JAIST Repository

https://dspace.jaist.ac.jp/

An Environment for Testing Concurrent Programs

Title Based on Rewrite-theory Specifications
Author(s) Do, Minh Canh

Citation

Issue Date 2019-09

Type Thesis or Dissertation

Text version

author

URL http://hdl.handle.net/10119/17563
Rights

_ Supervisor:## /i HITH, el Bl 2B AR SR, &1 (1
Description

L)

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

An Environment for Testing Concurrent Programs Based on Rewrite-theory
Specifications

1710458 Do Minh Canh

Today, software systems are used in various applications where failure is
unacceptable. Among are airplanes, vehicles, utilities, telephones, banking
& financial systems, commerce, logistics, appliances, houses, and securities.
Very important software systems, such as operating systems and the Internet,
that have been used as infrastructures are typically in the form of concur-
rent programs. Major concepts of programming languages that can be used
to write concurrent programs emerged in the 1980s and since nearly then
studies on testing concurrent programs have been conducted. Arora, et al.
have comprehensively surveyed testing concurrent programs. They catego-
rize it into eight classes: (a) reachability testing, (b) structural testing, (c)
model-based testing, (d) mutation-based testing, (e) slicing-based testing,
(f) formal method-based testing, (g) random testing, and (h) search-based
testing. Model checking concurrent programs has been intensively studied,
which may be classified into (c¢) and/or (f). Java Pathfinder (JPF) is such
a model checker. Model checking is superior to the other testing techniques
in that the former exhaustively checks all possible execution paths (or com-
putations). However, model checking concurrent programs often encounters
the notorious state explosion, which has not yet been conquered reasonably
well. Therefore, testing techniques for concurrent programs must be worth
studying so that they can be matured enough.

For a formal specification S and a concurrent program P, to test P based
on S, we can basically take each of the following two approaches: (1) P is
tested with test cases generated from S and (2) it is checked that state se-
quences generated from P can be accepted by S. The two approaches would
be complementary to each other. Approach (1) checks if P implements the
functionalities specified in S, while approach (2) checks if P never imple-
ments what is not specified in S. In terms of simulation, approach (1) checks
if P can simulate S, while approach (2) checks if S can simulate P. Ap-
proaches (1) and (2) are often used in the program testing community and
the refinement-based formal methods community, respectively, while both (1)
and (2), namely bi-simulation, are often used in process calculi. This thesis
proposes a new testing technique for concurrent programs based on approach
(2) mainly because P is a concurrent program and then could produce many
different executions due to the inherent nondeterminacy of P.

The proposed technique is basically a specification-based testing one. We
suppose that S is specified in Maude and P is implemented in Java. Java

Pathfinder (JPF) and Maude are then used to generate state sequences from
P and to check if such state sequences are accepted by S, respectively. Even
without checking any property violations with JPF, JPF often encounters the
notorious state space explosion while only generating state sequences because
there could be a huge number of different states reachable from the initial
states, there could be a huge number of different state sequences generated
due to the inherent nondeterminacy of concurrent programs and a whole big
heap mainly constitutes one state in a program under test by JPF. Thus,
we propose a technique to parallelize state sequences generation from P and
check if such state sequences are accepted by S in a stratified way. The state
space reachable from each initial state is divided into multiple layers. Let us
suppose that each layer [has depth d;. Let dy be 0. For each layer [, state
sequences s, .. ., sfil whose depth is d; are generated from each state at depth
do + ...+ dj_; from P. Each sﬁ is converted into the state representation
f(s!) used in S, where f is a simulation relation candidate from P to S.
We conjecture that if S is refined enough, f would be an identity function.
There may be adjacent states f(s!) and f(sl, ;) such that f(s!) is the same
as f(st. ;). If so, one of them is deleted. We then have state sequences
f(sh), ..., f(sly), where the number N + 1 of the states in the sequence is
usually much smaller than d; + 1 because execution units in P are much
finer than those in S. We check if each f(s)),..., f(sly) is accepted by S
with Maude. The proposed technique is called a divide & conquer approach
to testing concurrent programs, which could be naturally parallelized. We
have implemented a tool supporting the proposed technique in Java. Some
experiments demonstrate that the proposed technique mitigates the state
space explosion instances from which otherwise only one JPF instance cannot
suffer.

Keywords: testing concurrent programs; specification-based testing; Java
Pathfinder(JPF); divide & conquer; Maude; meta-programming; simulation
relations.

