
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Semantic Mapping Based on Image Feature Fusion

in Indoor Environments

Author(s)
Jin, Cong; Elibol, Armagan; Zhu, Pengfei; Chong,

Nak-Young

Citation
2021 21st International Conference on Control,

Automation and Systems (ICCAS 2021): 693-698

Issue Date 2021-10

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/17589

Rights

This is the author's version of the work. Copyright

(C) 2021 IEEE. 2021 21st International Conference

on Control, Automation and Systems (ICCAS 2021),

2021, pp.693-698. Personal use of this material is

permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media,

including reprinting/republishing this material for

advertising or promotional purposes, creating new

collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted

component of this work in other works.

Description

2021 The 21st International Conference on Control,

Automation and Systems (ICCAS 2021).

Ramada Plaza Hotel, Jeju, Korea, Oct. 12-15, 2021.



2021 The 21st International Conference on Control, Automation and Systems (ICCAS 2021)
Ramada Plaza Hotel, Jeju, Korea, Oct. 12∼15, 2021

Semantic Mapping Based on Image Feature Fusion in Indoor Environments

Cong Jin1,2, Armagan Elibol2, Pengfei Zhu1, and Nak Young Chong2∗

1College of Intelligence and Computing, Tianjin University
Jinnan, Tianjin 300350, China (jciwqh@163.com, zhupengfei@tju.edu.cn)

2School of Information Science, Japan Advanced Institute of Science and Technology
Nomi, Ishikawa 923-1292, Japan ({s2010233, aelibol, nakyoung}@jaist.ac.jp) ∗ Corresponding author

Abstract: It is of the utmost importance for the robot to understand human semantic instructions in human-robot
interaction. Combining semantic information with SLAM-based maps leads to a semantic map. Deep neural networks
are able to extract useful information from the robot’s visual information. In this paper, we integrate the RGB feature
information extracted by the classification network and the detection network to improve the robot’s scene recognition
ability and make the acquired semantic information more accurate. The image segmentation algorithm labels the areas of
interest in the metric map. Furthermore, the fusion algorithm is incorporated to obtain the semantic information of each
area, and the detection algorithm recognizes the key objects in the area. We have demonstrated an efficient combination
of semantic information with the occupancy grid map toward accurate semantic mapping.
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1. INTRODUCTION

Over the past decades, robots have been introduced in
our daily lives with different roles and tasks. Recently,
humanoids are being seen as a key role player in assisted
living facilities. In order for the robot to work well in the
indoor environment, in addition to the navigation abil-
ity integrated with the (metric) map building ability, it is
necessary to recognize the semantic information of the
relevant scene. For example, when we issue a command
to the robot ”please help me get a cup in the kitchen”,
the robot needs to understand where the kitchen is and
be able to understand what a cup is to complete the task.
This requires the robot to obtain the semantic information
of the environment through scene recognition or object
detection, and pass the label to the metric map, which is
known as semantic mapping. Scene classification plays a
vital role in the generation of semantic maps. There have
been several methods proposed on scene classification for
generating semantic maps such as traditional image fea-
ture point matching or deep learning algorithms. In our
work, we propose a deep-learning based novel feature
fusion method, which achieves the state-of-the-art per-
formance in indoor scene classification combining object
detection to enrich semantic information.

The contributions of this work can be summarized as
follows: (1) The proposed method has good performance
in indoor scene classification, the accuracy rate exceeds
the baseline, and the model parameters are small, which
can be well transferred to embedded devices. (2) We
added the task of object detection in the scene recogni-
tion process, which enriched the semantic information.

The remainder of this paper is organized as follows.
After discussing related work in the following section,
Section III proposes our feature fusion method based on
deep learning and details the semantic mapping process.
Section IV describes the results and analysis of the exper-
iments. Section V draws a conclusion with future work.

