous studies on NPVC based
on VQVAE use a single codebook to encode the linguistic information
at a fixed temporal scale. Therefore, the converted speech may contain
unnatural pronunciations which can degrade the linguistic information
of speech. To tackle this problem, this study proposes the hierarchical
latent embedding structure which comprises several vector quantization
blocks operating at different temporal scales. When trained with
a multi-speaker database, the proposed model can encode the voice
characteristics into the speaker embedding vector, which can be used
in one-shot learning settings.

• Improve voice conversion quality with adversarial training
scheme and F0 injection: In the final study, the adversarial training
scheme of StarGAN [24] is adopted to alleviate the over-smoothing
problem exist in VAE-based voice conversion model. In addition,
to improve the accuracy of F0 contour in converted speech, this
study proposes the F0-injection method to condition mel-spectrogram
generation with auxiliary logF0 input. Another problem with cross-
lingual voice conversion is the language-dependent speaker embedding
behavior, which affect the linguistic information when converting voice.
For this issue, a language embedding is introduced in addition to the
speaker embedding for disentangling the language factor and speaker
individuality.

The first work on non-parallel voice conversion with speaker individuality
control discussed in Chapter 3 is published in the conferences: APSIPA
2020 [25], Autumn Meetings of Acoustic Japan Society 2019 [26], and
Acoustic Symposium 2019 [27]. The second work on the cross-lingual voice
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Figure 1.2: Overview framework of the proposed voice conversion system.

conversion discussed in Chapter 4 is published in the conferences: Joint
Workshop of Blizzard Challenge and Voice Conversion Challenge 2020 [10],
Autumn Meetings of Acoustic Japan Society 2020 [28]. The final work on
improving the quality of converted speech is published in the Spring Meetings
of Acoustic Japan Society 2021 [29] and the journal IEEE Access [30]. The
overview of the proposed framework is shown in Fig. 1.2.

1.5 Dissertation Organization

The rest of this thesis is organized as follows:

• Chapter 2 provides a basic principle of voice conversion, followed by a
comparison between voice conversion techniques. Then the review of
the state-of-art method on non-parallel voice conversion is provided.

• Chapter 3 proposes non-parallel voice conversion with speaker individ-
uality control, which is the main framework of this study.

• Chapter 4 proposes the extension of non-parallel voice conversion for
cross-lingual task, based on the vector-quantized variational autoen-
coder.

• Chapter 5 proposes the improving method for cross-lingual voice con-
version.

Finally, Chapter 6 concludes the dissertations with the summary on the
contributions and future research direction. The structure of this thesis is
illustrated in Fig. 1.3.
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Chapter 2

Literature Review

This chapter summarizes the background knowledge of voice conversion
technique and reviews on the state-of-art methods for non-parallel conversion
model. The chapter is organized as follows:

Section 2.1 briefly introduces the speech production mechanism to explain
the focus of voice conversion system. Section 2.2 introduces the general
flow of voice conversion system and discusses the interesting application of
voice conversion. Section 2.3 discusses on the evaluation methods for voice
conversion models.

2.1 Speech production mechanism

Whenever someone utters a sentence, they provides not only the message
that made up the meaning of the sentence, but also the information about
themselves as a person. Recordings from different speakers may sound
very different even if it contains the same sentence. This is because the
speech production involves the neural, physiological, and physical systems
of a specific individual [31]. Differences in these systems contributes to
speaker individuality in speech signal, which can be exploited by the listener
to identify the characteristics of the speaker, such as age, gender, accent,
language, emotion and health state. As the voice conversion system operates
on the raw speech waveform, the physical speech production system is focused
in the voice conversion study.

The physical of speech production system can be described by the source-
filter model [32] as shown in Fig. 2.1, which consists of two primary
components: the sound source, such as the vocal folds, and a time-varying
acoustic filter, the vocal tract. For a voiced sound, the sound source is
the periodic waveform produced by the regular vibration of the vocal folds
and the filter is the whole vocal tract shape. For un-voiced sound, such as
fricative and plosive sound, the sound source is white noise created by the
air turbulence from the constriction in vocal tract, and the filter is the rest
of vocal tract after the constriction. The resonance of the time-varying filter
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emphasizes or attenuates the source signal at some frequencies and creates
the formants in speech. The locations of formant correspond to a specific
vowel. From the source-filter model, it is apparent that the generation of
speech waveform can be controlled via the source signal and the filter shape.
The source signal can be characterized by the fundamental frequency, pitch
contour and intensity, while the filter shape can be represented by the spectral
envelope. Previous study [33] has shown that cues for speaker individuality
can be found in both the fundamental frequency contours and the spectral
envelopes. For this reason, an effective voice conversion is expected to modify
both the source-related features and filter-related features to transform the
speaker individuality in speech.

2.2 Overview of Voice Conversion System

Voice conversion is a process that transform the speaker individuality in
the source speech to sound like it was uttered by the target speaker. Voice
conversion can be regarded as a learning problem that consists of two phases:
the offline training phase and the run-time conversion phase. Figure 2.2
depicts the typical framework of a voice conversion system. Typically, there
are two main modules in a voice conversion system, namely the analysis/syn-
thesis system or the vocoder, and the conversion model. Since the voice
conversion model is a parametric and data-driven model, its parameters
need to be optimized in the training stage. A set of speech data, which
contains the utterances from source and target speakers, is used to train the
voice conversion model. The speech analysis of vocoder extracts the relevant
acoustic features set from the input speech waveform. The speech features
consist of the spectral features, e.g. mel-cepstrum coefficients, and the source
features, e.g. fundamental frequency. The parameters of the voice conversion
model are iteratively updated to optimize a predefined objective function,
such as mean-square-error between converted features and target features. In
the run-time conversion phase, the trained voice conversion model input the
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Figure 2.2: General framework of a voice conversion system.

speech features from the analysis and generates the converted speech features.
The converted speech features is then re-synthesized to the converted speech
waveform.

As mentioned above, a typical voice conversion systems consists of two
modules: the a speech synthesis/analysis and a voice conversion model. In
the following sections, the review of the typical approaches for each module
is provided.

2.2.1 Speech Analysis and Synthesis

The speech analysis and synthesis module, or speech vocoder, is a signal pro-
cessing system designed to synthesize the speech waveform from the feature
representation. The purposes of vocoder in voice conversion system are: 1)
extract the speech features, e.g acoustic features and prosodic features, and
2) re-synthesize speech waveform from speech features. Most of the voice
conversion models are designed to operate on acoustic features. Therefore,
an effective vocoder should be able to reconstruct the speech waveform from
extracted speech features with high naturalness. Moreover, the extracted
speech features should be allowed to be flexibly modified without affecting
the quality of generated waveform. The most popular vocoders for voice
conversion can be categorized into two types: the deterministic vocoder and
data-driven vocoder.
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Deterministic vocoder

The most common deterministic vocoder is the STRAIGHT vocoder [34],
which is based on the source-filter model with mixed excitation signal. This
vocoder is a voice-specific coder which focuses on producing perceptually
intelligible speech without necessarily matching the waveform. It decomposes
the speech signal into three components: the fundamental frequency, the
speech spectrum and the aperiodicity. It features the pitch-adaptive analysis
window to reduce the inference from the excitation signal, therefore, the
extracted speech spectra is very smoothed and can be easily controlled. Due
to its high-quality and flexibility, STRAIGHT vocoder is widely used in text-
to-speech systems [35,36] as well as voice conversion systems [37–39].

Data-driven vocoder

With the advent of deep learning techniques, speech generation can be
entirely done using deep neural network. The first and most famous neural
vocoder is the WaveNet architecture [40], which can predicts the speech
waveform from the past samples and can be controlled by the common speech
features, such as mel-cepstral coefficients. The architecture of WaveNet
consists of stacks of causal dilated convolutional layers to achieve the a
wide receptive field. The auto-regressive WaveNet model estimates the joint
distribution of the quantized speech waveform sample x = [x1, ..., xT ] as:

p(x) =
T∏
t=1

p(xt | x1, ..., xt−1). (2.1)

The distribution of each audio samples xt is conditioned on the samples
at all previous timesteps. Since the autoregressive model can only output
one sample at each forward step, the generation speed of WaveNet is very
slow. The recently proposed vocoder models, such as Parallel WaveNet,
WaveGlow, and Parallel WaveGAN, have greatly improve the speech quality
and the generation speech.

2.2.2 Voice conversion model

Being the central part in voice conversion system, the voice conversion model
aims to modify the speech features in order to change the speaker individu-
ality while maintaining the linguistic information. Since the low-dimensional
prosody features such as fundamental frequency can be transform using
simple linear mapping, most voice conversion models focus on modifying the
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Figure 2.3: Typical flow of spectral mapping approach.

high-dimensional spectral features. Depends on the training data, the voice
conversion model can be categorised into parallel and non-parallel methods:

• Parallel voice conversion model is trained to minimize the frame-
by-frame error between the converted acoustic features and target
ones. Since the mapping function for spectral features is focused,
these models can be regarded as a spectral mapping function between
source and target acoustic features. These models require the parallel
training data, which consists of pairs of linguistic-identical utterance
from source and target speakers. For frame-based methods, Dynamic
Time Warping algorithm is used to aligned the source and target
spectral features to account for the duration mismatch.

• Non-parallel voice conversion model aims to learn the disentan-
glement between the linguistic information and speaker individuality
in the acoustic features. As opposed to the parallel methods, these
models has more flexibility as they can be trained with both parallel
and non-parallel data.

The overview for spectral mapping and feature disentanglement ap-
proaches are described in the following parts.
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2.2.2.1 Spectral mapping approach

The early studies of voice conversion focus on the spectral mapping be-
tween the aligned source speaker’s and target speaker’s spectrum. Two
parallel utterances are aligned in a frame-by-frame basis using Dynamic
Time Warping to account for the difference in speech duration. Then a
mapping function takes the source speaker spectrum as input and outputs
the converted spectrum. By minimizing the error between the converted
spectrum and target speaker spectrum, the mapping function can learn
the transformation between the source speaker individuality and the target
one. Figure 2.3 describes a typical processing flow of the spectral mapping
approach. Initially, the vector quantization [41] and fuzzy vector quantization
[42] approaches have been successfully applied to learn the mapping function.
When more data is available, statistical parametric approaches such as
Gaussian mixture model [37, 43–45], Hidden Markov model [46] and partial
least square regression [47] can improve the performance of voice conversion
model with better speech naturalness and speaker similarity.

2.2.2.2 Feature disentanglement approach

In the feature disentanglement approach, the acoustic features is first encoded
into speaker-independent (SI) features representation, such as text, Phonetic
Posteriorgram (PPG) [48–50], or latent code [10, 25, 51]. The decoder then
estimate the acoustic features with the SI features, conditioned on the speaker
identity vector, e.g one-hot vector, i-vector, or neural speaker embedding.
During training, the decoder learns the mapping function between the SI
features and the corresponding acoustic features of the same utterance,
therefore, parallel data is not needed. The encoder and decoder are usually
trained with a multi-speaker speech corpus. Figure 2.4 illustrates the typical
framework of speech feature entanglement approach.

The voice conversion model based on feature disentanglement method
can also be further categorized into fully-supervised [48–50] and semi-
supervised approaches [10, 25, 51] depending on the the availability of text-
transcription. In fully-supervised models as shown in Fig. 2.5(a), the
automatic speech recogniser (ASR) is trained to map the acoustic features
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Figure 2.5: The training pipeline of (a) supervised non-parallel voice conver-
sion model and (b) semi-supervised non-parallel voice conversion model.

to speaker-independent features extracted from text-transcription. A de-
coder then reconstructs the acoustic features from the linguistic features
conditioned on the speaker label. In the case of semi-supervised model
, an encoder learns the disentanglement without any text-transcription by
applying regulation on the output linguistic features. The typical pipeline of
semi-supervised model is shown in Fig. 2.5(b).

2.3 Evaluation metrics

The performance of the voice conversion system can be evaluated via both
objective and subjective tests. The objective evaluation usually measures the
spectral distortion, the spectral over-smoothness, and the pitch error between
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the converted speech and the target speech. While the subjective measures
the perceived naturalness and speaker similarity of the converted speech via
listening tests.

2.3.0.1 Objective evaluation metrics

The typical metrics to measure the spectral distortion are Log-Spectral
distortion (LSD) and mel-cepstral distortion (MCD). Besides, one of the most
common problem of converted speech is the over-smoothing degradation, a
situation in which the converted speech sounds muffle and unnatural. This
problem happens due to the reduction in the global variance or modulation
spectrum of the acoustic features. Therefore, global variance and modulation
spectrum metrics are often used to objectively measure the naturalness of
converted speech.

Log-spectral distortion
The log-spectral distortion measures the difference between two sequence of
log-spectra. The LSD between two spectral squence is calculated in the below
equation:

d(s, ŝ) = 10
1

T

t=1∑
T

√√√√ D∑
i=0

(log10(xi,t)− log10(x̂i,t))
2 (2.2)

where D is the total number of frequency bins, T is the total number of
frames.

