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Bidder Scalable M+1st-Price Auction with
Public Verifiability

Po-Chu Hsu
Graduate School of Engineering
Osaka University, Japan
hsu@cy2sec.comm.eng.osaka-u.ac.jp

Abstract—M + 1st-price auction, also called Vickrey auc-
tion, is a type of sealed-bid auction to sell M identical
goods. B bidders secretly choose a price from P bidding
points as their bid. The top M bidders can buy the goods at
the M + 1st bidding price. A trusted manager is commonly
used to compare these sealed-bids. In our research, trusted
manager and trusted mix servers used by mix and match are
removed. Instead of cooperating all managers or bidders to
find out the winning bidders, winning bidders prove that
they are a winner by themself. By further adopt a greedy
strategy on searching the M + Ist-price, the time complexity
of each bidder can be reduced to O(P), which is the same
as most previous researches. Thus, we construct a scheme
that removed the manager without increasing bidders’ time
complexity. The implementation shows that the gas usage
reduced 87% from a manager architecture in a 3 bidder and
6 bidding price setting. The cost to participate in this auction
is 12,000, 000P gas or 600P US dollars at this moment, which
is enough practical.

Index Terms—M+1st-price auction, blockchain, smart con-
tract, privacy

I. INTRODUCTION

M + 1st-price auction, also called Vickrey auction, is
a type of sealed-bid auction. Bidders submit written
bids without knowing other bidders’ bid. A simplified
version of Vickery auction is a second-price auction. In
a second-price auction, the highest bidder can get the
good with the second highest price. This was designed
to encourage bidders to bid what they truely wanted
to pay. The M + 1st-price auction is used when a good
can be divided to M equivilant parts or there are M
identical goods. The top M bidders can get goods with
the M + Ist-price. All information except the identity
of the top M bidders and the M + 1st-price should
be secret. These are called bids’ secrecy and bidders’
anonimity. Neverless, the final result, that is, the top M
bidders can M + 1st-price need to be publicky verified.
There are many known M + 1st-price auction protocols.
One of the most classical design was given by Abe et
al. [1]. They solve this problem elegantly by a semi-
homomorphic encryption scheme. Mistunaga et al. [2],
[3] follow up this research and use the binary format
of the bidding price to decrease the time complexity
from P to log P. However, they also require a stronger,
full-homomorphic encryption scheme to achieve secrecy
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and anonimity while keeping the public verifiability.
We focus on two important features of trusted manager
and public verifiability. All of these researches require
a mix server by using mix and match to achieve public
verifiability.

A trusted manager is commonly used [1]-[4]. How-
ever, the trusted manager knows all secrets, and it is
impossible to prove a side channel between the manager
and a bidder doesn’t exists. i.e. manager might collude
with bidder. Another approach to reduce a power of
trusted manager is to separate a trusted manager into
two managers [5]. To construct a scheme without man-
ager, Smart contract is a very plausible choice. Smart
contract is a program running on top of Blockchain. It
can be considered as a bulletin board with some com-
putation power and a monetary system. After the smart
contract appeared, Hawk [6], as an universal smart con-
tract framework that provides secure computations, gave
an auction example. Even though all computations are
public verifiable, the trusted manager in Hawk can still
know all secrets. In 2018, Verifiable Sealed-Bid Auction
[4] was proposed to better fit the nature of smart contract
protocol. It aggregates the monetary system to provide
financial fairness. However, their scheme also relies on
a trusted manager to hide secrets. Furthermore, their
scheme does not achieve a feature of public verifiability
since it requires interactive proofs. The posterior bid
secrecy and bidder anonimity does not hold since a com-
mitment scheme will be opened at the end of the auction.
Recently, the first scheme without trusted managers was
proposed [7]. They removed trusted manager from Abe
[1]’s construction.

Another important issue is public verifiability while
keeping bids secrecy and bidders” anonymity. To achieve
public verifiability, Mix and match is commonly used in
auction protocols [1], [3]-[5], which can publicly verify
whether a plaintext m corresponding to a ciphertext
Enc(m) is in a given set {my,my,...] without revealing
m. However, mix and match is not only expensive seen
in the mix net [8], [9] (require multiple trusted mix
servers), but also slows down the entire protocol since
the settlement time of blockchain is not negligible.

