
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Planar Pushing of Unknown Objects Using a Large-

Scale Simulation Dataset and Few-Shot Learning

Author(s) Gao, Ziyan; ELIBOL, Armagan; Nak-Young, Chong

Citation

2021 IEEE 17th International Conference on

Automation Science and Engineering (CASE): 341-

347

Issue Date 2021-08

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/17574

Rights

This is the author's version of the work. Copyright

(C) 2021 IEEE. 2021 IEEE 17th International

Conference on Automation Science and

Engineering (CASE), 2021, 341-347. Personal use

of this material is permitted. Permission from IEEE

must be obtained for all other uses, in any current

or future media, including reprinting/republishing

this material for advertising or promotional

purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

Description

Proceedings of the IEEE 17th International

Conference on Automation Science and

Engineering (CASE), August 23-27, 2021, Lyon,

France

Planar Pushing of Unknown Objects Using a Large-Scale Simulation
Dataset and Few-Shot Learning

Gao Ziyan, Armagan Elibol, and Nak Young Chong

SimPush: Large-Scale Planar Pushing Dataset available at https://github.com//SimPush

Abstract— Contact-rich object manipulation skills challenge
the recent success of learning-based methods. It is even more
difficult to predict the state of motion of novel objects due to
the unknown physical properties and generalization issues of
the learning-based model. In this work, we aim to predict the
dynamics of novel objects in order to facilitate model-based
control methods in planar pushing. We deal with this problem
in two aspects. First, we present a large-scale planar pushing
simulation dataset called SimPush. It is characterized by a large
number of pushes and a variety of object physical properties,
providing a wide avenue for exploring the object responses to
the pusher action. Secondly, we propose a novel task-aware rep-
resentation for pushes. This method keeps the spatial relation
between the object and pusher and emphasizes the local contact
features. Finally, we propose an encoder-decoder structured
model possessing a cascaded residual attention mechanism to
integrate prior knowledge to infer novel object motions. We
experimentally show that the proposed model purely trained
by SimPush attains good performance and robust prediction of
novel object motions.

I. INTRODUCTION

Non-prehensile pushing gives a simple yet efficient way to
change the state of motion of an object. On the other hand,
contact-rich robotic pushing is long-standing challenges with
the nature of highly nonlinear dynamics. Reasoning the
effect of the robot action becomes the core issue for action
sampling for robot-object interaction. Many methods have
been proposed to deal with the problem of predicting the
object dynamics [1]. Recently, learning-based methods catch
our eyes due to the capability of modeling complex object
dynamics under weaker assumptions. However, the main
issue is how well it can be generalized to the object that
has not been encountered before.

There are two main challenges. First, a large-scale accurate
object pushing dataset is needed. Currently, two different
datasets in [2] and [3] have been published. However,
they contain a limited number of objects all similar in

All authors are with the School of Information Science, Japan Advanced
Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
{s1920013, aelibol, nakyoung}@jaist.ac.jp

shape and size. Secondly, humans usually infer how an
object moves with a couple of interactions that they have
not seen before. These capabilities are still far away for
robots even with the current machine learning models. It
remains an open issue for robots how to utilize the limited
data to infer the object motion and represent the object
state and action [3]. In this research, on the one hand,
we present a large-scale, contact-rich pushing dataset called
SimPush containing 59 objects with diverse dimensions and
shapes that appear either convex or concave. Five physical
properties considered are the surface friction, contact friction,
center of mass (COM), mass, and moment of inertia of
the object. The above properties are arranged in different
ways to change the motion of the object pushed at various
contact points in different directions. Eventually, more than 2
million pushes are collected. On the other hand, we propose
a novel few-shot learning method to embed push priors
and make use of an attention module to combine encoded
knowledge from different aspects. Specifically, a novel task-
aware representation of planar pushing is proposed that keeps
the spatial relation between the object and the pusher by
stressing the local contact features. It helps the learning
model to encode the relation between object state changes
and the applied action. A novel encoder-decoder model then
embraces the flexibility in combining the encoded knowledge
using a cascaded residual attention mechanism. We aim to
train the learning model by SimPush and predict the motion
of unknown real objects without any empirical dataset.
The evaluation of the proposed model is conducted both by
comparing with other models and by predicting the real novel
object dynamics. The results show that the proposed method
not only outperforms other models but also demonstrates the
robust prediction of novel object motions.

