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A GAN-based Approach to Communicative Gesture Generation for
Social Robots

Nguyen Tan Viet Tuyen, Armagan Elibol, and Nak Young Chong

Abstract— People use a wide range of non-verbal behaviors
to signal their intentions in interpersonal relationships. Being
echoed by the proven benefits and impact of people’s social
interaction skills, considerable attention has been paid to
generating non-verbal cues for social robots. In particular, com-
municative gestures help social robots emphasize the thoughts in
their speech, describing something or conveying their feelings
using bodily movements. This paper introduces a generative
framework for producing communicative gestures to better
enforce the semantic contents that social robots express. The
proposed model is inspired by the Conditional Generative
Adversarial Network and built upon a convolutional neural
network. The experimental results confirmed that a variety of
motions could be generated for expressing input contexts. The
framework can produce synthetic actions defined in a high
number of upper body joints, allowing social robots to clearly
express sophisticated contexts. Indeed, the fully implemented
model shows better performance than the one without Action
Encoder and Decoder. Finally, the generated motions were
transformed into the target robot and combined with the robot’s
speech, with an expectation of gaining broad social acceptance.

I. INTRODUCTION

People use a wide range of non-verbal channels, including
facial expressions, body gestures, and similar others to sig-
nal their intention during human-human interaction. Those
modalities help the communicators’ messages transmit to
interacting partners in a facile and transparent manner [1].
Being echoed by the influence of human social behaviors,
considerable attention has been paid to generate non-verbal
cues for social robots that are appealing and familiar to
human interacting partners. In particular, communicative
gestures endow the social robots with capabilities of em-
phasizing certain keywords in their speech, describing some-
thing, or conveying their intention. By adding communicative
gestures to the robots’ interactive behaviors, this strategy
improves the user’s perception of robots’ speech and makes
the social interaction outcomes enhanced [2].

The generation of communicative non-verbal behaviors for
robots could be briefly categorized into two groups: rule-
based approach and data-driven approach. Behavior Expres-
sion Animation Toolkit (BEAT) [3] is a well know approach
that receives input text and releases non-verbal behaviors. In
the BEAT toolkit, the connections between context input and
behavior output are established based on a set of predefined
rules. A similar approach can be found in [4], where the
model of communicative gesture generation for a humanoid
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robot is introduced. Analyzing the input text, output patterns
could be selected out from a list of manually designed robot
gestures. Likewise, social robots have been equipped with the
capability of performing communicative gestures for support-
ing their speech. Such gestures are manually designed by an-
imation experts to ensure the familiarity and human-likeness
of the motions. In contrast to the rule-based approach,
where human labors are needed for modeling all possible
contexts of interaction, the data-driven approach sidesteps
such requirement by capturing the connections between non-
verbal behaviors and corresponding neutral language context
of various communication topics in an autonomous manner.
In [5], the bidirectional mapping between gestures and natu-
ral language has been investigated. By feeding an input text
description to the proposed framework, a synthetic action is
released, and vice versa. However, the generated actions are
defined in joint space of the Master Motion Map (MMM)
model [6], it is difficult to transfer such generated gestures
to other robots whose kinematics structures are different
from the MMM framework. To overcome this problem,
our generative framework produced output actions defined
in 3D motion space, allowing them to be converted into
various robot platforms. Recently, Generative Adversarial
Network (GAN) [7] has been investigated for the generation
of communicative gestures [8], [9]. Different from [8], in
our approach, we consider the input text as conditional infor-
mation for producing communicative gestures, this approach
allows the contexts of the input are better expressed by
generated body gestures. On the other hand, compared to [9],
our designed framework is constructed by a convolutional
neural network (CNN), which has been applied with great
success in various domains including video generation [10],
audio generation [11] and especially, image generation [12],
[13].

In this paper, we aim at generating co-speech gestures
for social robots to convey the semantic contents of their
speech. The framework inspired by Conditional Genera-
tive Adversarial Network (CGAN) [14] built upon CNN
with Action Encoder and Decoder, considering the input
sentence as an essential condition for producing robots’
communicative gestures. Thus, the connections between the
input context and the output action are better addressed.
The generated actions are defined in 3D space, allowing
them to be easily implemented on various robotic platforms.
Through the designed Transformation model, we demon-
strate the synthetic gestures on the Pepper humanoid robot.
Details of the framework are described in Section II. In
Section III, the model was validated on two public datasets.



Fig. 1: The designed framework for producing action af synthesized with text d. Through the Transformation model, af is
transformed into the Pepper robot’s motion and associated with the robot’s speech.