One of our contribution can totally increase scalability



‘ Other bidders M + 1st bidder  Top M bidders

Public
Secret

Secret
Public

Secret
Secret

Identity
Price

TABLE I: Public and secret information in M + 1st-price
auction

even without trusted manager by improving mix and
match. In previous research [1], [3]-[5], manager need
to use mix and match on M ciphertexts and decrypt
some ciphertexts. As a result, the computation cost
and communication cost are O(TBPM) (O(BPM)/TTP).
To remove manager, [7] ask bidders to act as manager.
Thus, the cost becomes O(B>PM) (O(BPM)/bidder) since
T managers are replaced by B bidders. B® is a huge
cost. To solve this problem, we proposed a decentralized
design. The decision of M+ 1st price and top M winning
bidders are not made by a manager [1], [3]-[5], or a
group of bidders [7]. In our design, bidders interact with
smart contract independently to prove herself/himself
as a winner. As a result, the costs are reduced from
O(TBPM) (O(BPM)/TTP) or O(B>*PM) (O(BPM)/bidder) to
O(BP) (O(P)/bidder). Thus, the time complexity of our
scheme is independent to number of bidders. No matter
how many bidders join the auction, the cost for each
bidder are same.

By analyzing the M + 1st-price auction, a greedy strat-
egy is used. Instead of mix and match M ciphertexts (re-
quire T mix server), we only need to use zero-knowledge
equality proof to test one ciphertext. Thus, our design is
O(TM) better than previous researches [1], [4], [5].

The features are listed below:

« No TTP: No trusted manager or trusted mix servers
are used in our scheme.

« Bid secrecy: The price of top M bids are secret. All
other bids are secrets except the M + 1st-price.

« Bid anonymity: The identity of the M + 1st-bidder,
and all other bidders except the top M bidders.

« Posterior secrecy and anonimity: Bid secrecy and
bid anonimity holds after the auction ends.

« Public verifiability: Every messages sent by bidder
are attached with a non-interactive zero-knowledge
proof.

« Financial fairness: Malicious parties” stake will be
sent to honest party as compensation.

In this paper, we explain cryptographic preliminaries
in Section II, and propose an efficient and secure M+ 1st-
price auction protocol in Section III, describe the imple-
mentation and optimization in Section IV, and compare
our scheme with the previous researches in Section V.
Finally, we conclude our scheme in Section VI.

II. PRELIMINARIES

Definition 1 (DDH assumption): Let t be a security
parameter. A decisional Diffie-Hellman (DDH) param-

eter generator /G is a probabilistic polynomial time
(PPT) algorithm that takes an input 1¥ and outputs the
description of a finite field IF, and a basepoint ¢ € [,
with the prime order g. We say that 7G satisfies the
DDH assumption if € = |p1 — p2| is negligible (in K)
for all PPT algorithms A, where p1 = PR[(F,,g) «
IG5y = 8%,y = % « Ty 1 A(F), 8,11, 42,87%) = 0]
and p, = Pr[(F,, g) « IG(1X); 1 = g,y = g%,z « F, :
A(Fy, 8, Y1, 2,2) = 0].

Definition 2 (ElGamal encryption [10]): Let p and g be
large primes. Let (g) denotes a prime subgroup of Z;
generated by ¢ whose order is . Given a message
m € Z,,, we define ElGamal [10] encryption as Enc,(m) =
(§',m-y"), where y is the public key and r € Z;. Given
a ciphertext ¢ = (¢',m - y"), decryption is detined as
Decy(c) = m, where x is the private key.

Definition 3 (ElGamal based multi-party encryption [7],
[11]): Assume there are n encryptors with private key
public key pairs (x;,y:),i € {1,...,n} accordingly. Given
a message m. The ElGamal ciphertext of m is defined
as Ency(m) = Enc,,(...Enc,,(m)) = c, where R = Y, 7;
and Y =[], yi. The decryption is defined as Decx(c) =
Dec,, (...Decy, (m)) = m, where X = {xy, ..., x,}.