II. RELATED WORK

There are two datasets made publicly available [2], [3].
Omnipush [3] contains objects created by combining four
different magnet sides. However, they tend to have similar

shapes sharing the same sides. [2] contains a limited number
of objects. Notably, SimPush is much more diverse in object
shape, size, and physical properties, and larger in sample
size. Closing the simulation-to-reality gap, we experimen-
tally show that the model trained by SimPush achieves
comparable prediction accuracy on real object dynamics.

Mason [4] proposed an analytic model for quasi-static
planar pushing. Goyal et al. [5] introduced the limit surface
which reasons the frictional forces with object motion. Kloss
et al. [6] proposed a hybrid model combining a data-driven
model implemented by deep learning and the analytical
model in [7]. The above-mentioned studies assumed uniform
physical properties or known surface frictions.

Recently, Li et al. [8] proposed a data-driven method that
utilizes the experience of push interactions with novel objects
to implicitly learn a forward model encoding the relationship
between the action and object state. However, the accuracy
of the learned forward model was not investigated. In this
work, we adapt their Push-Net model to explicitly learn
to predict the state of motion of the object pushed. Our
experiments reveal that Push-Net does learn to make use
of pushing interactions but far from being accurate. On the
other hand, in [9], the use of the Kalman filter was proposed
to estimate object physical properties such as the COM,
friction, mass, and others. However, the prediction accuracy
was directly related to the quality of the estimation which
seems to be intractable for the objects having complicated
contact phenomena. Xu et al. [10] proposed a learning model
to predict the physical properties based on pushing and
collision trials. The idea was promising but only evaluated
on a classification problem.

Some works tried to learn an inverse model to find the
pushing action given the target. Agrawa et al. [11] attempted
to enable the robot to understand the physical properties of
objects and to predict their dynamics given external forces.
Hermans et al. [12] proposed a regression model which
predicts object motion for each contact location. [13] used a
mixture density network [14] to predict diverse actions for
pushing. These methods did not learn the object dynamics
during pushing it. Some sampling-based methods have been
proposed for pushing novel objects to the target pose [8].
In [9], a sampling and optimization method was proposed.
Gao et al. [15] proposed a 2-stage framework that makes use
of estimated physical properties to influence the sampling
space to narrow the number of samplings.

Bauza et al. [3] proposed to use of Attentive Neural
Process (ANP) [16] to learn the dynamics of the object under
the external pushing forces. These models are developed
upon ground object state and the influence of object shape
to the motion dynamics is not considered.

III. SIMPUSH

Simulation Environment The simulation environment
was created with CoppeliaSim [17] and the Vortex physics
engine was used to simulate the interaction between the
pusher and objects. A sphere with a diameter of 0.95cm
is attached to a cylinder with a length of 20cm to be the

pusher. The pusher’s position and motion is controlled to
interact with objects. Each object is pushed across 5 floors
with different coefficients of friction.

Objects We designed 59 objects that come in a variety of
shapes, either convex or concave, as shown on the title page.
The objects are diverse in size, ranging from 3.5cm× 6cm
to 20cm× 17cm. We align ten different COMs inside the
object, and for each object with a unique COM, two different
coefficients of contact friction (µc) are defined between the
pusher and object. We then set the mass of the object
and randomly sample two inertia tensors (I) by scaling
the original inertia tensor. Finally, we obtain 200 different
combinations of µs, COM, µc, mass, I. Table. I shows the
details of objects and surfaces in SimPush dataset.

TABLE I
SUMMARY OF SIMPUSH

Surface friction coefficients (µs) 0.2, 0.4, 0.6, 0.8, 1.0
Contact friction coefficients (µc) 0.5, 1.0
Number of center of mass for each object 10
Range of object moment of inertia [0.01,100]
Range of object mass [50, 400]
Number of pushes for each object 180
Number of shapes 59

Fig. 1. Pushes for different shapes. For each shape, 17-18 contact points
are randomly selected, each of which has 10 different push directions.