2. RELATED WORK

Using visual information to infer semantic location
classification has become an important field in robotic ap-
plications. Rottmann et al. [1] trained the classifier by the
features extracted from the visual and laser ranging data,
and enhanced the robustness of the scene classifier us-
ing the Markov model. Visual features of histogram were
used in [2].

With the advances in deep learning, a variety of meth-
ods using neural networks are increasingly playing a sig-
nificant role in scene recognition. Sünderhauf [3] used
the AlexNet [4] to train the Place205 dataset for scene
classification. Embedding the classification system into
a Bayesian filter framework, previous domain knowl-
edge can be merged, and the framework can ensure the
consistency of time. Place205 annotates 205 kinds of
scene data, and uses deep neural network for classifica-
tion training. This paper uses SLAM to generate 2D grid
map, and then input the image provided by the vision
system into the classification network to get the environ-
ment, and then add the environment semantic information
into the grid map. Brucker et al. [5] proposed a method to
obtain 3D-RGB from rooms for map reconstruction and
semantic label assignment. Using the deep learning tech-
nology, according to the automatically generated virtual
RGB view and the geometric analysis of the 3D struc-
ture of the map, the scene is classified and the object is
detected, so as to get the room type. Rangel et al. [6]
used the information provided by vocabulary annotation
to generate semantic images from RGB images acquired.
Pal et al. [7] combined the object detection and scene
recognition algorithm, and designed 5 models for exper-
imental comparison. They used the Place365 [8] dataset
to train resnet18 [9] network for scene classification of
7 indoor scenes. In addition, YOLOv3 [10] was used to
train the COCO dataset [11] for object detection to assist
in detecting scene classification model. When the scene



Fig. 1. System architecture with the Yolov5 object detector, multiple classification networks, and the EfficientNet-B2
network. We segment the grid map, obtain the scene information of each area using the scene classifier, and generate
a semantic metric map. We use the detector to obtain the object information of each area to enrich the semantic map.

confidence is lower than the threshold, the object detec-
tion model can be used to identify the scene. Using these
large datasets, label information can be detected even in
unknown environment, without retraining the model ac-
cording to the specific environment.

3. METHODOLOGY

The robot can create occupancy grid maps through
SLAM. Our task is to use the RGB images to create a
semantic map based on the grid map. The proposed se-
mantic mapping combines two parts: a portable indoor
scene classification model and an indoor object detec-
tion model. In the classification model, we compared the
SOTA networks in ImageNet competitions, and chose a
model with precision and speed trade-off. In the detec-
tor, we use the YOLOv5 model, which has proven to be
accurate and fast. We fused the image features of the
classifier and the detector as the input layer to output
the classification results under the action of the two fully
connected hidden layers, thereby obtaining the semantic
label of the current image. Finally, when making a se-
mantic map, we can use the robot’s pose estimation and
laser scanning data to create a semantic map. We chose
the MAORIS [12] algorithm of map segmentation to seg-
ment the metric map first. After the map segmentation,
we fill in the corresponding segmentation area according
to the semantic information of the image. In addition, we
use 35 object categories as part of the map information
to enrich semantic information. The specific process is
illustrated in Fig.1.

3.1 Selection of scene classification extractor
Regarding the classification of indoor scenes, we

chose the same 7 indoor scenes as in [7], namely bath-
room, bedroom, corridor, kitchen, living room, dining
room, and office. The scene dataset uses the scene pic-

tures of Place365 [8], which contains 5,000 training sets
for each category. We originally planned to use all the
data for training to ensure that the robot can recognize
the meaning of the scene in most environments, but the
accuracy of this detection is very low on some data sets,
and most of the scenes are outdoors. So we only kept
7 main indoor scenes. In the selection of the basic ar-
chitecture, we trained ResNext50 [9], SE-ResNeXt, Mo-
bileNet V3 [13], MixNet [14] and EfficientNet [15] using
the Place365 dataset. In order to achieve real-time scene
recognition of mobile robot embedded devices such as
NVIDIA JETSON TX2, we made a trade-off between ac-
curacy and speed. In the end, we chose EfficientNet-B2
as the basic architecture showing good performance with
small number of parameters.

