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Abstract

Analyzing cybersecurity texts is the task of identifying malware actions and determin-
ing their characteristics in the documents about cybersecurity threats, utilizing natural
language processing (NLP) techniques. This task consists of four subtasks: (1) iden-
tifying malware-related sentences (i.e., sentences which describe malware actions) from
cybersecurity texts, (2) identifying token labels (i.e., Malware Action, Subject of Action,
Objectof Action, and Modifier of Action) in malware-related sentences, (3) identifying
relation labels (i.e., Subject-Action, Action-Object, Action-Modifier, and Modifier-Object)
between tokens, and (4) classifying malware actions into attribute labels. The attribute
labels are defined and enumerated in the Malware Attribute Enumeration and Character-
ization (MAEC). Specifically, based on malware’s behaviors and attack patterns, MAEC
classifies malware actions into four categories, including ActionName, Capability, Strate-
gicObjectives and TacticalObjectives ; each category includes multiple malware attribute
labels: 211 ActionName labels, 20 Capability labels, 65 StrategicObjectives labels, and
148 TacticalObjectives labels, results in a total of 444 attribute labels.

Recently, researchers in several disciplines have acknowledged the superior performance
of graph neural networks (GNNs). Many NLP researchers also employed GNNs in multiple
NLP tasks and achieved promising performance. Besides, pretrained language models are
nowadays widely employed because of their robustness in language understanding. In our
research, we aim to study on how GNN models and pretrained models can be employed
for the task of analyzing cybersecurity texts. Specifically, in this research, we address
all four subtasks. The experiment results demonstrate that our proposed models for the
subtask 1 and subtask 2 achieve state-of-the-art performance on the MalwareTextDBv2.0
dataset, which is the largest dataset for malware characteristic analysis.

In the future, we would like to further investigate other methods for subtask 3 and
subtask 4. Specifically, in subtask 3, although the rule-based method produces good
performance, a supervised model with the help of the self-labeled techniques should benefit
the task of identifying relation labels. For the subtask 4, the unannotated data may be
exploited to improve the performance of the classifiers.

Keywords: cybersecurity texts, analyzing cybersecurity texts, cybersecurity text anal-
ysis, graph neural networks, pretrained language models, deep learning
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Chapter 1

Introduction

1.1 Cybersecurity Texts Analysis Task

Along with the strong development of the computer era, malware is also released with dif-
ferent malicious purposes. The first types of malware discovered include Creeper (1971),
Wabbit (1974), Elk Cloner (first malware on a Mac, released in 1982), Brain (first mal-
ware on a computer running MS-DOS, released in 1986). In fact, while computer software
is increasingly developed, malware types are also becoming more complex and difficult to
detect. With the advent and popularity of the Internet (1983), the spread of malware to
personal computers as well as the design of malware to infiltrate the computer systems
of organizations was inevitable. There are many examples of malware attacking personal
computers and causing serious damage. For example, the ILOVEYOU malware (2000) is
said to have been able to reach more than 50 million computers in just 10 days, causing
damage estimated in the billions of dollars; or the Blaster malware (2003) has infected
hundreds of thousands of computers, causing damage estimated from 2 to 10 billion USD.
One of the most dangerous threats to the network of organizations is advanced persistent
threat (APT). The sponsors of APTs are typically political organizations, where they
aim to attack other political or economical organization via illegeally accessing to vic-
tim’s computer network, self-covering for not be detected, then performing exploiting or
disrupting actions. For example, the existence of Regin (an APT developed by a nation-
state actor, which is the National Security Agency of the U.S.) was disclosed in 2014. It
is known to attack Belgian telco Belgacom, the German government, and Russian search
giant Yandex.

The behaviours as well as the attack methods of malware are documented in many
APT reports by cybersecurity companies (e.g., ESET, FireEye, and Kaspersky). Because
behaviors and attack patterns of malware are diverse, there should be a specification to
distinguish them. Malware Attribute Enumeration and Characterization [17] (MAEC) is
introduced for that purpose. It classifies malware into a total of four categories, which
are ActionName, Capability, StrategicObjectives and TacticalObjectives. Each of the four
categories includes many malware attribute labels. Note that a malware may belong
to more than one attribute label. The number of attribute labels for each category is

7



provided as follows:

• Category ActionName contains 211 attribute labels.

• Category Capability contains 20 attribute labels.

• Category StrategicObjectives contains 65 attribute labels.

• Category TacticalObjectives contains 148 attribute labels.

The first dataset about malware characteristics analysis using NLP techniques is the
MalwareTextDB [21] dataset. This dataset is relatively small as only 39 APT reports are
chosen to be annotated. After that, a next version of this dataset, MalwareTextDBv2.0,
was published, which further annotated 46 APT reports (so that the dataset contains
85 annotated APT reports). This dataset also provides hundreds of processed-but-not-
annotated APT reports. MalwareTextDBv2.0 is known as the largest dataset for the task
of analyzing malware characteristics. A shared task named SecureNLP [34] (Semantic
Extraction from CybersecUrity REports using Natural Language Processing) is held by
SemEval to encourage the research on this analyzing task. SecureNLP includes four
subtasks as follows:

• Subtask 1: Identify malware-related sentences (i.e., sentences which describe mal-
ware actions) from APT reports

• Subtask 2: Identify token labels (i.e., Malware Action, Subject of Action, Object
of Action, and Modifier of Action) in malware-related sentences

• Subtask 3: Identify relation labels (i.e., Subject-Action, Action-Object, Action-
Modifier, and Modifier-Object) between tokens

• Subtask 4: Classify malware actions into attribute labels.

Figure 1.1 shows some examples of how the sentences are annotated for the four sub-
tasks. Specially, in the last example (the sentence is ”an HTTP POST request uploading
a segment from edg6EF885E2.tmp”), the malware action ”uploading” is determined to
belong to all four categories (Capability, ActionName, StrategicObjectives and TacticalOb-
jectives). In the annotation process, a malware action can be annotated in more than
one categories, however, in each category, this action is classified to only one malware
attribute label.

This research aims to analyze cybersecurity texts by addressing the four subtasks pro-
posed by the SecureNLP shared task, on the MalwareTextDBv2.0 dataset. Specifically,
we study on how Graph Neural Network (GNN) models may be employed in the task
of cybersecurity texts analysis. Besides, we also employ machine learning models (e.g.,
Support Vector Machines (SVM)) and pretrained language models (e.g., BERT [5]) to
our models.