Data Collection Process
1) Initialize simulation environment

• Set surface friction µs
• Load object, determine initial pose, set COMs, µc,

inertia, and mass of object.
• Check if the object is stable. If not, reload the

object, update COM, or scale inertia and mass.
2) Select contact points

• Extract object contour
• Sample 18 contour points with the same interval
• Calculate 10 push directions in range of [−2π

5 , 2π

5]
w.r.t. the normal of each contact point.

3) For each contact point and push direction
• Move pusher to the starting location
• Execute a pushing of length 3cm.
• If object is flipped, or crushed into the surface,

delete this push.
With combinations of properties, around 180 pushes are
collected for each object as shown in Fig. 1. We capture
RGB-D image to record the object state before and after
pushing. The pusher is either in contact or not in contact

with the object at the start location. We repeat this procedure
for each object until the simulation goes through all the
combinations of physical properties and surfaces. We finally
create more than 2 million pushes. For each push sample,
the following information is recorded.

RGB-D Image: We capture the RGBD image data with
size 224× 224 using a simulated camera in orthographic
projection mode, which is mounted on top of the table.

COM: We record the position of COM of the object before
and after pushing represented by a 2-D position vector in the
image frame.

Action: Actions are represented by the starting and termi-
nating position of the pusher in the image frame.

Object POSE: We record the pose of the object before
and after pushing.

Properties: Mass, inertia, contact friction, and surface
friction are used in the implementation of the baseline model.

In Table II, SimPush was compared with the existing
datasets.

TABLE II
COMPARISON WITH EXISTING PUSH DATASETS

Dataset objects surfaces pushes Platform Size
SimPush 2360 5 180 Simulation ∼2M
Omnipush 250 1 250 Real ∼63K
Yu [2] 11 4 6000 Real ∼264K

IV. METHOD
Few-Shot Learning (FSL) is a type of machine learning

problem that mainly focuses on fast adaptation to new
tasks given a limited number of examples with supervised
information [18]. The labeled examples are regarded as priors
and the unlabeled ones are called test. In this work, the
proposed model aims to predict the resulting pose of pushed
objects by leveraging limited context.

The problem can be formulated as follows: given m
context examples {O,A,∆O}m and n test examples {O,A}n,
where O is the observation of the object state represented by
the object mask image, A is the pushing action, and ∆O is
the change in object state represented by ∆x,∆y,∆θ . Both the
O in the context and the test are the same. Now we give an
introduction to the push embedding representation in context
and test. Afterward, we detail the proposed learning model
and attention modules used therein.

A. Push Embedding

Fig. 2. Action maps: The first one is the mask image and the two middle
images are the action maps. The last image is obtained by multiplying object
mask to the action map at the pusher’s start position.

1) Action maps: Before diving into task-aware represen-
tation, we introduce the way to describe pushing action

that plays an essential role in the representation. Pushing
action can be easily described by the starting and terminating
positions of the pusher [6], [8], [9], commonly represented by
a 4×1 vector in which two dimensions are for the starting
position and the other two dimensions for the terminating
position.

We generate two attention maps called action maps based
on the starting and terminating positions of the pusher.
We apply the Euclidean distance transformation to the both
positions by Eq. 1. We then apply Eq. 2 if (xp,yp) refers
to the starting position, while Eq. 3 is applied for the
terminating position. s(x,y) and t(x,y) refer to pixel values
of two action maps correspondingly. c in Eqs. 2 and 3 are
the normalization terms, which depend on the size of the
image used, here we set c to be the furthest distance to
the image center. Fig. 2 shows an example of the generated
action maps. The last image is obtained by multiplying the
first two images. Intuitively, action maps provide an attention
mechanism to make the model focus on the local geometric
features such as contact points.

a(x,y) =
√
(x− xp)2 +(y− yp)2 (1)

s(x,y) = e−
a(x,y)

c (2)

t(x,y) =
a(x,y)

c
(3)

2) Task-aware representation: We stack the object mask
and action maps along the channel axis to be the task-aware
representation. The reason is twofold: (1) the spatial relation
between the pusher and object state is kept, and (2) this
representation flatters the learning model to easily focus on
the local contact feature and pushing direction. Instead of
feeding the object mask and 4-dimensional action vector to
separate the network and combine them at the end, combin-
ing the object state and action maps at the beginning gives
the learning model more flexibility to learn a meaningful
representation. We will show that this method significantly
improves the performance of the learning model.

