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Topology Graph Pruning for Optical Mapping Methods using Edge
Betweenness Centrality

Armagan Elibol1 and Nak-Young Chong1

Abstract— Optical mapping is one of the most widely used
application areas of low-cost robotic platforms. These platforms
are in favor as they are relatively easy to use, to operate and
to maintain. Acquired optical data (in the form of video and/or
image) are valuable sources of information for both online
(e.g., navigation, localization, mapping, and others) and offline
processes (scientific interpretations, change detection, mapping,
and others). The amount of data acquired has been continuously
growing thanks to the emerging capabilities of mobile platforms
in terms of autonomy allowing longer surveying time. This
increases the need for fast and efficient methods to process the
obtained data. Creating optical 2D maps from acquired data
is composed of mainly image matching, trajectory estimation
(Global Alignment (GA)) and image blending steps. In this
paper, we discuss the usage of Edge Betweenness Centrality
(EBC) concept to reduce the total number of overlapping image
pairs to be used in the GA step. EBC allows selecting the image
pairs that play a relatively key role in the topology graph. We
also discuss the usage of graph energy as a decision criterion
during image mosaicing iterations. We present experiments
with several datasets to show the performance of the proposed
method.

I. INTRODUCTION

Low-cost mobile platforms with a limited sensor suite have
been widely used for mapping purposes in different science
disciplines (e.g., geology, marine science, and many others).
Visual maps can be created both online during the surveying
mission and/or offline after obtaining the data. While maps
being created through online processing provide valuable
feedback for executing smooth operation (e.g., in terms of
navigation, coverage, and others), maps produced by offline
processing provides better accuracy for further scientific
analysis. Creating 2D maps from the images is known
as image mosaicing problem [1]. Methods are generally
aiming at inferring the topology (where images are denoted
as nodes and overlapping image pairs are represented as
edges between nodes) of the surveyed area [2]. When there
is no positioning sensor information, images are the only
source of information. Mostly, Feature-based image regis-
tration (or matching) methods have been commonly used to
find a transformation between two images. This matching
provides constraints on the image position. Once the edges
are identified using image registration, GA methods are used
to obtain the trajectory [3]. This is usually done through
a (non-)linear minimization of a predefined error metric
on identified feature point positions on images. Although
there are some specially designed methods [4], [5], this
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minimization generally has a high computational cost (thus
requires more time) due to the iterative nature of minimiza-
tion and problem size. More recent studies have discussed
and showed that eliminating some of the identified edges
in the GA step would not corrupt the final quality of the
obtained maps (mosaics) [6]. Image mosaicing frameworks
generally work in an iterative manner of image matching
attempts and trajectory estimation steps. Generating possible
overlapping image pairs and selecting pairs to be matched
are the two main processes of the image matching step.
Especially, for the selection part, there are some studies using
information theory [7], graph theory [6], visual similarity [8].
Information theory based methods require the propagation
and maintenance of the covariance matrix of the estimated
trajectory parameters and some further computations for
ranking possible edges using (observation) mutual infor-
mation. This brings some additional computational burden.
Visual vocabularies are efficient for especially man-made
structures and they require some initial training (vocabulary
building step). Visual stopping criterion based on color
invariant histograms was also proposed in [9] to stop iter-
ations of searching for new overlapping image pairs, image
matching, and trajectory estimation steps. However, it is not
applicable to the cases of gray-scale images and if certain
misalignment continues over iterations, this would not be
inferred through the method as the color invariant histograms
of intermediate mosaics would not be changed. This paper
builds upon the methods proposed in [10], [6]. Instead of
using information theory, we propose to use the graph energy
concept as an overall measurement over iterations. This
removes the necessity of a covariance matrix of the motion
parameters and computing mutual information of possible
edges. In order to select a subset of possible overlapping
image pairs, we propose to use EBC as a part of the ranking
score. These improvements reduce the overall computational
cost. We present experimental evaluations for both online
and offline mosaicing process with several datasets with
different characteristics. In the following section, we explain
our proposal of edge pruning based on EBC along with graph
energy concept. In Section III, we present the experimental
results with seven different datasets of underwater images.
We draw our conclusions and underline some future works
in the last section.

