
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Algorithmically Improved Framework for Image-

only Robotic Mapping

Author(s) ELIBOL, Armagan; Nak-Young, Chong

Citation
Proceedings of the 2021 18th International

Conference on Ubiquitous Robots (UR): 515-520

Issue Date 2021-07

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/17571

Rights

This is the author's version of the work. Copyright

(C) 2021 IEEE. Proceedings of the 2021 18th

International Conference on Ubiquitous Robots

(UR), 2021, pp.515-520. Personal use of this

material is permitted. Permission from IEEE must

be obtained for all other uses, in any current or

future media, including reprinting/republishing this

material for advertising or promotional purposes,

creating new collective works, for resale or

redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

Description



Algorithmically Improved Framework for Image-only Robotic Mapping

Armagan Elibol and Nak Young Chong

Abstract— Over the past two decades, technological devel-
opments in the robotics field have made it possible to gather
data from areas that are hostile and not-reachable environments
for humans. In line with these advancements in data collecting
tools and procedures, the need and demand for computationally
efficient methods for processing the gathered data have been
increased from different science and engineering fields. Among
the others, optical data is one of the main data sources that
low-cost robotic vehicles can obtain easily nowadays. Due to the
different limitations, obtained optical data usually cannot cover
a large area in a single image. Therefore, optical mapping meth-
ods (image mosaicing) are needed to create higher resolution
maps by combining comparatively smaller resolution images.
These methods rely on pairwise image registration and one of
the main bottlenecks in the case of image-only information
available is that the quadratic growth of image matching
attempts with respect to the total number of images. In this
paper, we propose an algorithmically improved end-to-end
framework for creating 2D optical maps from a set of randomly
ordered images with the aim of reducing computational efforts
needed via lowering the total number of image matching
attempts. We present extensive and comparative experimental
results with its counterpart approach using four real datasets
obtained from the underwater environment using Unmanned
Underwater Vehicles (UUVs).

I. INTRODUCTION

Optical data is one of the most crucial data resources
for several different science disciplines. Thanks to the rapid
developments in sensor and robotic technological studies,
mobile platforms that are low-cost and capable of collecting
optical data have become easily and widely accessible, and
usable. This has drawn attention to the developments of
methods that are scalable and generic for processing obtained
data. The area of interest usually cannot be viewed in a
single image mainly due to the environmental conditions,
dimensions of the area of interest, a necessity for the higher
resolution/details, and similar other reasons. All these yielded
that most of the time, creating optical maps is in great-
demand and in-use by different scientists and engineers since
maps provide a global view of the area being surveyed and/or
inspected. Over three decades, image mosaicing methods
have been developed drastically for creating optical maps in
several different areas (e.g., underwater mapping [1], aerial
mapping [2] and many different others). Image mosaicing
can be considered as composing several lower resolution
images into a single higher resolution image referred to
as map and/or mosaic. Image mosaicing mainly consists
of successive iterations of image matching and trajectory
estimation steps. Trajectory estimation is usually carried out
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by minimizing a pre-defined cost function on feature point
positions detected in overlapping image pairs as a result
of image matching steps. The cost functions are mostly
non-linear and their minimization fundamentally works in
iterative manner of solving a linear equation system formed
through an approximation of Hessian matrix via Jacobian
matrix. This procedure is widely regarded as Bundle Ad-
justment [3] and it is still computational costly, although
some improvements were proposed in [4]. On the other hand,
the image matching pipeline is much less demanding than
trajectory estimation in terms of computational power. Nev-
ertheless, it has to be repeated several times, which results
in a considerable amount of time, especially considering the
total amount of images to be composed in a dataset.

Identifying overlapping image pairs is a must in order to
obtain seamless mosaic images. Overlapping image pairs and
the trajectory define a topology and can be represented as a
graph in which images are vertices (nodes), and having an
overlap between images is denoted by an edge (a link). For a
long while, Image mosaicing methods had relied on some ad-
ditional navigational sensor information [1], and assumptions
(e.g., time-consecutive images have an overlap [5]). Later,
some methods (e.g., [6]) have been developed for creating
image mosaics from completely randomly ordered image
sets without any other sensor information. When there is no
navigational data available on the mobile robot trajectory,
obtaining initial similarity information from images plays a
key role in recovering the initial topology and the trajec-
tory. Initial similarity information is obtained by matching
a small number of randomly selected feature descriptors
without outlier rejection step from images in an all-against-
all manner, which is still computationally costly. Lately,
some deep-learning-based methods have been proposed for
feature detection, and matching (e.g., [7]) and comparative
benchmarking was presented in [8]. More recently, the D2-
Net framework for jointly detection and description of local
features was proposed in [9]. Its performance in localization
tasks outperforms the other methods while it has some
limitations in image matching.