Mel-cespstral distortion
The mel-cepstral distortion (MCD) is the common metric for measuring the
difference between two sequences of mel-cepstra. The mel-cepstral distortion
between two sequence of mel-cepstrum is defined as:

d(c, ĉ) =
10
√

2

ln 10

1

T

T∑
t

√√√√ D∑
i=0

(ci,t − ĉi,t), (2.3)

where D is the total number of frequency bins, T is the total number of
frames.

Global Variance The global variance describes the fluctuation of a pa-
rameter trajectory in utterance-level [52,53]. For a given sequence of speech
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parameter vectors Y = [y1,y2, ...,yT ], the global variance on channel k of
the parameter vector yt is defined as:

v(k) =
1

T

T∑
t=1

(yt(k)− ȳ(k))2, ȳ(k) =
1

T

T∑
t=1

yt(k) (2.4)

, where ȳ(k) is the intra-utterance mean value of the parameter at channel
k.

Modulation Spectrum
The modulation spectrum is defined as the power spectrum of the parameter
trajectory [54]. The modulation spectrum is closely related to the over-
smoothing degradation of synthesized speech. In particular, the modulation
spectrum of synthesized speech usually lower than those of natural speech,
especially in the low modulation frequency region. The MS of parameter
sequence x is defined as follows:

s(X) =
[
s(1)>, · · ·, s(d)>, · · ·, s(D)>

]
,

s(d) = [sd(0), · · ·, sd(f), · · ·, sd(Ds)] ,

sd(f) = |DFT (x(d)|,
(2.5)

where D is the number of channel of x, Ds is the number of frame of X,
sd(f) is the discrete Fourier transform of channel d at frequency bin f .

2.3.0.2 Subjective evaluation metrics

The subjective evaluations are conducted to measure the speech naturalness
and speaker similarity of the converted speech via listening tests.

Naturalness test
The naturalness test measures how natural is the converted speech. The
naturalness of the speech is defined as the speech output that sounds natural
or normal to the listener as if it was uttered by human. The naturalness of an
utterance is usually quantified by a standard 5-point-scale MOS score, which
range from 1 (very unnatural) to 5 (very natural). The MOS of a system is
represented as the average MOS score evaluated by each listener. However,
due to the biased opinions across listeners, the MOS difference between voice
conversion systems might be small and insignificant.

Alternately, the AB test is used to give better discrimination between
voice conversion systems. At each time, the listener is presented with a pair
of utterance from different voice conversion system. The generated utterance
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from both systems are presented in random order (A-B or B-A) to avoid any
bias. Then the listener decides which utterance (A or B) has better speech
naturalness. The higher selection rate for a given voice conversion system
indicates a better naturalness performance.

Similarity test
The similarity test measure how close is the speaker individuality of generated
speech to the target speaker individuality. The most common tests for
speaker similarity are ABX test and the same/difference MOS test.

The ABX test is used to compare the similarity performance of two voice
conversion system. The subjects are presented with 2 generated utterance (A
and B) from each system, and 1 reference utterance (X) from either source
speaker or target speaker. Then subjects decide which utterance, A or B, is
closest to the reference utterance X in terms of speaker similarity. The voice
conversion system which is given the higher selection rate when comparing
with target speaker has the better similarity performance.

In the MOS test, the subjects are asked to listen to a pair of utterances,
one is generated from the voice conversion system, and the other is the
natural target speech. The subjects then judge the speaker similarity of
the utterance pair in the 4-point scale: “Same, absolutely sure”, “Same, not
sure”, “Different, not sure”, and “Different, absolute sure”. The similarity
score of the voice conversion system is presented as the rate of each choice
averaged across all subjects.

2.4 Chapter conclusion

This chapter has given an introduction to the basic principles of voice
conversion technique and the evaluation metrics for voice conversion system.
This was provided by first describes the speech production mechanism and
the components of a typical voice conversion system. Then, the reviews of
some common voice conversion technique were given with some comparisons.
Next, several state-of-art methods for semi-supervised non-parallel voice
conversion model were reviewed. Finally, the methods for evaluating the
voice conversion systems were described.
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Chapter 3

Semi-supervised non-parallel Voice
Conversion with Variational Au-
toencoder

To achieve the primary goal of this thesis as described in Chapter 1, the
first and most important step is to control speaker individuality in the non-
parallel voice conversion. To this end, this chapter proposes a non-parallel
intra-lingual voice conversion framework with speaker individuality control
via a continuous speaker representation vector (i.e. speaker embedding).
The continuous speaker embedding is learned by training the Variational
Autoencoder model on a multi-speaker speech database. By analyzing the
speaker embedding using principle analysis component (PCA), it is found
that the voice characteristics of the speaker, such as gender, can be explored.
Modifying the speaker embedding shows correspondence to the change of
speaker individuality in the converted speech.

The rest of this chapter is organized as follow. In the first section, the
introduction of this chapter is provided. Then in Section 3.2, the non-
parallel voice conversion based on variational autoencoder is described. The
proposed voice conversion model is introduced in Section 3.3. The experiment
procedure and the results are provided in Section 3.4 before the conclusion
in Section 3.5.

3.1 Introduction

Voice conversion (VC) is a special type of voice transformation (VT) whose
aim is to manipulating speaker characteristics in the speech signal while
preserving linguistic information [55]. This technique is beneficial in many
practical applications such as intelligibility enhancement for speech disorder
patients, or enhancing Human-Machine Interface experience. VC approaches
can be categorized into 2 groups: rule-based approaches and statistical
approaches.

19



Rule-based approaches [56–58] aim to modify acoustic features that
correspond to the speaker individuality such as fundamental frequency (F0)
and formants by some manually derived rules. However, since different rules
must be applied for different speakers, these approaches are impractical and
less preferred than statistical approach.

On the other hand, statistical approaches use machine learning technique
to modify the acoustic features. These approaches are more flexible to
adapt to new speaker than rule-based method. The most straight-forward
statistical approach for VC is to perform mapping from source acoustic
features to target acoustic features. This approach requires a parallel
training data, in which the source and target utterances contain identical
linguistic information so that the differences in speaker voice characteristics
could be learned. The conventional method for this approach is using
Gaussian Mixture Model (GMM) to model the joint probability of source and
target acoustic features [20]. However, synthesized speech using GMM-based
method often suffered from over-smoothing degradation. Therefore, lately,
Deep Neural Network (DNN) has been employed to perform the mapping
task. With sufficient training data, DNN-based model outperforms GMM-
based model in both speech naturalness and target similarity.

Despite the simplicity of mapping approach, parallel training data is
often expensive to obtain. Therefore, a new set of method that can perform
speaker adaptation using non-parallel data has been investigated. The first
non-parallel VC method utilize an Eigen GMM-based model to describe
speaker characteristic as combinations of base speakers [20]. However,
although the speaker adaptation phase can work with non-parallel data, it
requires parallel-data in the training phase. Later, various methods were
proposed that can use non-parallel data in both training phase and adap-
tation phase. Some of the most popular methods are Restricted Boltzmann
machine (RBM), Variational Autoencoder (VAE), and Generative Adver-
sarial Network (GAN). All these three methods share the same principle
of disentangling speaker-related information and linguistic information from
speech waveform.

However, most prior non-parallel VC methods only focus on categorized
speaker adaptation since a target voice is required as a reference to perform
voice conversion. In other words, controllability of the degree of speaker
individuality has not been much interested. These limitations restricted the
use of VC system in some situations, such as in a storyteller system, when
collecting utterances from a large number of target voices is unrealistic. In
this situation, the VC system with the controllable voice characteristics is
desirable as it can freely manipulate the source voice to generate any new
fictitious voice without the recordings from the target speakers. Moreover,
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most VC model requires retraining when adapting to an unseen-target
speaker. The controllability can also avoid this problem as the VC model can
synthesize waveform with the desired voice characteristics extracted from the
reference utterance. This controllability is also beneficial in many other voice
transformation fields such as emotional voice conversion, voice dubbing in
movie post-production, creating new voices for text-to-speech system, speech
enhancement, and voice editing software.

To achieve this goal, this study proposes a VC framework based on VAE
that can simultaneously disentangle speaker-related information with linguis-
tic information and discover the latent structure of speaker characteristic.
After training on a multi-speaker dataset, a continuous speaker embedding
(SE) that represents voice characteristics is obtained. By manipulating
the speaker embedding vector,the synthesized waveform with desired voice
characteristics can be obtained. The experimental results show that the
proposed VC system with continuous SE input (SE-VAE) has comparable
performance as using VAE with one-hot speaker identity input (OH-VAE).

The significant of the proposed VC system are:

• Controlling the characteristics of converted voice using non-parallel
training data.

• Performing speaker adaptation using a minimum of one utterance from
target speaker.

• Converting waveform from both seen- and unseen-source speaker to
unseen-target speaker and fictitious speaker.

3.2 Variational Autoencoder-based Voice Con-

version

The VAE is a probabilistic model that can discover the latent structure of
data [59]. In VC, a previous study by Hsu et al. [8] showed that linguistic
information can be interpolated via latent representation of the VAE. The
latent variable z is assumed to follow the normal distribution N (0, I) that
is independent from the speaker information. Hence, the latent variable
z can be regarded as linguistic information conveyed in speech. From
the input acoustic feature x, the encoder of the VAE fenc outputs the
estimated parameters µµµ and σσσ of the posterior pθ(z|x) = N (µµµ,σσσ). Then
z is sampled from the posterior as z ∼ p(z|x). However, back-propagation
is impossible if z is directly sampled from the posterior pθ(z|x). Therefore,
a re-parameterization trick is applied by sampling an independent variable εεε
from normal distribution N (0, I) then executing a scale and shift operation.
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The procedure of estimating z is as follows:

µµµ, σσσ = fenc(x)

εεε ∼ N (0, I)

z = µµµ+ σσσ ◦ εεε,
(3.1)

where ◦ is the Hadamard product.
To reconstruct x, in addition to the linguistic information in z, a variable

s that contains speaker information is introduced. The s can be expressed as
a one-hot encoded vector or continuous vector that represents the speaker’s
identity. From z and s, the decoder of the VAE reconstructs xs as follows:

x̂ = fdec(z, s). (3.2)

The encoder and decoder are jointly trained by minimizing the variational
objective function:

Lv = −DKL(pθ(z|x)||p(z))− Ez∼pθ(z|x)(p(x|z, s)), (3.3)

where DKL is the Kullback-Leibler divergence between the estimated poste-
rior pθ(z|x) and the true prior distribution p(z). Since p(z) is assumed to
follow a normal distribution, DKL can be expressed in closed form as

DKL(pθ(z|x)||p(z)) = −1

2

∑
(1 + logσσσ2 − µµµ2 + σσσ2). (3.4)

The second term on the right side of (3.3) is the reconstruction loss. Assum-
ing that x also follows a Gaussian distribution, the term Ez∼pθ(z|x)(p(x|z, s))
can be described by a simple mean-squared difference between reconstructed
acoustic features and original acoustic features as

Ez∼pθ(z|x)(p(x|z, s)) = −1

2

∑
(x̂− x)2. (3.5)

According to Rolinek et al. [60], the optimization of (3.3) will lead to
a polarized regime situation, in which only a subset of the latent variables
(active subset) encodes meaningful information, while the other subset (pas-
sive subset) purely encodes noise. Clearly, the passive subset has DKL ≈ 0.
Therefore, the second term in (3.3) encourages a bottleneck in the latent
variable, where useful information is restricted only in the active subset.
Figure 3.1 illustrates the inferred latent statistical parameters from an input
utterance. Since most of the dimensions are invariant with x, the decoder
is unable to fully reconstruct the xs without any additional information. In
this situation, the decoder network has to rely on the speaker information
contained in the input speaker embedding to minimize the reconstruction loss
(second term in (3.3)). This is the cause of the disentanglement of linguistic
information and speaker information in the VAE.
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Figure 3.1: Generated parameters for posterior q(z|x). Most dimensions of
the latent mean µz and log variance log σ2 are invariant with respect to input.
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Figure 3.2: Overview of proposed VC system.

3.3 Proposed model

This section describes the proposed method for controlling speaker indi-
viduality and the modified training loss to account for the over-smoothing
problem. The overview of the proposed voice conversion system is shown in
Fig. 3.2.

3.3.1 Infer Speaker Embedding using Back-propagation

In conventional VAE-based VC, speaker identity is represented as a one-hot
vector. However, this type of encoding does not include any other information
on the speaker’s voice characteristics such as gender or age. To overcome this
problem, a different interpretation of speaker identity is used by letting the
model self-derived the most suitable speaker embedding during the training
process. Let y is the one-hot vector represent speaker identity, the continuous
speaker embedding vector ȳ is:

ȳ = W · yᵀ + B, (3.6)

where W and B is a learnable kernel and bias in a fully-connected NN layer.
In this interpretation, the one-hot encoded vector y acts as a switch to select
correspond row vector in matrix W. With this interpretation, 2 speakers with
similar voice characteristics may have almost identical speaker embedding.