3) Push Embedding Model: Based on the aforementioned
representation, we propose the push embedding model shown
in Fig. 3(left). CNN takes the stacked object mask and action
maps as input and outputs fd . ∆O is projected into high
dimension space by Fully Connected Network(FCN). Finally,
a residual attention module is used to combine them into the
output fe. In the proposed encoder-decoder model, there are
two push embedding models: one is shown in Fig. 3(left)
to encode the causality of pushes in context. The other one,
without having the FCN and residual attention components,
is used to embed pushes in the test.

For the CNN part of the push embedding module, we use
5 pre-trained layers of ResNet50 [19] to construct the base
structure of the push embedding module. On top of pre-
trained layers, we build a 1×1 2D convolution layer and one
FCN. CNN outputs a 256-dimensional feature vector fd . For
obtaining fe, FCN is constructed by two layers with the same
dimension of 256. We then use residual attention modules to

Fig. 3. Overview of the proposed encoder-decoder learning model.

combine it with fd to obtain fe. Residual attention modules
will be explained in IV-C.2.

B. Proposed Model

Fig. 3 shows the proposed model. Similar to ANP, the
encoder consists of two self-attention modules and models
the interaction of pushing priors. The decoder consists of
one cross-attention module, a cascaded residual attention
module, and an FCN to output the predicted object motion.
Instead of concatenating features from different aspects to-
gether and directly feed into multi-layer perceptron (MLP),
cascaded residual attention modules selectively combine dif-
ferent source inputs to enhance feature representation. We
experimentally show that this design achieves a lower loss.

The data flow is shown in Fig. 3. Assume that there are
m number of context examples and only one test. During
encoding, the pushing priors and test are fed into the pro-
posed push embedding module to get { fe}m and one fd .
Then { fe}m is fed into two self-attention modules. { fs}m

is the output of the first self-attention module, while fm is
the output of the second self-attention module which is the
mean of encoded priors as in [16]. Mean operation is adopted
since it ensures the permutation invariance property, which
is important to regularize the model. During the decoding,
the cross-attention module measures the similarity between
{ fs}m and fd to output fc. Then, fc, fd , fm are fed into a
cascaded residual attention module. Finally, FCN takes the
output of the cascaded residual attention module to predict
the object motion for test. In subsection IV-C, we detail the
attention modules used in our model.

C. Attention Modules

1) DotProduct Attention: We use the dot-product atten-
tion model [20] as the self-attention and cross-attention
module. Given a set of key-value pairs {(ki,vi)} and a query
q, attention refers to the weight of each key w.r.t. the query.
The sum of each weighted value forms the value of the query.
Eq. 4 gives the formula for computing the weight w.r.t. the
query Q.

DotProduct(Q,K,V) := so f tmax(QKT/
√

dk)V ∈ IRn×dv

(4)
where

√
dk is the normalization term. Dot-product operation

followed by softmax measures the similarity between Q and

K. It is common to use multi-head attention mechanism,
where Q, K and V are linearly transformed into sub-space
and do the scaled dot-production given by

MultiHead(Q,K,V) = head1:hW O,where (5)

headi = DotProduct(QW Q
i ,KW K

i ,VWV
i) (6)

head1:h is formed by concatenating each head along the last
dimension, W O is the matrix that linearly transforms the h1:h
to the corresponded value of Q.

For self-attention module in the proposed model, Q, K,
V matrices are created from the the same source { fe}m. On
the other hand, for cross-attention module, Q matrices are
created using fd computed from test data, and K, V matrices
are created from { fs}m.