II. EDGE PRUNING USING EDGE BETWEENNESS
CENTRALITY (EBC)

The graph G is composed of nodes (vertices) and edges
(links) between nodes. A graph with n nodes can be rep-
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Fig. 1. The coarse pipeline of image mosaicing

resented by an adjacency matrix A of n × n with non-zero
entries denoting edges between nodes. In our domain, images
are represented as nodes and having an overlapping area
between images are denoted as edges connecting nodes [2].
The coarse pipeline of creating image mosaics is given in
Fig. I. In Step 1, the current available trajectory estimate is
used to predict the overlapping image pairs by computing
the distance between image centers. In Step 2, a graph
adjacency matrix A is formed using both the existing edges
that were successfully identified (or matched) in the previous
iteration cycle and the possible edges predicted in Step 1.
EBC values are then computed [11]. EBC value of an edge
is the amount of a total number of shortest paths that pass
through that edge [12]. It was proposed to be used for
detecting communities in large graphs. Edges with higher
values mean that they are in a more pivotal/bridge role in
the graph and their removal from the graph might cause the
graph to become disconnected. In order to rank the possible
edges, we combine two scores, EBC values and approximate
overlap percentage, in a weighted sum as in Eq. 1. The
weights here are used as a balancing factor of selecting loop-
closure pairs as well as having a high probability of being
successfully matched as a result of image matching attempts.

fs(i, j) = w1 · f1(i, j) + w2 · f2(i, j) (1)

where f1(i, j) is the predicted overlap percentage and
f2(i, j) is the EBC value between images i and j while
w1 and w2 are weights with w1 + w2 = 1. After ranking
the possible overlapping image pairs list, a subset of the
list is selected instead of trying to match all of them as this
would not be feasible computationally especially considering
the size of the list during the first couple of iterations. This
selection is done in a way to include all images as possible as
it can. The main reasoning behind is to be able to update the
whole trajectory estimate in Step 5 by adding new edges from
all images. Our selection algorithm is motivated by the well-
known concept of Non-Maximum Suppression (NMS) [13].
Our algorithm starts scanning the ranked list and picks an
edge with the maximum score and allow to pick one more
edge within its neighborhood. At the end of the selection, the

same node would appear in a maximum of two edges. We
use this way of selecting as it prevents including edges that
belong to a certain part of the robot trajectory. The NMS
based selection provides selecting image pairs throughout
the whole trajectory. Afterward, the selected image pair list
is passed to the next step of image matching. The images
are attempted to be matched by using feature-based image
registration and the trajectory is estimated by minimizing the
pre-defined error metric on feature positions. The last but key
step is the decision making step whether to continue for a
new iteration or to stop. In this step, we propose to use the
graph energy [14], which is defined as the sum of absolute
values of eigenvalues of the adjacency matrix as given in
Eq. 2.

E(A) =

n∑
i=1

|λi| (2)

where A is the adjacency matrix of a graph with n nodes
and λi, (i = 1, 2, . . . , n) is the eigenvalues of the adjacency
matrix. Over iterations the change on the graph energy is
monitored in relative manner using the Eq. 3.

∆(E)t =
Et+1 − Et

Et
(3)

where t and t + 1 denotes iteration cycles. If this change
is below a certain threshold in a small number (e.g., two or
three) of consecutive iteration cycles, the iteration cycle is
stopped.

III. EXPERIMENTAL RESULTS

We tested the performance of removing edges using EBC
values with different real datasets. Scale Invariant Feature
Transform (SIFT) [15] was used for detecting and describing
distinctive points in images and Random Sample Consensus
(RANSAC) [16] for outlier rejection and motion compu-
tation. The motion parameters were modeled as similarity
transformations with 4 Degree of Freedoms (DOFs) namely,
scale s, rotation θ, and translations tx and ty.