This interpretation can be expanded into by adding more layer and
applying non-linear activation such as tanh or sigmoid. In this case, the
speaker embedding ȳ is

ȳ = Wn · ...f(W1 · f(W0 · yᵀ + B0) + B1)...+ Bn, (3.7)
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where f is a non-linear function. Although this interpretation is convenient
to explain voice characteristics, however, the speaker embedding is only
available for speakers in the training set. Therefore, to perform voice
conversion on a new target speaker that is not in the training set, a speaker
embedding model is trained to predict the corresponding speaker embedding
from acoustic features. The learned speaker embeddings obtained after
training VAE model are used as the ground truth. After the speaker
embedding model is trained, a speaker embedding vector from new target
speaker can be estimated using only a few seconds of their recording (10
seconds in the actual experiments).

3.3.2 Modulation Loss

To improve the naturalness of the synthesized speech, the Modulation
Spectrum (MS) loss is adopted in the proposed model because of its beneficial
effect on speech naturalness. Similar to [61], the MS of parameter sequence
x is defined as follows:

s(X) =
[
s(1)>, · · ·, s(d)>, · · ·, s(D)>

]
s(d) = [sd(0), · · ·, sd(f), · · ·, sd(Ds)]

sd(f) = |FFT (x(d)|
(3.8)

where D is the number of channel of x, Ds is the number of frame of X,
sd(f) is the FFT of channel d at frequency bin f .

The modified log-likelihood function for the VAE model considering the
modulation spectrum is defined as follow:

Lms(θθθ,φφφ; xn) =−DKL(qφ(zn|xn)||p(zn))

+ log pθ(xn|zn, ȳn) + w.log p(s(x)|zn, ȳn)
(3.9)

The final term in Eq. 3.9 explicitly constrains the model to increase the
log-likelihood of the modulation spectrum conditioned on the given latent
variable zn and speaker identity yn. Furthermore, the modulation spectrum is
assumed to follow a Gaussian distribution with a diagonal covariance matrix:
s(x) ∼ N(s(x)|s(x), diag(σs)). Therefore, the final log-probability term in
Eq. 3.9 can be expressed in the following closed form:

log p(s(x)|zn,A(X)) =

−1

2

∑(
log(2πσ2

s) +
(s(x)− s(x))2

σ2
s

)
(3.10)
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Figure 3.3: Multi-scale architecture with dilated residual CNN block

3.4 Experiment and discussion

3.4.1 Model configuration

Figure 3.2 illustrates an overview of the proposed SE-VAE VC model. The
encoder and decoder network utilize the multi-scale convolutional Neural
Network (CNN) architecture as shown in Fig. 3.3. In addition to the basic
VAE framework, the auxiliary gate variable g is introduced to control the
amount of the speaker individuality in the output features. The reason for
this controlling is that some speech segments, such as silence, may not contain
any speaker individuality. By introducing the gating variable, the model can
ignore these segments by outputting the gate variable g = 0. The gating
variable is inferred directly on the input features by the individuality detector
block.

3.4.2 Dataset

The VCTK corpus [62] is used for training the models, which contains 44
hours of recordings from 109 English speakers. The data is divided into 2
subsets: training set (containing 100 speakers) and testing set. The testing
set consisted of 2 groups of utterances. One group contains utterances from 9
held out speakers from the training set (unseen speakers). The second group
contains 2 held out utterances of each speaker from the training set (seen
speakers).

As speech features, the WORLD vocoder [63] is used to extract the
fundamental frequency value F0, the spectral sequence sp, and the aperi-
odicity from speech waveform. Then the spectral sequence sp is transformed
to 60th-order Mel-cepstral coefficients (MCC). Since the spectral envelope
from WORLD vocoder is very smooth, high-order cepstral coefficients, which
capture the fine fluctuation in the spectral envelope, can be neglected during
the conversion process. Therefore, only the 1st to 31th MCC coefficients is
used along with interpolated F0 and voice/unvoiced flag as the input features.

For the proposed system, the VC model and speaker embedding model
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are trained separately. The VC model are firstly trained to obtained the
speaker embedding table. Then a feed-forward neural network is trained to
estimate the speaker embedding from the from the speech features. Both
VC model and speaker embedding estimation model are trained on the same
training set.

For the baseline models, the GMM-based VC (denoted as GMM) used
in Voice Conversion Challenge 2018 and the VAE-based VC model that uses
the fixed one-hot encoded speaker vector (OH-VAE) [9] is used. For the
baseline onehot-VAE model, most of the model architecture is kept identical
to the proposed model for a fair comparison. Since the baseline model cannot
convert voice to unseen target speaker, the baseline model is only evaluated
in seen source to seen target (seen-seen) and unseen source to seen target
(unseen-seen) conversion scenarios. To perform voice conversion, the baseline
VAE model uses the one-hot encoded vector, while the proposed model uses
the speaker embedding extracted from a 10-second utterance of the target
speaker. For each source-target speaker pair, a separate GMM-based VC
model is trained using 100 pair of parallel utterances.

3.4.3 Speaker Embedding Space

After the VC model is trained,the speaker embedding space is visualized
by analyzing the speaker embedding using Principle Component Analysis
(PCA). As shown in Fig. 3.4, the speakers are well separated by genders,
with all female speakers lie on the left and male speakers lie on the right.
This indicates that the model can learn meaningful voice characteristics of
the speakers.

3.4.4 Fictitious Speaker

To generate the fictitious voices that are not exist in the training data, the
speaker embedding vectors are sampled on the speaker embedding space
as shown in Fig. 3.5. To evaluate the naturalness of the fictitious voices,
9 utterances from a female speaker in VCTK dataset (seen speaker) are
generated with the above sampled speaker embedding vectors.

3.4.5 Subjective Evaluations

To evaluate the quality of the converted waveform, two listening tests are
conducted: the speech naturalness test and speaker similarity test. Eight
listeners (6 males, 2 females) with normal hearing ability enrolled in these
tests. All the listeners rate the same sets of test stimuli.
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Figure 3.4: Learned speaker embedding map of VCTK dataset

3.4.5.1 Speech naturalness test

The naturalness of converted speech from the baseline models and the
proposed model are measured using Mean-Opinion Score evaluation in 5 test
scenarios: 1) seen-seen, 2) unseen-seen, 3) seen-unseen, 4) unseen-unseen
and 5) fictitious target speaker. Two target speakers (1 male (M), 1 female
(F)) were selected for each test scenarios except scenario 5. For each target
speakers, all the models will perform both intra-gender (M-M, and F-F)
and cross-gender (M-F, and F-M) conversion with the same source speakers.
The listeners are instructed to concentrate on the quality of the speech and
rate the sample using 5 point-scale that consisted of “bad” (1), “poor”
(2), “fair” (3), “good” (4) and “excellent” (5). The order of test stimuli
is randomized for each speaker. The result shown in TABLE 3.1 and Fig. 3.6
indicates that the speech waveform generated from the proposed model
have higher naturalness than those generated from the GMM-based model
in all conversion scenarios. When compared with the onehot-VAE model,
the proposed model can synthesize waveform with equivalent naturalness,
although only one utterance from the target speaker is required as the
reference. The results in TABLE 3.1 marked with an asterisk are significantly
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Figure 3.5: Blue: Position of source speaker embedding vector, Red: Po-
sition of selected target speaker embedding vector for synthesizing fictitious
voices

different (p < 0.05) as compared to the proposed SE-VAE model. Moreover,
the generated speech of fictitious speakers also has fair naturalness of 3.1
MOS.

3.4.5.2 Speaker similarity test

In this experiment, the speaker similarity between the converted waveform
and the target waveform is evaluated in 4 test scenarios: 1) seen-seen, 2)
unseen-seen, 3) seen-unseen and 4) unseen-unseen. The listeners are given
a reference utterance from target speaker and several converted utterances
from different source speakers. All the test stimuli are identical to the test
stimuli in naturalness test. The listeners were instructed to concentrate on
the voice characteristics and ignore any distortion or degradation in the test
stimuli. Then the listener judges the voice similarity between the converted
utterances with the reference utterance using the 5-point scale “not at all
similar” (1), “slightly similar” (2), “moderately similar” (3), “very similar”
(4) and “extremely similar” (5). The result of the similarity test is reported
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Table 3.1: Result of MOS test for speech naturalness in intra-gender and
cross-gender conversion

GMM OH-VAE SE-VAE (proposed)

F-F 1.55±0.32* 3.06±0.67 3.14±0.40
M-M 1.66±0.43* 3.31±0.71 3.30±0.74
F-M 1.34±0.24* 2.25±0.35 2.23±0.42
M-F 1.48±0.28* 2.88±0.45 2.72±0.57

All 1.51±0.16* 2.88±0.32 2.85±0.32

Table 3.2: Result of MOS test for speaker similarity in intra-gender and
cross-gender conversion

GMM OH-VAE SE-VAE (proposed)

F-F 2.07±0.53 2.18±0.62 2.39±0.65
M-M 2.11±0.62 2.89±0.98 2.54±0.72
F-M 1.77±0.44 2.18±0.69 1.82±0.72
M-F 1.52±0.27* 2.93±0.82 2.57±0.62

All 1.87±0.25* 2.54±0.41 2.33±0.35

in TABLE 3.2 and Fig. 3.7, with the asterisk indicates that the different
is statistically significant (p < 0.05) as compared to the proposed SE-VAE
model. From the result, it is clear that there is no difference between the
proposed SE-VAE model and OH-VAE, despite the lacks of a large number
of training examples from target speaker in the proposed scheme. The
overall performance of the proposed VC system is significantly better than
the GMM-based VC.

3.5 Chapter Conclusion

In this chapter, a non-parallel voice conversion with speaker individuality
control has been proposed. The proposed method provides a flexible way
to control speaker individuality of converted speech by modifying speaker
embedding vectors. Even only a single utterance is required as the reference,
the subjective test results show that the proposed model can convert speech
with better perceived naturalness and speaker similarity to the baseline
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Figure 3.6: Result of MOS test for speech naturalness when adapting
from seen/unseen-source to seen/unseen-target speaker with 95% confidence
interval

GMM-based model and comparable to the VAE model using one-hot speaker
identity vector. Moreover, since the proposed model can synthesize arbitrary
voices with good naturalness, it is beneficial in various practical application
to generate new voice individuality. Based on these results, it has been
confirmed that the controllability of speaker individuality for non-paralel
voice conversion, which is the first task of this thesis, has been achieved.
The next chapter will focus on applied this framework to cross-lingual voice
conversion.
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Figure 3.7: Result of MOS test for speaker similarity when adapting from
seen/unseen-source to seen/unseen-target speaker with 95% confidence in-
terval
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Chapter 4

Cross-lingual Voice Conversion
with speaker individuality con-
trol

In the previous chapter, a non-parallel voice conversion with speaker in-
dividuality control has been proposed. In the second task of this thesis,
it is necessary to applied the speaker individuality control for cross-lingual
voice conversion tasks. To this end, this chapter focuses on a non-parallel
voice conversion that can operate in both intra-lingual and cross-lingual task
with the limited training data for the target speaker. The proposed model
share the same framework as the model in Chapter 3, with the difference
in the regularization of the latent representation. To avoid the mode
collapse problem in variational autoencoder, the vector-quantized variational
autoencoder is applied with the hierarchical latent structure. To adapt to
the cross-lingual settings, the proposed voice conversion model is fine-tuned
on the cross-lingual target data after training on the intra-lingual data. The
cross-lingual speaker embedding of the target speaker obtained after the fine-
tuning process is used to condition the mel-spectrogram generation. The
experimental results show that the proposed model delivers good perfor-
mance in the speech naturalness in both intra-lingual and cross-lingual task.
However, the speaker similarity in cross-lingual task remains to be improved.

The rest of the chapter is organized as follow. In the first section, the
introduction of this chapter is provided. In Section 4.2, the non-parallel voice
conversion based on vector-quantized variational autoencoder is described.
Then, the proposed cross-lingual voice conversion model is introduced in
Section 4.3. The experiment procedure and the results are provided in
Section 4.4 before the chapter conclusion in Section 4.5.
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4.1 Introduction

Voice conversion (VC) is a subset of voice transformation method for alter-
ing speaker characteristics while preserving the linguistic information [55].
Conventionally, VC can be seen as a mapping problem between source
waveform and target waveform [20]. This perspective requires learning a
mapping function using parallel training data, in which the source and target
waveform shares the same linguistic information. However, parallel training
data cannot be collected in some situations such as in cross-lingual VC.
Therefore, VC methods for non-parallel data are increasingly gaining more
attention in recent years.