The self-attention and cross-attention modules are imple-
mented as multi-head attention module, followed by layer
normalization. We use 8 heads and both the output dimension
of self-attention and cross-attention are 256.

2) residual attention module: The residual attention mod-
ule merges two inputs into one feature vector. In this work,
it only has one fully connected layer. The process can be
represented by Eq. 7

Fattn(fin1, fin2) = tanh(concat(fin1, fin2)W T +b) (7)
fout = Fattn(fin1, fin2) · fin2 + fin1 (8)

where W and b are the parameters of Fattn. tanh function
normalizes the output of Fattn to range (−1,1). We use Eq. 8
to combine fin1 and fin2. Here, fin2 will be selectively added
to fin1. In our cascaded residual attention module, the output
can be represented by Eqs. 9 and 10.

fd,m = Fattn1(fd , fm) · fm + fd (9)
fout = Fattn2(fc, fd,m) · fd,m + fc (10)

The method selectively combines fc, fd , fm, which enhances
the representation and removes the redundant features. We
evaluate this module by comparing it with an ablation model
that combines fc, fd , fm together directly.

V. EXPERIMENT

A. Training Dataset

As a step to training a few-shot learning model, we prepare
the dataset that consists of {context, test, label} tuples. For

each tuple, the context contains a series of pushing priors,
which include object mask image, applied actions, and
∆O, while the test contains multiple actions whose future
outcomes are expected to be predicted. The label contains
the outcome of test actions. In each tuple, all of the actions
are applied to the same object with the same pose. Our model
utilizes 12 pushing priors to predict outcomes of the other
actions.

In our SimPush dataset, there are about 180 pushes for
each object. We randomly select 30 pushes of which 12 are
used as pushing priors and the remaining ones are used as
test data. For generating the training dataset, we choose an
orientation randomly as the object state for a tuple. Then
all the initial object states are transformed to the chosen
orientation, and all actions and the object states after pushing
are transformed with respect to the object state chosen.
Finally, we crop the object mask image around the object
center with (100,100) pixels. This procedure is repeated
about 50 times for each object. By doing so, we obtain
around 10k tuples for each object shape as there are 200
different combinations of internal parameters associated for
each shape. We use 57 shapes for training and 2 shapes for
testing. In total, the training set contains more than 570k
tuples and the test set contains around 20k tuples.

B. Baseline and Ablation Models

1) Baseline models: We compare our model with the
following baseline models.

NaiveCNN It takes all the features containing object mask
image, action maps, position (x and y), the location of COM
(x and y), surface friction (scalar) µs, contact friction (scalar)
µc, the mass of object (scalar) and scale ratio for inertia
(scalar) as input and outputs the ∆O. It consists of three sub-
modules: The first one is a convolution network the same as
the one in the aforementioned push embedding module. The
second one is a fully connected layer that has 8,128,256
to process low-dimensional vector. Finally, we use another
FCN with 512,256,128,3 to predict object motion.

Push-Net This model takes historical pusher-object inter-
actions into consideration to encode the transformation of the
object state. We adapt it to explicitly predict object motion.
In this work, it takes 18 object masks and actions as input
and outputs the action-outcome for the current object state.
We also add the loss term of the center of mass to the loss
function [8].

2) Model Ablations: We investigate contributions of ob-
ject mask, action maps, and attention layers to the proposed
model. We implemented the following three ablation models.

Model I (feature)This model is used to verify if the
object mask helps predict object motion. We replace the push
embedding modules with 3-layer FCN of sizes 7, 128, and
256, respectively. Actions are represented by 4 dimension
vector. Actions and the changes in object state are combined
directly to be the context, and test only contains actions. We
keep other settings the same as the proposed model.

Model II (without action maps) This model is used to
show the importance of action maps. Actions are represented

Fig. 4. Illustration of real experiment setting(a), different lead block
positions ((b)-(e)) and surface frictions ((f) carpet, (g) foam, and (h) cloth).

by 4 dimension vector instead of action maps. In order to
reuse pre-trained layers of ResNet50, we tile the object mask
into 3 channels. Push embedding module takes the tiled
object mask and action vector as input to output a 256
dimension vector. We keep other settings the same as the
proposed model.