Here, we further extended the experiments conducted in our
previous work [15] to better validate the performance of the
designed framework in different aspects. Finally, the research
conclusion and future works are explained in Section III.

II. METHODOLOGY

Fig. 1 illustrates the designed framework including the
training and generation phase. ar = [S1, S2, S3, ..., ST ]
(ar ∈ R3×8×T ) presents a real action consisting of T
motion frames. d = [w1, w2, w3, ..., wk] is a raw sentence
synthesized with ar. The training process starts by encoding
ar into xr using Action Encoder. d is encoded into a fixed-
length embedding vector e utilizing the encoder phase of the
skip-thoughts model [16]. e is then concatenated with a noise
vector z sampled from a normal distribution function. The
concatenated vector is given to the Generator network for
producing a fake action xf conditioned to e. At the training
phase, Generator aims to produce a fake action xf as similar
as xr to fool the Discriminator whilst Discriminator attempt
to distinguish between xr and xf taking heed of the condition
e.

At the generation phase, an action xf is generated by
feeding the raw text input d into G. The generated action
xf is decoded to af = [S′1, S

′
2, S
′
3, ..., S

′
T ] defining human

motion in 3D space using the Action Decoder. Through the
Transformation model, af is transformed into the target robot
motion, defined by a set of the robot’s joint angles. The robot

action is synchronized with the robot speech, being the robot
communicative gesture as presented in Fig. 1. The following
section will explain the Action Encoder, Action Decoder,
Generator, and Discriminator model in detail.

A. Action Encoder and Decoder
Action Encoder: CNN-based approach has been widely

applied with great success in action recognition tasks [17],
[18], [19]. Inspiring from that, in our work [20], human
actions are displayed as 2D matrices consisting of 3 channels
representing for x, y, z. On each channel, the horizontal axis
covers the temporal information of the action while the
vertical axis represents a sequence of joints at a specific
timestamp. However, the chain order of joints I on the
vertical axis influences the spatial information represented in
xr. To better capture spatial information of the relative joints
of the action ar, our proposed Action Encoder [15] locates
its adjacent joints near each other. With this idea, through the
Action Encoder, ar is encoded to xr as illustrated in Fig. 1.
On each channel c ∈ {x, y, z} of xr, the horizontal axis
contains the motion sequence T , while the vertical axis is a
series of joints denoted as I at a certain timestamp t ∈ [1, T ].
Hence, rather than feeding the raw input ar to D as applied
in our previous work [20], using Action Encoder, the spatial-
temporal features of ar are better represented by xr.

Action Decoder: At the generation phase, through the
Action Decoder, generated action xf is decoded to af as
the formula presented Fig. 1. In the fake action af , jc,m,t



denotes the joint index m, on the channel c, at the time stamp
t. Noticed that n(m) is the number of times the joint index
m presented in the order I of xf .

B. Generator and Discriminator Network
Generator: The effectiveness of transposed convolutional

layers has been validated in a wide range of contexts such
as image generation [12], [13], video generation [10], audio
generation [11], and recently, motion generation [20], [8].
Inspiring from those previous works, this research investi-
gates the convolution operation for generating robots’ actions
conditioned to their input speech. As the network architecture
of G presented in Fig. 1, the combined vector between
e and z is firstly passed through a fully connected layer.
It is followed by four transposed convolutional layers for
upsampling the data to the output target xf ← G(z, e). On
each convolutional layer, we applied batch normalization
to stabilize the learning process, which helps to reduce
the number of training epochs required. It is followed by
Rectified Linear Unit (ReLU) activation [21] except for the
last layer, where the tanh activation is implemented before
producing xf .

Discriminator: D is designed by five convolutional layers.
Batch normalization and ReLU are implemented for all
layers except the output one, where the sigmoid function
is used. Discriminator D receives either real action ar or
fake action af as an input. D also takes into account the
information of e, this is done by concatenating e with the
output value of the fourth layer. At the last layer, D produces
an output probability representing the realistic of the input
action.
D is trained to distinguish between xr and xf , this is

done by training D to maximize the output probability
yr ← D(xr, e) when the real action xr synthesis with
e is injected to the network. Vice versa, by feeding xf
and e to the network, D is trained to minimize yf ←
D(xf , e). In the training set, the miss-matching description
d̂ is also collected. d̂ is considered as a sentence incorrectly
annotates the motion xr. When a pair of real motion xr
and miss-matching embedding ê is given to Discriminator,
D is targeted to minimize ym ← D(xr, ê), implying that xr
does not appropriately synthesize with d̂. Overall, the miss-
classification error LD of D network is summarized in Eq. 1.
Concerning the training strategy for the Generator network,
G is targeted to produce the fake action xf synthesized with
e as much realistic as possible to fool D, it is done by
training the network to maximize the output probability yf .
The miss-classification error LG of G network is described
in Eq. 2. The binary cross-entropy is applied to compute
the error of both LD and LG. During the training process,
the parameters of D are firstly updated while fixing the
parameters of G constant. Then, G network is updated while
remaining parameters of D unchanged.