8



Figure 1.1: Annotation examples for the four subtasks

1.2 Graph Neural Networks for Natural Language

Processing

In the past decade, deep learning research has developed rapidly and strongly, leading to
great success when applied to areas such as computer vision or natural language process-
ing. Deep learning can extract complex patterns from the data thanks to their expressive
power. However, initially, studies focused only on extract latent representations for the
data in the Euclidean space (e.g., images, texts). Meanwhile, graph-structured data ap-
pears and is observable everywhere. For example, the relationships of friends on social
networking websites can be represented by social networks, urban road maps can be rep-
resented by traffic networks, and the relationships between atoms can also be represented
by a graph. However, graph-structured data is non-trivial because they (1) have irregular
structures (unlike images or texts), (2) are heterogeneity and diversity (they may contain
multiple types of relationships and properties), (3) may be large-scale (eg, e-commerce
graphs, social networks), (4) integrated interdisciplinary knowledge (properties of graphs
can become very different from graphs in different disciplines: chemistry, biology, or soci-
ology). Over the past five years, the research community has witnessed rapid growth in
GNN approaches, ranging from graph recurrent neural networks [46, 30], graph convolu-
tional networks [4, 16, 41], graph autoencoders [37, 39, 47], graph reinforcement learning
[8, 20], and graph adversarial methods [42, 7]. Those approaches were developed not only
for problems with natural graph-structured data, but also for data such as texts (usually
represented by a sequence of tokens) by turning that data into graphs-structured data.

The topic of GNNs for NLP has drawn attention from the research community. Gener-
ally, given the texts, the process of tackling an NLP task utilizing GNNs goes through the
following steps: (1) graph construction, (2) graph representation learning, and (3) task
addressing (Figure 1.2).
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Figure 1.2: GNNs for NLP

1.3 Contributions

In this research, we tackle all four subtasks. We achieve state-of-the-art F1 score for the
subtask 1 (identifying malware-related sentences) by enriching the features of sentences
utilizing external knowledge, with the help of a GNN architecture. For the subtask 2, we
implement a BERT-CRF model, which leverages the power of BERT [5] and conditional
random field (CRF) [18] to identify token labels. We also exploit the predictions of our
model for subtask 1 to help produce the predictions for subtask 2, and we achieve state-
of-the-art results for subtask 2. For the subtask 3, we simply apply rules for identifying
relation labels. Specially, we construct a graph of the identified tokens and their relations
and provide a visualization. For the subtask 4, we propose a model that employs a GNN
architecture for tackling the task of classifying malware actions into attribute labels.

1.4 Thesis Outline

We organize the structure of this thesis into six parts. The first chapter introduces the
thesis. The next four chapters consecutively presents the four subtasks. After that, the
last chapter concludes our work. Specifically, the remainder of the thesis is organized as
follows:

Chapter 2 presents our work for subtask 1. We start with the observation of an
external knowledge that can help a classifier on classifying malware-related sentences.
Next, we propose two methods of leveraging the external knowledge to enrich the features
of sentences. After that, we show experimental results and give a conclusion.

Chapter 3 is to address subtask 2. Firstly, we present the architecture of the BERT-
CRF model that we propose to tackle subtask 2. Then we provide experimental results
of the model with and without the help from predictions of subtask 1.

Chapter 4 mainly focuses on how we apply rules for the task of identifying relation
labels (subtask 3). We also provide a visualization of the constructed graph from subtask
2 and subtask 3.

Chapter 5 describes our method for classifying malware actions into attribute labels
(subtask 4). Firstly, we present how the graphs are constructed from the texts. Secondly,
we present how a GNN model can be employed to tackle the subtask 4. After that, we
show the results of the our experiments.

Chapter 6 shows conclusions and our future works.

10



Chapter 2

Subtask 1: Identify malware-related
sentences

2.1 Introduction

The subtask 1 is to identify malware-related sentences from the corpus. In other words,
given a sentence from an APT report, we need to classify if this sentence is malware-related
or not.

In the competition, most of the teams utilized neural network approaches to address
subtask 1. While the models following those approaches achieve relatively good perfor-
mance, a team proposed to utilize a Naive Bayes classifier and can achieve competitive
results. This fact indicates that for a challenging task like this subtask, we should focus
on choosing features for the sentence representation instead of employing complex neural
network models. The previous approaches are as follows:

• Team Villani [24] utilized BiLSTM [11] and attention mechanism [25] where they
use Glove embeddings [33] to initialize the word embeddings. They got the highest
F1 score with F1 score of 57.14%.

• Team Flytxt NTNU [36] ensembled a Naive Bayes classifier with a CRF model.
They was the runner-up with the F1 score of 56.87%.

• Team Digital Operatives [2] utilized a passive aggressive classifier [3], and achieve
F1 score of 51.71%.

• Team TeamDL [28] followed [15] to build a convolutional neural network (CNN) on
Glove vectors. They achieve F1 score of 50.19%.

• Team UMBC [32] utilized a Multi-Layer Perceptron (MLP) model, and achieve F1
score of 17.73%.

• As the outputs of subtask 1 can be generated based on the outputs of subtask 2,
the two teams DM NLP [26] and HCCL [9] first tackled subtask 2, then produced

11



Table 2.1: Descriptions and revelant phrases of some attribute labels in ActionName

Category No. Name Description Relevant Phrases

ActionName
000 send dns query Specifies the defined Action of sending

a DNS query.
[DNS][query][send]

001 send reverse dns
lookup

Specifies the defined Action of sending
a reverse DNS lookup.

[DNS][reverse lookup][send]

002 check for kernel
debugger

Specifies the defined Action of checking
for the presence of a kernel debugger.

[debug][kernel debugger]

predictions for subtask 1. They achieved 52.08% and 51.72% on F1 score, respec-
tively.

• There are two teams (NLP Foundation and NanshanNLP) who did not provide
reports on their methods. As reported in [34], they achieved 49.11% and 15.38% on
F1 score, respectively.

The reported results are measured on the MalwareTextDBv2.0 dataset where the teams
solely used the annotated APT reports. However, there is a document in the dataset,
named Attribute Reference Guide, which we found containing a short description and a
list of relevant phrases for every of 444 attribute labels. We found those information may
be helpful for the subtask 1. In this section, we propose to enrich the features of sentence
representation with two methods:

• The first method determine the influence of the relevant phrases to the words of a
sentence.

• The second method heuristically determine how likely a sentence belongs to each of
444 attribute labels.

The experimental results show that by concatenating our enriched features, we gain
more than 9% of F1 score comparing to just using base features, where the classifier is a
SVM model.

For this subtask, our contributions are two-fold:

• Proposes to utilize external knowledge for the purpose of enriching features of a sen-
tence, leading to overcomes the limitation of classifying malware-related sentences
based solely on annotated APT reports,

• Designs methods for leveraging the knowledge from the Attribute Reference Guide,
which is a source of external knowledge, and achieves the highest F1 score on the
malware-related sentence classification task.