Model III (without residual attention module) This
model is used to show the contribution of residual attention
modules of the decoder. We directly concatenate fm, fq, fc
together and feed them into MLP to predict object motion.

C. Training

We implemented all the models using Pytorch. Mean
Squared Error is used as the loss function. We set the batch
size to 128 for NaiveCNN and 32 for other models. The
Adagrad optimizer [21] was used and the learning rate was
set to 0.001 with exponential time decay. We stopped training
at around the 20th epoch for all models since there were no
significant changes in the loss curve thereafter. The training
was conducted using an NVIDIA GTX 3090 GPU.

D. Real Experiment

Fig. 5. Real novel objects used in our experiment.

For evaluating the performance of the proposed model
on the real platform, we conduct several experiments using
the XArm 5 Lite robot. The experimental setup is shown in
Fig. 4. The robotic arm holds the pusher to push the object
and an RGBD camera (Intel RealSense D450) is used to
obtain the object mask. We generate a point cloud from the
camera and re-project it to the surface plane to get the object
mask. Compared to the simulation, the object masks captured

TABLE III
PREDICTION ERROR ON THE TEST DATA OF ALL THE IMPLEMENTED MODELS.

Models translation (mm) rotation (degree)
mean std max min mean std max min

NaiveCNN 3.55 2.16 10.62 0.69 3.14 2.63 12.35 0.20
Push-Net (without auxiliary) 4.76 3.02 14.03 0.76 4.31 3.59 16.50 0.29

Push-Net 4.75 3.01 14.36 0.83 4.57 3.72 16.90 0.26
Model I (feature) 3.52 2.33 11.33 0.65 3.49 2.96 13.96 0.22

Model II (without action maps) 3.14 2.17 10.71 0.56 2.93 2.67 12.98 0.17
Model III (without residual attention module) 2.99 2.05 10.12 0.53 2.78 2.52 12.28 0.16

Proposed Model 2.64 1.96 9.73 0.42 2.53 2.42 11.86 0.13

TABLE IV
TRANSLATION PREDICTION ERRORS FOR ALL THE COMBINATIONS OF OBJECT CENTER OF MASS AND SURFACES, MEASURED IN MILLIMETERS

Carpet Foam Cloth
mean std max min mean std max min mean std max min

com1 3.1 1.3 6.4 1.72 3.15 1.78 6.89 0.78 4.98 2.32 9.96 1.71
com2 5.29 2.31 8.78 1.55 4.52 1.93 7.53 1.5 4.86 3.25 10.52 1.08
com3 3.61 1.29 6.49 1.78 3.85 1.84 6.55 1.21 5.56 3.5 13.19 1.84
com4 3.92 1.5 6.29 1.79 3.84 1.88 7.42 1.57 6.24 2.63 11.29 2.6

TABLE V
ROTATION PREDICTION ERRORS FOR ALL THE COMBINATIONS OF OBJECT CENTER OF MASS AND SURFACES, MEASURED IN DEGREE

Carpet Foam Cloth
mean std max min mean std max min mean std max min

com1 4.17 3.38 12.96 1.03 3.36 2.05 7.2 0.4 3.38 2.09 6.63 0.53
com2 3.99 2.49 9.57 1.0 3.28 1.94 6.55 0.61 4.46 3.0 11.55 0.47
com3 3.02 2.55 9.13 0.2 2.48 1.64 5.68 0.19 3.92 2.53 10.35 0.47
com4 2.95 1.63 6.26 0.84 2.89 2.44 8.1 0.61 3.29 2.31 7.83 0.41

TABLE VI
PREDICTION ERRORS IN TRANSLATION AND ROTATION FOR REAL NOVEL

OBJECTS.

translation (mm) rotation (degree)
mean std max min mean std max min

obj1 4.23 1.95 8.88 1.30 4.03 4.08 13.53 0.20
obj2 3.34 1.72 6.30 0.57 2.92 2.23 7.71 0.05
obj3 4.67 2.36 9.28 0.26 3.72 3.07 11.84 0.59

in real experiments have more noise, and the shapes of the
object are not clear. Moreover, calibration causes some errors
making the prediction for object motion difficult.

