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Abstract

Today, software systems permeate every part of our lives. Software systems
have become an indispensable part of our lives. However, the number of re-
ports of system failures caused by software systems has been increasing more
and more. While the technology to develop software systems is advancing
day by day, the technology to assure the quality of the software systems is
not keeping pace. Since software systems are expected to play an increas-
ingly important role in the future, there is an urgent need to establish new
quality assurance techniques. One of the techniques to assure the quality
of software systems is formal method. Formal methods can be divided into
formal specification and formal verification, and formal verification can be
further divided into model checking and theorem proving. Formal methods
are one of the most promising techniques to assure the quality of software
systems, but they are not yet widely used in software development. To make
it popular, we need to increase the number of cases where formal methods
are applied. Mutual exclusion is an important issue in the creation of secure
software systems. The mechanism to achieve mutual exclusion is called mu-
tual exclusion protocols. In this study, we formally verify that three mutual
exclusion protocols (TAS protocol, Qlock protocol, and Anderson protocol)
enjoy the mutual exclusion property. TAS protocol uses an atomic instruc-
tion test & set, Qlock protocol is an abstract version of the Dijkstra binary
semaphore, and Anderson protocol is an array-based mutual exclusion pro-
tocol. For each protocol, the formal verification is conducted in two ways:
(1) by writing proof scores in CafeOBJ, an algebraic specification language,
and (2) by using CafeInMaude Proof Generator (CiMPG) and CafeInMaude
Proof Assistant (CiMPA). Proof scores are programs written in CafeOBJ to
conduct formal proofs. CafeInMaude is the world’s second implementation
of CafeOBJ in Maude that is a sister language of CafeOBJ. CafeInMaude is
equipped with CiMPG and CiMPA. CiMPG takes proof scores and gener-
ates proof scripts that can be fed into CiMPA. While conducting the formal
verification of Anderson by writing proof scores in CafeOBJ, we encountered
a situation such that our proof attempt did not seem to be convergent: it
seemed necessary to us an infinite number of similar lemmas. To tackle the
situation, we have introduced an auxiliary variable into Anderson, where an
auxiliary variable does not affect the behaviors of Anderson. We describe
the situation in detail in the report. We have learned some lessons from the
case studies and summarize the lessons in the report. In particular, by tack-
ling the formal verification of mutual exclusion protocols with two different



approaches, manual proof by proof scoring and automatic proof by using
CafeInMaude, I was able to understand the advantages and disadvantages
of each approach. And, I was able to understand firsthand why they have
not yet penetrated into the field of software system development, Although
formal methods have been attracting attention as an effective technique for
quality assurance of software systems. Since the purpose of this case study
was to find out the reason, this is the most important lesson I learned from
this case study. We also mention some pieces of our future work. For ex-
ample, we do not know whether it is mandatory to introduce an auxiliary
variable into Anderson so that we can formally verify that Anderson enjoys
the mutual exclusion property. If so, we would like to clarify why we need
to do so. Otherwise, we would like to complete the formal verification of
Anderson without introducing any auxiliary variables.

Keywords: software quality assurance, formal methods, theorem proving,
mutual exclusion protocols, auxiliary variable
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Chapter 1

Introduction

1.1 Motivation
The role of software in information systems has increased with the emergence
of fundamental Information Communication technologies such as artificial in-
telligence and the Internet of Things. Today, many things such as various
transportation systems and financial systems, are controlled by (computer)
software, and it is no exaggeration to say that the quality of human lives
depends on the quality of the software. It would not be surprising if the
quality of human lives depends on the quality of the software itself, as our
dependence on it becomes stronger and stronger in the future. Meanwhile,
reports of software-induced system failures continue to pour in: according to
the IPA, as many as 60 domestic information system failures were reported
in the six months from July to December 2019. Mizuho Bank’s ATM failure
and Docomo account fraudulent withdrawals are still fresh in our minds. In
other words, while the technology for developing software is advancing day
by day, the technology for guaranteeing the quality of software has not kept
pace. Methods and methodologies have been developed to solve the software
crisis, such as object orientation, integrated development environments, agile
software development, version control systems, etc. However, it is said that
there is no essential solution.

The purpose of this study is to investigate the proof scoring and case
studies conducted with the proof scoring and to conduct a new case study
by applying the proof scoring to a new example. Through this, we will also
try to identify barriers to the penetration of the method in the field and
to suggest improvements to remove them. Software system quality assur-
ance is considered to be one of the most important processes in the software
system development life cycle. Formal methods have been attracting atten-
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tion as a promising method for software system quality assurance. However,
the lack of case studies and literature (especially in Japanese), as well as a
large number of formal specification languages and tools, still hinders the
introduction of formal methods in software development. To promote the
new introduction of formal methods, the effectiveness of formal methods
should be demonstrated through case studies. In particular, few case studies
have demonstrated the effectiveness of formal verification compared to for-
mal specification. Therefore, this research focuses on the proof score method,
which is one of the theorem proving methods, and investigates the case stud-
ies conducted in the past, and conducts a new case study. By achieving the
purpose of this research, we can show the effectiveness of theorem proving,
and it is expected to help theorem proving to spread in the field of soft-
ware development. And it can contribute to ensuring a quality of software
systems.

1.2 Report Outline
The following is a report on the research project.

• Chapter 1: Introduction
This chapter will introduce the overview, aims, and significance of the
thesis.

• Chapter 2: Preliminaries
This chapter will describe the techniques required and the tools used
in the study.

• Chapter 3: Test and Set protocol
This chapter will describe the specification and proof scores of Test and
Set(TAS) protocol, a type of mutual exclusion protocol.

• Chapter 4: Qlock protocol
This chapter will describe the specification and proof scores of Qlock
protocol, a type of mutual exclusion protocol.

• Chapter 5: Anderson protocol
This chapter will describe the specification and proof scores of Ander-
son, a type of mutual exclusion protocol. We will also describe the
problems that prevented Anderson’s verification and the solutions to
them.

• Chapter 6: Lessons Learned
This chapter will describe what learned through this study.
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• Chapter 7: conclusion
This chapter, the summary of the research report and future work will
be discussed.
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Chapter 2

Preliminaries

2.1 Formal methods
One of the leading techniques to ensure software quality is formal method.
It is expected that the application of formal methods to software design and
mathematical analysis will improve the reliability of the design. It is con-
sidered to be a promising technology to guarantee the quality of software.
On the other hand, it is difficult to accurately estimate the cost of imple-
mentation and the resulting performance, so it is not yet widely used in
development. Formal methods consist of formal specifications and formal
verification.

2.1.1 Formal specification
A formal specification is a description of the system specification in a formal
language. By describing the specification in a formal language, it is possible
to determine whether the system has been built according to the specifica-
tion (formal verification). It also has the advantage that inconsistencies in
the specification can be detected during the specification writing process,
preventing costly rework later in the development process. The effectiveness
of formal specifications has already been demonstrated in the development
of Felica firmware in Japan.