In this paper, we present an improved framework for
obtaining image mosaics from image-only information with
as minimum computational efforts as possible for cases
where initial similarity information is noisy. The main ad-
vantages and properties of the proposed framework can be
summarized as below:
• Its iteration procedure does not include the computa-

tional costly trajectory estimation step. Instead, itera-
tions are carried out on generating Minimum Spanning
Trees (MSTs). This algorithmic enhancement reduces



Fig. 1: The general overview of iterative topology estimation
frameworks.

the overall computational cost greatly.
• It is capable of obtaining the topology with lesser total

number of image matching attempts.
• It can handle cases with the noisy initial information

more efficiently.

II. ALGORITHMICALLY ENHANCED FRAMEWORK FOR
TOPOLOGY ESTIMATION

Our proposal in this paper is built upon the existing
framework proposed in [6]. Topology estimation fundamen-
tally has been carried out as image matching and trajectory
estimation steps iteratively. The general overview of the
process can be seen in Fig. 1. Obtaining the initial trajectory
estimate is a vital part of the estimation frameworks. To
do so, initially, time-consecutive images are assumed to
have an overlap [5]. This assumption is later on released
using initial similarity information [6] and MST. MST was
used to establish the image pairs with the highest similarity
information possible to be matched in order to obtain an
initial trajectory estimate. Due to the coarseness of initial
similarity information, some of the image pairs in the MST
are usually not matched successfully. Such unsuccessful pairs
cause breaks in the connectivity of the topology. In order to
keep the tree connected, adding virtual links (or observations)
were proposed in [6]. Virtual links were established as
identity mapping with high uncertainty between image pairs
suggested by the MST. This way of processing allows for
obtaining the initial trajectory estimate and keeping the
images connected. However, the trajectory estimate with
virtual links generates several non-overlapping image pairs
as overlapping due to the presence of virtual links. The
more virtual links, the more iterations the framework does or
requires, thus, the more time. This yields a conclusion that
the quality of initial similarity information has an indispens-
able role throughout the whole process since the inverse of
this similarity information is used as weights during MST
generation in order to maximize the similarity. The quality
of the initial similarity information is directly correlated with
the number and the quality of features (feature descriptors)
used. Since this information is obtained in an all-images-
against-all manner, using a bigger sample size would require
substantial computational time, and this would be infeasible.

At this point, we present a novel and efficient initialization
step, MST Initialization Step namely, to be used within
the existing topology estimation frameworks in order to
work efficiently with relatively low-quality initial similarity

information. MST initialization step relies on iterating on
spanning-tree generation instead of image matching and tra-
jectory estimation steps. It is generating a minimum spanning
tree and tries to match image pairs in the tree iteratively.
If the successfully matched image pairs are not enough to
establish a tree (so that every image is involved in at least one
link), the new MST is generated with the updated initial sim-
ilarity information, unlike adding virtual links with identity
mapping and high uncertainty as in [6]. For the image pairs
that are already attempted to be matched (either successfully
matched or not matched), the initial similarity information is
set to zero so that they will not appear in the MST(s) during
the next iterations. We also delete the similarity information
among images that are in the largest strongly connected
component of the graph constructed by the successfully
matched image pairs. This prevents having image pairs that
are already connected in the MST(s) of the next iterations and
help to focus on and select image pairs towards the ones that
are not connected yet to the graph formed by successfully
matched image pairs. This way of iterations is continued
until the successfully matched image pairs are enough to
form a tree under the assumption of a connected dataset.
The step-by-step overview of the enhanced framework is
given in Algorithm 1. Since the iterations are carried out over
generating MST and image matching steps, its computational
cost is more advantageous than its counterparts in which the
trajectory estimation through non-linear minimization step is
also included in iterations. This initialization step is also free
of a threshold and/or user-defined parameter.

Algorithm 1: Algorithm for Enhanced Topology
Estimation Framework with MST Initialization step

Input: Set of Images
Output: Optical Map and Trajectory

1 Compute Initial Similarity Information
2 while Successfully Matched Image Pairs not enough

to form a tree do
3 Compute MST using the reciprocal of similarity

information as edge weights
4 Attempt image matching for the image pairs in

the MST
5 Delete similarity information for the image pairs

in the MST
6 Delete similarity information between all image

pairs that are in the largest strongly connected
components of the graph constructed by
successfully matched image pairs.