For the first experiment, we used a 3D printer to print
a COM controllable box of size 14× 7× 6cm, in which
we design 4× 8 grids inside the box shown in Fig 4. We
put two lead blocks into different positions to change its
center of mass. We use 3 different surfaces made of artificial
carpet, foam, and cloth having different friction coefficients
and textures. We choose 4 different patterns to put two lead
blocks to the box and push the box across 3 different surfaces
shown in Fig. 4. For each combination of COM pattern
and surface, the pusher executes a linear motion with 3cm
to push the object 30 times at different contact points and
pushing directions. Finally, we collect 360 pushes for all
the combinations of COM settings and surfaces. We select
12 pushes as the context and the remains as the test for
each COM setting and surface combination, utilizing the
model purely trained by the simulated data to predict the
pose change of the pushed object.

For the second experiment, we collected pushes for three
unknown objects shown in Fig. 5. These objects are more
complex in shape and contact condition between objects and
floor surfaces. We use the artificial carpet as the surface and
push each object 30 times while keeping other parameters
the same as the first experiment.

VI. RESULT AND DISCUSSION

The performance of the models implemented on the test
set are given in Table III. The last two columns represent
prediction errors on translation and rotation. We use the 5th
and 95th quantiles to represent the mean, standard deviation,
max, and min. The average translation and rotation of the
objects in the dataset are 19.13mm and 10.65°.

The performance of two Push-Nets [8] are provided in
Table III. Here we only show the performance of the last time
step. These two models perform worse than NaiveCNN. This
is mainly due to the fact that Naive CNN can directly access
the internal parameters of the object. On the other hand,
the result shows that the Push-Net trained with auxiliary
COM target performed similarly to the Push-Net without
auxiliary learning in translation but worse in rotation. It
can be conjectured that COM plays less dominant role in
object motion. Compared with the proposed model, Push-
Net performs less accurately both in translation and rotation.

In the ablation study, we compare the proposed model to
a variety of reasonable alternatives.
• By comparing Model I (feature) with other ablations,

we show that the models using object mask images

perform better. One possible reason is that we leveraged
the advance of CNN in push embedding. Therefore,
the models have more flexibility to encode the relation
between pushing action and object shape.

• By comparing Model II (no action maps) with the
proposed model, we show that the action maps have
greatly helped improve the performance in predicting
both translation and rotation.

• By comparing Model III (no residual attention module)
with the proposed model, we show that instead of
concatenating the input from a different source and
feeding to MLP, the cascaded residual attention model
selectively combines them and leads to better perfor-
mance.

Table IV and Table V show the result of predicting the
motion of the COM controllable box pushed across different
surfaces. As expected, because of the sim-reality gap, noisy
mask image, calibration error, the results are not on par
with the one shown in Table III. However, the proposed
model purely trained by the simulation dataset predicted
pretty close. The average translation and rotation of all
the combinations are 20.8mm and 11.28°, and the mean
prediction errors on translation and rotation are 4.17mm
and 3.43°, respectively. We found that our model performed
worst on the cloth surface both in translation and rotation. We
argue that one main reason is due to the strong deformation
of the cloth surface during pushing.

Finally, we show the performance of our model on real
novel objects shown in Table VI. The average translation
and rotation of the objects are 23.13mm, 21.41mm, 19.72mm,
and 11.71°, 11.28°, 12.93°, respectively. Similarly, when
comparing with the result in the first experiment, there is no
significant difference both in translation and rotation error.

VII. CONCLUSION AND FUTURE WORK

Inspired by the related work [3], [2], we collected a
large-scale simulation dataset called SimPush containing a
variety of objects diverse in shape and size. We simulated
planar pushing under hundreds of varying conditions of
contact friction, surface friction, mass, inertia, and COM.
Furthermore, we proposed a novel method to encode pushes,
which greatly improved the model performance when com-
paring with baseline models. We evaluated the proposed
model purely trained by SimPush on the real platform. We
designed a COM controllable box and pushed it across
different surfaces. Due to the noisy input and the simulation-
to-reality gap, our model was not on a par with the result
in simulation. However, our model still predicted object
motions with reasonable accuracy. We pushed three unknown
real objects with complicated contact conditions with the
surface to challenge our model. Notably, the proposed model
performed encouragingly well. Using the large-scale dataset,
our proposed model efficiently learned to make use of context
data to infer the novel action outcome.