2.1.2 Formal verification
Formal verification has not yet penetrated the field. Formal verification
can be roughly divided into model checking and theorem proving. Model-
checking has the advantage of automatic verification, but it requires cram-
ming the software to be verified into a small space. To truly guarantee the
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quality of software, it is necessary to use theorem proving. A proof score
is a proof or plan of proof written in an algebraic specification language.
A theorem-proof that is performed by writing a proof score is called proof
scoring.

Theorem proving

Mathematical proofs of the target specification guarantee that the specifica-
tion is met in all cases, even if no test cases are chosen.Mathematical proofs
of the target specification guarantee that the specification is satisfied in all
cases, even if no test cases are chosen. However, unlike model checking,
theorem proving is difficult to automate and has little practical use.

Proof scoring

Proof score is a proof or plan of proof written in an algebraic specification
language. Theorem proving carried out by writing a proof score is called the
proof scoring. As proof scores are written by hand, there is a risk of human
error.

A proof score contains mainly the following:

• Specification of the module to be used in the proof.

• constants that represent arbitrary elements of some sort (i.e. behave
like variables)

• case splitting

• lemma

• Inductive assumptions (if induction is used)

• reduction instructions

2.2 CafeOBJ
CafeOBJ is an algebraic specification language developed for formal specifi-
cation and formal verification[1, 2, 3, 4]. It is possible to perform interactive
verification by interpreting written equations as rewrite rules and executing
them. The grammar of CafeOBJ is as follows:
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• module
To write a specification in CafeOBJ, first, declare a module, and then
write various declarations in it. A module is declared using module (or
its abbreviation mod ) as follows:

mod <module-name> {
<module-elements>
}

• Sort
In algebra, sort is a concept that corresponds to type in programming
languages.
A sort is declared using [...]:

[ <sort-name> ... <sort-name> ]

• Import
Allowing one module to use the declarations of another predefined mod-
ule is called importing a module.
Protecting, extending, and using (and their abbreviations pr, ex, and
us) are used to import modules:

pr(<module-exp>)
ex(<module-exp>)
us(<module-exp>)

• Operator
Operators are declared using op:

op <op-name> : <arity> -> <sort-of-op> <operator-attribute>

<op-name> is the operator name, <arity> is the arity, and <sort-of-op>
is the sort of operator. The arity is a concept corresponding to the ar-
gument, which is a sequence of sort names. The sort-of-operator * is a
concept corresponding to the type of the return value.

• equation
Let T be the set of terms created from an index (a pair of sort and
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operator declarations). An equation declares an equivalence relation
between two terms t1, t2 ∈ T. The equations described in the specifi-
cation are used in reasoning as axioms.

Equations are declared using eq:

eq <lhs> = <rhs> .

<lhs> and <rhs> are terms on the same sort. These terms can con-
tain variables. Variables are declared on a particular sort and can be
assigned to any term on that sort.

• variable
As mentioned earlier, variables can be declared in equations. How-
ever, it is convenient to declare frequently used variables together in
advance. The scope of variables declared in this way is within the mod-
ule in which they are declared.

To declare a variable outside of an equation, use var:

var <var-name> : <sort-name>

Multiple variables of the same sort can be declared using vars:

vars <var-name> ... <var-name> : <sort-name>

• reduction
In CafeOBJ, reduction means to consider the declared equation as a
rewriting rule from the left side to the right side and to rewrite the
given terms one after another using the rewriting rules (the order in
which the rules are applied is arbitrary) to make the expression as
simple as possible. A term that cannot be rewritten anymore using
any rewriting rule is called a normal form. Simplification is equational
reasoning, which uses equations in only one direction.
The command red simplifies the term <term>:

red <term> .
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2.3 State machines
A state machine M ≜ (S, I, T ) consists of a set S of states, a set I ⊆ S
of initial states and a binary relation T ⊆ S × S over states. The set R of
reachable states with respect to M is inductively defined as follows: (1) for
each s ∈ I, s ∈ R and (2) for each (s,s ́) ∈ T , if s ∈ R, then s ́ ∈ R. A state
predicate p is an invariant property with respect to M if and only if p(s)
holds for all s ∈ R.

This report uses observational transition systems (OTSs) that are state
machines such that states are recognized by values observed through observer
functions, state transitions are represented by transition functions, and state
transitions are defined in terms of equations that define how state transitions
change the values observed through observer functions.

Let init denote an arbitrary initial state and o : Sys Do1 ... Don -> Do

be one observer function. init for o is defined as follows:

eq o(init, X1, ..., Xn) = val-o(X1, ..., Xn).

This means that the initial value observed by o with X1, ..., Xn is val-o(X1,
..., Xn). Let t : Sys Dt1 ... Dtm -> Sys be one transition function. t for o is
defined as follows:

ceq o(t(S, Y1, ..., Ym), X1, ..., Xn) = val-o-t(X1, ..., Xn, Y1, ..., Ym) if
cond-t(S, Y1, ..., Yn) .

This means that if the condition cond-t(S, Y1, ..., Yn) holds, t changes the
value observed by o to val-o-t(X1, ..., Xn, Y1, ..., Ym).

2.4 Tools for automatic proof
2.4.1 Maude and CafeInMaude
Maude[5] is a kind of algebraic specification language. CafeInMaude[6] is a
tool for introducing specifications written in CafeOBJ into the Maude system.

2.4.2 CiMPA
CafeInMaude Proof Assistant(CiMPA)[6] allows users to prove properties on
their CafeOBJ specifications. This is an automatic theorem proving system.
While it has the advantage of automatic theorem proving, it has the disad-
vantage of being less flexible than proof scoring. The available commands,
that must be used inside open-close environments, are:
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• :goal(EqS).
This command introduces a new goal composed of the equations in
EqS. In this study, An equation is used that implies that each invari-
ant is replaced by true.

• :ind on (V).
This command indicates that induction will be carried out on the vari-
able V. In this study, we will particularly focus on the execution of the
variable S of type sys.

• :def LAB = :ctf{Eq}.
This command maps the label LAB to the equation Eq, so it can be
later used for case distinction.

• :def LAB = :ctf[T]
This command maps the label LAB to the term T, so it can be later
used for case distinction.

• :apply(si).
This command applies simultaneous induction on the variable V set
with command :ind to the current goal. Given the sort S of V, it gen-
erates as many new goals as the numbers of constructors defined for
S (including sub sort relations) in the current module. In the formal
verification of mutual exclusion protocols, goals are generated for init,
which means the initial state, and the number of sections defined in
each protocol.

• :apply(tc).
This command applies the theorem of constants to the current goal. It
generates as many new goals as sentences stated in the goal.

• : apply (rd).
This command reduces the current goal using equations. If all the sen-
tences in the goal are reduced to true then the goal is proven. This
command substitutes the current goal with a new one with the sen-
tences reduced. Corresponds to red in a proof score.
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• : apply(LAB).
This command uses the equation or term associated with LAB for case
distinction in the current goal. If it is an equation it generates two
new goals, the first one stating the equation holds and the second one
stating the equation does not hold. If it is a term with sort S it gener-
ates as many new goals as constructors are defined for S in the current
module; each goal states that the term is equal to a specific constructed
term.