3.2 Selection of object detector

Compared with image classification, object detection
not only requires the identification of the physical cat-
egory in the image, but also the output of the object’s
position parameters [10], [16]. We used the YOLOv5
model. The test speed of this model on NVIDIA JETSON
TX2 is about 60ms per image, which meets our speed re-
quirements with good detection accuracy. YOLOv5 has
well inherited and optimized the structure of YOLOv4,
using CSPDarkNet53 as the backbone, and Neck using
FPN and PAN modules. The prediction and output of the
results are completed in the head. We believe that ev-
ery indoor scene has a specific object category, and we
can assist in judging the current scene category by de-
tecting specific objects. For specific correspondence, we
refer to the paper [7]. However, among the 80 object cat-
egories in the MSCOCO dataset, there are many invalid
categories that cannot be used in our scenario. Therefore
we extracted the 15 object data in Table 1 as the training
set, where the numbers 1-6 respectively represent the key
objects in the bathroom, bedroom, dining room, kitchen,



living room, and office. If there are no objects, it belongs
to the corridor. We specially trained a detector model for
these 15 objects to extract object information as shown in
Fig. 2.
Table 1. 15 categories of scene-specific objects

1) toilet 1) sink 2) bed 3) dining table
3) wine glass 3) bowl 4) oven 4) microwave
4) refrigerator 5) sofa 5) vase 6) TV
6) laptop 6) keyboard 6) mouse

Fig. 2. Visualized images of the detector training process

3.3 Scene classifier based on feature fusion
Since the key object detection of the detector can pro-

mote the result of scene classification, we fuse the re-
sults extracted by the object detector with the features
extracted by the classification network to obtain more ac-
curate results. Extracting the features of the last layer
of the classifier, the 7D logits feature vector with the di-
mension of the scene value is obtained. In the extraction
process of the detector, the information of < x, y, w, h >
in theN×6 vector is removed, whereN is the number of
scenes whose detected confidence is greater than the set
threshold, and the data in N is the index of 15 types of
objects to be supervised. < x, y, w, h > means to obtain
the location information of the object. Therefore, we can
create a 15D vector. For each type of object, no matter
how many times it appears, we only take the data with the
largest confidence and store it in the 15D index to create
a vector containing the object’s confidence. Then we fuse
the two vectors to obtain a 22D vector as the new neural
network input layer. We redefine the two fully connected
layers, and output the 7D scene recognition result, using
the softmax function and the cross entropy loss function
given by

Loss = −
C−1∑
i=0

yilog(pi) = −log(pc), (1)

where p = [p0, ..., pc−1] corresponds to the probability
distribution of the vector output network, and pi repre-
sents the probability that the sample belongs to the i-th
category. y = [y0, ..., yc−1] is the one hot representation
of the sample label, andC corresponds to the index of the
sample.

3.4 Semantic map creation
For the creation of the semantic metric map, we plan

to use some map segmentation algorithms to divide the
occupied grid map into different regions firstly, and then
determine the specific semantic information of the re-
gion based on the RGB images obtained in the region.
There are many map segmentation algorithms such as
MAORIS segmentation [12], and spectral clustering and
quadtree [17]. We use the MAORIS algorithm to com-
plete the map segmentation task in the blank area. This
method first calculates the distance between image and
free space image of the map. Then the method groups
adjacent pixels of same value in regions, immediately
remove ripples, then merge regions with similar values
and removes regions created by thick walls, and finally
straightens boundaries. A large number of regions can be
generated by this algorithm. Specifically, it can be ex-
pressed by the following formula:

M =
{
R1, R2, ...Rn

}
, (2)

Ii1, Ii2, ...Iin ∈ Ri, (3)

where M represents the input map, R = [R1, ...Rn] cor-
responds to the set of divided areas, Ii = [Ii1, ...Iin] cor-
responds to the set of RGB images obtained by the robot
in the area Ri. We need to determine which area the di-
vided region belongs to using the formula given by:

Class(Rt) = Index(Max

n∑
i=0

p(yj |Iti)), (4)

where p(yi|Iti) corresponds to the 7D probability distri-
bution of the output through our model, yj is the known
local scene class, and Iti is the i-th image in the t-th re-
gion. We add up all the probability distributions to get the
index of the maximum value in the 7D vector. The index
of the maximum value is the category of the regionRt. In
this way, we get the categories of all regions to generate
a semantic map.