12



2.2 Related Works

2.2.1 Datasets of Annotated Malware Reports

The first dataset about malware characteristics analysis using NLP techniques is the
MalwareTextDB [21] dataset. This dataset is relatively small as only 39 APT reports are
chosen to be annotated. After that, a next version of this dataset, MalwareTextDBv2.0,
was published, which further annotated 46 APT reports (so that the dataset contains
85 annotated APT reports). This dataset also provides hundreds of processed-but-not-
annotated APT reports. MalwareTextDBv2.0 is known as the largest dataset for the task
of analyzing malware characteristics.

2.2.2 Graph Attention Networks

Graph Neural Networks (GNNs) have received great attention from the research commu-
nity in recent years. Many GNN architectures (e.g., Graph Convolutional Networks [16],
GraphSAGE [12], and GAT [40]) were proposed for several tasks (e.g., node classification,
link prediction) on graph-structured datasets, in both transductive and inductive settings.
GATs (Graph ATtention networks) stand out of those architectures with an impressive
performance on an inductive node classification task on a PPI (protein-protein interac-
tion) dataset. It achieved the highest accuracy of 97.3% on this dataset while previous
approaches achieved 76.8% or less. This fact demonstrates that GATs can effectively
learning node representations.

GATs is constructed by stacking masked self-attentional layers. The masked self-
attentional layers allow each node to implicitly determine weights to the nodes in its
neighborhood via attending to its neighborhoods’ features. Besides, the multi-head at-
tention is employed for learning self-attention. The features of a node is transformed after
feeding through a layer as:

~h
′

i =

K∥∥∥
k=1

σ

(∑
j∈Ni

αk
ijW

k~hj

)
(2.1)

Specially, as the outputs of the final layer are used for classification, GATs employ aver-
aging instead of concatenation for the final layer as follows:

~h
′

i = σ

(
1

K

K∑
k=1

∑
j∈Ni

αk
ijW

k~hj

)
(2.2)

where ‖ denotes concatenation, K is the number of attention heads, σ is a non-linearity,
Ni is the neighborhood of node i, αk

ij is a normalized attention coefficient calculated by

the k-th attention head, W k is the corresponding input’s weight matrix.
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2.3 Methods

In this section, we propose two methods that leverage the knowledge (specifically, the
lists of relevant phrases) from the Attribute Reference Guide to enrich the features of a
sentence.

• The first method is based on the assumption that the likelihood of a sentence to
be a malware-related sentence should be higher if the words in the sentence pay
more attention to the set of relevant phrases taken from the list of relevant phrases
(in this set, all phrases are unique). Therefore, after acquiring the relevant phrase
set, a GAT model is employed on a graph which is constructed based on the words
in the sentence and the phrases from the set of relevant phrases, for the purpose
of producing a weak label for the sentence. We use this weak label as an enriched
feature.

• The second method is based on the assumption that if a sentence contains high
percentage of relevant phrases in the list of relevant phrases of an attribute label,
then this sentence has a high chance to belong to this attribute label. To this end, we
design a function to measure how likely a sentence should belongs to an attribute
label. There are a total of 444 enriched features corresponding to 444 attribute
labels.

A high-level overview of our approach is shown in the Figure 2.1.

Sentence

Lists of
Relevant
Phrases

Bag-Of-Words
Model

Weak Label
Feature Model

Attribute Label
Weights
Model

SVM

Malware-related Sentence

Not Malware-related Sentence

Concat

Figure 2.1: A high-level overview of our approach

2.3.1 Data Preprocessing

We perform a data preprocess phrase to all the sentences in the data as follows:

• non-alphanumeric removal

• character lowercased

• stopwords removal
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2.3.2 The Classifier and the Base Features

As aforementioned, choosing features for representing a sentence should be focused, not
employing complex classifiers. For that reason, we utilize support-vector machine (SVM),
a traditional machine learning (ML) model, as the classifier. Regarding the kernel of this
model, we choose the Radial Basis Function (RBF) kernel. For the base features, we use
BOW features. After producing the enriched features, we will concatenate them to the
base features. Regarding the hyperparameters used for the SVM classifier, we perform
two-step grid search, then choose based on the model’s performance on the development
set.

2.3.3 Method 1: Determining Weak Labels for Sentences

Each malware attribute label in the Attribute Reference Guide has several relevant phrases.
In fact, many phrases exists in more than one relevant phrase list (each list corresponds
to an attribute label). After remove duplicating phrases, we obtain 444 unique relevant
phrases. Then, for a sentence, a graph is constructed which contains word nodes (i.e.,
the words from the sentence), and phrase nodes (i.e., the phrases in the obtained rele-
vant phrase set). The constructed graph is undirected. Regarding constructing edges, we
construct as follows:

• Link word nodes with phrase nodes,

• Self-loop for all nodes (in such a way, a node can attend to itself, so that the node
may retain its own information for the next layer of GATs),

• Link all word nodes together (to that the graph contains intra-sentence information).

We provide an example in Figure 2.2 with the sentence ”They work together to gain access
to their targets and steal data”, showing how the edges are constructed.

The constructed graph will be fed through a GAT model for the task of node classifica-
tion. In here, we describe how we design node labels. As a way to identify malware-related
sentences, if a sentence describes a malware action or more, then this sentence is classified
as a malware-related sentence. Unfortunately, we cannot extract the tags for malware
actions based on the annotated data as it does not provide such information. The anno-
tated data only provides the label of the whole sentence, but not for the malware action
in this sentence. Hence, the tags for malware actions are heuristically created as follows:

• For a malware-related sentence, we use NKTK1 to obtain Part-Of-Speech (POS) tags
of words in the sentence. After that, we assign positive label to all the word nodes
corresponding to the words that have POS tag beginning by ”VB” (i.e., indicating
a verb), while those with other kind of tags are assigned with negative label.

• For a non-malware-related sentence, we also get POS tags, then assign negative
label to all word nodes.

1https://www.nltk.org/
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After the graph is constructed, we employ a GAT model to implicitly learn the node
representation on the node classification task. The trained GAT model shall be used to
predict nodel labels in the testing phase. We use the predictions to obtain the weak label
of a sentence as follows:

• If one or more positive label is predicted for word nodes, we assign the value 1 for
the weak label.

• Otherwise, we assign the value 0 for the weak label.

Then, we concatenate the weak label to the base features (BOW features) to help address-
ing the malware-related sentence classification task.

2.3.4 Method 2: Generating Attribute Label Weights for Sen-
tences

As mentioned above, if a sentence describes a malware action or more, then this sentence
is classified as a malware-related sentence. In our task, the malware action should be
determined to be in at least one malware attribute labels (among 444 attribute labels).
As shown in the Attribute Reference Guide, there are a short description about malware
malware behavior and a list of relevant phrases, for each attribute label. In this method,
we assume that the sentence is likely to be classified into an attribute label if this sentence
contains all or almost relevant phrases of an attribute label. Based on this assumption,
we design a formula to calculate a score si (1 ≤ i ≤ 444), demonstrating how likely a
sentence is classified to the attribute label i. This formula is designed for a sentence S as
follows:

si =
1

‖Pi‖
∑
pj∈Pi

f(pj, S) (2.3)

where Pi indicates attribute label i’s list of relevant phrases, ‖Pi‖ specifies the number of
phrases in the list Pi, and f(p, S) is defined as a function that returns 0 if the phrase p is
not in the sentence S and returns 1 otherwise.