Theorem 1: ElGamal based multi-entity decryp-
tion is commutative [7], [11]. Given two cipher-
text Enc,(Enc,(m)) = ¢ and Ency(Enc,(m)) =
c;. The decryption can be performed in any order.
Dec,, (Decy,(c1)) = Decy,(Dec;,(c1)) = Decy, (Decy,(c2)) =
Dec,,(Decy, (c2)) = m.

Theorem 2 (Plaintext equivalence proof of EIGamal cipher-
text [12]): Given an ElGamal ciphertext (¢",my") and a
plaintext m’, the encryptor can prove the value of m = m’
without revealing r. This type of proof is based on the
proof of equality of two discrete logarithms. i.e. ¢ and
my"/m’ share the same discrete logarithm r.

Theorem 3 (OR of the Two plaintext equivalence proof of
ElGamal ciphertext [12]):

Given an ElGamal ciphertext (g, my") and plaintexts
m’ and m’, the value of m = m’ or m = m” can be
proved without revealing m and r. It is a variation of the
plaintext equivalence proof. Helios [12] gave an example
of how to construct this proof.

Theorem 4 (Proof of knowledge of a discrete logarithm):
Given g € Z, and x € Z;, the knowledge of ¢"’s discrete
logarithm x can be proved without revealing x.

Theorem 5 (Proof of equality of two discrete logarithms):
Given g¢1,¢2 € Z, and x1,x; € Z;;, the knowledge of g*’s
discrete logarithm x can be proved without revealing
x. This type of proof is a variation of the proof of
knowledge of a discrete logarithm.

Note that all proofs mentioned above can be non-
interactive by using Fiat-Shamir heuristic [13].

III. Our ProToCOL

Our protocol consists of a seller, who sells M goods
and sets price range for M; and bidders, who bid a
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(a) Bulletin board design [1]-[3]

Smart Contract
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(c) Smart contract as manager.
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(b) Smart contract design [4], [6]

Smart Contract

Bidder2
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Sk1 P pkl

Bidder3
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(d) Bidder as manager.

Fig. 1: (a) and (b): Traditional design. (d): our proposal. Note that (c) doesn’t work since smart contract does not

have secret storage.

| @ = count(b; = jpsVi) | B = count(b; > jprs1Vi)

Case A ax1 p=M
Case B ax1 p<M
Case C a>1 B>M

TABLE II: Possible cases in an M+ 1st-price auction. jps+1
is the M + 1st-price.

price to the good. The M highest bidders can buy the
goods by the M + 1st-price. Remark that no other entity
except seller and bidders are required in our protocol. In
this section, we show our protocol. An overview of our
protocol are as follows.

0) Smart contract deployment

1) Bidder initialization: Bidders who want to join
must submit their stake and their public key used
for encryption to the smart contract.

2) Bidder submits the bids: Bidders decide their bid-
ding price, encrypt it by all other bidders’ public
key and submit it to the smart contract.

3) M + Ist-price decision preparation: Bidders ran-
domize the ciphertexts in the smart contract.

4) M + 1st-price decision: This phase will be per-
formed multiple times until the M + 1lth-price is
found.

5) Winner decision: The top M winning bidders must
submit a zk proof to the smart contract to prove that
they win the auction.

6) Payment: The top M winning bidders pay the seller
the M + 1st-price for the goods.

A. Greedy strategy to the M + 1st price:

The main goal of the M+1st-price auction is to find the
boundary between the Mst-price and the M + 1st-price.
In table II, assume « is the number of bidders whose bid
b; is same as jy+1, and B is the number of bidders whose

bid b; is larger than jp1. A M+ 1st-price auction can be
separated into three cases:

« Case A (valid): There are exactly M bidders whose
bid is larger than the M + 1st-price. In this case, the
top M bidders pay pj,.., for the goods.

o Case B (invalid): The Mst-price is same as the M +
1st-price. M — f amount of bidders must be picked
from the top a bidders as winner. In our research,
we consider this case as invalid. The protocol aborts
without leaking any information of @ and B. The
seller can increase the set of possible bidding prices
and restart the auction. In previous research [1], [3],
they consider the top a bidders as winner and leak
the number of a.

« Case C (invalid): This case will never happen.