In addition, the semantic map can contain some key
objects which can promote the robot’s understanding of
the objects and enrich the semantic information. We use
YOLOv5 as the detector, and select a large number of
indoor objects as the training set in the ImageNet and
MSCOCO datasets. The 35 types of objects selected are
shown in Table 2.
Table 2. Object categories in ImageNet and MSCOCO

chair table bowl mug lamp
display stove flowerpot bed piano
laptop sofa coffee maker keyboard wine bottle
bookcase mouse water bottle washer microwave
refrigerator guacamole dishwasher milk can blow dryer
file cabinet soap dispenser toaster printer ladle
can opener ewer toilet oven cell phone

4. EXPERIMENTS

We evaluated our proposal in multiple datasets, com-
pared with traditional methods.



4.1 Training and evaluation on Place365 dataset
Place365 is a classic scene dataset, consisting of

Places365-Standard and Places365-Challenge. The train-
ing set of Places365-Standard has about 1.8 million im-
ages from 365 scene categories, and each category has a
maximum of 5,000 images. We selected 7 categories of
bathroom, bedroom, corridor, kitchen, living room, din-
ing room, and office for training and testing. We selected
5 types of networks as the basic architecture for training.
In addition, in EfficientNet, we used B0, B2, and B3 net-
works according to the model’s width, depth, and resolu-
tion scaling bases α, β, and γ, respectively. The training
parameters of EfficientNet are as follows: RMSProp op-
timizer with decay 0.9 and momentum 0.9; batch norm
momentum 0.99; weight decay 1e-5; initial learning rate
0.256 that decays by 0.97 every 2.4 epochs. We train
each model for a maximum of 450 epochs, and select the
model with the best performance. The python version we
used is 3.7.10, the PyTorch version is 1.7.0, cuda is 10.1,
opencv is 4.5.1, and torchvision is 0.8.1. The operating
system is Ubuntu 20.04, and the GPU is GeForce RTX
2080 Ti. Fig. 3 shows the convergence curve of the func-
tion during the training process. Since our method has
acquired prior knowledge of the classification and detec-
tion model, only two fully connected layers and activa-
tion functions are needed to train, yielding very fast con-
vergence.

Fig. 3. Models training process and convergence curve

Table 3 shows the experimental results of each model
tested on Place365. It can be seen that our method can
achieve the best results when using a small amount of pa-
rameters. Note that EfficientNet is a very good network,
showing very good generalization ability with fewer pa-
rameters. Therefore, our method is based on the feature
fusion of EfficientNet-B2 and Yolov5s model, which has
shown to be more effective than the two used alone.

4.2 Evaluation on Robot@Home dataset
Robot@Home [18] is a collection of raw and pro-

cessed data from 5 domestic settings compiled by a mo-
bile robot equipped with 4 RGB-D cameras and a 2D
laser scanner. Its main purpose is to serve as a testbed for
semantic mapping algorithms through the categorization

of objects and/or rooms. The RGB images of 5 houses
collected by the robot are used as input to various models
to evaluate accuracy. Among them, the dataset contains
7,242, 8,597, 10,422, 3,886, and 4,228 RGB images from
Home1 to Home5, and we use all these images as the test-
set. We compare the basic architecture EfficientNet-B2
with our method. Table 4 shows the experimental results.