The scores si (1 ≤ i ≤ 444) is then concatenated to the base features and the weak label
feature, so that the representation of a sentence is enriched by two methods.

2.3.5 Training and Predicting

After concatenation of the enriched features from the two methods for the sentences in the
dataset, we use a SVM model to train. For the hyperparameters nvocab, C, γ, we perform
a two-step hyperparameter search, then pick the values of hyperparameters based on the
model performance on the developement set. After that, we use the SVM model with the
picked hyperparameters to test on the test set.
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Figure 2.2: Example of how the edges are constructed

2.4 Experimental Results

2.4.1 Data

We use the data split for training, development, and test data of organizer of the Se-
cureNLP competition. Data statistics on the data is shown in Table 2.2.

2.4.2 GAT Hyperparameters

As suggested in [10], we set the GAT model with 3 layers, where the number of heads for
the layers are 4, 4, 6, respectively. The number of hidden features is set to 256. We train
the model for 200 epochs with early stopping.

2.4.3 Hyperparameter Choosing for SVM

After the preprocessing phase, we obtain 12, 975 words from 9, 424 training sentences.
In here, we present a two-step hyperparameter search to find an appropriate setting for
nvocab (number of words in the BOW vocabulary), C (regularization parameter of the
SVM model), and γ (kernelcoefficient for RBF). (We also conducted experiments with
SVM model with linear kernel, but the average performance of the same settings are
consistently lower than those with RBF kernel, so in this section, we only present about
SVM with RBF kernal.) Since the range of searching for the value of nvocab, C and γ is
wide, we employ the two-step grid search as follows:

• The first grid search shall search on a wide range of values, to find a smaller searching
range, where the performance on the developement set is stable and high comparing
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to all other ranges.

• The second grid search shall perform grid search in the specified smaller range to
find the most appropriate setting, choosing based on tuning on the development set.
This setting shall be applied to the test data.

Figure 2.3: First hyperparameter search: Average F1 score on the development data

In the first grid search, we perform searching with the following hyperparameters:

• nvocab ∈ {1000, 2000, 3000, ..., 11000, 12000, 12975}

• C ∈ {1e−3, 1e−2, 1e−1, 1, 5, 10, 50, 100, 1000}

• γ ∈ {1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1, 10, 100}

Figure 2.3 demonstrates the average of the performance of the SVM model on the
development set. We can see that, when nvocab = 2000, this average value is highest. In
case nvocab = 2000, we found the settings of C in range [1, 5], and γ in range [1e−5, 1e−4]
would be most appropriate to further search. Thus, in the second grid search, we set
nvocab = 2000, and further search with:

• C ∈ {1, 2, 3, 4, 5}

• γ ∈ {1e−5, 3e−5, 5e−5, 7e−5, 9e−5}
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Table 2.2: Data statistics

Data # sentences

# non-
malware
-related

sentences

# malware-
related

sentences

% malware-
related

sentences

Training 9424 7220 2204 23.39
Development 1213 1134 79 6.51
Test 618 528 90 14.56

Table 2.3: Experimental results for subtask 1

Model Acc Prec Recall F1
Villani [24] 54.47 47.76 71.11 57.14
Flytxt NTNU [36] 85.28 49.59 66.67 56.87
DM NLP [26] 79.45 39.43 76.67 52.08
HCCL [9] 86.41 53.57 50.00 51.72
Digital Operatives [2] 79.45 39.31 75.56 51.71
TeamDL [28] 79.13 38.46 72.22 50.19
NLP Foundation 76.86 36.13 76.67 49.11
UMBC [32] 41.42 11.14 43.33 17.73
NanshanNLP 71.52 13.56 17.78 15.38
SVM on BOW + Enriched Features 87.22 55.56 61.11 58.20

Table 2.4: Ablation Experiments

Features Acc Prec Recall F1
BOW 87.54 60.66 41.11 49.01
BOW + Weak Label Feature 87.54 58.23 51.11 54.44
BOW + Attribute Label Weights 86.89 54.55 60.00 57.14
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After performing two extensive grid searches, we found the setting with nvocab = 2000,
C = 1, and γ = 9e−5 to be the most appropriate in our case, where it reached the highest
F1 score on the development set. This setting is used for the test set. As we can see in
Table 2.3, the SVM model on our enriched features achieves the state-of-the-art (SoTA)
F1 score, surpasses the previous SoTA achieved by team Villani by 1.06%.

For investigating the contribution of enriched features generated by the two proposed
methods, ablation experiments are performed (Table 2.4). We can see that when we use
only the base features (BOW features), the F1 score is only 49.01%. However, with the
concatenation of the weak label feature, we gain 5.43% of F1 score. This value is 8.13% if
we concatenate the attribute label weights instead of the weak label feature. Especially,
if we concatenate both types of enriched features, the improvement is 9.19%, where our
F1 score achieves 58.20%.

2.5 Conclusion

In this chapter, two methods are presented for the purpose of exploiting knowledge in
an external document (the Attribute Reference Guide) to produce enriched features for
sentences. One method employs GATs to obtain a weak label for a sentence, where
the other produce 444 weights corresponding to 444 attribute labels, to further help
representing the sentences. With those features, we gain an improvement of about 9%
comparing to the performance of our SVM model without those features.
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Chapter 3

Subtask 2: Identify token labels

3.1 Introduction

In subtask2, special tokens in a relevant sentence had to be identified and labeled with
one of the following token labels (refer to Figure 3.1):

• Action: This refers to an event, such as “implements”, “deploys”, and transferred”.

• Entity: This refers to the initiator of the Action such as “Babar” and “they” or
the recipient of the Action such as “an obfuscation technique”, “privilege-escalation
tools”, and “the data”; it also refers to word phrases that provide elaboration on
the Action such as “hide certain API names” and “external FTP servers”.

• Modifier: This refers to tokens that link to other word phrases that provide elabo-
ration on the Action such as “to”.