B. Zero-knowledge Equality Proof of Aggregated Ciphertexts
(ZKEP-AC):

« Input: 1. Target zM. 2. A product of ciphertexts ¢ =
1.2 ai, where ay, ..., ap are ciphertexts generated by
bidder By, ..., Bg accordingly.

« Output: True if Dec(c) = zM. Otherwise, return False.

Let ¢ = T84 = TILg%2Y%) =

(gr1+.“+r3, it ttp le+.‘.+r3) — (gR/ ZTyR)' Traditionally,
an equality proof proves the knowledge of randomness
R. However, c is a product of ciphertexts generated by
all bidders. A way to prove this is to aggregate the
proof of knowledge of randomness r; generated by each
bidder B;. Another way is to aggregate the proof of
knowledge of secret key x;. However, it is either difficult
to verify each bidder’s proof before it is aggregated or
it can break the secrecy of a;. Therefore, we proposed a
three step approach.

1) SC divides ¢ = (u,v) by zM:

¢ = (u,v/z™)



2) For all bidders B;, get ¢’ = (u’,?v") from SC, power
by a random number w; « Z, to hide the plain-
text of c if it is not zM. The bidder B; then send
¢/ = (u'™,v"™") back to SC. A same discrete log zero-
knowledge proof is attached to prove the power w;
are same. This step is asynchronous. Each bidder B;
can generate their own ¢!’ without waiting for other
bidders.

3) SC aggregates all ¢’ = (u!’,v),i=1,..,B as C.

All bidders must submit their bids to SC within time
T, as follows:

« Each bidder B;,i € {1, ..., B} submit following mes-
sages to the SC:

- Encrypted bidding vector V; = (Vi, ..., Vip):
{Encyal)

Ency(z%)

if j=b;
if j# by

ij =
The bidder B; first chooses a bidding point b; €

ates the bidding vector V;. The elements in V;

B B o
€= [H ui, H U;,] _ (gZ?:1 HELiw (L )-M L wiy T n Tl wl.){l,...,P} from the price list {p1,...,pp}, and gener-

4) Decrypt C = (U, V):

a) All bidders B; send U* to SC with a same discrete
log zero-knowledge proof that x; is the same
secret key as y; = g*.

b) SC calculates

V.-u©.e.ygtte = Z((Z’B:l t-M)LE wi _ o

5) Return True if 0 = 0. Otherwise, return False.

C. Auction Protocol:

Smart contract deployment:
The following parameters are deployed in the smart
contract (SC) to start the auction.

« Cryptographic parameters: Large prime p, a base-
point ¢ with prime order g, and a auction base

z « Z,\{0,1}.

« Seller initialization:

- Bidding price list {p1, ..., pp} of P bidding points.

— Timeouts for each phases Tj, ..., Te: Failed to sub-
mit things to smart contract within a given time
period will be treat as a violation to the protocol
and be financially penalized.

— Seller’s stake dg: Seller submit dg amount of ether
as stake to start the auction.

— Bidders’ stake requirement dg: Bidders are re-
quired to submit dg amount of ether as stake to
join the auction.

Phase 1. Bidder initialization:
Bidders join the auction within time T; as follows. We
assume that there are more than M + 1 bidders.

 Each bidder B;,i € {1,...,, B} submit following mes-
sages to the SC:
— Public key y; = g% for the ElGamal encryption,
where x; < Z,; is a randomly chosen secret key.
— The proof of y; = g“: This proof can be con-
structed by using proof of knowledge of y;’s
discrete logarithm x; in Section II.
— dg amount of ether as stake.
o After this phase end, an aggregated public key Y =
[12, i can be calculated by SC.
Phase 2. Bidder submit their bids:

should contain exactly one Ency(z') and P -1
amount of Ency(z’). An equivilant statement is

P
(Vi € (Ency(@), Enoy<zl>}vf)A[H Vi= E”CY(Zl)]

=

— The proof of Vjj € {Ency(z°), Ency(z')}¥j: This
proof can be constructed by using an OR proof
of Dec(Vjj) € {z°,z'} in Section II.
— The proof of Hle Vij = Ency(z!): This proof can
be constructed by using a plaintext equality proof
of plaintext z!' in Section 1II.
Phase 3. M + 1st-price decision preparation:

In this phase, SC first calculates a ¢ = (¢y, ..., cp) array.
Then performs ZKEP-AC on all ¢y, ...,cp. The smallest j
where Dec(cj;1) = zM is the M + 1st bidding point. Step
1 and 2 of ZKEP-AC are performed on all ciphertexts
c1,...,cp within time T3. The protocol is as follows:

1) SC calculates array a; = (a;1, ..., a;p) for all bidder B;:

P
aip = [ [ Vie = Enoy (™)
i ik Y
k=]

For all j, the value of a;; equals to Ency(z') if the
bid b; is larger than or equals to j. Otherwise,
ajj = Ency(z%). A better way to reduce the time
complexity from O(P?) to O(P) is to compute a;; =
aij+1) * Vij.

2) SC calculates array c = (c, ..., cp):

B
¢j= H a;j = EnCy(ZZ’il T fi;‘)
i=1
The value of ¢; is the number of bidders whose bid
b; is larger than or equals to j. Figure 2 provides an
example of array a and array c.
3) By all bidders’ cooperation, SC performs ZKEP-AC
protocol from j =1 to j = P to find out the smallest
j where Dec(cj;1) = zM. This j is the M+ 1st bidding
point.
Phase 4. M + 1st-bid decision:
In this phase, step 4 of ZKEP-AC is performed on
C = (Cy,...,Cp). i.e. decrypt Cy, ..., Cp. However, since the
smallest k > j where ¢ # Ency(zM) is the Mst bidding



p1 p2

b =2, Vi =[ Ency(z), Ency(z}),
b2 = 4r VZ = [ EnCY(ZO)/ EnCY(ZO)r
by =3, Vs =[ Ency(z’), Ency(z"),

a =[ Ency(zh), Ency(zh),
a, =[ Ency(z!), Ency(z'),
[

az = Ency(z!),  Ency(z!),

¢ =[ Ency(z®), Ency(z®),
ZKEP-AC #1c¢ =[ Ency(z!), Ency(z),
ZKEP-AC #2-3 C =] Ency(z™), Ency(z"?),

ZKEP-AC #4 =] False, False,
- jM+1st

%] P4 ps
Ency(z°), Ency(z°), Ency(z°) 1
Ency(2°), Ency(z), Ency(z®) 1
Ency(z'),  Ency(2), Ency(z°) ],
Ency(z’),  Ency(2)), Ency(z°) |
Ency(z')|,  Ency(z'), Ency(z®) ] win
Ency(z!)],  Ency(z°), Ency(z’) ] win
Ency(z%),  Ency(z!), Ency(z%) 1]

Ency(z%), Ency(z™), Ency(z?) ]
Ency(z®), Ency(z™™), Ency(z2"5) ]

True, -, - |

Fig. 2: Example of M = 2 with 3 bidders and 5 bidding prices. Wj, ..., W5 are the randomness introduced by ZKEP-
AC. The proof of C = Ency(z°) is performed from left to right, and stops at ja+1s+ = 2. Bidders who can provide a
valid zk proof of a;; = Ency(z!) (boxed ciphertexts) can win the auction. The bidder B, and B; win the auction and

Pay Piya = P2 for the gOOdS.

point, the decryption should be performed one by one
from left to right. It is important to stop when we find
the smallest j where cj;1 = Ency(zM) to keep k secret.
The protocol is as follows:

« All bidders B; submits following messages to the

SC:

1) The decryption message LI;."' of ciphertext C; =
(U;,Vj) for all j = 1,..P: After all U}"' are
collected, the ciphertext can be decrypted by
VT, u:.

2) The proof that U’ is calculated by the secret key
x; for all j =1, ..., P: This proof can be constructed
by using the same discrete logarithm proof of U}"'
and y; = g% in Section IL

Phase 5. Winner decision:

Let the j found in the previous phase be j415. In
this phase, All bidders B; whose bid b; is larger than
JM+1st can submit a proof that a;,,,,+1 = Ency(z!) and
win the auction. This behavior will not leak b; since
Aijjrparg+l = H?:]'M-%-lsl"'l Vi]'. All elements in VirjM+lst+1/ v, Vip
can be Ency(z!). The protocol is as follows:

« Bidders B; whose bid b; > jp415¢ can submit follow-

ing messages to the SC:

1) The proof of a;j,,,,+1 = Ency(z'): This proof can
be constructed by using a plaintext equality proof
of plaintext z! in Section II.