7 Estimate a trajectory using matched image pairs
8 Generate a list of overlapping image pairs using the

estimated trajectory
9 Attempt to match new image pairs in the generated

list
10 Re-estimate trajectory
11 Create the optical map using the estimated trajectory



III. IMPLEMENTATION DETAILS

We have applied widely-accepted methods for the common
steps used in the framework.
Generation of Initial Similarity Information: To obtain

initial similarity information, we followed the same
approach presented in [6] using Scale Invariant Feature
Transform (SIFT)[10] feature descriptors. Since the
initial similarity information is obtained in all-against-
all matching, its computational cost increases drastically
with the sample size used and the total number of
images in the dataset. For descriptor matching, we used
multi-threaded C implementation [6] through the mex
file interface in the MATLAB© environment. We also
used the implementation in VLFeat [11], and obtained
times are reported in Fig. 2 to demonstrate the com-
putational cost and time growth. Computational time
grows linearly in log-scale with the total number of
descriptors used. Our implementation and test platform
were not fully optimized; therefore, the time reported
is intended to show the computational cost and time
growth as they would be similar within different im-
plementations. There are recent studies to make image
matching faster [12], [13], [14]; however, our target is
to reduce the total number of image matching attempts
so that the time spent would reduce regardless of any
implementation used. Experiments are carried out on a
desktop PC with 64GB RAM and Intel i7-6700K CPU.

Trajectory Estimation Method: For the trajectory estima-
tion step, non-linear minimization of the error metric in
Eq. 1 was employed. This error metric is independent
of the (selected) global frame and it measures the error
distance on the individual image frames therefore, it
does not cause any shrinking effect seen in error metrics
operating on map (global) frame.

min
mH2,mH3,...,mHNim

∑
t

∑
r

αtr∑
j=1

(
‖ tpj − mH−1t · mHr · rpj ‖2 +

‖ rpj − mH−1r · mHt · kpj ‖2
)

(1)
where t and r are the successfully matched image
indexes, αtr is the total number of correspondences
between the overlapping image pairs (t and r), p =
(u, v, 1)> represents the coordinates of the points in a
given image frame, and mHt represents the similarity
type (4-Degrees of Freedom (DOFs), scale, rotation,
translation in x and y) 2D planar transformation from
image t to the global frame m. The first image frame
is selected as a global frame. Therefore, m is equal
to 1. Since m = 1, mH1 becomes a constant identity
mapping with s = 1, θ = 0, tx = 0, and ty = 0.

Overlapping Image Pairs Generation: This step aims to
predict the potentially overlapping image pairs using the
initial trajectory estimate and its covariance estimate.
The result of the initial trajectory estimate is a set of
absolute (global) transformations, Hi i = 2, 3, · · · , n
(for the sake of simplicity, we omit the global frame
indicator from the notation). A relative transformation

(a) Total time spent for descriptor matching with
different sample size using the implementation in[6]

(b) Total time spent for descriptor matching with dif-
ferent sample size using the implementation in[11]

Fig. 2: Computational Time for generating Initial Similarity
Information

between any pair of images can be obtained from the
absolute transformations as in Eq. 2.

rHt = (Hr)
−1 · (Ht)

tHr = (Ht)
−1 · (Hr)

(2)

By using the relative transformations, we calculate
the overlapping areas between image pairs and if the
calculated overlapping area is greater than the selected
threshold (e.g., 20%) then it is considered as potentially
overlapping image pair.

Image Matching: We applied a feature-based image match-
ing pipeline taking profit of geometric invariants [15]
and makes use of SIFT [10] for distinctive point de-
tection, description, and matching and Random Sample
Consensus (RANSAC) for outlier rejection and trans-
formation computation as an image matching step. An
image pair is considered as successfully matched if it



TABLE I: Summary of Dataset Characteristics

Dataset Total Number Total Number Total Number Image
of Images (n) of Image Pairs of Overlapping Pairs Resolution

Dataset I 430 92,235 5,412 (∼5.87%) 384x288
Dataset II 1,650 1,360,425 16,574 (∼1.22%) 512x384
Dataset III 2,403 2,886,003 18,462 (∼0.64%) 512x384
Dataset IV 1,136 644,680 3,895 (∼0.60%) 512x384

has at least 20 inliers.