One of the straightforward methods for non-parallel VC (NPVC) is to
concatenate speech recognition (ASR) with text-to-speech (TTS) model
[64–66]. These methods often achieve the highest performance with highly
natural converted speech [67]. However, both the ASR and TTS models must
be trained on an enormous amount of transcribed speech data, which is often
very expensive to construct. This constraint limits the applicability of the
ASR-TTS approach in a practical situation.

In contrast, NPVC based on deep generative model such as Generative
Adversarial Network (GAN) and Variational Autoencoder (VAE) can be
trained without transcribed data. Therefore, this type of NPVC model can
be easily constructed from scratch using vastly available of untranscribed
speech, thus reducing the development cost. With the recent advances of deep
generative model, state-of-art GAN based VC [8,22,68] and VAE based VC
[69,70] have narrowed down the performance gap with ASR-TTS approaches.
Although GANs come with a nice theoretical justification that the generated
data should match the distribution of true data, it is widely known that
the adversarial training is fragile and unstable. Moreover, while there are
many studies on GAN-based VC, neither of them give strong evidence that
the data distribution learned by Discriminator corresponds to human speech
perception. In contrast, VAE can be easily trained. However, the VAE
often suffers from the posterior collapse problem caused by Kullback-Leibler
divergence (KLD) [71], which reduces the useful information received by the
decoder for speech reconstruction.

A recently proposed Vector Quantized VAE (VQVAE) [72] model with
discrete latent space avoids the posterior collapse problem by not optimizing
the KLD but learning the categorical prior instead. Since linguistic informa-
tion can be regarded as categorical data, discrete latent space is suitable
to represent linguistic information. The VQVAE has been successfully
applied in various speech processing tasks [73–75]. However, the linguistic
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information conveys different levels of semantic structure that spans at
different temporal scales (e.g phonemes, syllables). Therefore, a single vector
quantizer operating at a fixed temporal scale is inefficient to capture various
levels of semantic structure, hence reducing the naturalness of converted
speech. To tackle this problem,the hierarchical latent embedding VQVAE
(HLE-VQVAE) is proposed to capture the linguistic information at various
temporal scales. As shown in the next sections, the proposed scheme can
improve the performance of VC system and provide highly natural converted
speech for both intra-lingual and cross-lingual tasks.

4.2 Vector-quantized Variational Autoencoder

The VQVAE can be regarded as a communication systems, in which the
input feature vector x is compacted into latent vector z by a non-linear
transformation (encoder). The latent vector z is then quantized to discrete
variable q based on its distance to pseudo-vectors in the codebook ek, k ∈
1...K.

q = ek where k = argmin
k
‖z− ej‖ (4.1)

Finally, the decoder reconstructs the input vector from the discrete latent
vector q and one-hot speaker embedding sm of the source speaker. The latent
codebook is updated simultaneously with other parameters of the model
during training process. Due to the use of argmin function in quantization
process, the computation graph is disconnected and the model cannot be
trained with back-propagation. Therefore, straight-through reparameteriza-
tion trick [72] is used to avoid this problem:

z = Enc(x)

q = Quantize(z)

qst = z + sg(q− z)

xdec = Dec(qst , sm)

(4.2)

where xdec is the reconstructed feature vector, qst is straight-through variable
from which gradient is copied to z, Enc(·) is the encoder function, Dec(·) is
the decoder function, Quantize(·) is quantization function, and sg(·) is the
stop-gradient operator. The model parameters are obtained by minimizing
the following objective function:

LVQVAE = ‖x− xdec)‖22 + ‖z− sg(q)‖22 +

β ‖sg(z)− q‖22
(4.3)
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Figure 4.1: Conventional VQVAE-based VC.
where ‖x− xdec)‖22 is the reconstruction loss, ‖z− sg(q)‖22 is the quantization
loss, ‖sg(z)− q‖22 is the codebook loss, and β is a hyper-parameter to control
the reluctance to change of the codebook loss.

At the inference step, providing the source mel-cepstrum and the speaker
embedding of target speaker, the model outputs the converted mel-cepstrum
containing the target voice characteristics. The overview of conventional
VQVAE based VC is shown in Fig. 4.1.

4.3 Proposed method

In this section, the VQVAE model with hierarchical latent embedding
structure (HLE-VQVAE) is proposed. Following this, the method to adapt
the intra-lingual VC model for cross-lingual VC task is described.

4.3.1 Hierarchical Latent Embedding VQVAE

In conventional VQVAE, input data are encoded to latent embedding variable
at a fixed temporal scale. However, the semantic structure of speech contains
different levels that span across different temporal scale. Inspired by the work
of [76] on image generation, a hierarchical structure is used to better capture
different information at different temporal scales.

The overview of the proposed model with 3 stages of hierarchical structure
is shown in Fig. 4.2. Each stage consists of an encoder network, a quantizer
and a decoder network. At stage n, the encoder downsamples its input
and the decoder upsamples its input by the same factor. Except for the
top encoder, each encoder output is split along channel dimension into 2
parts: the latent variable zn and hidden variable un. The latent variable
zn is then discretized to qn, while hidden variable un is passed to the next
encoder. On the decoder side, the discrete latent variable of the current
stage is concatenated with the decoded hidden variable vn from previous
stage before passing through the decoder network. Similar to vanilla VQVAE
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Figure 4.2: Diagram of the proposed 3-stage HLE-VQVAE.

based VC, each decoder in the proposed model is conditioned by the same
speaker embedding sm.

At the training phase, providing the mel-cepstral sequence with speaker
embedding of source speaker, the model is trained to minimize the following
objective functions:

LHLE-VQVAE = ‖x− xdec)‖22 +

N∑
n=1

(
‖zn − sg(qn)‖22 + β ‖sg(zn)− qn‖

2
2

)
(4.4)

where N is the number of hierarchical stage, β is set to 0.25 in this study.

4.3.2 Learnable speaker embedding

One-hot speaker embedding has the drawback that the number of speaker
embedding is fixed by the dimension of the one-hot vector. Follow the study
[25], the proposed model uses learnable speaker embeddings which are jointly
optimized with other models parameters during the training phase by using
back-propagation. The speaker index is used to select the corresponding
speaker embedding in speaker codebook.
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4.3.3 Cross-lingual adaptation

The advantage of the proposed VC scheme is that only the target speaker
embedding is needed to mimic the voice characteristics of the target. To
obtain the target speaker embedding of foreign language, the latent codebook
from the pretrained intra-lingual model and the random-initialized speaker
embedding are fine-tuned on the target data. After the target speaker
embedding is obtained, the model generates converted mel-cepstrum using
the similar inference step described in Section 4.2.

4.4 Experiments

In this section, the results of the objective and subjective measurements
are described to explain the model selection for Voice Conversion Challenge
2020 (VCC2020). Then the official results of the VCC2020 are shown to
demonstrate the performance of the submitted system. To conveniently
compared the models that are tested, the models are named as follows:

• VQVAE: conventional VQVAE model with 1 stage of quantization.
• HLE-VQVAE-2: the proposed HLE-VQVAE model with 2 stage of

quantization.
• HLE-VQVAE-3: the proposed HLE-VQVAE model with 3 stage of

quantization.

4.4.1 Dataset

The VCC2020 training set consists of 4 source English speakers, 4 target
English speakers, and 2 target speakers of each foreign language (Finnish,
German, and Mandarin). Each speaker in the VCC2020 training set utters
a sentence set consisting of 70 sentences. Besides, a subset of the CSTR
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VCTK dataset [62] containing all utterances from the first 100 speakers was
used in combination with the VCC2020 training set to train the models. The
VCC2020 evaluation data is used for testing.

In the pre-processing step, the audio file is down-sampled to 24 kHz and
normalized to [−1.0, 1.0] range. Then, an 80-dimension mel-spectrogram
is extracted using the Short-time Fourier Transform (STFT) and mel-
filterbank. The window length of STFT is set to 2048 and the hop-length is
300. The mel-spectrum is transformed into mel-cepstrum by applying Inverse
Discrete Fourier Transform on the log-magnitude mel-spectrum. The Parallel
WaveGAN neural vocoder [77], which has been trained on the VCTK dataset
for 1000k iterations, is used to reconstruct the waveform,

4.4.2 Implementation details

For the proposed model, the downsampling and upsampling factors for each
encoder and decoder are set to 2. The codebook at each stage contains
128 atoms of 32 dimensions. The encoder and decoder are implemented by
stacking multiple non-causal dilated WaveNet-like structures [40] as shown
in Fig. 4.3.

For the baseline model, a conventional VQVAE model is implemented
with a similar encoder and decoder structure as the proposed model. As the
baseline model has 1 stage, the feature vector is downsampled by the factor of
2 before quantized using a codebook containing 256 atoms of 64 dimensions.

The dimension of speaker embedding in all models is 16. The model
parameters were optimized using Adam [78] with learning rate of 0.0005 and
gradually reduced to 0.0002 after 10 epochs. For intra-lingual task, all models
were trained with 200 epochs with batch size 32. For cross-lingual adaptation,
all models are fine-tuned with 1000 epochs for each target speaker.

4.4.3 Objective test

The modulation spectrum (MS) of the parameter temporal trajectory is one
of the well-known metrics to measure the quality of synthetic speech [79].
The MS of converted mel-cepstrum is measured by taking Discrete Fourier
transformation on each cepstral sequence. Then, root-mean-squared errors
(RMSEs) between the logarithmic MS of target natural speech and converted
speech from different models are calculated. It should be expected that the
lower the RMSEs, the better quality of converted speech. The RMSEs are
measured on all the converted utterances and averaged across all mel channels
and modulation frequencies. The results shown in Table 4.1 indicate that
the mel-spectral sequences obtained from the proposed models are closest
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Table 4.1: Comparison of RMSE between target and converted logarithmic
MS averaged over all mel channels and modulation frequencies. Smallest
RMSE value is highlighted in bold.

Method VQVAE HLE-VQVAE-2 HLE-VQVAE-3

Intra-lingual
Same-gender 0.267 0.258 0.238
Cross-gender 0.313 0.302 0.280

Cross-lingual
Same-gender 0.431 0.427 0.422
Cross-gender 0.434 0.414 0.430

Average 0.375 0.364 0.359
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Figure 4.4: 2D PCA visualization of learned speaker embedding by HLE-
VQVAE-3 model from VCC2020 dataset (VCC2020) and VCTK dataset
(VCTK male and VCTK female). The horizontal and vertical axes are
the first and second principal components, respectively.

to the target speaker in terms of MS. In particular, the HLE-VQVAE-3
outperformed the HLE-VQVAE-2 in most cases except for cross-lingual and
cross-gender VC.

4.4.4 Visualization of Speaker Embedding

Principle component analysis (PCA) is used to visualize the learned speaker
embedding. As shown in Fig. 4.4, it can be seen that the speakers are
well clusterized by genders. This indicates that the speaker embedding
can encode meaningful voice characteristics of the speakers without any
additional speaker information.
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4.4.5 Subjective test

The AB naturalness test and ABX similarity test are conducted to compare
the performance of 3 models. Due to time constraint, the subjective tests only
consist the converted speech between 2 source speakers (SEF1 and SEM1)
and 4 target speakers (English speakers: TEF1 and TEM1, German speak-
ers: TGF1 and TGM1). Two sentences (E30001 and E30002) were selected
from each source-target pairs to form the listening test set. Therefore, the
listening test set consisted of 48 converted utterance pairs (2 sentences ×
8 source-target speaker pairs × 3 model pairs). As for reference stimuli in
the ABX similarity test, the original utterances of the target speakers are
selected from the VCC2020 training set. There were 12 participants with
good English proficiency joined both listening tests. Each participant rated
24 random pairs of converted utterances for each test.

The results of the AB naturalness test are shown in Fig. 4.5. It can be
seen that the HLE-VQVAE-3 model outperformed the VQVAE and HLE-
VQVAE-2 in terms of naturalness performance for both intra-lingual and
cross-lingual conversion. The result of the ABX similarity test shown in Fig.
4.6 indicates that the HLE-VQVAE-3 model was slightly better than the
HLE-VQVAE-2 model in cross-lingual VC. In other cases, the HLE-VQVAE-
3 significantly outperformed the HLE-VQVAE-2 and VQVAE model. These
results were also aligned with the objective measurement shown in Section
4.4.3.
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Figure 4.5: Preference score of AB naturalness test. NP means no preference.
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Figure 4.6: Preference score of ABX speaker similarity test. NP means no
preference.

4.4.6 Voice Conversion Challenge 2020 results

The VCC2020 organizers conducted 2 large-scale listening tests to evaluate
the speech naturalness and speaker similarity of converted speech [15]. In the
naturalness test, listeners were asked to evaluate voice quality on a scale from
1 (Bad) to 5 (Excellent). In the speaker similarity test, listeners were asked
to judge whether or not the converted and target utterances were spoken by
the same person, and then evaluate using a 4-point scale that varies from
“Different (sure)” to “Same (sure)”.