Figure 3.1: Annotation examples for the four subtasks

In the competition, many team submitted their outputs for subtask 2. Team Fly-
txt NTNU [36] utilized CRF [18] to address this subtask, following a two-step method:
firstly, they determine if a token is a mention token (i.e., a token is either Action, Entity, or
Modifier), then they classify those tokens into their specific token labels. Team DM NLP
[26] proposed a hybrid approach, where they employed BiLSTM-CNN-CRF, following by
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the Bi-directional LSTM-CNNs-CRF model in [27]. They made use of multiple other
features, including part-of-speech (POS), dependency labels, chunk labels, NER (Named
Entity Recognition) labels, and brown clustering labels. Team HCCL [9] tackled subtask
2 by employing the BiLSTM-CNN-CRF model with the use of POS featuers. Team Dig-
ital Operatives [2] proposed a linear CRF approach that leverages features from POS,
lemma, dependency links, and bigrams. Team TeamDL [28] utilized a CRF model with
multiple features, such as POS tags, N-grams, word lemmas, and word shape features.
Team UMBC [32] also employed CRF model with multiple features, quite similar but
less than those used by team TeamDL. Regarding the results, Team DM NLP achieved
the best results on both metrics with F1 normal score is 29.23% and F1 relaxed score is
39.18%.

It is understandable that the CRF approach are popular in the subtask 2 because
of its robustness for the task of sequence labeling. We also utilize the CRF approach
for our method, however, we implement it in an neural network manner as the deep
learning approach has demonstrated its outstanding performance on a large range of
pattern learning tasks. However, the limited data should be one major obstacle if we only
follow the above approach. So, we employ a BERT model to our method, so that we can
leverage its ability of language understanding. Specifically, we implement a BERT-CRF
model for the subtask 2.

In this chapter, we tackle subtask 2 by using BERT-CRF model with the support of
subtask 1’s result (which is produced a binary classification model). The results show
that this approach achieves the best results on both normal scores and relaxed scores on
subtask 2.

3.2 Related Works

3.2.1 Some Transformer-based Pretrained Models

Pretrained models have been widely used because of their robustness and effectiveness.
BERT can be considered one of the breakthrough in NLP when it was first released. After
that, many new models have been proposed to make BERT more robust and/or effective.
RoBERTa [31] proposes dynamic masking and removes the BERT’s Next Sentence Pre-
diction (NSP) task. They state that BERT is under-pretrained, and so they pretrained on
larger corpus for longer time, and make the pretrained models more robust comparing to
BERT models. AlBERT [19] proposed two techniques to not only lower the comsumption
of memory, but also increate the speed of training for the BERT model. It is known as
a lite version of BERT. DistilBERT [43] used a distillation technique, which reduced the
size of the model, while retaining almost its capability of language understanding and
being faster.
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3.2.2 CRF++

CRF++1 is a simple, customizable, and open source implementation of Conditional Ran-
dom Fields (CRFs) for segmenting/ labeling sequential data. It is designed for generic
purpose and will be applied to a variety of NLP tasks, such as Named Entity Recognition,
Information Extraction and Text Chunking.

3.2.3 HuggingFace’s Transformers

HuggingFace’s Transformers2 provides state-of-the-art general-purpose architectures for
Natural Language Understanding and Natural Language Generation with over thousands
of pretrained models. We used many of those models for subtask 2.

3.2.4 GCDT

GCDT (Global Context enhanced Deep Transition architecture) [23] if proposed for se-
quence labeling. GCDT deepens the state transition path at each position in a sentence,
and further assign every token with a global representation learned from the entire sen-
tence.

3.3 Method

While many teams in the competition chose to tackle subtask 1 and 2 separately, we
propose to train a binary classification model for Subtask 1 and BERT-CRF model for
the preliminary results of Subtask 2, after that, use the Subtask 1’s result to support
producing the final result of Subtask 2. Specifically, we will label all the tokens of the
sentences which are predicted as label 0 in subtask 1 as label ‘O’. Before training on
the BERT-CRF model, we preprocess the data so that all tokens are labelled in BIOES
format instead of BIO format. Figure 3.2 shows an overview of our approach for subtask
2.

BERT-CRF Token Label
Predictions Post-processing

Malware-related
Sentence

Predictions

Final
Token Label
Predictions

Figure 3.2: Our approach for subtask 2

1https://taku910.github.io/crfpp/
2https://github.com/huggingface/transformers
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We implement a BERT-CRF model to tackle with the sequence labelling task. The
BERT-CRF model is implemented based on the BERT model of HuggingFace’s Trans-
formers and the CRF layer by AllenNLP3. Figure 3.3 show the overview of the BERT-CRF
model.

CLS Tok 1 Tok 2 Tok N SEPInput

Text the data was transferred to external FTP servers

ECLS E1 E2 EN ESEP

C T1 T2 TN S

BERT

CRF

B I O O O

Figure 3.3: An overview of the BERT-CRF model

3.4 Experimental Results and Analysis

3.4.1 Experimental Results

We use bert-base-based as the pretrained model of BERT. The BERT-CRF model then is
finetuned on the data for subtask 2, and then is used for predicting token labels. Next,
we use predictions of subtask 1 as a post-processing phase. As mentioned above, all the
tokens of the sentences which are predicted as label 0 in Subtask 1 will be labelled as ‘O’.
Table 3.1 shows the experimental results of Subtask 2. The experimental results show
that the performance of our BERT-CRF model is competitive with the performance of
the hybrid model proposed by team DM NLP. However, with the help of predictions of
our model for subtask 1, we achieve better performance on both normal F1 score and
relaxed F1 score. Specifically, we improve 0.91% on normal F1 score, and up to 3.70% on
relaxed F1 score comparing the the older state-of-the-art on subtask 2.

3https://github.com/allenai/allennlp
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Table 3.1: Experimental results of subtask 2
Method F1 (Normal Scores) F1 (Relaxed Scores)

DM NLP 29.23 39.18
Flytxt NTNU 27.56 36.17
NLP Foundation 27.52 38.62
TeamDL 25.3 35.81
UMBC 22.2 31.98
HCCL 21.72 37.6
NanshanNLP 21.18 28.03
Digital Operatives 15.51 24.96
BERT-CRF (Ours) 28.75 39.04
BERT-CRF with post-processing (Ours) 30.14 42.88

To further compare our BERT-CRF model with other models for sequence labelling, we
also report the results of multiple Transformer-based models (BERT, RoBERTa, AlBERT,
DistilledBERT), as well as CRF++ and GCDT. Table 3.2 shows the experimental results.
We can see that, except GCDT, other models (many Transformer-based pretrained models
and the CRF++ model) perform with not-so-competitive performances. It is noteworthy
to mention that GCDT achieves better results comparing to team DM NLP, however,
with a small margin.

In all experiments which involve a Transformer component, we set the max sequence
length to be 128.

3.4.2 Analysis

Although our approach improves the performance comparing to previous approaches, the
results are still relatively low. We investigate on the causes of low experimental results.
Subtask 2 requires the participants to label tokens as “Entity”, “Action” or “Modifier”.
However, only the sentences that are classified as the relevant sentences for inferring
malware actions and capabilities should be labeled with the token label rather than ‘O’.
Even in those sentences, just a few tokens should be labeled with the token label rather
than ‘O’. Table 8 shows an example of gold label for the sentence ”The first binary payload
that lands on the system is relatively simple and serves as a method of yet again detecting
the operating system version and [. . . ]”. Furthermore, in some cases, the gold labels are
inconsistent. Figure 3.4, Figure 3.5 and Figure 3.6 give some examples.