IV. EXPERIMENTAL RESULTS

We tested our proposal using real datasets obtained by un-
derwater robots. We assume that input images are connected,
and they are randomly ordered. The motivation behind the
random order is that depending on the application and area of
interest, data collection procedures may span more than one
deployment, and also some sensor failures may occur. The
characteristics of the dataset are summarized in Table I. The
total number of overlapping image pairs column represents
the total number of successfully matched image pairs and
their approximate percentage with respect to the total number
of image pairs. Dataset I covers a large area of the seafloor
(approximately 400m2 and was acquired by the ICTINEU
underwater robot [16] during experiments in Colera on the
Mediterranean coast of Spain. Datasets II, III, and IV were
obtained during different surveys for monitoring coral reef
communities located in the Florida Reef Tract near Key
Largo in the U.S. [17].

We evaluated the performance of the proposed method
and its counterpart in [6] using different initial similarity
information matrices that were computed using a set of a
different number of sub-sample sizes (e.g., 100 and 150) used
in descriptor matching. An example of an initial similarity
matrix is given in Fig. 3a. Initial similarity information
quality is judged with the unsuccessful image matching
attempts during the first iteration, thus, in the first MST,
since that is the total number of virtual links needed in
order to keep trajectory/topology connected [6]. Obtained
results are summarized in Tables II and III. While Table II
presents the obtained results of the enhanced framework in
detail, Table III presents the comparison with the method
in [6]. In both tables, columns successful and unsuccessful
denote the number of image matching attempts that resulted
correspondingly. In Table II the number of matching at-
tempts for the first iteration is also presented to evaluate
the initial similarity information quality. The presented re-
sults have achieved similar trajectory accuracy except for
Dataset II. The method in [6] was not able to obtain the
correct trajectory, which was obtained using all-against-all
exhaustive image matching, whereas the presented method
was able to achieve similar accuracy. The final mosaic
images obtained are given in Fig. 4. From the tables, the
proposed framework performs well in the case of noisy initial
similarity information. It can be seen from Table III that the
framework in [6] performed better for the cases of rather
less noisy initial similarity information of Dataset IV when
the total number of image matching attempts are compared.
However, It should be noted that the proposed framework
also has the advantage of not repeating overlapping image

pairs generation step and trajectory estimation step (via non-
linear minimization), which has higher computational cost
than computing a MST. Therefore, even in the cases of small
discrepancy between the total number of image matching
attempts (e.g., Dataset IV-IniSim 2 and IniSim used in [6]),
we observed that the enhanced framework required less
computational time during our experiments. In order to see
the performance of the proposed framework in the existence
of very low-quality initial similarity information, we added
uniformly distributed random integers to the IniSim 1 of
the Dataset IV and ran the proposed framework. We tested
two different noise levels, and for each level, we generated
10 different noise-added initial similarity matrices. For the
Noise Level 1, noise values were drawn from the interval
[0, 50] while for the Noise Level 2, the interval was [0, 100].
An examples of noise added initial similarity matrices are
given in Fig. 3b and Fig. 3c. Obtained results (in the form
of mean, minimum, and maximum of 10 trials) are presented
in Table IV. The enhanced framework was able to obtain the
trajectory with similar accuracy to the one obtained using an
all-against-all strategy from the cases where the first MST
had very few (as low as 30.30% ( 344

1135 ) for Noise Level I
and 21.76% ( 247

1135 ) for Noise Level II) successfully matched
image pairs. Furthermore, if the total number of image
matching attempts compared with the ones in Table III, it
can be observed that it has increased by approximately 2−4
times. Even with such noisy initial similarity information,
the total number of image matching attempts is still lower
than 30% of the all-against-all matching attempts. Taking
into account the computational times needed for obtaining
initial similarity information (referring to Fig. 2) and the time
needed for image matching attempts, using a bigger number
of descriptors would be more advantageous since better
initial similarity information provide less the total number
of image matching attempts. On the other hand, using a
larger sample size of descriptors may not necessarily provide
better quality since descriptor matching is applied solely
without outlier rejection procedure. One way to obtain better
quality initial similarity information would be using a bi-
directional descriptor matching strategy. This would increase
the computational time needed, presumably two times (there
are also some improved methods proposed recently [18]).
However, taking into account the difference would make in
the total number of image matching attempts, It would reduce
the overall total time spent.

V. CONCLUSIONS

Creating optical maps for a detailed and global view of
the area surveyed through data obtained by mobile platforms
is one of the essential steps for different scientific and engi-
neering studies. One of the crucial steps in creating optical
maps from relatively lower resolution images is pairwise
image registration (image matching). In the case of no other
data available except images, matching images all-against-
all manner in order to obtain the topology graph is still
prohibitively computational costly, although several advance-
ments in pairwise image matching have been achieved lately.