To conveniently evaluate the performance of the submitted systems, the
score of the proposed system is compared against different types of VC
models, which is named as follows:

• PPG/ASR-TTS: text-dependent models including Phonetic Posteri-
orgram VC [64], concatenation of speech recognition (ASR) and text-
to-speech (TTS) system , and leveraging TTS for VC methods [80].
Speech transcription is required to train these types of model.

• AE: Autoencoder based models including VQVAE, CycleVAE [81],
AutoVC [51], and one-shot VC [82]. These types of VC models share
the same paradigm as the proposed model in this study.

The results of naturalness MOS score and similarity score are summarized
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Figure 4.7: Average MOS score (top) and similarity score (bottom) with
standard deviation of English listeners from all models (All), text-dependent
models (PPG/ASR-TTS), autoencoder based models (AE), and the pro-
posed model in this study (Submitted).

in Fig. 4.7. In both intra-lingual VC and cross-lingual VC tasks, the
naturalness performance of the proposed model is significantly higher than
the average of autoencoder based models and is comparable with the average
of PPG/ASR-TTS based models. In terms of similarity performance, the
proposed model still achieves a higher score than the average of autoencoder
based VC in intra-lingual VC task. However, there is a decline in similarity
score of the proposed model in cross-lingual VC task. This might be
due to the lack of an explicit input F0 information in the proposed VC
model. Since the mean and the variance of F0 is one of the important cues
for speaker individuality [58], the speaker embedding may encode the F0

statistics embedded in the mel-cepstrum. However, since different languages
may have distinctive shape of F0 contour which is reflected in F0 statistics,
the estimation of speaker embedding of foreign speaker will be biased. By
providing the decoder with an explicit F0 information, the speaker embedding
will be freed from capturing F0 mean and variance, hence increasing the
accuracy of modeling speaker characteristics.
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4.4.7 Voice quality test

A listening test is conducted to explore the physical meanings of speaker
embedding regarding to the perceived speaker individuality. To describe the
voice quality, 16 epithets (adjectives) derived from the study of Hiroshi et
al. [83] are used. The epithets are divided into 8 pairs as listed in Table 4.2.

Table 4.2: Epithet pairs for describing speaker individuality from the study
of Hiroshi et al.

Masculine Feminine
High-pitched Low-pitched

Hoarse Clear
Calm Excited

Powerful Weak
Youthful Elderly

Thick Thin
Tense Lax

In this test, the offset in voice quality between the reference voice and
test voice is evaluated using epithet pairs. The reference and test utterances
are generated from the voice conversion system by changing specific channel
of PCA-projected speaker embedding. The amount of change is determined
by the minimum and maximum value of a specific channel across speakers
in training set. In particular, the reference utterance corresponds to lowest
value of speaker embedding in a specific channel, while the test utterance is in
opposite to the test utterance. Two Japanese speaker from the JVS database,
one male and one female, are selected as the source speakers. The first 5
channels of the PCA-projected speaker embedding are modified to generate
the reference and test utterances. Therefore, there are in total of 10 pairs of
reference and test utterances in this test. Each epithet pair is evaluated using
7-point-scale score ranging from [−3, 3]. The test is conducted online1 via
website interface as illustrated in Fig. 4.8. There are a total of 7 participants
joined the test. All participants evaluated the same 10 pairs of reference and
test utterances.

The results of the listening test are shown in Fig. 4.9. Positive score
indicates the positive correlation between the adjective and the speaker
embedding channel. Analyzing the score that average across source speakers,
the following points can be observed:

1http://www.jaist.ac.jp/~s1820029/quality_test/quality_test.html
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Figure 4.8: Interface of voice quality test

• The first channel mostly corresponds to the perceived gender of the
voice. In particular, increase the first channel shift the voice quality
toward feminine voice.

• Increase the second channel create more youthful/higher pitch voice.

• Increase the third channel increase the elderly voice quality, but not
changing the pitch of the voice.

• Reduce the fifth channel create more clearer voice

• The forth channel shows no clear correspondence to the adjectives.

Moreover, comparing the result from source female and source male
speaker, the following points can be derived:

• The first channel has stronger effect on female speaker.

• The third channel increase the perceived gender of the voice: increase
the masculinity on male speaker and increase the femininity on female
speaker.

In summary, it can be seen that some adjectives might be correlated to
each other, i.e, feminine and high-pitched voice, youthful and clear voice, etc.
Therefore, it is difficult to have a one-by-one relation between the channel of
speaker embedding and the adjectives. In addition, the results for female and
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Figure 4.9: Result of voice quality test. Positive value indicates positive
proportion between the adjective and speaker embedding.

male source speakers are slightly different, which indicate that one adjective
might correspond to different channels of speaker embedding. However,
further investigation must be carried out to clarify the exact relationship.

4.5 Chapter Conclusion

This chapter has proposed a cross-lingual VC model with speaker individual-
ity control based on VQVAE with a hierarchical latent structure. The experi-
ment results show that the proposed model outperformed the vanilla VQVAE
based VC model in both objective and subjective evaluation. Results from
the official listening test in VCC2020 shown that the proposed HLE-VQVAE-
3 model was comparable with the average performance of PPG/ASR-TTS
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models and superior to other autoencoder VC models in term of naturalness.
The result of voice quality test reveal that the first channel of PCA-projected
speaker embedding can control the perceived gender of converted speech.
However, it is still difficult to obtain the one-by-one relation between the
channel of PCA-projected speaker embedding and other voice adjectives.
Based on these results, the sub-task of applying the speaker individuality
control in cross-lingual task has been achieved. However, there are still rooms
to improve the similarity performance of the proposed model. Therefore, in
the next chapter, methods for improving the performance of cross-lingual
voice conversion will be described.
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Chapter 5

Method for improving cross-lingual
voice conversion

In Chapter 3 and Chapter 4, a non-parallel voice conversion with speaker
individuality control that can perform in both intra-lingual and cross-lingual
voice conversion tasks has been described. However, there is still rooms to
enhance the performance of the proposed cross-lingual model. As one of the
sub-tasks mentioned in Section 1.3, this chapter proposes the methods for
improving the performance of voice conversion. In particular, this chapter
concentrates on enhancing the spectral features and prosody features of
converted speech. To avoid the over-smoothing problem in the spectral
features, the adversarial training scheme of the StarGAN is adopted to
improve the training-objective function of the VAE in a CLVC task. An
F0 injection method is also introduced to enhance the F0 modeling in the
cross-lingual situation. In the first section, the introduction of this chapter
is provided. Then, the proposed methods for improving the performance of
non-parallel voice conversion is introduced in Section 5.2. The experiment
procedure and the results are provided in Section 5.3 before the chapter
conclusion in Section 5.4.

5.1 Introduction

In Chapter 3, a non-parallel VC model with controllable voice characteristics
has been proposed. By using the Principal Component Analysis (PCA),
the prominent properties of speaker individuality can be derived from the
speaker embedding. However, the VAE-based VC model has three problems
when applying for cross-lingual task. First, the learned speaker embedding
encodes the speaker’s nationality along with other voice characteristics,
hence, linguistic information is also affected when modifying the speaker
embedding. Second, the previous model is not capable of modeling the F0

contour, which can be significantly different between languages. Finally, the
training objective of VAE model does not implicitly guarantee that the out-
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Figure 5.1: Overview of proposed VC system. Voice conversion is performed
by selecting the target speaker embedding from the speaker codebook. Each
voice characteristic can be independently controlled by means of PCA-
projected speaker embedding.

put speech carries the desired voice characteristics corresponding to the input
speaker embedding. This limitation reduces the speaker similarity between
the converted speech and the target speech. Moreover, using element-wise
mean square error in the reconstruction loss implies that the speaker features
follow a normal distribution with no correlation across features. This over-
simplified objective often leads to over-smoothing degradation, which results
in speech that sounds muffled.

Recently, the StarGAN model [24] has been successfully applied for non-
parallel multi-speaker voice conversion tasks [22]. The superiority of GAN
over other deep generative models arises from its adversarial training scheme,
where a generator and discriminator are simultaneously trained to compete
with each other. The training process ends when the generator can generate
samples indistinguishable from natural ones. This training scheme avoids the
use of mean-square-error loss, hence reducing the over-smoothing problem
usually found in other VC models. However, the training process of GAN
is often very difficult and unstable, which may lead to degradation of the
converted speech quality. Moreover, the lack of explicit latent modeling
in GAN may discourage the disentanglement between speech content and
speaker information, thus reducing the effectiveness of speaker embedding in
controlling the voice characteristics.

Therefore, considering the pros and cons of previous studies, this study
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aims to design a model for text-independent CLVC that can both mimic
voice and continuously control the voice characteristics of generated speech.
To this end, the previous VAE-based VC model mentioned in Chapter 3 and
4 are improved in several significant ways:

• the additional language embedding is introduced to represent the
language property of input speech. By this way, the language factor
and speaker individuality factor can be disentangled.

• The logF0 is directly injected into the decoder to enhance the F0

modeling and provide controllability over F0 contour.

• The adversarial training scheme from the Star Generative Adversarial
Network (StarGAN) [24] is adopted to improve the objective function
of the cross-lingual VAE-based VC model.

Although combining the VAE and GAN has been proposed for non-
parallel VC [8, 14], none of these studies focused on the controllability of
speaker individuality. The proposed model specifically focuses on the many-
to-many CLVC task with controllability of speaker individuality by combin-
ing the VAE and StarGAN. To take advantage of the high performance of the
recent neural vocoder Parallel WaveGAN [77], the proposed model directly
operates in the mel-spectrum domain. Even though continuous speaker em-
bedding has been applied in some VC models [84,85], they require a trained
speaker-recognition model to extract the speaker embedding. In contrast,
the proposed model can be trained in an end-to-end fashion by directly
optimizing the speaker embedding during the training process. As shown
in the next sections, the proposed model improves upon the performance
of the previous VAE-based VC model and provides good controllability of
speaker individuality by modifying the speaker embedding. Even though the
proposed model shares a similar motivation with other VC model regarding
F0 conditioning, there are several differences between them. In general, the
propsosed model focuses on cross-lingual VC settings. As different languages
might have very different F0 characteristics, F0 conditioning helps eliminate
the language-dependent factor in the speaker embedding. The previous
VAE-based VC model described in Chapter 3 can still work well without
F0 conditioning in an intra-lingual setting [25].

5.2 Proposed method

In this section, the proposed methods for improving the quality of cross-
lingual converted speech is described. To enhance the spectral features, the
adversarial training scheme for cross-lingual voice conversion is described in
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D
Figure 5.2: Example of GAN consisting of generator (G) and discriminator
(D). D distinguishes real sample Xr and fake sample Xf , which is generated
from G. In contrast, G generates more realistic fake sample that can deceive
D.

Section 5.2.1. Then, method to improve the prosody of converted speech is
introduced in Section 5.2.2. The overview of the proposed CLVC framework
is illustrated in Fig. 5.1. Finally, the investigation for language-independent
speaker embedding is described in 5.2.3.

5.2.1 Improve spectral detail with Star-Generative Ad-
versarial Network

5.2.1.1 Star-generative-adversarial-network-based voice conversion

A typical GAN consists of two networks, a generator G and discriminator D,
which are alternatively trained to compete with each other in an adversarial
scheme [86]. On one hand, D is trained to distinguish between the real sample
from the training set and the fake sample from G. On the other hand, G
is trained to generate samples that could deceive D. Figure 5.2 presents an
overview of the conventional GAN structure. The model is converged when D
exceeds its capability of classifying the generated samples from real samples.
In such a situation, G is expected to generate highly realistic samples.

The conventional GAN can only convert data from one domain to another.
To solve the problem of multi-domain generation, the StarGAN [24] was
proposed. The goal with the StarGAN is to learn a single G that can map
across multiple domains. To achieve this, G is trained to translate the input
speech features xr into output speech features xf conditioned on the target
domain label yf , such that G(xr,xf ) → xf . The target domain label is
randomly generated to ensure that G can flexibly translate the input data
to different target domains. Simultaneously, D is trained to estimate the
probability D(x,y) of whether x is authentic, conditioned on y of the input
data. Also, an auxiliary classifier C is trained to predict this label. Figure 5.3
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Figure 5.3: Flow chart of StarGAN training process

shows the training process of the StarGAN. The training objective consists
of three loss functions, as detailed below.

• Adversarial loss: Adversarial loss encourages D to correctly classify
real and fake samples while helping G to generate more realistic
samples. The adversarial losses for D and G are respectively as follows:

LDadv = −Exr,yr [logD(xr,yr)]

− Exr,yf [log(1−D(G(xr,yf )),yf ))], (5.1)

LGadv = −Exr,yf [log(D(G(xr,yf ),yf ). (5.2)
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The LDadv is reduced when D can correctly classify real and fake samples,
while LGadv is minimized when G can successfully deceive G.