3.5 Conclusion

The BERT-CRF model achieves the highest on subtask 2 with the support of the binary
classification model (from subtask 1). However, the results are still relatively low because
the models can not learn the latent restrictions on subtask 2.
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Table 3.2: Experimental results of other models for sequence labelling task
Method F1 (Normal Scores) F1 (Relaxed Scores)

BERT (bert-base-cased) 25.51 33.75
RoBERTa (roberta-base) 27.70 34.03
AlBERT (albert-base-v1) 26.48 34.11
AlBERT (albert-base-v2) 27.61 35.23
DistilBERT (distilbert-base-cased) 24.34 32.75
CRF++ with POS tags 23.16 36.26
GCDT with bert-base-cased embeddings 29.95 39.42

Figure 3.4: An example of two nearly identical sentences are annotated very differently
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Figure 3.5: An example of the case when entity’s descriptive word does not count toward
the whole entity
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Figure 3.6: An example of the case when the word “the” does not count toward the whole
entity
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Chapter 4

Subtask 3: Identify relation labels

4.1 Introduction

In subtask 3, participants were asked to identify the relation between the tokens. The
gold labels for the tokens are provided here due to the low performance of the initial
models on subtask 2. The relation labels are described as follows:

• SubjAction links an Action with its relevant Subject.

• ActionObj links an Action with its relevant Object.

• ActionMod links an Action with its relevant Modifier.

• ModObj links a Modifier with the Object that provides elaboration.

Figure 4.1 shows an example.
In the competition, no team participated in the subtask 3.

Figure 4.1: An annotation example

4.2 Visualization

In this section, we provide an visualization of the graph created by the tokens and their
relations. To construct a graph, we need nodes and edges. In this case, nodes are Entities,
Actions and Modifiers, and edges are the relations between them (one of the four relations:
SubjAction, ActionObj, ActionMod, ModObj ).
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Figure 4.2: An example about coreference issue

During the visualization phase, we face a coreference issue. Figure 4.2 gives an example
where the phrases in a same color refer to the same object, and they should be the same
node in the constructed graph. We utilize HuggingFace’s NeuralCoref 4.01) to address
this coreference issue. After that, each Entity, Action and Modifier will be a node in the
graph. To create edges, we apply rule-based method following [21] as follows:

• If a Modifier is followed by an Entity, a ModObj relation is predicted between the
Modifier and the Entity.

• If an Action is followed by an Entity, an ActionObj relation is predicted between
the Action and the Entity.

• If an Entity is followed by an Action of token length 1, a SubjAction relation is
predicted between the Entity and the Action.

• An ActionObj relation is predicted between any Action that begins with be and the
most recent previous Entity.

• An ActionObj relation is predicted between any Action that begins with is, was,
are or were and ends with -ing and the most recent previous Entity.

• An ActionMod relation is predicted between all Modifiers and the most recent pre-
vious Action.

This rule-based method was used as the baseline for subtask 3 [34]. The reported results
of the method is shown in Table 4.1. As we can see, with simple rules, the F1 score
achieves the number of 85.71%. Finally, we implement the visualization with pyvis2.

Figure 4.3 shows the overview of the visualized graph. As we can see, in the center of
the visualization, there are some subgraphs with much more links than the subgraphs near
the margin. It is because, in many cases, an Entity of one sentence can be the ”Object” of
of another sentence. Hence, the links continue to get longer. Figure 4.4 show an example
of the differences.

1https://github.com/huggingface/neuralcoref
2https://pyvis.readthedocs.io/
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Figure 4.3: The overview of the graph visualization

Table 4.1: Results of the rule-based method

Method Prec Recall F1
Rule-based baseline 85.60 85.83 85.71

4.3 Conclusion

In this section, we utilize the rule-based method [21] to create relation labels. After that,
we address the coreference issue to construct a graph and visualize it.
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Figure 4.4: Example of subgraphs with multiple edges or with a few edges
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Chapter 5

Subtask 4: Classify malware actions
into attribute labels

5.1 Introduction

For the malware action classification task, Word Annotation Embedding (WAE) [35],
inspired by the idea of word embedding [29], was introduced with the use of attribute-
label keywords in a semi-supervised learning paradigm to learn embeddings of words
and attribute labels. The learned embeddings were then used to feed into classifiers for
classification. Attribute-label keywords of an attribute label are the words associated with
this attribute label, determined via the MAEC specification and the annotated data.

Recently, researchers in several disciplines have acknowledged the superior performance
of graph neural networks (GNNs). Many NLP researchers also employed GNNs in multi-
ple NLP tasks, including text classification [45, 44, 22, 6], and achieved desirable results.
Among those models, HyperGAT [6] demonstrated its superiority in both text classi-
fication performance and computational efficiency by employing the idea of hyperedge
(hyperedge can link 2 nodes or more) and dual attention mechanism (based on attention
mechanism[25]). In [6], each document is represented by a hypergraph where the nodes
are the words and the hyperedges are constructed based on the relations between the
words. There are two types of hyperedges: sequential hyperedge and semantic hyperedge.
A sequential hyperedge connects consecutive words in a document. Specifically, in [6], all
the words of a sentence in a document is connected by a sequential hyperedge. Semantic
hyperedges are used to enrich the semantic context of the words. Specifically, a semantic
hyperedge connects words in a document if the words are topic-related (determined based
on latent topic mined via LDA [1]).

HyperGAT demonstrated its superior text classification performance on many datasets;
however, for a challenging task (e.g., malware action classification) on a low-resource
dataset (e.g., MalwareTextDB dataset), its performance may be limited. In that case,
the use of domain feature may help HyperGAT improve the classification performance.
Attribute-label keywords are demonstrated in [35] to carry essential information for clas-
sifying malware actions. Therefore, hyperedges constructed based on attribute-label key-
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words (called malware-attribute hyperedges) may be useful for HyperGAT on this task.
In this research, we (i) investigate the contribution of malware-attribute hyperedges, and
(ii) validate the superiority of sequential hyperedge to sequential normal-edge (edge that
connects two nodes) in HyperGAT for the task of malware action classification. Malware-
attribute hyperedges are hyperedges constructed based on attribute keywords. The de-
tails on hyperedge construction are described in Section 5.3. The experimental results
demonstrates that malware-attribute hyperedges consistently help improve classification
performance of HyperGAT, and hyperedge can embed more information than normal
edge.

The remainder of the chapter is organized as follows. Section 5.2 walks through related
work. Section 5.3 describes the methods. Section 5.4 presents the experimental results
and analysis. Finally, Section 5.5 concludes our work.