• :imp[LAB] .
This command takes the equation identified by the label LAB, which
must be defined in the current module and must have true as a right-
hand side, and generates a new goal where the lefthand side of the
equation implies the former goal. In formal verification of mutual ex-
clusion protocols, it is used to apply lemma.

• :sel(G).
This command selects the goal G as the next one.

2.4.3 CiMPG
CiMPG stands for Cafe in Maude Proof Generator[6]. This can be used to
generate proof scripts from proof scores. By inputting the proof scripts into
CiMPA, the advantages of both proof scoring and CiMPA can be used for
verification.

2.5 Mutual exclusion protocols
In a system, if there is a resource that is shared by multiple processes (or
agents), it is required that there is at most one process accessing the resource
at all times. Preventing other processes from using a resource while allowing
one process to use it is called mutual exclusion, and the procedure/mechanism
for achieving mutual exclusion is called mutual exclusion protocol. In the mu-
tual exclusion protocol, the initial position of each process is at the Reminder
Section(RS), and when using the shared resources, it enters the Critical Sec-
tion(CS). After that, it returns to the RS when it finishes using the shared
resource. Each process repeats the above steps. The property that there is
always at most one process in CS is called mutual exclusion property. This
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is the property that a mutual exclusion protocol should satisfy and should
be verified using formal verification.
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Chapter 3

Test and Set protocol

This chapter describes the specification and formal verification of TAS pro-
tocol. Formal verification was tackled using two approaches: proof scoring
and automatic proof using CiMPG and CiMPA.

3.1 Formal specification of TAS protocol
Test and Set (TAS) is the simplest mutual exclusion protocol. TAS protocol
written in Algol-like pseudo-code is as follows:

loop{
“Remainder Section”
rs : repeat while test&set(locked);
“Critical Section”
cs : locked := false;
}

We define the variable locked, whose value is true or false. The initial
value of locked is false. As soon as a process transitions from RS to CS, it
rewrites the value of locked to true. When a process transitions from RS to
CS, it rewrites the value of locked from true to false, and while the value
of locked is true, other processes in the RS cannot transition to CS.

12



Figure 3.1: Initial state of TAS protocol

The initial value is false. The initial position of the processes is RS .

Figure 3.2: Transition RS to CS of TAS protocol

When the process transitions from RS to CS, rewrite the value of locked
from false to true. While the value of locked is true, other processes stay
in RS.
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Figure 3.3: Transition CS to RS of TAS protocol

When the process transitions from CS to RS, rewrite the value of locked
from true to false.

3.2 Formal verification of TAS protocol by
proof scoring

In verification of mutual exclusion property, it is necessary to distinguish
between as many cases as there are transition functions. And in it, we need
to consider the case where any process p, q is equal to r, or one of them is
different from the other, or each of them is different from the other. The
proof scores of the mutual exclusion property of TAS protocol are described
below.

open TAS .
ops p q : -> Pid .
red mutex(init,p,q) .

close

open TAS .
op s : -> Sys .
ops p q r : -> Pid .
-- eq c-enter(s,r) = true .

14



eq pc(s,r) = rs .
eq locked(s) = false .
eq p = r .
eq q = r .
red mutex(s,p,q) implies mutex(enter(s,r),p,q) .

close

open TAS .
op s : -> Sys .
ops p q r : -> Pid .
-- eq c-enter(s,r) = true .
eq pc(s,r) = rs .
eq locked(s) = false .
eq p = r .
eq (q = r) = false .
red inv1(s,q) implies mutex(s,p,q) implies mutex(enter(s,r),p,q)

.close

(The following is omitted)

Proof scoring mainly uses induction to describe the proof score. In induc-
tion, it is necessary to write the proofs for the base case and the induction
case respectively. The base case in the verification of mutual exclusivity
of mutual exclusion protocols is the initial state. Induction case means the
other case. Induction case proofs need to describe the proof score for all
cases. The details will be discussed later in the section on formal verification
of the Anderson protocol. Here, TAS is the name of the module in which
the formal specification of the protocol is described, and mutex is a state
predicate for mutual exclusion property, as follows�

eq mutex(S,P,Q) = (pc(S,P) = cs and pc(S,Q) = cs implies (P =
Q)) .

A collection of open to close is called a fragment. Evaluate the expres-
sion with red and if it returns true, it means that the proof of the fragment
was successful.

15



3.3 Formal verification of mutual exclusion
property of TAS protocol using CiMPA
and CiMPG

I conducted formal verification by CiMPA and CiMPG. The proof script gen-
erated using CiMPG is shown below.

:goal
eq [tas1 :nonexec] : inv1(S:Sys, P:Pid, P0:Pid) = true .
eq [tas :nonexec] : inv2(S:Sys, P:Pid) = true .

:ind on (S:Sys)

:apply(si)

:sel(2)
:apply(tc)

:apply (rd)

:apply (rd)

:sel(3)
:apply(tc)

:def csb1#3 = :ctf eq pc(S#Sys, P#Pid) = cs .

:apply(csb1#3)

:def csb2#3 = :ctf eq P@Pid = P#Pid .

:apply(csb2#3)

:apply (rd)

:def csb3#3 = :ctf eq P0@Pid = P#Pid .

:apply(csb3#3)
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:apply (rd)

:imp [tas1] by P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;

:apply (rd)

:imp [tas1] by P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;

:apply (rd)

:def csb4#3 = :ctf eq pc(S#Sys, P#Pid) = cs .

:apply(csb4#3)

:def csb5#3 = :ctf eq P@Pid = P#Pid .

:apply(csb5#3)

:apply (rd)

:def csb6#3 = :ctf eq pc(S#Sys, P@Pid) = cs .

:apply(csb6#3)

:imp [tas1] by P0:Pid <- P#Pid ; P:Pid <- P@Pid ;

:apply (rd)

:apply (rd)

:imp [tas] by P:Pid <- P@Pid ;

:apply (rd)

(The following is omitted)

In the formal verification of TAS protocol, two goals were generated be-
cause of the need to prove mutual exclusion property and another lemma.
Also, TAS protocol has three constructors, init, enter, and exit, so the
proof script is divided into three parts. They do not necessarily generate
proof scripts in the order described in the proof score.
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By inputting the above proof script into CiMPA, we have completed the
formal verification of the TAS protocol.
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Chapter 4

Qlock protocol

In this chapter, to prove the mutual exclusion property of Qlock protocol,
we describe the specification of the protocol and the operations of the queue,
after that, verify it by proof scoring and automatic proof using CiMPG and
CiMPA.