• Classification loss: The C is trained for the speaker-classification
task and helps G produce fake data with the correct target speaker
voice. In particular, C outputs the probability pC that x belong to
speaker y. The losses for C and G are defined as

LCcls = −Exr,yr [log pC(yr|x)], (5.3)

LGcls = −Exr,yf [log pC(yf |G(xr,yf ))]. (5.4)

The LCcls is reduced when C can correctly classify to which target
speaker the input speech belongs. The LGcls is minimized when the
converted utterance has similar speaker individuality to the target
speaker.

• Reconstruction loss: To preserve the linguistic content in the con-
verted utterance, cycle-consistent loss is introduced to regularize G:

LGcyc = Exr,yr,yf [||xr −G(G(xr,yf ),yr)||22], (5.5)

where yr and yf are the labels of arbitrary source and target speaker,
respectively, xr is the input speech feature belonging to yr, and ‖·‖ is
the Euclidean distance.
Identity loss is also introduced to keep the converted speech unchanged
when the input speech already belongs to yr:

LGid = Exr,yr [||xr −G(xr,yr)||22]. (5.6)

In summary, the total loss for G is as follows:

LG = LGid + LGcyc + λadvLGadv + λclsLGcls, (5.7)

where λadv and λcls are the weighting factor for adversarial loss and
classifier loss, respectively.

As seen in the training objective (5.7), the StarGAN does not completely
rely on mean-squared-error loss to estimate the distribution of converted
acoustic features, as in the VAE. In contrast, G uses feedback from D to
produce the most likely sample that can deceive D. Therefore, to avoid over-
smoothing in the VAE, the adversarial training scheme of the StarGAN can
be adopted to replace the conventional mean-squared-error loss. However,
the lack of an explicitly defined latent variable in the StarGAN might reduce
the effect of speaker embedding on controlling speaker individuality because
G might ignore the input speaker embedding. Hence, the combination of the
VAE and StarGAN would alleviate the weakness of the other.
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5.2.1.2 Improving spectral details with StarGAN

The proposed model incorporates the StarGAN training scheme [24] as shown
in Fig. 5.4. In this model, the VAE acts similarly to the G in the StarGAN.
The D identifies whether the input speech is natural or converted given
the speaker-identity label. The C learns to classify to which speaker the
input speech belongs. Also, the converted voice is re-input to the VAE
to convert it back to the source voice. Cycle-consistent loss minimizes the
difference between the input features and re-converted features. With all
these modifications, the new training objective for the VAE is to 1) generate
converted speech to deceive D, 2) minimize the loss from C when inputting
the converted speech, 3) minimize cycle-consistent loss, and 4) minimize
reconstruction loss and DKL loss.

• Discriminator loss: The D distinguishes real and converted speech
samples, which are labeled as 1 and −1, respectively. To improve the
stability of the training process, the Wasserstein distance [87] is used
instead of vanilla discriminator loss in (5.1). Therefore, discriminator
loss is written as

LDadv = Ex,ssrc [1−D(x, ssrc)]

+ Ex,star [1 +D(VAE(x, star), star)], (5.8)

where ssrc and star is the speaker embedding of source and target
speakers, respectively, and x is the input acoustic features belonging to
the source speaker.

• Classification loss The C is trained with cross-entropy loss to identify
the correct speaker identity conveyed in the input utterance. The loss
for training C is as follows:

LCcls = −Ex,y[log pC(y|x)] (5.9)

where log pC(y|x) is the output log likelihood that acoustic features x
belongs to target speaker y.

• VAE loss: In addition to variational loss, adversarial loss and classifier
loss encourage the VAE to trick D and reduce the speaker dissimilarity
between converted speech and natural speech. The adversarial loss and
classifier loss for the VAE are expressed as

LVAE
adv = −Ex,star [D(VAE(x, star), star)],

LVAE
cls = −Ex,star [log pC(VAE(x, star), star)].
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Similar to the StarGAN training scheme, cycle-consistent loss is intro-
duced to force the VAE to transform the converted features back to the
original. This loss is written as

LVAE
cycle = Ex,star,ssrc [‖x− VAE((VAE(x, star), ssrc)‖22]. (5.10)

Combined with the variational loss described in (3.3), the final training
objective for the proposed model now becomes

LVAE
obj = Lv + LVAE

cycle + λadvLVAE
adv + λclsLVAE

cls , (5.11)

where λadv and λcls are the weight factor for each loss component. In
empirical testing, λadv = 0.0005 and λcls = 0.0001 showed good results
in this study.

5.2.2 Improving F0 generation

Various high-performance vocoders based on deep neural networks have
recently been proposed [77, 88, 89]. Most of these neural vocoders directly
use mel-spectrum as the input feature. However, it is difficult to directly
manipulate the F0 information in mel-spectrogram, as it relates to the
harmonic structure. In addition, different languages may have very different
F0 contours, which can degrade the cross-lingual converted speech with
spurious pitch. To provide the controllability and stability of F0 in converted
speech, the mel-spectrogram generation is directly conditioned with logF0

input, as shown in Figs. 5.4 and 5.6.This method is referred as the F0
injection method. To generate fake samples during the training or inference
phases, the source logF0 is linearly scaled to match the target F0 mean-
variance. Therefore, the statistics of the target F0 must be pre-calculated for
VC.

5.2.3 Controlling speaker individuality in cross-lingual
setting

In conventional VAE-based VC, speaker identity is usually represented as a
one-hot vector [9]. However, this type of encoding does not allow control-
lability of speaker individuality. Some studies have proposed using d-vector
to represent speaker individuality, but this type of speaker representation
requires an additional speaker-recognition network, which introduces more
complexity to the VC model. The previous VAE-based VC model was
developed for continuous learnable speaker embedding that can be jointly
learned with other network parameters during the training process [25].
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This model does not require any addition speaker-recognition network yet
still achieves controllability of speaker individuality. Let y is the one-hot
vector represents the speaker identity, the continuous speaker embedding s
is calculated by using a simple linear transformation, as

s = Wᵀ · y + b, (5.12)

where W and b is a learnable kernel and bias in a fully-connected neural
network layer. In this interpretation, the one-hot encoded vector y acts as
a switch to select the correspond row vector in matrix W. In the case of
b = 0, each row vector in the kernel matrix W can be seen as a speaker
embedding. Fig. 5.5 illustrates the fist and second principal components
of the learned speaker embeddings of the VCTK dataset [62]. As can be
seen, the speaker are clearly clusterized based on the voice gender and input
language, hence the speaker embedding can encode useful information about
the speaker individuality. This behavior is undesirable because manipulating
the speaker embedding would affect the linguistic content due to language
differences. To avoid this problem, an additional language embedding is
introduced to disentangle the language factor from speaker embedding. In
this study, the language factor is simply represented by a one-hot encoded
vector, which is concatenated with the speaker embedding along the channel
dimension. The combined vector is then used to condition the decoder on
generating the mel-spectrogram, as shown in Fig. 5.4.

5.3 Experiments

To evaluate the performance of the proposed model, the cross-lingual voice
conversion between English and Japanese speakers is conducted using three
models: the conventional VAE (VAE), StarGAN (StarGAN), and proposed
model (VAE-StarGAN). To evaluate the effectiveness of F0 injection, a
VAE-based VC model trained without F0 input is also implemented. This
model is denoted as VAE-noF0. For a fair comparison, VAE and VAE-
StarGAN had the same network structure. In addition, the classifiers of
StarGAN and VAE-StarGAN had an identical structure.

To train the models, two open-source multi-speaker voice databases is
used: the English VCTK corpus [62] and the Japanese Versatile Speech
(JVS) corpus [90]. The training data included 100 speakers from the English
VCTK dataset and 100 speakers from the JVS dataset. For each speaker,
100 utterances were randomly selected as training data and ten utterances
as testing data. Each speaker was initially assigned to a random speaker
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Figure 5.5: 2D visualization of speaker embedding learned using intra-lingual
VAE-based VC model using PCA. Speaker embeddings are clustered on basis
of voice gender and speaker language.

embedding. To condition the decoder on the language of the input mel-
cepstrum, a one-hot embedding vector is used for language. Since there were
two input languages (English and Japanese), the number of dimensions for
language embedding was two.

5.3.1 Preprocessing

In the preprocessing step, the audio waveform was down-sampled to 24
kHz and normalized to the [−1.0, 1.0] range. Then, an 80-dimensional mel-
spectrogram was extracted using short-time Fourier transform (STFT) and
mel-filterbank. The window length of STFT was set to 2048 and the hop-
length was 300. The mel-filterbank spanned from 80 to 7600Hz to match
the Parallel WaveGAN input. Then, the mel-spectrum was transformed
into mel-cepstrum by applying inverse discrete Fourier transform on the log-
magnitude mel-spectrum. Although some studies further normalized each
mel channel by its mean and variance across the time dimension, preliminary
experiment shows that this step degrades the quality of converted speech.
Therefore, the raw mel-cepstrum value is directly used as the input feature.
In addition to the mel-cepstrum feature, F0 was extracted using the WORLD
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Table 5.1: Network architecture of VAE encoder and decoder, D, and C.

Network No. of WN cells Dilation rate Filters Kernel size

Encoder 6 2×[1, 2, 4] 128 5
Decoder 16 4×[1, 2, 4, 8] 128 5

D 3 [1, 1, 1] [128, 256, 512] 3
C 3 [1, 1, 1] [128, 256, 512] 3

analysis system [63]. After extracting theF0 from all utterances, the mean
and variance of logF0 for each speaker are calculated for the linear scaling
functions. The Parallel WaveGAN vocoder [77] trained on the VCTK dataset
for 1000k iterations is used for waveform generation.

5.3.2 Network Architecture

Similar to the previous model in Chapter 3, the encoder and decoder of the
VAE were constructed from a smaller network that resembles the WaveNet
(WN) architecture [40]. Figure 5.6 shows the architecture of a WN cell. The
input layer for the hidden variable hn is the 1D dilated convolutional neural
network [91], which expands the receptive field in the temporal dimension
by dilation in the kernel. The details of the model parameters of the VAE
encoder and decoder, D, and C are provided in Table 5.1.

The D and C share the same architecture, as illustrated in Fig. 5.7. Each
WN cell is followed by a stride 1D convolution layer to reduce the temporal
dimension by half after each stage. At the output, a fully connected layer
consumes the compressed vector to produce the output vector. The speaker
embedding and language embedding are represented as a one-hot vector.
Both D and C are conditioned on both the speaker-embedding and language-
embedding vectors, while C is conditioned only on the language embedding
vector.
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Algorithm 1: VAE-StarGAN training procedure

Require: Functions G (VAE model), D, C, Scale (logF0 linear
scale function), X (batch of source mel-cepstrum), f0
(batch of source logF0 ), ssrc (source speaker embedding),
star (target speaker embedding), lsrc (source language
embedding)

. Update the discriminator parameter θD
f0f ← Scale(f0)
xf ← G(x, f0f , star, lsrc)
dr ← max(0, 1−D(x, ssrc, lsrc))
df ← max(0, 1 +D(xf , star, lsrc))

LDadv ←
dr+df

2

update θD to minimize LDadv
. Update classifier parameter θC
LCcls ← CrossEntropy(ssrc, C(x, lsrc)) update θC to minimize LCcls
. Update VAE parameter θVAE

xid,µµµz,σσσz ← G(x, f0, ssrc, lsrc)
xcycle ← G(xf , f0, ssrc, lsrc)
LV AEadv ← −D(xf , star, lsrc)
LV AEcls ← CrossEntropy(star, C(xf , lsrc))
LV AEcycle ← ‖xcycle − x‖22
Lv ← ‖xid − x‖22 −

1
2
(1 + logσσσ2

z − µµµ2
z − σσσ2

z)
. Calculate 5.11

LVAE ← Lv + LVAE
cycle + λadvLVAE

adv + λclsLVAE
cls

update θG to minimize LVAE

5.3.3 Training Procedure

All models were trained using the Adam optimizer [78] with 32 samples per
batch. The mel-cepstrum is truncated or warp-padded to have 512 frames.
The learning rate is initialized at 2 × 10−4 and gradually reduced to 1 ×
10−4 for the first ten epochs. The training process was conducted using two
Nvidia 2080Ti GPUs until the model converged, which took roughly two
days for each model. The detailed training procedure for StarGAN and
VAE-StarGAN is shown in Algorithm 1.

5.3.4 Visualizing speaker embedding

After the VC model was trained, the speaker-embedding space is visualized
in Fig. 5.8 by analyzing the speaker codebook using PCA. Figure 5.8(a)

63



illustrates the PCA-projected speaker embedding learned using the previous
VAE-based VC model [25]. Without the input language embedding, it can
be seen that the language of the speakers was separated on the first principal
dimension. On the other hand, as shown in Fig. 5.8(b), only the speaker’s sex
was separated on the first principal dimension when the model was trained
with language embedding input. Moreover, the clustering effect on language
was removed, as there was no clear separation between Japanese speakers
and English speakers. This result indicates that the speaker embedding can
encode useful information from the speaker individuality while still remaining
language-independent.