H =

 s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1





and the first image frame was chosen as a global frame
and its transformation was fixed to identity mapping. The
trajectory estimation was done by minimizing the symmetric
transfer error given in Eq. 4:

min
1H2,1H3,...,1HNimg

∑
k

∑
s

c∑
j=1

(
‖ kpj−1H−1

k ·
1Hs ·spj ‖2

+ ‖ spj − 1H−1
s · 1Hk · kpj ‖2

)
(4)

where k and s are the successfully matched image indices,
c indicates the total number of correspondences between
the overlapping image pairs, Nimg is the total number of
images and p = (x, y, 1)T denotes the coordinates of the
points in the given image frame, expressed in homogenous
coordinates.

First, we present some simulations for monitoring the
change in graph energy as it is expected to behave similarly
to the information measure used in [10]. Each new observa-
tion (regardless of how noisy it is) reduces the uncertainty
of the system and this results in increasing the total amount
of information since the information matrix is defined as the
inverse of the covariance matrix of the variables. This theory
allows concluding that each newly established edge in the
topology graph decreases the uncertainty thus increases the
total amount of information. This means that over the itera-
tion cycles in Fig. I the total amount of information increases.
Step 5 Stopping criterion was defined on monitoring the
change on the total amount of information in [10]. Although
there are some theoretical studies on the bounds of graph
energy [17], we randomly generated adjacency matrices and
compute their energy. The total amount of overlapping pairs
and the energy computed are given in Fig 2. From the
figure, graph energy grows smoothly with respect to the
total number of edges in the graph. This behavior of graph
energy is similar to the one with information theory. For
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Fig. 2. Graph energy change over the total number of edges with
different graph size plotted in log-scale. Energy increases with the number
of edges. We generate 10, 000 random adjacency matrices with again
random number of edges for each different size of graph ranging from 250
to 2500. For each graph size, the edges between consecutive nodes were
existed in the every random matrix. We limit the maximum total number
of edges to the %10 of total number of possible edges ((n)×(n−1)/2).

experiments, we used seven different datasets. The dataset
properties are summarized in table I. The column Ratio is

the ratio of existing overlapping image pairs identified using
all-against-all image matching with respect to the all possible
overlapping image pairs. This ratio provides insights about
the density of the dataset. All datasets except Dataset IV
and VI are from underwater medium and obtained by using
underwater robots carrying a down-looking camera. Dataset
IV was obtained through a down-looking camera carrying
moving platform simulating a Unmanned Aerial Vehicle
(UAV) while images of Dataset VI were cropped from a high-
resolution image simulating real robot trajectory. To initialize
the trajectory estimate, we assumed time-consecutive images
have an overlap and they were matched to obtain initial
trajectory estimate. Using this estimate, the iteration cycle
as in I is started.

In order to show that EBC selects a set of important image
pairs in the topology, we initially tested on the graphs whose
edges were identified using all-against-all image matching.
Edges were ranked according to EBC values and during
this computation, edge weights (normalized total number
of inliers between image pairs) are used. Edges with EBC
score greater than zero were kept to be used in trajectory
estimation carried out by minimizing the error in 4. Obtained
results are presented in Table II. Average and maximum
symmetric transfer errors and standard deviation computed
over using all correspondences detected by using all-against-
all are given in the table. The computational time required
for minimizing the error in 4 are provided in the last column.
The minimization was carried out using MATLAB on a
personal computer with a 4.00GHz Intel Core i7 processor
and 64GB RAM. The approach provided a similar quality of
trajectory estimate compared to the ones obtained with using
all edges. Time-saving is significantly higher in the denser
datasets. For Datasets III and V, the approach in [6] (Table 1)
provided similar trajectory accuracy using 2, 419 and 2, 719
overlapping image pairs. When these numbers are compared
to the corresponding ones in Table II, 400 lower for the
Dataset III and 1, 469 more for the Dataset V. This yields
that EBC performed better on the denser dataset compared
to the approach in [6]. We also tested the whole framework
mentioned throughout this paper using weighted ranking (as
in Eq. 1) criterion with two different weight combination
(w1 = 0.75, w2 = 0.25 and w1 = w2 = 0.5) and graph
energy (as in Eq. 2) in the stopping criterion. If the relative
change on graph energy is less than %25 in two consecutive
iterations, we stopped iterating and continued to the image
blending step. Experimental results were compared with the
traditional approach of attempting to match all image pairs
in the possible overlapping image pair list and updating tra-
jectory estimate [19]. Obtained results are given in Table III.
Error measures were computed over all overlapping image
pairs identified using all-against-all matching. Successful
pairs represent the overlapping image pairs that at least 20
inlier correspondences were detected after outlier rejection
while unsuccessful image pairs column represents the total
number of image pairs that were attempted to be matched
but failed to have at least 20 inliers. From the table, it can be
seen that the proposed method was capable of reducing the



TABLE I
MAIN CHARACTERISTICS OF DATA SETS.