4.1 Formal specification of Qlock protocol
Qlock protocol is a mutual exclusion protocol that uses a queue, a kind of
data structure, and unlike TAS protocol, it has three sections: a reminder
section, a critical section, and waiting section. Unlike TAS protocol, there are
three sections: the Remainder Section, the Critical Section, and the Waiting
Section. Any selected process located in the Remainder Section first transits
to the Waiting Section, where its ID is inserted into the queue.
Qlock protocol written in Algol-like pseudo-code is as follows:

loop {
“Remainder Section”
rs: enq(queue,i);
“Waiting Section”
ws: repeat until top(queue) = i;
“Critical Section”
cs:deq(queue);
}
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An illustration of the system is shown below.

Figure 4.1: Initial state of Qlock protocol

Where i is the identifier of an arbitrary process, enq is an operation to
insert an identifier at the end of the queue, top is an operation to refer to
the first identifier of the queue, and deq is an operation to retrieve the first
identifier of the queue. When a process wants to use a shared resource, the
identifier of the process is added to the end of the queue, and the process
transition from RS to WS(Waiting Section). When it comes to the top of the
queue, it goes into CS. When the process finishes using the shared resources,
remove it from the queue and return from CS to RS.

The operations of the queue are described below.

Figure 4.2: Initial state of queue

Initially, an empty queue is created.
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Figure 4.3: Operation of enq

enq is a function to insert an element (process ID) into a queue. If you
call enq with the first argument being empty and the second argument being
the ID of an arbitrary process, you will see the above figure. In the figure,
the new elements inserted are shown in red. Adding an element to an empty
queue will add it to the front of the queue.

Figure 4.4: Operation of enq - 2

Calling enq with the first argument being a non-empty queue, that is,
a queue with one or more elements, and the second argument is the ID of
an arbitrary process, will result in the above figure. In the figure, the new
elements inserted are shown in red. If you add an element to a queue that
has one or more elements, it will be added before the empty one.
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Figure 4.5: Operation of deq

The queue needs not only operations to insert new elements, but also
operations to delete them. deq is a function for deleting the first element of
a queue. When deq is called, the top element of the queue is taken out.

Figure 4.6: Operation of top

When top is called, refer to the element at the top of the queue. In the
above figure, the first element is Y, so the value of Y is returned.
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Figure 4.7: Operation of \in

\in is the operator to search for an element in order from the top of the
queue. Returns true if X is found, false otherwise.

The state transitions of Qlock protocol are described below.

Figure 4.8: Transion from rs to ws of Qlock protocol

When the process transitions from RS to WS, add the process to the
queue.
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Figure 4.9: Transion from ws to cs of Qlock protocol

If the process in WS and the process at the top of the queue are the same,
the process transitions from WS to CS.

Figure 4.10: Transion from cs to rs of Qlock protocol

When the process transitions from CS to RS, remove the process at the
top of the queue.
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4.2 Formal verification of Qlock protocol by
proof scoring

In verification of mutual exclusion property, it is necessary to distinguish
between as many cases as there are transition functions. And in it, we need
to consider the case where any process p, q is equal to r, or one of them is
different from the other, or each of them is different from the other. The
part of The proof scores of the mutual exclusion property of Qlock protocol
are described below.

-- I) Base case

open QLOCK .
-- fresh constants
ops i j : -> Pid .
-- |-
red inv1(init,i,j) .

close

--

-- II) Induction cases

-- 1) want(s,k)

open QLOCK .
-- fresh constants
op s : -> Sys .
ops i j k : -> Pid .

-- IH
eq [:nonexec] : inv1(s,I:Pid,J:Pid) = true .

-- assumptions
eq pc(s,k) = rs .
eq i = k .

-- |-
red inv1(s,i,j) implies inv1(want(s,k),i,j) .

close

(The following is omitted)
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By entering annotated proof scores into CiMPG, the following proof
scripts are generated

open QLOCK .
:goal
eq [inv1 :nonexec] : inv2(S:Sys,P:Pid) = true .
eq [inv11 :nonexec] : inv1(S:Sys,P:Pid,P0:Pid) = true .

:ind on (S:Sys)

:apply(si)

-- for exit

:apply(tc)

:def csb1a = :ctf eq pc(S#Sys,P#Pid) = cs .

:apply(csb1a)

:def csb2a = :ctf eq P@Pid = P#Pid .

:apply(csb2a)

:imp [inv11] by P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;

:apply (rd)

:def csb3a = :ctf eq P0@Pid = P#Pid .

:apply(csb3a)

:imp [inv11] by P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;

:apply (rd)

:imp [inv11] by P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;
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:apply (rd)

:imp [inv11] by P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;

:apply (rd)

:def csb4a = :ctf eq pc(S#Sys,P#Pid) = cs .

:apply(csb4a)

:def csb5a = :ctf eq P@Pid = P#Pid .

:apply(csb5a)

:imp [inv1] by P:Pid <- P@Pid ;

:apply (rd)

:def csb6a = :ctf eq pc(S#Sys,P@Pid) = cs .

:apply(csb6a)

:imp [inv1] by P:Pid <- P@Pid ;

:imp [inv11] by P0:Pid <- P#Pid ; P:Pid <- P@Pid ;

:apply (rd)

:imp [inv1] by P:Pid <- P@Pid ;

:apply (rd)

:imp [inv1] by P:Pid <- P@Pid ;

:apply (rd)

-- end of proof for exit()

(The following is omitted)
In the formal verification of Qlock protocol, two goals were generated

because of the need to prove mutual exclusion property and another lemma.
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Also, Qlock protocol has four constructors, init, want, try, and V exit,
so the proof script is divided into four parts. They do not necessarily generate
proof scripts in the order described in the proof score. Induction case proofs
need to describe the proof score for all cases. The details will be discussed
later in the section on formal verification of the Anderson protocol.

By inputting the above proof script into CiMPA, we have completed the
formal verification of the Qlock protocol.
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Chapter 5

Anderson protocol

In this chapter, to prove mutual exclusion property of Anderson protocol[7],
we describe the specification of the protocol and verify it using the proof
scoring. We also proposed a method to prove the property which was difficult
to prove and completed the proof. This chapter describes the specification
and formal verification of Anderson. Finally, we were tackled automatic proof
using CiMPG and CiMPA.

5.1 Formal specification of Anderson
Anderson protocol written in Algol-like pseudo-code is as follows:

loop{
“Remainder Section”
rs: place[i] := fetch&incmode(next,N);
“Waiting Section”
ws: repeat until array[place[i]] ;
“Critical Section”
cs: array[place[i]] := false;
array[(place[i] + 1) % N] := true;
}

Anderson has three sections like Qlock protocol. And it has two arrays
and two variables. Two arrays are place and array. place is the waiting
place of the process that transits to CS. When a process transitions from RS
to WS, a waiting place is allocated to the process. The waiting area to be
allocated depends on the value of next. array is the array used to allocate
the right to transition to CS to processes. Therefore, the value of array is
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always true for only one of them and false for all others. Two variables
are next and count. next is used to allocate a waiting place to a process in
order as described above. The minimum value is 0 and the maximum value
is the number of all processes. When the process transitions from RS to WS,
the value increases by 1. When the maximum value is reached, it returns
to 0. count is used to count the number of processes in WS and CS. When
the process transitions from RS to WS, the value increases by 1. When the
process transitions from CS to RS, the value decreases by 1.