5.3.5 Objective Evaluation

Different objective measurements are selected to evaluate the performance
of the proposed model. The objective evaluation set consists of cross-lingual
converted utterances from English to Japanese and Japanese to English. Five
male and five female speakers are selected from each language to form 200
conversion pairs, and each pair had ten converted samples. Therefore, the
objective evaluation set consisted of 2000 converted utterances.

5.3.5.1 Modulation spectrum measurement

The modulation spectrum (MS) can provide hints about speech naturalness:
a higher MS corresponds to better speech naturalness. Following the work
of Takamichi et al. [79], the MS of the converted mel-cepstral sequence is
calculated by taking the Fourier transform along the temporal dimension.
Similar to a previous study [68], the MS was averaged for all modulation
frequencies and all utterances as

MS =
1

N

1

F

N∑
n

F∑
f

|DFT [X(n,f)]|, (5.13)

where X is a batch of test utterances, N is the number of utterances,
n ∈ [0, N) is the utterance index, F is the number of MS frequency bins, and
f ∈ [0, F ) is the MS frequency bins. As shown in Fig. 5.9, VAE-StarGAN
achieved a higher log-scaled MS on the lower mel-cepstral coefficients than the
previous VAE-based VC model. These results indicate that the adversarial
training scheme can lessen the over-smoothing of converted mel-cepstral
coefficients. Figure 5.10 illustrates the mel-spectrogram generated from
different models. It can be seen that the StarGAN and the VAE-StarGAN
produced mel-spectrograms with a more detailed structure. Although the
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Figure 5.8: 2D PCA visualization of speaker embedding from model (a)
without language embedding input and (b) with language embedding input.
Speaker embedding from English and Japanese speakers are clearly separated
into distinct clusters when language embedding is not used.

65



0 20 40 60 80
Mel-cepstrum coefficient index

2

1

0

M
S

 [
d

B
]

VAE

StarGAN

VAE-StarGAN

(a) English-Japanese conversion

0 20 40 60 80
Mel-cepstrum coefficient index

2

1

0

1

M
S

 [
d

B
]

VAE

StarGAN

VAE-StarGAN

(b) Japanese-English conversion
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Figure 5.11: Distribution of log2 F0 of source, target, and converted speech of
Japanese-speaking female to English-speaking male conversion. Intersection
index d∩ indicates amount of overlap between converted log2 F0 and target
log2F0.

mel-spectrum of VAE-StarGAN was more refined than that of VAE,
artifacts such as mispronunciation cannot be clearly shown on the mel-
spectrum. Therefore, a listening test must be conducted to precisely compare
the performances of different models.
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Figure 5.12: Distribution of log2 F0 of source, target, and converted speech
of English-speaking male to Japanese-speaking male conversion. Intersection
index d∩ indicates amount of overlap between converted log2 F0 and target
log2F0 .
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Table 5.2: Average scores and standard deviations of F0 analysis results from different models. For mean F0 error
and voice/unvoiced error rate (v/uv) error, lower is better. For histogram intersection, higher is better.

Test /
model

All English to Japanese Japanese to English

Mean F0
error

v/uv error
(%)

Histogram
intersection

Mean F0

error
v/uv error

(%)
Histogram
intersection

Mean F0
error

v/uv error
(%)

Histogram
intersection

VAE-noF0 0.286 ± 0.20 0.191 ± 0.03 0.506 ± 0.08 0.419 ± 0.17 0.198 ± 0.03 0.481 ± 0.07 0.151 ± 0.12 0.184 ± 0.03 0.532 ± 0.08
VAE 0.132 ± 0.09 0.152 ± 0.03 0.563 ± 0.13 0.173 ± 0.07 0.160 ± 0.03 0.564 ± 0.12 0.090 ± 0.09 0.143 ± 0.02 0.562 ± 0.13

StarGAN 0.082 ± 0.06 0.141 ± 0.02 0.568 ± 0.11 0.080 ± 0.05 0.135 ± 0.02 0.567 ± 0.08 0.084 ± 0.07 0.147 ± 0.02 0.568 ± 0.13
VAE-StarGAN 0.128 ± 0.09 0.148 ± 0.02 0.580 ± 0.12 0.173 ± 0.08 0.154 ± 0.02 0.581 ± 0.09 0.083 ± 0.08 0.143 ± 0.01 0.578 ± 0.14
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5.3.5.2 F0 injection

To measure the effectiveness of F0 injection method, the F0 histogram
intersection [92] is measured between converted speech and target speech.
The histogram intersection can indicate the amount of similarity between
two distributions. Given the histogram of converted speech P and that of
target speech Q, where each one contains n bins, the histogram intersection
is defined as follows:

d∩(P,Q) =

∑n
j min(Pj, Qj)∑n

j Qj

. (5.14)

The maximum histogram intersection d∩max = 1 is achieved when P
and Q are completely identical. In the experiments, the number of bins is
set to n = 1000 and the range of log2 F0 is between 5.5 and 9.0. Figure
5.3.5.1 and 5.3.5.1 shows a comparison of the log2 F0 distribution between
source, target, and converted utterances from different models. It can be
seen that the log2 F0 distribution does not always follow the Gaussian shape.
Therefore, simply performing linear transformation of F0 extracted from a
parametric vocoder (e.g., WORLD or STRAIGHT [22,85,93]) cannot ensure
the correct shape of F0 distribution.

In addition to histogram intersection, the average error between the mean
of converted log2 F0 and that of target log2 F0 is measured. The voice/un-
voiced error rate between converted F0 and source F0 is also calculated.
The results are summarized in Table 5.2. It can be seen that the models
with F0 injection had a significantly higher histogram intersection, lower
v/uv error rate, and lower mean F0 error than the model without. The
two-tailed t-test showed that the effect of using the F0 injection method is
statistically significant. These results indicate that the F0 injection method
can improve the performance of VC models for controlling the F0 in the
converted utterance.

5.3.6 Subjective Evaluation

Listening tests are conducted to evaluate the speech naturalness and speaker
similarity of the converted utterances. one male and one female speaker from
each language are selected, for a total of four speakers in the evaluation set.
Since only CLVC was carried out, there were eight combinations from the
selected speakers. Japanese-to-English conversion is denoted as “SJ-TE”
and English-to-Japanese conversion is denoted as “TE-SJ”. Two sentences
were selected from each source-target pair to create the listening test set.
Therefore, the listening test set consisted of 48 pairs of converted utterances
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(2 sentences × 8 source-target speaker pairs × 3 model pairs). For reference
stimuli in the ABX similarity test, the original utterances of the target
speakers are randomly selected from the training set. Nine individuals with
normal listening ability participated in both listening tests. All participants
had a basic level of using Japanese/English even if Japanese/English was not
their first language. Each participant rated 24 random pairs of converted
utterances for each test via an online interface.

To measure speaker similarity, the ABX test scheme was used to compare
the performance of VAE-StarGAN, StarGAN, and VAE. Listeners were
asked to select the closest utterance (“A” or “B”) to the reference utterance
X or choose Same if there was no difference. The X is the natural speech
of the target speaker selected from the test set, while utterances “A” and
“B” are generated from different models. For speech naturalness, the AB
test scheme is applied, in which listeners were asked to determine the more
natural utterance (“A” or “B”) or choose Same if there was no difference.
The generated utterance from both models was presented in random order
(AB or BA) to avoid any bias. To analyze the results, the one-way ANOVA
test is used with alpha value of 0.05.

As shown in Figs. 5.13 and 5.14, VAE-StarGAN outperformed Star-
GAN for both naturalness and similarity in all cases. Except for the simi-
larity score of SE-TJ conversion, these differences are statistical significant.
When comparing with the VAE, the one-way ANOVA test and the post-hoc
two-tailed t-test determined that VAE-StarGAN had a statistically better
similarity score than VAE in SJ-TE conversion. However, no significant
difference was observed between these two models in other cases. VAE
had better naturalness and similarity scores than StarGAN in most cases
except for the SE-TJ similarity score. The reason might be that although the
converted speech from StarGAN sounded less muffled than that from VAE,
artifacts such as mispronunciation severely affected the perceived speech nat-
uralness. The low preference score of VAE-StarGAN for speaker similarity
indicates that the speaker embedding of StarGAN has less controllability on
speaker individuality than VAE and VAE-StarGAN. This behavior may be
due to the lack of explicit latent modeling in StarGAN, which discourages
the disentanglement between speech content and speaker information.

5.3.7 Fictitious Speaker

To evaluate the controllability of speaker individuality with VAE-StarGAN,
11 test utterances were generated by linearly interpolating the speaker
embedding between the source and target speaker embeddings. The source
speaker was a female Japanese speaker and the target speaker was a male
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Figure 5.13: Preference scores of AB naturalness test with 95-percent
confidence interval and results from one-way ANOVA test. NP means no
preference.
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Figure 5.15: Position of linearly interpolated speaker embedding between
source female Japanese speaker and target male English speaker. Index of
each converted utterance is marked from 1 to 11.

English speaker. The positions of the interpolated speaker embedding s are
shown in Fig. 5.15. The input F0 was also transformed using the linearly
interpolated mean and standard deviation between the source and target F0.

Each test utterance was marked from 1 to 11 with respect to its position
on the speaker-embedding map. In this test, the participants listened to the
test stimuli in random order to avoid any bias then were asked to judge the
similarity between test stimuli and the reference utterance on a scale from 0
to 100. Figure 5.16 shows the average similarity score of each test utterance.
The Pearson correlation coefficient is used to evaluate the linear relationship
between average similarity scores and expected similarity scores, which is
calculated as
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Figure 5.16: Similarity scores of interpolated speaker embedding with stan-
dard deviation. Dotted line denotes expected similarity score that linearly
increased from 0 to 100. r and p indicate Pearson correlation and p-value,
respectively.

r =

∑
(x−mx)(y −my)√∑

(x−mx)2
∑

(y −my)2
, (5.15)

where mx is the mean of vector x and my is the mean of vector y. The
correlations of +1 or −1 suggest an exact linear relationship. The measured
correlation was r = 0.97 and the p-value was p = 4.22×10−7, which indicates
that the average similarity scores have a strong positive correlation with the
expected similarity score, thus statistically sufficient.

5.4 Chapter Conclusion

In this chapter, improvement methods for cross-lingual voice conversion
system based on the VAE-StarGAN model are proposed. The results from
this chapter showed that the proposed VC model, which is trained solely on
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acoustic features, can effectively control the speaker individuality in a cross-
lingual setting via the speaker embedding. In terms of the over-smoothing
degradation problem, the objective results showed that the proposed ad-
versarial training scheme can effectively enhance the fine-structure in the
converted mel-spectrogram. The results from the subjective test show that
the improvement in SJ-TE conversion is statistical significant. With the ad-
ditional language embedding, the nationality factor can be disentangled from
the speaker embedding, hence avoiding the effect on linguistic information
when converting voice. Moreover, the results from objective measurements
indicated that the F0 injection can improve the F0 modeling in a cross-
lingual voice conversion scheme, which suggests the potential of using modern
neural vocoders in the VC system to enhance the quality of converted speech.
Moreover, the high correlation between the average similarity score of the
fictitious voice and the expected similarity score is evidence for a strong linear
relation between speaker embedding and perceptual speaker similarity, which
indicates the controllability of speaker individuality of the proposed model.
Based on these results, the proposed methods in this chapter have effectively
improved the performance of cross-lingual voice conversion, therefore, the
goal of the third sub-task defined in Section 1.4 has been achieved.
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Chapter 6

Conclusion and Future Direc-
tion

6.1 Summary of the thesis

In the previous chapters, a speech features disentanglement framework for
intra-lingual and cross-lingual voice conversion has been considered. To con-
trol the speaker individuality, a variational autoencoder-based non-parallel
voice conversion with continuous-controllable speaker embedding has been
proposed. As mentioned in Section 1.3, the challenges of this framework are:
1) the difficulty of modelling speaker individuality in a continuous domain
and 2) the performance of conversion function in non-parallel data condition.
To cope with these challenges, the three corresponding sub-tasks have been
defined Section 1.4. To deal with the first sub-task, a method to repre-
sent speaker individuality via speaker embedding and principal component
analysis has been proposed in Chapter 3. Chapter 4 has focused on the
second sub-task by applied the proposed framework in Chapter 3 into cross-
lingual voice conversion domain using on the vector-quantized variational
autoencoder. Finally, to achieve the last sub-task, Chapter 5 has proposed
methods focused on enhancing the spectral features and prosody features to
improve the quality of converted speech.