LD = log(yr) + log(1− ym) + log(1− yf ); (1)

LG = log(yf ); (2)

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

The designed framework was firstly validated on the
MSR-VTT dataset [22] as similarly conducted in [9]. The
dataset includes 2, 822 actions ar ∈ R3×8×32 defined human
upper body motion in 3D space and 31, 863 corresponding
description d to convey that motion (one action is asso-
ciated with more than one text description). For encoding
d into an embedding vector e as presented in Fig. 1, we
utilized the encoder phase of skip-thought model trained
on BookCorpus dataset [23]. Additionally, a description d̂
is randomly picked up from the dataset. d̂ is defined as a
miss-matching description if the dissimilarity between e and
ê is equal or higher than our predefined threshold. Totally,
29, 663 pairs of actions ar, text descriptions d, and miss-
matching descriptions d̂ were obtained. We split the dataset
into 90% for training and 10% for testing.

During the training process, real actions ar, matching
texts d, and miss-matching ones d̂ were fed into the training
framework with a batch size of 100. We applied the Adam
optimizer [24] for both G and D network at the learning
rate α = 2 × 10−5, and they were trained for 700 epochs.
Once the training process is completed, an action xf could
be generated by feeding a raw text d and a noise vector z to
the G network. Through Action Decoder, xf is decoded to
af defining human motion in 3D space.

B. Evaluation Metrics

Consider that ar = [S1, S2, S3, ..., ST ] is the real action
synthesized with the text d. On the other hand, the fake
action af = [S′1, S

′
2, S
′
3, ..., S

′
T ] is produced by feeding the

description d to the Generator network. Since of both of
ar and af are associated with a same annotation d, thus,
it is reasonable for measuring the similarity between ar
and af in order to verify the synthesis between ar and
d. The evaluation is started by encoding both of ar and
af into feature descriptors Cr and Cf using covariance
description with temporal hierarchical construction [25] as
illustrated in Eq. 3. This approach ensures the spatial and
temporal features of action is well presented by a fixed-length
descriptor. Noticed that S is the sample mean of Si computed
over the time T while ᵀ stands for the transpose operator.
Finally, we measure the similarity between Cr and Cf using
cosine similarity as given in Eq. 4.

C =
1

t− 1

T∑
i=1

(Si − S)(Si − S)ᵀ (3)

Similarity(Cr, Cf ) =
Cr · Cf

||Cr|| ||Cf ||
(4)

C. Variety of Generated Actions to Express an Input Context

We firstly examined how different generated actions are
when altering the raw text input while retaining the same
context. Fig 2 shows a sequence of skeleton frames of the
generated action af synthesized with the description d “a
young woman demonstrates example of lifting exercises.”,



Fig. 2: “a young woman demonstrates example of lifting
exercises.”

Fig. 3: “a girl practices lifting exercise at the gym.”

Fig. 4: “a woman performs weight lifting exercises.”

Fig. 5: “I was practicing lifting exercises at the gym.”

which belongs to the testing set. Then, three modified
versions of d were used as “a girl practices lifting exercise at
the gym.”, “a woman performs weight lifting exercises.”, and
“I was practicing lifting exercises at the gym.”. Figs. 3, 4
and 5 present the generated motions synthesized with the
aforementioned modified annotations. The resulting action
in Fig. 2 looks like a person is lifting something by pushing
their two arms up and down several times. Similarly, the
motions displayed in Figs. 3, 4, and 5 seem to express a same
physical meaning of “lifting exercise” although skeleton
frames of those motions are not exactly matched to each
other at a specific timestamp.

In the second example illustrated in Fig. 6, we examined
the variety of generated actions by feeding the same raw
text and different random noise vectors to the Generator
network. As presented in Fig. 6, the text input “one girl
is dancing to music”, which belongs to the testing set, was
given to the Generator network with three different noise
vectors z1, z2, and z3. A closer look at the three generated
motions, it can be seen that they are not exactly similar to
each other at specific timestamps. However, those bodily
expressions could be perceived as someone is performing
exaggerated movements of two hands while dancing. Overall,
the results demonstrated in the two examples suggest that our
designed generative framework does not simply memorize
and reproduce the actions learned from the training phase.
Instead, G is able to generate a diverse set of actions
expressing a certain input context. For social robots, this
property would allow them to generate novel body gestures
overtime to convey a certain context of their speech rather
than performing stereotyped action patterns. It is widely
known that the diversity of robots’ non-verbal behaviors is
considered as a key role for maintaining user engagement in
social human-robot interaction [26].