The following diagram shows the initial state.

Figure 5.1: Initial state of Anderson protocol

Consider the case where P2 transitions from RS to WS.
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Figure 5.2: Transition from rs to ws of Anderson protocol

At this time, the value of next is 0, so the value of place corresponding to
P2 is also rewritten to 0. (However, since the initial value of each place is 0,
it appears to be unchanged.) Then, increase the values of next and count by
1.

Figure 5.3: Transition from ws to cs of Anderson protocol

Then, consider the case where P2 transitions from WS to CS. In this
time, Since the value of place corresponding to P2 is 0 and the value of
array corresponding to 0 is true, P2 can transition to CS. each value remains
unchanged.
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Figure 5.4: Transition from rs to ws of Anderson protocol - 2

Consider the case where P3 transitions from RS to WS. In this time, The
value of place corresponding to P3 is rewritten to the value of next. And both
the next and count values are increased by 1.

Figure 5.5: Transition from rs to ws of Anderson protocol - 3

Consider the case where P1 transitions from RS to WS. In this time, The
value of place corresponding to P1 is rewritten to the value of next. the value
count is increased by 1. The value of next is the maximum value, so it returns
to 0. Everything else remains the same.
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Figure 5.6: Transition from cs to rs of Anderson protocol

Consider the case where P2 transitions from CS to RS.
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5.2 Formal verification of Anderson by proof
scoring

In verification of the mutual exclusion property, the reachable states need to
be exhaustively verified, but in some cases, they do not need to be verified. In
Anderson, there are four sub-goals, (1)init, (2)want, (3)try, and (4)exit.
The following figure shows the case splitting of (2)want.

Figure 5.7: Example of case splitting

In case(2.2.*), if the process is not located in RS, the state does not
transition, so there is no need to prove it further. In case(2.1.2.*), since the
value of count can never be greater than the total number of processes, no
further proof is needed.

The part of the proof scores of the mutual exclusion property of Anderson
protocol are described below. where INV is the name of the module that
describes the specification of the invariants of the Anderson protocol.
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--> init
open INV .

ops i, j : -> Pid .
red mutex(init, i, j) .

close

--> exit
open INV .

op s : -> Sys .
ops p q r : -> Pid .
eq [:nonexec] : mutex(s, P:Pid, Q:Pid) = true .
eq pc(s, r) = cs .
eq q = r .
red mutex(s, p, q) implies mutex(exit(s, r), p, q) .

close
(The following is omitted)

5.3 Formal verification by introducing an aux-
iliary variable

inv7 cannot complete the proof as it is[8]. We also need inv7-2 to prove
inv7.

eq inv7-2(S,P,Q) = ((pc(S,P) = ws or pc(S,P) = cs) and (pc(S,Q) =
ws or pc(S,Q) = cs) and (P = Q) = false) implies (s(0) < count(S))
.

inv7-2 states that if there exists 2 different processes P and Q located at
ws or cs, then count is greater than 1 (which is s(0)). Again, the proof of
inv7-2 needs to use another lemma inv7-3, which states that if there exist
3 different processes located at ws or cs, then count is greater than 2.

eq inv7-3(S,P,Q,R) = ((pc(S,P) = ws or pc(S,P) = cs) and (pc(S,Q)
= ws or pc(S,Q) = cs) and (pc(S,R) = ws or pc(S,R) = cs) and (P =
Q) = false and (P = R) = false and (Q = R) = false) implies (s(s(0))
< count(S)) .

And more, we have to define an infinite number of lemma for 3 processes,
4 processes, and so on. The problem comes from we cannot observe the full
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numbers processes located at ws or cs. In each inv7, inv7-2. inv7-3,
etc., we only know that there exists one or 2 or 3 number of processes lo-
cated at ws or cs. We could also generalize the lemma, but it is impossible to
deal with such an operator with a variable number of parameters in CafeOBJ.

eq inv7-k( S,P1,...,Pk ) = ( (pc(S,P1) = ws or pc(S,P1) = cs)
and ... and ( pc( S,Pk) = ws or pc(S,Pk) = cs ) and ( P1 = P2 )
= false and ... and ( P(k-1) = Pk) = false ) implies ((s)*(k−1)
(0) < count(S) ) .

To complete the proof, we need to add a new observers. [9]They are
shown below.

op # : Set -> SNat .
op \in_ : Elt Set -> Bool .
op _-_ : Set Set -> Set .
op psInWsCs : Sys -> Set .

Given a set c, #(c) is the number of elements in c. Given a set c1,
c2, c1 - c2 is the set obtained by deleting each element in c2 from c1.
\in is a membership predicate of sets. psInWsCs(s) is the set of processes
that are in WS and CS.

Any process P is in WS or CS means that P is in the set psInWsCs, so
the number of elements of psInWsCs is at least 1. Then, the value of count
is at least 1. So, it is clear that the lemma is correct.

For the proof of inv7 using the proof score, we need to consider each of
the following cases:

• pc(p) = cs
pc(p) = ws
pc(p) = rs

• p \in psInWsCs(s)
p not \in psInWsCs(s)

• (0 < #(psInWsCs(s))) = true
(0 < #(psInWsCs(s))) = false
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• #(psInWsCs(s)) = count(s)
#(psInWsCs(s)) not = count(s)

open INV .
op p : -> Pid .
op s : -> Sys .
eq pc(s,p) = cs .
eq (p \in psInWsCs(s)) = true .
eq (0 < #(psInWsCs(s))) = true .
eq count(s) = #(psInWsCs(s)) .
red inv7(s,p) .

close

open INV .
op p : -> Pid .
op s : -> Sys .
eq pc(s,p) = cs .
eq (p in psInWsCs(s)) = true .
eq (0 < #(psInWsCs(s))) = false .
red inv-s2(psInWsCs(s), p) implies inv7(s,p) .

close

open INV .
op p : -> Pid .
op s : -> Sys .
eq pc(s,p) = cs .
eq (p \in psInWsCs(s)) = false .
red inv9(s,p) implies inv7(s,p) .

close

open INV .
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,p) = cs .
eq (#(psInWsCs(s)) = count(s)) = false .
red inv8(s) implies inv7(s,p) .

close

open INV .
op p : -> Pid .
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op s : -> Sys .
eq pc(s,p) = ws .
eq (p \in psInWsCs(s)) = true .
eq (0 < #(psInWsCs(s))) = true .
eq count(s) = #(psInWsCs(s)) .
red inv7(s,p) .

close

open INV .
op p : -> Pid .
op s : -> Sys .
eq pc(s,p) = ws .
eq (p \in psInWsCs(s)) = true .
eq (0 < #(psInWsCs(s))) = false .
red inv-s2(psInWsCs(s), p) implies inv7(s,p) .

close

open INV .
op p : -> Pid .
op s : -> Sys .
eq pc(s,p) = ws .
eq (p \in psInWsCs(s)) = false .
red inv9(s,p) implies inv7(s,p) .

close

open INV .
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,p) = ws .
eq (#(psInWsCs(s)) = count(s)) = false .
red inv8(s) implies inv7(s,p) .

close

open INV .
op p : -> Pid .
op s : -> Sys .
eq (pc(s,p) = ws) = false .
eq (pc(s,p) = cs) = false .
red inv7(s,p) .

close
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The following cases are omitted because it is clear from the supplementary
title that they are not valid.