The experimental results in 5 different houses showed
that the average performance of our method is higher than
that of the EfficientNet-B2 network. The results show
that we add object information to the network and per-
form information fusion to help the classification results,
which can increase by about 2% on average. When the
category itself has a high accuracy rate, such as the bath-
room, the performance of our method is not improved,
because EfficientNet itself can fit this part of the data very
well. But for the original low-accuracy categories such
as bedroom and living room, EfficientNet cannot fit these
test data well, but our method can improve greatly on the
original basis, and even increase by 7%. This is due to the
information of the object detection network we added. It
makes up for the features that are difficult to extract from
the classification network. For the kitchen category, our
approach performs worse than EfficientNet. This may be
because the characteristics of the internal object objects
in the kitchen were not well learned during the training of
the detector. The target domain of the test image is too far
from the original domain. We can solve the problem by
re-dividing the object category and improving the quality
of the object dataset. We compared the image difference
between Place365 and this dataset. The domain of the
image set is very different, but the average accuracy of
the model is higher than 60%, indicating that our method
has good generalization ability and can be transferred to
various scenarios.

4.3 Evaluation on VPC dataset

The Visual Place Categorization dataset (VPC
Dataset) [2] contains 6 home information with various
rooms. The RGB image is the frame data obtained by
the camera sensor, which has a strong sequence. We se-
lected 6 scene categories for testing. Among them, there
are about 7,200 RGB images in the bathroom, more than
10,000 in the bedroom, about 1,000 in the corridor, more
than 2,700 in the dining room, about 3,000 in the kitchen

Table 3. Results of classification in the Place365 dataset
Models Accuracy(%) Parameter(M)
ResNet50 90.571 22.99
SE-ResNeXt 87.571 14.77
MobileNet v3 86.714 4.21
MixNet 90.280 10.37
EfficientNet-B0 89.571 4.02
EfficientNet-B3 90.714 10.71
EfficientNet-B2 90.429 7.71
Yolov5s 74.857 7.30
Ours 90.857 15.02



Table 4. Results in the Robot@Home dataset
Alma Anto Pare Rx Sarmis

Scene EfficientNet Ours EfficientNet Ours EfficientNet Ours EfficientNet Ours EfficientNet Ours
Bathroom 0.9137 0.9180 0.9117 0.9175 0.8855 0.8820 0.9723 0.9754 0.9414 0.9497
Bedroom 0.4025 0.4780 0.4063 0.4180 0.3446 0.3658 0.6334 0.6991 0.3425 0.3679
Corridor 0.8128 0.8115 0.5826 0.5809 0.5544 0.5519 0.5423 0.5373 0.624 0.6200
Living Room 0.4004 0.4082 0.5612 0.5826 0.3039 0.3124 0.1539 0.2211 0.4777 0.4936
Kitchen - - 0.5858 0.6423 0.3998 0.4123 - - 0.3707 0.3922
Avg. 0.6324 0.6539 0.6095 0.6283 0.4976 0.5049 0.5755 0.6082 0.5513 0.5647

and living room. Due to the large difference in the dis-
tribution of the number of images in various scenes, we
test according to the scene category instead of the room.
Table 5 shows the experimental results.

Table 5. Results in the VPC dataset
Networks Bathroom Bedroom Corridor Dining Room Kitchen Living Room Avg.
SE-ResNext 66.33 41.36 71.24 43.71 56.92 52.80 55.39
MobileNetV3-L 63.80 40.14 71.54 46.17 57.83 55.91 55.89
MixNet 73.47 47.24 63.57 44.20 67.32 58.02 58.97
ResNet50 72.02 50.92 65.39 47.88 65.17 61.42 60.47
EfficientNet-B0 68.95 48.50 72.86 55.36 62.83 64.27 62.13
EfficientNet-B2 79.99 51.98 65.99 55.14 67.77 72.08 65.49
EfficientNet-B3 73.97 55.22 73.66 49.35 68.32 73.02 65.59
Ours 80.25 53.03 66.79 56.47 67.61 73.18 66.22