With the purpose to control the speaker individuality in the converted
speech, Chapter 3 proposes the non-parallel text-independent voice conver-
sion framework continuous speaker embedding. To represent the speaker
individuality on a continuous plane, a speaker codebook is learned via
backpropagation during the training process. After training, the speaker
codebook is analysed using principal component analysis (PCA) to reveal the
voice characteristics in the speaker embedding. It is observed that the first
components of the PCA-projected speaker embedding mostly corresponds
to the gender attribute of the speaker, while the second speaker embedding
corresponds to the voice quality. Experiment results show that the proposed
model performs better than the baseline parallel GMM-based voice conver-
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sion model with the same amount of target data. Moreover, the converted
speech with fictitious voice identity has comparable naturalness as those
with real target voice identity, with the average MOS score of 3.1. These
results show that the proposed model is capable of generating new speaker
individuality without any sacrifice in performance. With these results, the
first sub-task on controlling the speaker individuality for non-parallel voice
conversion has been achieved.

Chapter 4 focuses on the cross-lingual voice conversion using the same
framework proposed in Chapter 3. The proposed cross-lingual voice conver-
sion system includes the neural vocoder, Parallel WaveGAN [77], to improve
the quality of synthesized speech waveform. This chapter proposes the
hierarchical structure and discrete latent representation to better capture
various linguistic information at different temporal scale. Adaptation to
cross-lingual speaker is performed using backpropagation during the fine-
tuning process, similar to the procedure in Chapter 3. The experiment results
indicate that the proposed hierarchical structure leads to the significant
improvement in speech naturalness and speaker similarity in both intra-
lingual and cross-lingual situations. Official results in the Voice Conversion
Challenge 2020 reveal that the proposed model ranks highest among text-
independent non-parallel approaches in term of speech naturalness, with the
average naturalness score of 3.2 MOS. These results show that the proposed
framework can be well applied for both intra-lingual and cross-lingual tasks,
satisfying the second sub

To achieve the last sub-task, Chapter 5 concentrates on methods for
improving the performance of cross-lingual voice conversion. The proposed
methods include the adversarial training scheme to enhance the spectral
detail, the F0-injection method to improve the pitch modeling, and a
language-independent speaker embedding to avoid unnatural pronunciation.
Conventional training loss function of the voice conversion model consists
of the mean-square-error loss for reconstruction of speech features. How-
ever, such type of loss function causes the over-smoothing problem, which
affect the naturalness of converted speech. The adversarial training scheme
mitigates this problem by indirectly estimate the likelihood of the data via
an additional discriminator network. The experiment result show that the
generated mel-spectrogram with adversarial training scheme has finer detail
structure than the conventional training scheme, hence, better naturalness
is obtained. With the use of neural vocoder to synthesize speech waveform,
voice conversion model operates on mel-spectrogram often suffers from the
pitch-instability in the converted speech. To alleviate this problem, the F0-
injection approach is applied by directly conditioned the generation of mel-
spectrogram on input log2 F0. At run-time conversion phase, the conditioning
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log2 F0 is the linearly scaled version of source log2 F0 to match the target
distribution. Objective results show that the converted speech with F0-
injection method has more similar F0 distribution and lower F0 error to
the target F0. By visualizing the speaker embedding via principal compo-
nent analysis, the language-independent property of the proposed speaker
embedding is confirmed. To evaluate the effectiveness of the language-
independent speaker embedding, 11 converted utterances are generated from
the speaker embedding linearly interpolated between source and target ones.
The listening test results indicate a strong correlation between the average
similarity score of the fictitious voice and the expected similarity scores. This
result indicate the effectiveness in controlling the speaker individuality using
the proposed speaker embedding.

With the above results, a semi-supervised non-parallel voice conversion
with speaker individuality control has been achieved. The proposed model
can both perform voice mimicry and speaker individuality control with good
speech naturalness in intra- and cross-lingual task. However, the quality of
speaker similarity in cross-lingual conversion still need to be improved in the
future.

6.2 Future works

The purpose of this thesis is to develop a flexible voice conversion model
that can both passively mimicking voice and actively generate new speaker
individuality using only acoustic data. Several techniques to control the
speaker individuality in the non-parallel and cross-lingual situations have
been developed. However, the current study mainly focuses on the spec-
tral features conversion. To improve the performance of voice conversion,
especially in the cross-lingual situation, it is necessary to include both the
prosody features and spectral features for conversion.

6.2.1 Prosody conversion

In Chapter 5, the proposed F0-injection method give some sort of controlling
the pitch in converted speech. During conversion, the F0 is simply linearly
scale to match the distribution of target F0. To transform the prosody
of speech, it is needed to considered the characteristics of the F0 contour.
One potential solution is to parameterized the F0 contour using Fujisaki
model [94], which introduces the critical damping model to model the
components of F0 contour. The Fujisaki model describes the F0 contour
by three components: a asymptotic baseline Fb, a slowly varying phrase
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component and a local accent component.

lnF0(t) = lnFb +
I∑
i=1

ApiGp(t− T0i)

+
J∑
j=1

Aaj
{
Ga(t− T1j)−Ga(t− T2j)

}
,

Gp(t) =

{
α2te−αt, t ≥ 0,

0, t < 0,

Ga(t) =

{
min

{
1− (1 + βt)e−βt, γ

}
, t ≥ 0,

0, t < 0,

(6.1)

The phrase components are the responses of the second-order critical-
damping system described by the impulse response Gp(t), whereas each
phrase component is characterised by the impulse magnitude Api . The
accent components are the responses of the second order critical-damping
model described by the impulse response Ga(t), and each accent component
is characterized by the impulse magnitude Aai . Previous study [58] has shown
that the speaker speaker individuality in F0 contour mostly corresponds to
three parameters Fb, Aai , and Api . If the voice conversion can extract and
modify these parameters, the speaker individuality conveyed in the speech
prosody can therefore be transformed. The proposed framework in this thesis
can be extended with prosody modeling to boost the performance of voice
conversion in both intra- and cross-lingual tasks.

6.2.2 Urgency voice conversion

Urgency voice conversion is the task of adding the sense of urgency in
the neutral speech so that the listener can perceive the certain degree
of danger. This voice conversion is very useful in public announcement
system, especially in the event of disaster. The degree of urgency should
be controlled depends on the imminence of danger. For example, warning
for tsunami or fire should be at the highest level of urgency, whereas the
warning for heavy rain should at lower level of urgency. This type of voice
conversion can be regarded as one application of expressive voice conversion.
However, most studies on expressive voice conversion focus on the categorical
emotion, hence, controlling the degree of expressiveness is not possible. In
the pioneering study of Xue et al. [95], an expressive voice conversion with
controllable degree of expressiveness has been proposed. This study based on
the three-layer model to describe the relation between emotions and acoustic
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features via semantic primitives [96]. To control the degree of emotion, a
two-dimensional space (Valence-Activation) is used to represent the emotion
on a continuous scale. An adaptive neuro-fuzzy inference system (ANFIS) is
used to estimate the acoustic features from the valence-activation value. It
is noticed that the idea of controlling the degree of emotion is parallel with
the proposed voice conversion system in this thesis. Moreover, deep learning
approaches have not become very popular in expressive voice conversion with
controllable degree of emotion. Therefore, the approach in this thesis can be
extended for urgency voice conversion to improve the flexibility of conversion
model and enhance the quality of converted speech
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[18] Y. Stylianou, O. Cappé, and É. Moulines, “Continuous probabilistic
transform for voice conversion,” IEEE Trans. Speech Audio Process.,
vol. 6, pp. 131–142, 1998.

[19] A. Kain and M. W. Macon, “Spectral voice conversion for text-to-
speech synthesis,” Proceedings of the 1998 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP ’98 (Cat.
No.98CH36181), vol. 1, pp. 285–288 vol.1, 1998.

[20] T. Toda, A. W. Black, and K. Tokuda, “Voice conversion based
on maximum-likelihood estimation of spectral parameter trajectory,”
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 15, pp. 2222–
2235, 2007.

[21] T. Kaneko and H. Kameoka, “Cyclegan-vc: Non-parallel voice conver-
sion using cycle-consistent adversarial networks,” 2018 26th European
Signal Processing Conference (EUSIPCO), pp. 2100–2104, 2018.

[22] H. Kameoka, T. Kaneko, K. Tanaka, and N. Hojo, “Stargan-vc: Non-
parallel many-to-many voice conversion using star generative adversarial
networks,” in IEEE Spoken Language Technology Workshop (SLT).
IEEE, 2018, pp. 266–273.

[23] T. Kaneko, H. Kameoka, K. Tanaka, and N. Hojo, “StarGAN-
VC2: Rethinking Conditional Methods for StarGAN-Based Voice
Conversion,” in Proc. Interspeech 2019, 2019, pp. 679–683. [Online].
Available: http://dx.doi.org/10.21437/Interspeech.2019-2236

[24] Y. Choi, M.-J. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Star-
gan: Unified generative adversarial networks for multi-domain image-
to-image translation,” IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8789–8797, 2018.

[25] T. V. Ho and M. Akagi, “Non-parallel voice conversion with controllable
speaker individuality using variational autoencoder,” in Asia-Pacific
Signal and Information Processing Association Annual Summit and
Conference (APSIPA ASC), 2019, pp. 106–111.

87

http://dx.doi.org/10.21437/Interspeech.2019-2236


[26] ——, “A unified framework for non-parallel voice conversion and voice
synthesis using variational autoencoder,” in Proceedings of the Autumn
Meeting of the Acoustical Society of Japan, 2019.

[27] ——, “Non-parallel voice conversion with controllable speaker individ-
uality using variational autoencoder,” in Proceedings of the Acoustic
Symposium, 2019.

[28] ——, “Cross-lingual voice conversion with multi-codebook hierarchical
vector-quantized variational autoencoder,” in Proceedings of the Autumn
Meeting of the Acoustical Society of Japan, 2020.

[29] ——, “Improving spectral detail and f0 modelling for vae-based cross-
lingual voice conversion with adversarial training,” in Proceedings of the
Spring Meeting of the Acoustical Society of Japan, 2021.

[30] ——, “Cross-lingual voice conversion with controllable speaker indi-
viduality using variational autoencoder and star generative adversarial
network,” IEEE Access, vol. 9, pp. 47 503–47 515, 2021.

[31] V. Dellwo, M. Huckvale, and M. Ashby, How Is Individuality
Expressed in Voice? An Introduction to Speech Production
and Description for Speaker Classification. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 1–20. [Online]. Available:
https://doi.org/10.1007/978-3-540-74200-5 1

[32] G. Fant, Acoustic theory of speech production: with calculations based
on X-ray studies of Russian articulations. de Gruyter, 1971.

[33] T. Kitamura and M. Akagi, Speaker Individualities in Speech Spectral
Envelopes and Fundamental Frequency Contours, C. Müller, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007.

[34] H. Kawahara, I. Masuda-Katsuse, and A. De Cheveigne, “Restructuring
speech representations using a pitch-adaptive time–frequency smoothing
and an instantaneous-frequency-based f0 extraction: Possible role of a
repetitive structure in sounds,” Speech communication, vol. 27, no. 3-4,
pp. 187–207, 1999.

[35] H. Zen, T. Nose, J. Yamagishi, S. Sako, T. Masuko, A. Black, and
K. Tokuda, “The hmm-based speech synthesis system (hts) version 2.0,”
in The 6th ISCA Workshop on Speech Synthesis, 2007.

88

https://doi.org/10.1007/978-3-540-74200-5_1


[36] Z. Wu, O. Watts, and S. King, “Merlin: An open source
neural network speech synthesis system,” in 9th ISCA Speech
Synthesis Workshop, 2016, pp. 202–207. [Online]. Available: http:
//dx.doi.org/10.21437/SSW.2016-33

[37] T. Toda, H. Saruwatari, and K. Shikano, “Voice conversion algorithm
based on gaussian mixture model with dynamic frequency warping of
straight spectrum,” in 2001 IEEE International Conference on Acous-
tics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221),
vol. 2. IEEE, 2001, pp. 841–844.

[38] M. Mashimo, T. Toda, K. Shikano, and N. Campbell, “Evaluation
of cross-language voice conversion based on gmm and straight,” in
INTERSPEECH, 2001.

[39] Y. Ohtani, T. Toda, H. Saruwatari, and K. Shikano, “Maximum likeli-
hood voice conversion based on gmm with straight mixed excitation,”
in INTERSPEECH, 2006.

[40] A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” 2016.

[41] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, “Voice conversion
through vector quantization,” Journal of the Acoustical Society of Japan
(E), vol. 11, no. 2, pp. 71–76, 1990.

[42] K. Shikano, S. Nakamura, and M. Abe, “Speaker adaptation and
voice conversion by codebook mapping,” in 1991 IEEE International
Symposium on Circuits and Systems (ISCAS), 1991, pp. 594–597 vol.1.

[43] A. B. Kain, “High resolution voice transformation,” PhD Thesis, 2001.
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