D. Generation of “high resolution” Actions

The designed framework was also validated on KIT
dataset [27], a higher dimensional dataset compared to the
MSR-VTT dataset that we used in the previous section.

Fig. 6: Generated actions for “one girl is dancing to music,”
produced from noise vector z1, z2 and z3, respectively.

The KIT dataset allows for assessing the performance of
the network for generating human motions displayed in a
higher “resolution”. In total, 51, 360 pairs of real actions
ar ∈ R3×20×240 and matching descriptions d were obtained.
Similar to the previous experiment, we also used the encoder
phase of the skip-thought model trained on BookCorpus
dataset [23] as Embedding Description and collected miss-
matching descriptions d̂. The dataset was divided into 90 %
for training and 10% for testing. The framework was trained
for 1, 200 epochs using Adam optimizer [24] at the learning
rate of α = 2× 10−5 for both Generator and Discriminator.

At the generation phase, by feeding the following sentence
“A person waves with both hands”, which is included in the
testing set, to the G network, the resulting action (full model)
and the corresponding ground truth one (GT) are illustrated
in Fig. 7. Firstly, it is clear that generated action well
expresses the content of input speech by performing waving
motions with two hands. Indeed, the generated motion is
similar to the real one over the time sequence, although the
corresponding poses at a certain timestamp are not exactly
matched to each other. It is noticed that by producing the
fake human upper body actions defined in a higher number
of joints, sophisticated input contexts can be expressed in
a transparent manner. Fig. 8 shows the generated motion
synthesized with the description “A person makes motion
as if playing violin”. In addition to the movements of two
hands for playing the violin, that bodily expression is further
strengthened by equipping with head movements that the
action looks like someone turning their head to the left for
holding the violin on their shoulder.

Fig. 9 presents the tSNE projection [28] of af on the 2
dimensional space. Here, each plot represents a generated
action af synthesized with description d, which is included
in the testing set. This projection allows to qualitatively
visualize similarities among generated motions taking into
account the synthesis context on a low dimensional space. By
taking into consideration the keywords of the raw sentences,
generated actions were categorized into different groups
according to the type of motion performed, such as waving,
dancing, bowing, walking, and similar others. On the other
hand, due to the large variety of motion types available in
the testing set, unclassified motions were label as others
and colored in gray. The visualization shown in Fig. 9
indicates that generated motions synthesized with similar
text descriptions are located near to each other. In particular,
motions related to waving hands, bowing, or dancing have



Fig. 7: “A person waves with both hands”

Fig. 8: “A person makes motion as if playing violin”

Fig. 9: 2-dimensional tSNE projection of generated action
af , colored by their motion types.

TABLE I: Comparison between the designed framework
without Action Encoder/Decoder (w/o E/D) and the fully

implemented model (full model). The evaluation was
conducted on the MSR-VTT and the KIT dataset.

w/o E/D full model
MSR-VTT dataset 0.5060 0.5287
KIT dataset 0.6364 0.6603

denser clusters with less variation than locomotion actions
such as walking or running. It should be highlighted that
our approach concentrates on the generation of upper body
motions, thus, the lack of lower body joints highly affected
the quality of generated locomotion actions. In other words,
bodily expressions of locomotion actions such as walking
or running are less transparent compared to the upper body
movements such as waving hands, dancing or bowing.

E. Quantitative Evaluation of Generated Actions

For quantitative evaluation of generated actions, from the
testing set of the MSR-VTT dataset, d was fed to the G
network for generating af . Additionally, we also examined
the proposed framework illustrated in Fig. 1 without Action
Encoder and Decoder. Particularly, the raw action ar was

given to the training phase without passing through Action
Encoder. At the generation phase, af could be produced
from G without using Action Decoder. By applying the
evaluation metric discussed in III-B, we obtained the average
similarity between ground truth actions ar and the actions af ,
which are produced from the simplified framework without
Action Encoder/Decoder and the fully implemented model.
The evaluation was also carried with the testing set of the
KIT dataset introduced in III-D. Finally, the experimental
results are summarized in Table. I.