Dataset Image Size Color Ratio Total Number of
x100 Images Correspondences

Dataset I 960× 540 RGB 4.65 233 132, 999
Dataset II 1344× 752 RGB 1.36 413 236, 725
Dataset III 512× 384 RGB 0.60 1, 136 628, 859
Dataset IV 696× 520 Grayscale 15.80 142 395, 541
Dataset V 384× 288 Grayscale 5.87 430 930, 898
Dataset VI 512× 384 RGB 11.96 555 7, 992, 010
Dataset VII 384× 287 RGB 10.31 268 1, 425, 402

With proposed approach With All-against-all

Mosaic images with First-on-top visualization

With proposed approach With All-against-all

Mosaic images with Last-on-top visualization

Fig. 3. Mosaic images of Dataset III with two different visualizations. Mosaic images are composed of 1136 images obtained during a survey
of coral reef mapping located in the Florida Reef Tract [18]. They are approximately 3600× 2400 pixels and 200 pixels per meter.

TABLE II
SUMMARY OF THE OBTAINED RESULTS WITH EBC FILTERED.

Total Number Average Standard Maximum Total
Dataset Method of Edges Error (in pix.) Deviation (in pix.) Error (in pix) Time1(in sec.)

Dataset I EBC filtered 618 5,81 2.15 48.36 8.12
All-against-all 1,258 5.55 2.36 52.42 14.68

Dataset II EBC Filtered 944 21.19 9.80 150.90 28.27
All-against-all 1,153 20,32 8.86 152.23 35.22

Dataset III EBC Filtered 2,816 5.88 2.52 41.17 129.15
All-against-all 3,895 5.59 2.42 42.14 159.44

Dataset IV EBC Filtered 401 9.45 4.22 59.42 10.42
All-against-all 1,582 8.97 4.03 53.54 38.13

Dataset V EBC Filtered 1,250 6.54 2.89 59.86 43.22
All-against-all 5,412 5.80 2.54 61.08 247.26

Dataset VI EBC Filtered 2,285 8.94 3.86 48.97 364.50
All-against-all 18,392 7.11 3.05 32.20 4,423.22

Dataset VII EBC Filtered 1,182 2.62 0.98 17.22 82.66
All-against-all 3,688 2.35 0.90 17.13 310.37

total number of overlapping image pairs without sacrificing
the final quality of the trajectory accuracy. This provides a
substantial amount of time-saving as it does reduce the total

number of image matching attempts. Using graph energy as
a decision step (Step 5 in Fig. I) removes the necessity of a
covariance matrix of the motion parameters as it is used to



TABLE III
SUMMARY OF RESULTS OBTAINED USING PROPOSED METHOD DURING THE TOPOLOGY ESTIMATION PROCESS.

Dataset Strategy Successful Unsuccessful Avg. Error Std. Deviation Max. Error
Pairs Pairs in pixels

Dataset I
EBC Filtered w1 > w2 867 285 5.69 2.51 48.17
EBC Filtered w1 = w2 784 198 5.94 6.02 413.23
The approach in [19] 1, 258 3, 923 5.55 2.36 52.42

Dataset II
EBC Filtered w1 > w2 710 571 24.60 43.78 1, 528.45
EBC Filtered w1 = w2 646 431 25.35 44.86 1, 459.56
The approach in [19] 1, 102 2, 313 23.52 43.91 1, 888.62

Dataset III
EBC Filtered w1 > w2 2, 250 2, 117 6.05 3.50 84.04
EBC Filtered w1 = w2 2, 250 2, 114 5.99 3.38 84.92
The approach in [19] 3, 892 45, 545 5.59 2.41 42.14