5.2 Related Works

MalwareTextDB dataset [21] is the first attempt to annotating malware-related texts for
analyzing malware characteristics using NLP techniques. As a baseline, a bag-of-words
model was used to represent token groups. After that, two machine learning models (i.e.,
linear support vector machine and multinomial Naive Bayes) were used for malware action
classification.

Roy et at. [35] introduced a system that learns the embedding of both words in APT
reports and attribute labels in the MAEC specification. First, based on the Malware-
TextDB dataset and the MAEC specification, each word in the dataset is heuristically
linked to several attribute labels. After that, based on the idea of word embedding, Word
Annotation Embedding (WAE) [35] is proposed for learning the embeddings. Specifically,
they link a word with its context words, but, in addition, they also link this word with its
attribute labels specified in the first step. They proposed employing label-aware negative
sampling (based on the idea of negative sampling) for learning the WAE model. Finally,
the learned embeddings were used as the input for SVM (Support Vector Machine)[13]
for classification task.

Although WAE can make use of attribute labels for the embedding learning process, it
shows no attempt to leverage long-distance relationship between words. In other words,
only the words inside a context windows size are considered during learning. However, in
case long-distance relationship between words contribute important information regarding
attribute label of the malware action, WAE will miss this feature. The long-distance
relationship issue can be addressed by using hyperedges, when we construct appropriate
hyperedges. HyperGAT framework allows improving node connection quality via adding
more hyperedges. It is noted that malware action classification can be a challenging task
due to the huge number of malware attribute and the low-resource dataset. Hence, adding
hyperedges that contain essential task-related information should have positive impact on
a task with limited resource.
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Figure 5.1: High-level view of the framework. Different hyperedges marked by different
color or line size.

5.3 Methods

In this section, we present about (1) investigating the contribution of malware-attribute
hyperedges in HyperGAT for the task of malware action classification, and (2) validating
the superiority of sequential hyperedge to sequential normal-edge.

5.3.1 HyperGAT for malware action classification

In this subsection, we present about constructing hypergraphs from malware-related sen-
tences, and leveraging HyperGAT network [6] for learning representations of hypergraphs.
Figure 5.1 illustrates a high-level view of the framework. The details are described as fol-
lows.
Hypergraph construction. Hypergraph is a special type of graph, in which its hyper-
edges can connect more than 2 nodes. For each malware-related sentence, a hypergraph
is constructed where the nodes are the words from the sentence and the hyperedges con-
sists of sequential hyperedges, semantic hyperedges, and malware-attribute hyperedges.
To construct sequential hyperedges, we slide a fixed-size sliding window over a malware-
related sentence, and connect words inside the window by a hyperedge each time. Seman-
tic hyperedges are used to capture the semantic context in a document. We follow [6] for
constructing semantic hyperedges. Specifically, we use LDA [1] to mine latent topics in a
document, then takes the top N words of each latent topic to represent that latent topic.
Next, words in the document that belong to any latent topic (i.e., in the list of words that
represents a latent topic) are connected by a hyperedge.

Hypergraph representation learning. After hypergraph construction, the hypergraph
is fed into HyperGAT for learning representation and classification.
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Figure 5.2: High-level view of HyperGAT. Best viewed in color.

5.3.2 HyperGAT

In this subsection, we present the HyperGAT network [6] for text classification. Figure
5.2 illustrates a high-level view of the network. The details are described as follows.
Hypergraph construction. Hypergraph is a special type of graph, in which its hyper-
edges can connect more than 2 nodes. For each document, a hypergraph is constructed
where the nodes are the words from the document and the hyperedges consists of se-
quential hyperedges and semantic hyperedges. In [6], 2 ways of constructing sequential
hyperedges are mentioned. The first way is to slide a fixed-size sliding window over a
document, and connect words inside the window by a hyperedge each time. The second
way leverages the document structural information by using a hyperedge to connect all
words in each sentence in the document. Semantic hyperedges are used to capture the
semantic context in a document. Specifically, HyperGAT uses LDA [1] to mine latent
topics in a document, then takes the top N words of each latent topic to represent that
latent topic. Next, words in the document that belong to any latent topic (i.e., in the list
of words that represents a latent topic) are connected by a hyperedge.
Dual attention mechanism. HyperGAT uses dual attention mechanism which consists
of node-level attention and edge-level attention. Specifically, hyperedge representations
are learned by node-level attention (i.e., for each hyperedge, its representation is learned
based on attention mechanism on the nodes connected to it), and node representations
are learned by edge-level attention (i.e., for each node, its representation is learned based
on attention mechanism on the hyperedges connected to it). The learned node repre-
sentations of the previous layer will be fed to the next layer as inputs. The document
representation is obtained via pooling the node representations in the last layer.
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Figure 5.3: Sentence length frequency distribution.

5.3.3 Investigation of the contribution of malware-attribute hy-
peredges

As mentioned above, HyperGAT employs sequential hyperedges and semantic hyperedges.
Regarding sequential hyperedge construction, for each document, all words in each sen-
tence are connected by a hyperedge. Semantic hyperedges are supposed to capture topic-
related high-order relations between words in a document. To this end, top K words with
the highest probabilities of each latent topic mined from the document by LDA [1] are con-
nected by a hyperedge. For the task of malware action classification, we keep the semantic
hyperedges and modify the method to construct sequential hyperedges. Specifically, in
this task, we consider sentences instead of documents (see Figure 5.3 for sentence length
frequency distribution). Therefore, as a way to leverage sequential context, we adopt a
fixed-size sliding window to acquire global word co-occurrence. In addition to the above-
mentioned hyperedges, we also construct malware-attribute hyperedges for each document
hypergraph following [35]. Specifically, because the relevant words carry important in-
formation to identifying attribute label, those relevant words – called MAEC keywords –
are collected for each attribute label. Besides, sentences of the same attribute label are
formed as a document and top N most informative words (ranked by tf-idf scores) of this
document are considered the document keywords corresponding to the attribute label.
MAEC keywords and document keywords of each attribute label are then combined to
get the attribute keywords of this attribute label. In the hypergraph construction phase,
for each malware-related sentence, in addition to sequential and semantic hyperedges, the
words which appear in any attribute keyword set are connected by a hyperedge, which
we call malware-attribute hyperedge.

5.3.4 Validation of the superiority of sequential hyperedge to
sequential normal-edge

As aforementioned, the sequential hyperedges are constructed by adopting a fixed-size
sliding window. To validate the superiority of sequential hyperedge to sequential normal-
edge, we set the window size equals 2 for sequential normal-edges and window size larger
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than 2 for sequential hyperedges.