• p not \in psInWsCs(s)
By inv9: inv9(S,P) = (pc(S,P) = ws or pc(S,P) = cs) implies P \in
psInWsCs(S) .

• (0 < #(psInWsCs(s))) = false
By inv-s2: inv-s2(S,E) = E \in S implies 0 < #(S) .

• #(psInWsCs(s)) not = count(s)
By inv8: inv8(S) = #(psInWsCs(S)) = count(S) .

5.4 Formal verification of mutual exclusion
property of Anderson using CiMPA and
CiMPG

We conducted formal verification of Anderson using CiMPG and CiMPA. To
use CiMPG, it was necessary to write a proof score using induction. As is
usually the case, It is easy to write proof scores by induction from proof scores
written by case-splitting, but inv7 is not easy, and a new lemma inv14 had
to be defined. And inv7 written by induction are shown below.

open INV .
:id(inv7)
op p : -> Pid .
red inv7(init, p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = cs .
eq p = r .
red inv7(s,p) implies inv7(exit(s,r),p) .

close
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open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = cs .
eq (p = r) = false .
eq pc(s,p) = cs .
red mutex(s,r,p) implies inv7(s,p) implies inv7(exit(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = cs .
eq (p = r) = false .
eq pc(s,p) = rs .
red inv7(s,p) implies inv7(exit(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = cs .
eq (p = r) = false .
eq pc(s,p) = ws .
eq r \in psInWsCs(s) = true .
eq p \in psInWsCs(s) = true .
eq count(s) = #(psInWsCs(s)) .
eq #(psInWsCs(s)) = s(#(psInWsCs(s) - r)) .
eq #(psInWsCs(s) - r) = s(#((psInWsCs(s) - r) - p)) .
red inv7(s,p) implies inv7(exit(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = cs .
eq (p = r) = false .

40



eq pc(s,p) = ws .
eq r \in psInWsCs(s) = true .
eq p \in psInWsCs(s) = true .
eq count(s) = #(psInWsCs(s)) .
eq #(psInWsCs(s)) = s(#(psInWsCs(s) - r)) .
eq ( #(psInWsCs(s) - r) = s(#((psInWsCs(s) - r) - p)) ) = false .
red inv14(psInWsCs(s) - r,p) implies inv7(s,p) implies inv7(exit(s,r),p) .

close
open INV .

:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = cs .
eq (p = r) = false .
eq pc(s,p) = ws .
eq r \in psInWsCs(s) = true .
eq p \in psInWsCs(s) = true .
eq count(s) = #(psInWsCs(s)) .
eq ( #(psInWsCs(s)) = s(#(psInWsCs(s) - r)) ) = false .
red inv14(psInWsCs(s),r) implies inv7(s,p) implies inv7(exit(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = cs .
eq (p = r) = false .
eq pc(s,p) = ws .
eq r \in psInWsCs(s) = true .
eq p \in psInWsCs(s) = true .
eq (count(s) = #(psInWsCs(s))) = false .
red inv10(s) implies inv7(s,p) implies inv7(exit(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = cs .
eq (p = r) = false .
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eq pc(s,p) = ws .
eq r \in psInWsCs(s) = true .
eq p \in psInWsCs(s) = false .
red inv11(s,p) implies inv7(s,p) implies inv7(exit(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = cs .
eq (p = r) = false .
eq pc(s,p) = ws .
eq r \in psInWsCs(s) = false .
red inv11(s,r) implies inv7(s,p) implies inv7(exit(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq (pc(s,r) = cs) = false .
red inv7(s,p) implies inv7(exit(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = ws .
eq array(s,place(s,r)) = true .
eq p = r .
red inv7(s,p) implies inv7(try(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = ws .
eq array(s,place(s,r)) = true .
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eq (p = r) = false .
red inv7(s,p) implies inv7(try(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = ws .
eq array(s,place(s,r)) = false .
red inv7(s,p) implies inv7(try(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq (pc(s,r) = ws) = false .
red inv7(s,p) implies inv7(try(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = rs .
eq count(s) < No = true .
red inv7(s,p) implies inv7(want(s,r),p) .

close

open INV .
:id(inv7)
ops p r : -> Pid .
op s : -> Sys .
eq pc(s,r) = rs .
eq count(s) < No = false .
red inv7(s,p) implies inv7(want(s,r),p) .

close

open INV .
:id(inv7)
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ops p r : -> Pid .
op s : -> Sys .
eq (pc(s,r) = rs) = false .
red inv7(s,p) implies inv7(want(s,r),p) .

close

If you compare the above proof score with the previous proof score from
case splitting, you can see the difference between the two approaches.

The proof score for each invariant was entered into CiMPG to generate
a proof script. As an example, a part of the proof script for mutex is shown
below.

:proven(inv1(S:Sys, P:Pid, Q:Pid))
:goal{
eq [mutex :nonexec] : mutex(S:Sys, P:Pid, P0:Pid) = true .
}

:ind on (S:Sys)

:apply(si)

:sel(2)
:apply(tc)

:apply (rd)

:sel(1)
:apply(tc)

:def csb1#1 = :ctf eq pc(S#Sys, P#Pid) = cs .

:apply(csb1#1)

:def csb2#1 = :ctf eq P0@Pid = P#Pid .

:apply(csb2#1)

:imp [mutex] by P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;
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:apply (rd)

:def csb3#1 = :ctf eq P@Pid = P#Pid .

:apply(csb3#1)

:imp [mutex] by P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;

:apply (rd)

:imp [mutex] by P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;

:apply (rd)

:imp [mutex] by P0:Pid <- P0@Pid ; P:Pid <- P@Pid ;

:apply (rd)

(The following is omitted)

The structure of the proof script for the Anderson protocol does not
differ from that of the QlocK protocol, but because the Anderson protocol
has many invariants, a proof script was generated for each invariant, unlike
the other two protocols. For this reason, the first line of the proof script
generates a prove command. (This means that inv1 is used as a lemma for
mutex proofs.)

By inputting the above proof script into CiMPA, we have completed the
formal verification of the Anderson.

45



Chapter 6

Lessons Learned

In this chapter, I will describe what I have learned through this study.

6.1 Functional programming
• CafeOBJ used in this study is a functional programming language.

Unlike general programming languages, functional programming lan-
guages cannot use control structures such as ”for”.Therefore, it is neces-
sary to implement a recursive function to perform the iterative process.
Implementing recursive iterative processing requires more thought and
ingenuity than iterative processing using control structures.