Dataset IV
EBC Filtered w1 > w2 716 0 9.08 4.09 50.38
EBC Filtered w1 = w2 643 16 9.10 4.10 49.53
The approach in [19] 1, 581 238 8.97 4.03 53.54

Dataset V
EBC Filtered w1 > w2 2, 149 5 6.73 6.68 116.65
EBC Filtered w1 = w2 2, 127 24 6.75 6.74 118.60
The approach in [19] 5, 412 3, 712 5.80 2.54 61.08

Dataset VI
EBC Filtered w1 > w2 3, 091 0 7.49 3.46 35.83
EBC Filtered w1 = w2 3, 072 2 7.50 3.45 36.92
The approach in [19] 14, 862 135 7.10 3.07 34.01

Dataset VII EBC Filtered w1 > w2 830 233 2.56 1.05 17.04
EBC Filtered w1 = w2 831 204 2.55 1.03 17.16
The approach in [19] 2, 914 528 2.36 0.92 17.11

compute information measure in [10]. This also reduces the
need for computational memory and time. On the other hand,
the covariance of motion parameters is used in generating
possible overlapping image pairs. Not having uncertainty
on image positions during the Step 1 list generation caused
some inaccuracies in the form of having more image pairs
identified as potentially matching. This might cause a slight
increase in the total number of image matching attempts
made during the process. Also, the selected threshold for
image pair to decide whether potentially overlapping or not
has also an important role in the total number of image
matching attempts. We used a single value for all the datasets
tested however, some datasets are much sparser comparing
to some other ones. It can be concluded from the Table III
that the threshold value used in the experiments was not
suitable for Dataset II as even the traditional approach failed.
Different weight-set provided similar trajectories except for
Dataset I. The failure for that dataset is at some point depends
on the trajectory and also related to the stopping criterion.
For Dataset III, although the same number of overlapping
image pairs were used, the error measures are different. This
is due to the overlapping image pairs used were different. The
discrepancy between maximum errors for Dataset III and V
are relatively large comparing to the other tested datasets.
Obtained mosaic images with all-against-all matching and
EBC filtered with w1 > w2 for Datasets III and V are
illustrated in Figs. 3 and 4. Despite the discrepancy on a
maximum error on trajectory, there is no visually disturbing
error on mosaic images.

IV. CONCLUSIONS AND FUTURE WORK

Creating visual maps has become of interest to the science
community as the optical data gathering platforms have been
advanced lately. Low-cost platforms carrying a camera as
the main sensor are usually preferred since they do not

require much expertise to use and maintain. Image mosaicing
methods have been widely used to create a 2D map of
the area surveyed by composing relatively smaller images
into a single bigger image. In the absence of any other
data, images are the only information source. As the image
matching attempts grow in quadratic form, It is desired to
obtain the trajectory estimate and the topology (trajectory
and overlapping image pairs) with minimum image matching
attempts. Previous studies [6], [9] showed that identifying
all the overlapping image pairs was not needed to obtain
globally coherent image mosaics. In this study, we proposed
a method using EBC to rank edges and choose a subset of
them to obtain a mosaic image. We presented experimental
results with seven different datasets. Experimental results
showed that EBC could be used in observation ranking and
selection process in processes such as SLAM and image
mosaicing. EBC and similarly Node Betweenness Centrality
(NBC) could be further used to prune not only the edges but
also the nodes in the graph. Also, we noted that graph energy
increases smoothly with respect to the total number of edges
and this allows for using it as a stopping criterion. Graph
energy is advantageous comparing to information measure
used in [10] as there is no need to propagate covariance
matrix. As future work, we investigate to model the change
on graph energy theoretically in the case of adding or
deleting some edges and their relation to image mosaicing
methods. We also study further on the minimum number of
edges to get the globally coherent mosaic.
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With proposed approach With All-against-all

Mosaic images with First-on-top visualization

With proposed approach With All-against-all

Mosaic images with Last-on-top visualization

Fig. 4. Mosaic images of Dataset V with two different visualizations. Mosaic images are composed of 430 images obtained during the sea trials
of ICTINEU AUV [20]. They are approximately 3400× 2800 pixels and 100 pixels per meter
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