TABLE II: Total number of image matching attempts obtained by the proposed framework with MST Initialization using
different initial similarity information of tested datasets

Dataset
Ini. Similarity First MST/Iteration Iteration Part Refinement Part
Information Successful Unsuccessful Iteration Successful Unsuccessful Total Successful Unsuccessful Total

Dataset I
IniSim 1 424 5 3 556 731 1,287 4,767 1,476 6,243
IniSim 2 426 3 3 527 760 1,287 4,799 1,492 6,291
IniSim used in [6] 428 1 2 445 413 858 4,874 1,449 6,323

Dataset II IniSim 1 985 664 48 3,391 75,761 79,152 13,031 50,446 63,477
IniSim 2 1,414 235 21 3,353 31,174 34,527 13,102 48,470 61,572

Dataset III IniSim 1 2,188 214 8 5,752 13,464 19,216 12,685 132,285 144,970
IniSim 2 2,220 182 8 5,794 13,422 19,216 12,658 110,758 123,416

Dataset IV
IniSim 1 698 437 7 1,620 6,318 7,938 2,118 30,358 32,476
IniSim 2 786 349 7 1,665 5,630 7,295 2,076 30,925 33,001
IniSim used in [6] 934 201 4 1,769 2,771 4,540 1,987 32,358 34,345

(a) Initial Similarity Matrix for Dataset
IV showing the total number of matched
features without rejecting outliers

(b) An example of Noise (Level I) added
Initial Similarity Matrix

(c) An example of Noise (Level II) added
Initial Similarity Matrix

Fig. 3: Samples of Initial Similarity Information Matrices

(a) Obtained with the proposed framework.
2, 167× 2, 753 pixels

(b) Obtained with the approach in [6]
with IniSim 1. 1, 523× 2, 646 pixels

(c) Obtained with all-against-all image matching.
2, 210× 2, 781 pixels

Fig. 4: Final Mosaic Images for Dataset II rendered with Last-on-Top strategy



TABLE III: Comparison of total number of image matching attempts

Dataset
Ini. Similarity Framework with MST Initialization Framework in [6]
Information Successful Unsuccessful Total Successful Unsuccessful Total

Dataset I
IniSim 1 5,323 2,207 7,530 5,388 2,344 7,732
IniSim 2 5,326 2,252 7,578 5,388 2,540 7,928
IniSim used in [6] 5,319 1,862 7,181 5,386 1,961 7,347

Dataset II
IniSim 1 16,422 126,207 142,629 16,311 405,306 421,617
IniSim 2 16,455 79,644 96,099 16,150 179,984 196,134

Dataset III
IniSim 1 18,437 145,749 164,186 18,440 175,161 193,601
IniSim 2 18,452 124,180 142,632 18,448 162,467 180,915

Dataset IV
IniSim 1 3,738 36,676 40,414 3,750 43,850 47,600
IniSim 2 3,741 36,555 40,296 3,752 36,127 39,879
IniSim used in [6] 3,756 35,129 38,885 3,844 33,970 37,814

TABLE IV: Experimental results of the framework with
MST Initialization using noise corrupted initial similarity
information

Noise Framework Parts Mean Min Max

First Iteration/MST
Successful 364.1 344 378
Unsuccessful 770.9 757 791
Iteration 74.2 67 78

Level I Iteration Part
Successful 1,292.2 1,250 1,335
Unsuccessful 82,718 74,733 87,068
Total 84,010 76,009 88,364

Refinement Part
Successful 2,425.9 2,354 2,463
Unsuccessful 26,346.4 25,422 27,018
Total 28,772.3 27,776 29,467

First Iteration/MST
Successful 260.6 247 278
Unsuccessful 874.4 857 888
Iteration 125.6 121 138

Level II Iteration Part
Successful 1,235 1,197 1,281
Unsuccessful 140,893 136,096 154,585
Total 142,128 137,327 155,811

Refinement Part
Successful 2,498 2,467 2,536
Unsuccessful 24,967.3 23,929 26,862
Total 27,465.3 26,425 29,335

In this paper, we present a different initialization step, which
algorithmically improves the iterative topology estimation
frameworks by reducing the total number of pairwise image
matching attempts in order to obtain the topology efficiently
in the presence of low-quality initial similarity information.
The iteration steps are changed from image matching and
trajectory estimation steps to mainly obtaining MSTs and
image matching. Its efficiency has been presented with
extensive and comparative experimental results on both real
underwater image datasets and simulations.
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