• CafeOBJ treats equations as rewrite rules. Therefore, you need to
be a little careful when writing expressions. For example, there are
equations such as A=B and (A=B) = true. In general, these two are
interpreted to mean that they are equal. However, in CafeOBJ, the
former means that A will be rewritten as B, and the latter means that
A=B will be rewritten as true, so do not confuse the two.

• functional programming languages have referential transparency. Ref-
erential transparency is the property that if the same argument is given
to a function, the return value will always be the same. In other words,
it is a guarantee that the function does not have any state. Therefore,
most of the code in CafeOBJ is written in the form of equations. So,
in functional programming, the expression ”evaluate an expression” is
often used instead of ”call a function”.

• Unlike procedural programming languages, programming with the above
restrictions was difficult, but it was interesting to write the code with
ingenuity.
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• Learning for functional programming is often done by constructing
small, simple programming languages. In the course on functional pro-
gramming that I took to work on this research, I also used CafeOBJ
to create a programming language called ”Minila” (strictly speaking,
its processor, compiler, and virtual machine). We usually use a variety
of programming languages to create a variety of programs. So, it is
not that difficult to answer the questions of what is a programming
language, what is a processor, what is a compiler, and what is a vir-
tual machine. However, a programming language is also a program.
Not many people can answer yes to the question, ”Can you create a
programming language, or have you ever created one? To create a
program needs programming knowledge and skills, and that a deeper
understanding of how programming languages work will enable you to
create better programs.

6.2 Date structure
In doing functional programming, of course, programming knowledge and
skills are required, but there were many situations where knowledge of data
structures was necessary. Typical data structures include queues and stacks.
In applying formal methods to mutual exclusion protocols, knowledge of sets
is essential; the Qlock protocol, as the name suggests, uses queues for mutual
exclusion. Understanding data structures is not difficult, but implementing
data structures in functional programming is not always easy. In the formal
verification of the Anderson protocol, the data structure used in the protocol
specification made the proof using CiMPA and CiMPG extremely difficult,
and the data structure had to be changed. In implementing various programs,
the only way to find out which data structure is appropriate to use is through
trial and error.

6.3 Formal method
I was wondering why formal methods were not widely used in the software
development field, even though they are considered to be a promising tech-
nology to assure the quality of software. However, I realized the difficulty of
formal methods when I worked on formal verification.

• I used CafeOBJ in the formal specification because it is a language
developed in my graduate school. But CafeOBJ is not the only formal
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specification language (or tool) used for formalisms. Some of the more
famous ones are Z and VDM. They are not the same thing, and you
have to use the one that is appropriate for your problem. Especially
for new cases, it is rare to get the right approach from the beginning,
so trial and error is necessary.

• Formal methods are not a panacea, and not all systems can be modeled.
As a matter of course, the larger the system in issue, the more difficult
it is to model and the more difficult it is to verify. The target of the
formal verification I worked on in this research is the mutual exclusion
protocol. It is a piece of software in an information system. It is
difficult for me to think how difficult it would be to target the whole
software. There is no confirmed case to date where formal verification
of a large-scale information system has been completed.

6.4 Proof scoring
Proof scoring is a method of proving that a required property described as a
state predicate from a formal specification is satisfied. That was sufficient for
the TAS and QloCK case studies, but for the Anderson protocol, the formal
specification alone was not sufficient to complete the proof. An auxiliary
variable was needed to complete the proof. An auxiliary variable is just a
variable that changes the type that the originally defined variable holds, and
it does not affect the behavior of the protocol. Therefore, it was easy to
understand the role of auxiliary variables. However, it was very difficult for
me to solve questions such as why we need auxiliary variables, when we need
auxiliary variables, and whether it is impossible to complete a proof without
auxiliary variables.

6.5 Visualization of the system
Conjecturing the lemma is one of the most difficult tasks in theorem prov-
ing. One of the effective technologies for this purpose is SMGA, which is
a graphical animation of state machines. For formal verification of mutual
exclusion protocols, it is essential to understand the behavior of the protocol,
but it is not easy to intuitively understand the behavior of the protocol from
its formal specification or pseudocode. I have never found any useful lemma
in SMGA, but being able to see the state transitions of the processes in the
protocol was very helpful in understanding the protocol specifications.
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6.6 Difference between manual and automatic
• I approached formal verification in two ways. One is proof scoring,

The other is using CiMPG and CiMPA.Proof scoring is described as
”flexible” compared to automatic methods. I was faced with a situation
where the proof scores were correct but could not be proven in CiMPA
and CiMPG in formal verification of Anderson. This was due to the
data structure used in Anderson’s specification, so it was necessary to
change the specification. This helped me to understand the meaning
of ”flexible”. Theorem proving is considered to be more difficult to
automate than model checking. The reason is that it is difficult to find
and prove a lemma. In addition to that, I found that the flexibility of
each method mentioned above was one of the reasons.

• CiMPA can automatically perform proofs but is less flexible than pull
scoring, pull scoring is more flexible than CiMPA but can be mixed
with human error. Handwritten proof with a pen is less practical but
is useful for developing the ability to conjecture lemmas. There are
three methods based on theorem proving: proof scoring, using CiMPG
and CiMPA, and handwriting with a pen. I found that automatic
methods are not necessarily better than other methods and that each
method has its strengths and weaknesses.

• One problem that formal methods have is ”the inspection mechanism of
the inspection mechanism”. The problem is that if there is a mechanism
for inspecting the quality of something, the quality of that inspection
mechanism is not certain, so there may be a need for an additional in-
spection mechanism to verify it. Even in formal verification by theorem
proving, human error may occur in the proof by hand. The combined
method of CiMPG and CIMPA, which overcomes this shortcoming, is
revolutionary.
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Chapter 7

Conclusion

This chapter summarizes the contents of the previous chapters and discusses
future work.

7.1 Summary
This report aims to address the verification of the mutual exclusion property
of several mutual exclusion protocols and describes the following.

• Chapter 1 : Introduction
This chapter described recent trends in information systems (especially
software) and formal methods. Today, many things are controlled by
information systems. Information systems can be broadly divided into
three elements: hardware, software, and networks. In recent years, the
role of software has become particularly important, and the quality
required of software has also become higher. One of the techniques to
guarantee the quality of software systems is formal methods. Formal
methods are considered to be one of the most promising techniques to
guarantee the quality of software, but they have not yet penetrated the
software development field. One of the possible reasons for this is that
there are few examples of formal methods.