5.4 Experimental Results

Data split and allocation. In 39 annotated documents of MalwareTextDB dataset,
there are 2,975 malware-related sentences, each of them contains one malware action.
As proposed by the dataset authors [21], we split the dataset into 3 parts for training,
validation and testing with the ratio 60% : 20% : 20%, respectively. It results in 23
documents for training, 8 documents for validation and 8 documents for testing. We also
conduct each experiment 5 times with random data split and allocation. After that, the
average F-scores are reported.
Classifiers. As aforementioned, a malware action (which corresponds to a malware-
related sentence) can be classified into more than one category, but for each of those
categories, there is at most one attribute label. Therefore, for each category (ActionName,
Capability, StrategicObjectives or TacticalObjectives), we build an n+1 -way classifier,
where n is the number of attribute labels in the category and 1 is the “other” label,
meaning the malware action is not classified into any attribute label of the category.
Experimental settings. Because the sentence lengths mainly distributed in the range
from 1 to 15 words and many of them are from 1 to 5 (see Figure 5.3), we set the window
size equals 3 for the sequential hyperedges. All the experiments are run with 10 epochs
with early stopping. We keep the parameters in HyperGAT [6]: L2 regularization = 10−6,
dropout rate = 0.3, top N keywords from each latent topic with N = 10, and the number
of latent topic equals the number of attribute labels.

5.4.1 Investigation of the contribution of malware-attribute hy-
peredges

Table 5.1 shows the experimental results of the classifiers with and without malware-
attribute hyperedges. The average F-scores of classifiers with malware-attribute hyper-
edges consistently surpass the average F-scores of classifiers without malware-attribute
hyperedges, suggesting that malware-attribute hyperedges contribute meaningful features
that HyperGAT can exploit. For example, the TacticalObjectives classifier with malware-
attribute hyperedges classifies the sentence “Malicious apps steal the passwords if they can
read the contents on clipboard” into the attribute label “DataTheft-steal web/network credential”
while the TacticalObjectives classifier without malware-attribute hyperedges classifies it
into “other”. The different if that there is an malware-attribute hyperedge connects two
non-consecutive words “steal” and “passwords”, which seems to be a high-value feature
for classification (although there is a sequential hyperedge which connects 3 consecutive
words “steal”, “the” and “passwords”, this hyperedge seems to be noisier than the hy-
peredge that connects 2 non-consecutive words “steal” and “passwords”). It indicates
that the ability of connecting non-consecutive attribute keywords of malware-attribute
hyperedges may strengthen the classifiers.
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Table 5.1: Experimental results of the classifiers with and without malware-attribute
(MA) hyperedges.

Average F-scores ActionName Capability StrategicObj TacticalObj
w/o MA hyperedges 70.04 51.56 39.49 39.53
with MA hyperedges 71.42 54.34 41.51 41.27

Table 5.2: Experimental results of the classifiers with sequential hyperedges and sequential
normal-edges

Average F-scores ActionName Capability StrategicObj TacticalObj
with normal-edges 70.18 52.70 39.83 39.95
with hyperedges 71.42 54.34 41.51 41.27

5.4.2 Validation of the superiority of sequential hyperedge to
sequential normal-edge

Table 5.2 shows the experimental results of the classifiers with sequential hyperedges or
sequential normal-edges. The average F-scores of classifiers with sequential hyperedges
consistently surpass the average F-scores of classifiers with sequential normal-edges, sug-
gesting that sequential hyperedges contribute more meaningful features that HyperGAT
can exploit than sequential normal-edges. For example, the TacticalObjectives classifier
with sequential hyperedges classifies the sentence “the malware logging their keystrokes”
into the attribute label “Spying-capture keyboard input” while the TacticalObjectives
classifier sequential normal-edges classifies it into “other”. The different if that the earlier
classifier can connect 3 words “logging”, “their”, “keystrokes” by a hyperedge to make a
more meaningful connections than the latter classifier did: connect “logging” with “their”,
and connect “their” with “keystrokes”. It indicates that in cases where a useful feature is
formed by the connections of many words, hyperedges is obviously surpass normal-edges.

5.5 Conclusion

In conclusion, in this chapter, we demonstrate how the malware-attribute hyperedges can
contribute to HyperGAT on the task of malware action classification, and validate the
ability of hyperedges to forming useful features.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this research, we address the four subtasks of analyzing cybersecurity texts:

• Subtask 1: Identify malware-related sentences (i.e., sentences which describe mal-
ware actions) from APT reports

• Subtask 2: Identify token labels (i.e., Malware Action, Subject of Action, Object
of Action, and Modifier of Action) in malware-related sentences

• Subtask 3: Identify relation labels (i.e., Subject-Action, Action-Object, Action-
Modifier, and Modifier-Object) between tokens

• Subtask 4: Classify malware actions into attribute labels.

For subtask 1, two methods are presented for the purpose of exploiting knowledge
in an external document (the Attribute Reference Guide) to produce enriched features
for sentences. One method employs GATs to obtain a weak label for a sentence, where
the other produce 444 weights corresponding to 444 attribute labels, to further help
representing the sentences. With those features, we gain an improvement of about 9%
comparing to the performance of our SVM model without those features, and we achieve
the SoTA performance on this task, on the MalwareTextDBv2.0 dataset.

For subtask 2, we propose an BERT-CRF model for the task of token labelling. With
the post-processing phase, which utilizes the our predictions from subtask 1, we achieve
the state-of-the-art performance for subtask 2 on the MalwareTextDBv2.0 dataset.

In subtask 3, we follow the rules designed in [21] to generate relation labels. After that,
we address the coreference issue to construct a graph and visualize it.

For subtask 4, we propose to employ a GNN model for the task of malware action
classification.

The experiments demonstrate the promising results of neural networks (in general) and
graph neural networks (in particular) for the task of analyzing cybersecurity texts.
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6.2 Future Work

Based on the promising results of this thesis, we would like to further investigate:

• Subtask 3: Identify relation labels: The current approach utilizes a rule-based
method. This approach has some drawbacks: it requires hand-crafted rules, and is
inflexible (as the set of rules is fixed). An neural network approach can be employed
for this subtask. One possible direction is to employ supervised learning, where the
model has the ability to learn latent features from the annotated data - which may
result in a more flexible relation extraction model. In case the annotated data is
low-resource, self-labeled techniques [38] should be helpful as they allow a not-fully-
converge model (which is being trained on gold data) to make predictions for the
purpose of generating silver data.

• Subtask 4: Classify malware actions into attribute labels: As the anno-
tated data for this subtask is not plentiful, the utilization of the unannotated data
(which can be easily crawled from the Internet) should benefit the classification
performance. A BERT-like paradigm [14] is proposed which allows pretraining and
finetuning for graph-structured data, however, the knowledge transfer phase of this
paradigm is not always positive: it may result in negative transfer in cases where
the pretraining tasks and the finetuning task are not closely related. We would like
to investigate how the graphs can be constructed from cybersecurity (unannotated
and annotated) texts that ensures positive transfer.
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