It can be seen that our approach has the best av-
erage performance, and it surpasses other architectures
greatly in the bathroom scene. The average accuracy
of our model in the VPC dataset exceeds 66%, showing
that it can be generalized for various application scenar-
ios. We removed the corridor scene and kept the vari-
ables consistent with the paper [7]. Table 6 shows ex-
perimental results in comparison with baseline methods.
The first baseline [2] uses the SIFT algorithm of feature
point matching, the CENTRIST (CE) descriptor, and the
Bayesian filter (BF) method for scene recognition. The
next method [19] implements context-based scene recog-
nition by introducing the Histogram of Oriented Uniform
Patterns (HOUP). [20] presented a system recognizing
places utilizing both global configurations observation
and local objects information. It combines global con-
figuration with a Bayesian filtering framework (G+BF)
and object feature matching (G+SIFT+BF). We also in-
cluded classification networks based on deep learning,
such as AlexNet [4] and ResNet, along with Batch Nor-
malization (BN) to improve accuracy and speed up con-
vergence. The paper [7] uses ResNet18 (Scene-only) as
the basic network and YOLOv3 (Combined) as the de-
tector for feature fusion to improve the accuracy of scene
recognition. Finally, we tested the performance of Ef-
ficientNet and our approach. According to the network
scaling, we tested the experimental results of B0, B2, B3
with BN. In this paper, the accuracy of scene recognition
in each room of our method is 62.40%, 62.59%, 69.63%,
70.42%, 64.94%, 66.02%, and the final average accuracy
rate is 66.00%, higher than all other approaches.

4.4 Semantic map in Robot@Home
We use our deep learning-based image feature fusion

method as a classifier for scene recognition. This clas-
sifier can achieve state-of-the-art effects in indoor envi-
ronment recognition. Through the MAORIS segmenta-
tion algorithm, we get the metric map. Then we take
all the images in the region as input, and get a proba-

Fig. 4. Results of semantic mapping in the Pare Home

bility distribution through our classifier. We set a 50%
threshold as the accuracy of classification. If the max-
imum probability distribution is greater than 50%, we
think this scene category is the category we ultimately
need. If it is less than the threshold, we consider this to
be an unknown area. In addition, these images will ob-
tain the objects in them through the object detection algo-
rithm YOLOv5, which can greatly improve the semantic
information of the map. We tested the 2D metric map in
the Robot@Home dataset. Fig. 4 shows the visualization
result of the semantic map generated by Pare Home. It
can be seen that the semantic map not only retains the
scene information, but also retains the object informa-
tion. Compared with the ground truth, our semantic map
is very consistent with the real scene distribution. We will
further increase the number of detection categories of the
network so that it can be applied to more scenarios.

5. CONCLUSION

In this paper, we fused the features of the scene recog-
nition algorithm and the key object detection algorithm,
and conducted experiments on three real indoor datasets.
The results confirmed that our approach outperformed
the existing state-of-the-art approach, and showed a good
generalization ability, which can transfer the model to a
variety of different indoor scenes. The advantages of our
model can be more reflected especially where the scene
recognition does not work well. This makes the proposed
semantic map closer to ground truth, laying the founda-
tion for the robot to perform more tasks. As future work,
we will add more scene information and work on topo-
logical mapping having many advantages compared to
metric maps, such as small storage memory and conve-
nient use of graph algorithms for the shortest path plan-
ning tasks. Topological maps build upon the proposed



Table 6. Comparison with Baseline in the VPC dataset
Approach [2] [19] [20] AlexNet ResNet18 [7] EfficientNet Ours
Config. SIFT SIFT+BF CE CE+BF HOUP G+BF G+O+BF Base BN BN Sce. Comb. B0 B2 B3 Comb.
Accuracy 35.0 38.6 41.9 45.6 45.9 47.9 50.0 50.2 53.7 55.0 63.7 65.7 58.6 64.2 63.7 66.0

semantic metric maps and RGB-D image detection and
segmentation.
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