The results presented in Table I reveals that the fully
implemented model exhibits better performance than the
framework without Action Encoder and Decoder. The ex-
periment underlined that by adopting the simplified version
without Action Encoder and Decoder for the training phase,
the training process is sped up. The main reason is that
Action Encoder encodes ar into xr, which is a higher dimen-
sion matrix. However, with the fully implemented model, by
furnishing the generative framework with Action Encoder,
relative joints of the human upper body are distributed near
each other on the vertical axis while the time sequence of the
motion is captured by the horizontal axis. This representation
allows for the spatial and temporal information of the action
ar displaying better. As the result, Discriminator can detect
the action features faster and more efficient. Then, D could
provide more informative feedback to the G network for
optimizing the generated actions.

F. Transferring generated actions into the target robot

Through the transformation model illustrated in Fig. 1, af
synthesized with d was transformed into the Pepper robot
motion space. Additionally, the robot off-the-shelf module
ALTextToSpeech was integrated into the action generation
phase as this function enables the robot to utter the text d
while performing bodily expression to support for its speech.
In order to see the differences on the robot co-speech gestures
produced from our approach and the ones generated from
the robot on-board module, the same context d was given
to the robot NAOqi API ALAnimatedSpeech. The results of
comparison is demonstrated in Fig.10. It can be noticed that
the following sentences “I am performing a waving motion



(a) “I am performing a waving motion with
the right hand”

(b) “Someone over there is waving with the
left hand”

(c) “Someone is performing an upper body
bow”

Fig. 10: Differences between gestures from the proposed approach and the robot off-the-shelf module.

with the right hand”, “Someone over there is waving with
the left hand”, and “Someone is performing an upper body
bow” were edited from the original descriptions, which are
included in the KIT testing data, while keeping the messages
of “waving right hand”, “waving left hand”, and “bowing”
intact.

It can be seen that gestures produced from the robot on-
board module ALAnimatedSpeech are mostly not related to
the semantic content of the robot’s speech. The robot gestures
in Figs. 10a and 10c could be interpreted in such way that
a person is explaining something with slight movements
of their hands. To some extent, the robot action shown in
Fig. 10b could be understandable as “waving left hand”.
It should be noticed that NAOqi API ALAnimatedSpeech
consists of a set of robot gestures handcrafted by animation
experts. When feeding an text input, a random motion could
be selected out from the predefined list if certain keywords
are not detected from the given sentence. This approach may
limit the robot ability for performing bodily expressions to
convey the semantic contents of its speech. In contrast to the
robot on-board module, the proposed framework utilizes the
embedding vectors capturing the semantic and syntax of raw
sentence inputs for producing robot co-speech gestures. As
the result, the robot gestures produced from our approach are
more appropriately fitted to the contents of the robot’ speech.
It can be seen in Figs 10a and 10b that the robot is able
to perform suitable waving hand movements with an upright
posture. On the other hand, as displayed in Fig. 10c, the robot
collapsed their upper body downward while uttering the
context input. However, the limitation of the robot’s physical
configuration constrains the range of their bending motion,
falling to reach the extent as performed by the generated
human-like action.

IV. CONCLUSION AND FUTURE WORKS

This work presented an approach to communicative ges-
ture generation. The generative framework inspired by
CGAN built upon CNN with Action Encoder and Decoder.
The model receives an input text and releases a synthetic
action expressing the meaning of input context. The frame-
work was firstly validated on MSR-VTT - a low dimensional
co-speech action dataset as similar as conducted in our
previous work [15]. Additionally, the experiment was carried
out on the KIT dataset to confirm the network’s capability
of generating “high resolution” actions. Overall, the exper-
imental results suggested that a variety of actions could be
generated to express an input context. For social robots, this
ability would allow them to perform various communicative
gestures supporting long-term human-robot interaction. In-
deed, the generative framework is able to produce synthetic
actions defined in a high number of joints, which makes
sophisticated input contexts possible to be clearly expressed.
The comparative results indicated that the fully implemented
model yields better performance than the one without Action
Encoder and Decoder. Finally, the generated actions were
converted into the target robot’s motion and combined with
the robot’s speech. Compared to the robot’s off-the-shelf
module, it was shown that communicative gestures produced
by our approach are better connected to the semantic contents
of the robot’s speech, although sometimes the limitation of
the robot’s physical configuration affected the robot’s bodily
expressions.

Non-verbal behaviors are complex and cover various com-
munication topics. Rather than establishing a large set of
rules for modeling all possible interaction contexts, we urge
that the proposed approach could be used for capturing
the connection between human actions and corresponding



neutral language contexts in an efficient manner. This idea
endows robots with an ability to perform communicative
gestures which are more acceptable to human interacting
partners. In our future work, the current framework will
be extended for editing styles of robots’ communicative
gestures.
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