• Chapter 2: Preliminaries
It is not possible to write a description of the formal methods used in
carrying out this research. Formal methods can be divided into two
main categories. They are formal specification (description) and for-
mal verification. Formal specification is to describe the target system
or problem in a formal specification language, and formal verification is
to verify whether the target system or problem satisfies the properties
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to be verified based on the formal specification. Formal verification
is further divided into model checking and theorem proving. Theorem
proving can be further divided into several methods, but in this report,
we mainly focus on proof by pull-scoring and automatic proof by com-
bining CiMPG and CIMPA.
 In this study, we used the language CafeOBJ for both formal specifi-
cation and formal verification, which is a formal specification language
classified as an algebraic specification language designed and devel-
oped to support formal methods. To describe a formal specification,
the subject must be accurately understood and modeled. There are
several frameworks for modeling, such as process algebra and state-
transition systems, and there is no general-purpose approach. In this
study, we consider a collection of observable typed values that char-
acterize a snapshot of protocol execution as a state of the protocol,
and model the behavior of the protocol as a state transition system, an
approach called observation transition system.
 

• Chapter 3 : Test & Set protocol
This chapter explained the specification and the proof score of the pro-
tocol, also automatic proof using CiMPA and CiMAG.
 TAS protocol is the simplest of the mutual exclusion protocols; it
has two sections, a reminder section, and a critical section, and uses a
boolean variable called ”looked” to perform mutual exclusion. Specif-
ically, when any process is selected, if the value of ”looked” is ”false”,
the process is moved to the critical section, and at the same time, the
value of ”looked” is set to ”true If the value of ”looked” is ”false,” the
process will be moved to the critical section and the value of ”looked”
will be rewritten to ”true,” and the value of ”looked” will be rewritten
to ”false” when the process leaves the critical section. Other processes
will not be able to transition to the critical section while the value of
”looked” is ”true”.In the main text, the behavior of the protocol is ex-
plained in detail using pseudo-code and diagrams.
 For the formal verification of the TAS protocol, the proof scores and
the proof scripts generated by entering them into CiMPG are shown.

• Chapter 4: Qlock protocol
This chapter explained the specification and the proof score of the
protocol, also automatic proof using CiMPA and CiMAG.
 Qlock protocol is a mutual exclusion protocol that uses a queue, a
kind of data structure, and unlike TAS protocol, it has three sections:
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a reminder section, a critical section, and waiting section. Unlike TAS
protocol, there are three sections: the Remainder Section, the Critical
Section, and the Waiting Section. Any selected process located in the
Remainder Section first transits to the Waiting Section, where its ID
is inserted into the queue. If the ID of the selected arbitrary process
located in the waiting section matches the top element of the queue, the
process can transition to the critical section. When a process located
in the critical section leaves the critical section, the first element of the
queue (the ID of the process located in the critical section) is removed.
In the main text, the behavior of the protocol is explained in detail
using pseudo-code and diagrams.
 For the formal verification of the Qlock protocol, the proof scores and
the proof scripts generated by entering them into CiMPG are shown.

• Chapter 5: Anderson protocol
This chapter explained the specification and the proof score of the pro-
tocol, also automatic proof using CiMPA and CiMAG.Not only that,
but it also described the cause of the failure to complete the proof and
the solution to it.
 Anderson protocol, like Qlock protocol, has three sections: the Re-
mainder section, the Waiting section, and the Critical section. This
protocol performs mutual exclusion by allocating a waiting area to a
process that is about to transition to the critical section. This protocol
is more complex than the two protocols described above and handles
more variables than them. It also had a larger number of invariants
that needed to be proven. In the main text, the behavior of the proto-
col is explained in detail using pseudo-code and diagrams. The formal
verification of the Anderson protocol was not easy to complete, unlike
the formal verification of the other two mutual exclusion protocols. In
the formal verification by proof scoring, the proof of one of the invari-
ants could not be completed in any way. Therefore, we introduced a
variable called the auxiliary variable. This is a variable that does not
affect the behavior (specification) of the protocol. By introducing this
variable, we were able to prove the invariant. We then used CiMPA
and CiMPG for automatic proofs and were able to complete the formal
verification of mutual exclusion property and other invariants of the
Anderson protocol. In the main text, the proof scores and the proof
scripts generated by entering them into CiMPG are shown.

• Chapter 6: Lessons Learned
This chapter described what learned through this study(or course re-
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lated to the study).
 Since it was my first time using a functional programming language,
it needs to be more creative than in procedural programming languages,
which was a challenge, but also a lot of fun. Understanding of pro-
gramming was deepened through the use of functional programming
languages.
 In this study, several approaches based on theorem proving were ap-
plied to the mutual exclusion protocol to clarify the issues that formal
methods face. We were able to realize the shortcomings and difficulties
of formal methods by actually working on them.

7.2 Future work
• The target of the formal verification in this study was the mutual exclu-

sion protocol. The previous chapter explained that this is a mechanism
to limit (mutual exclusion) the number of processes using a shared re-
source, such as shared memory, to at most one process at any given
time in a system. But the mutual exclusion protocol is not the only
mechanism to perform mutual exclusion. An example is semaphore,
which is a variable or abstract data type that provides a simple and
convenient abstraction to control access to shared resources by mul-
tiple processes in a parallel programming environment. Semaphore is
simply a record of how many resources are available, coupled with op-
erations that rewrite the record of using and releasing the resource,
and wait for the resource to become available. Semaphore that handles
an arbitrary number of resources is called counting semaphore, while a
semaphore whose value is limited to 0 and 1 is called binary semaphore.
When semaphores are used to control the exclusion of critical sections,
semaphores allow multiple tasks to enter the critical section (if the ini-
tial value is not 1), while mutual exclusion protocols allow only one
task to enter the critical section at a time. In other words, binary
semaphores and mutual exclusion protocols have the same function.
And the most important property required for binary semaphores is
also mutual exclusivity. Therefore, we will also conduct formal verifi-
cation of the mutual exclusion property of binary semaphores.

• The most important property that a mutual exclusion algorithm must
satisfy is mutual exclusion, but it is not the only property that is re-
quired. Fairness is one of them. Fairness is the property that ”a process
that wants to use a shared resource can use the shared resource at some
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time. As an example of a case where fairness is not satisfied, if there
are three cash registers in a supermarket and there is a queue at each
register, and if the queue is slow, the strategy is to queue back up at
the end of the other queue, then if the customer is unlucky, he or she
may not be able to pay the bill for some time. To make such other
properties subject to formal verification, it is necessary to define a new
state predicate.

• We have formally verified that Anderson protocol enjoys the mutual
exclusion property by introducing an auxiliary variable, and we Com-
pleted formal verification of it. Since the proof of one of the invariants
of the Anderson protocol was extremely difficult, we introduced it as a
way to overcome the difficulty. But it is unclear whether it is possible
to prove that Anderson enjoys the mutual exclusion property without
introducing auxiliary variables, so we want to disclose this point. And
in the future, we want to complete the proof without introducing any
auxiliary variables, or if it is necessary, to disclose theoretically why it is
necessary. To clarify this, we should also tackle the formal verification
of mutual exclusion property of other mutual exclusion protocols.

• Mutual exclusion protocols are not the only protocols that are sub-
ject to formal verification. For example, communication protocols and
authentication protocols. Since the properties to be verified vary de-
pending on the type of protocol, it can expect to gain new knowledge
by working on case studies of protocols other than mutual exclusion
protocols.
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