There is still room for improvement in the proposed model.
Directions for future research include: (1) multiple object
or a single object pushing in an environment occupied by

obstacles, (2) multiple contact pushing, (3) non-planar object
pushing, and (4) multi-step ahead prediction.

REFERENCES

[1] J. Stüber, C. Zito, and R. Stolkin, “Let’s push things forward: A survey
on robot pushing,” Frontiers in Robotics and AI, vol. 7, p. 8, 2020.

[2] K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a
million ways to be pushed. a high-fidelity experimental dataset of
planar pushing,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 30–37, 2016.

[3] M. Bauza, F. Alet, Y.-C. Lin, T. Lozano-Pérez, L. P. Kaelbling, P. Isola,
and A. Rodriguez, “Omnipush: accurate, diverse, real-world dataset of
pushing dynamics with rgb-d video,” arXiv preprint arXiv:1910.00618,
2019.

[4] M. T. Mason, “Mechanics and Planning of Manipulator Pushing
Operations,” International Journal of Robotics Research, vol. 5, no. 3,
pp. 53–71, 1986.

[5] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry
friction part 1. limit surface and moment function,” Wear, vol. 143,
no. 2, pp. 307–330, 1991.

[6] A. Kloss, S. Schaal, and J. Bohg, “Combining learned and analytical
models for predicting action effects,” CoRR, vol. abs/1710.04102,
2017.

[7] K. M. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active
sensing by pushing using tactile feedback.,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 416–421, 1992.

[8] J. K. Li, W. S. Lee, and D. Hsu, “Push-net: Deep planar pushing for
objects with unknown physical properties,” in Robotics: Science and
Systems XIV, Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA, June 26-30, 2018 (H. Kress-Gazit, S. S. Srinivasa, T. Howard,
and N. Atanasov, eds.), 2018.

[9] A. Kloss, M. Bauza, J. Wu, J. B. Tenenbaum, A. Rodriguez, and
J. Bohg, “Accurate vision-based manipulation through contact reason-
ing,” in IEEE International Conference on Robotics and Automation,
pp. 6738–6744, 2020.

[10] Z. Xu, J. Wu, A. Zeng, J. B. Tenenbaum, and S. Song, “Densephysnet:
Learning dense physical object representations via multi-step dynamic
interactions,” CoRR, vol. abs/1906.03853, 2019.

[11] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” in
Advances in Neural Information Processing Systems, pp. 5074–5082,
2016.

[12] T. Hermans, F. Li, J. M. Rehg, and A. F. Bobick, “Learning contact
locations for pushing and orienting unknown objects,” in IEEE-RAS
International Conference on Humanoid Robots, pp. 435–442, 2013.

[13] Z. Gao, A. Elibol, and N. Y. Chong, “Non-prehensile manipulation
learning through self-supervision,” in IEEE International Conference
on Robotic Computing, pp. 93–99, 2020.

[14] C. M. Bishop, “Mixture density networks,” 1994.
[15] Z. Gao, A. Elibol, and N. Y. Chong, “A 2-stage framework for learning

to push unknown objects,” in Joint IEEE International Conference on
Development and Learning and Epigenetic Robotics, pp. 1–7, 2020.

[16] H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum,
O. Vinyals, and Y. W. Teh, “Attentive neural processes,” arXiv preprint
arXiv:1901.05761, 2019.

[17] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly
v-rep): a versatile and scalable robot simulation framework,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2013.

[18] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM Computing Surveys,
vol. 53, no. 3, pp. 1–34, 2020.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv
preprint arXiv:1706.03762, 2017.

[21] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.,” Journal of machine
learning research, vol. 12, no. 7, 2011.