Phase 6. Payment:

The bidders who win the auction send pj,,,,, amount of
ether to the seller through SC. The protocol is as follows:

« All winning bidders pay pj,,,, amount of ether to

SC.

o The seller use winning bidders’ public keys to en-
crypt the goods individually with a proof and sends
them to SC.

o SC sends bidders’ payment to the seller.

D. Features and Security

The design of this protocol provides following prop-
erties:

« Scalability: In our protocol, each bidder’s compu-
tation or communication, even the SC execution
are only related to the bidder itself. Therefore, the
computations, communications, and storage used
by the bidder and SC are scalable on the number
of bidder B.

« Bid Binding: According to our implementation, the
functions in SC will not allow bidders to change
their bidding point after the bid submission phase
is closed.

« Bid secrecy: The bidding vectors Vi, ..., Vg are en-
crypted by all bidders” public keys Y = y;---ys.
Without all bidders” help, the bid is kept as a secret.
The decryption of Cy, ..., Cp in phase 4 is randomized
in phase 3. An adversary cannot get any information
if the plaintext is not z. The secrecy of top M bids
is protected in phase 5. If 4; j,,,, +1 is a encrypted z!,
all bids from a;,,,,,+1 to a;p can contain z'.

« Bidder anonymity: Since cy,...,cp are products of
ciphertexts generated by all bidders. i.e. c; = I, ajj.
The proof of Dec(c;) = zM will not leak a;j,i=1,..,B.
Thus, the identity of the M + 1st bidder is still a
secret.

« Posterior secrecy and anonymity: The bidding
points b;,i = 1, ..., B and bidding vectors V;,i =1, ..., B



are still secrets even after the auction. Thus, poste-
rior secrecy and anonymity still holds.

Robustness: Even if some malicious bidders violate
the protocol, the auction can still continue if there
are M + 1 honest bidders. The robustness of each
phase is as follows:

— Phase 1. Bidder initialization: The seller can re-
duce M if there are no enough bidders.

— Phase 2. Bidder submit their bids: As long as there
are M + 1 bidders submit their bid, the auction
can continue by skipping those malicious bidders’
bid.

— Phase 3. M + 1st-price decision preparation: As
long as there are sufficient bidders help the ran-
domization in ZKEP-AC, the auction can con-
tinue.

— Phase 4. M + 1st-bid decision: The auction can
either continue by skipping absence bidders if a
threshold encryption is used or rollback to phase
2.

— Phase 5. Winner decision: All winning bidders
should claim their rights in this phase. However,
the auction can continue if some winning bidders
gave up their rights. The seller can still ask all
bidders” help to decrypt all a; j,,,+1, i =1,...,B to
find out all winning bidders if needed.

Public verifiability: All messages sent to SC are at-

tached with a public verifiable non-interactive proof,

which can be verified by smart contract immedi-
ately. Therefore, the correctness of the protocol is
public verifiable.

— Phase 1. Bidder initialization: A public key y; = g*
is submitted by each bidder B; to SC, i =1, ...,B.
The proof of knowledge of x; is public verifiable.
Thus, the correctness of the public key is public
verifiable.

- Phase 2. Bidder submit their bids: A valid bidding
vector V; = (Vj, ..., Vip) consists of P — 1 amount
of Ency(z°) and one Ency(z!).

+ For all j = 1,..,P, a OR proof of Dec(V;j) €
{z0,z'} is submitted to SC to prevent mali-
cious bidders from submitting V;; other than
Ency(z°) and Ency(z').

+ A equality proof of Dec(Hle Vij) = z! is used
to prevent malicious bidders from chosing
multiple bidding points.

Thus, by using P + 1 non-interactive zero-
knowledge proofs, the bidding vectors are public
verifiable.

— Phase 3. M + 1st-price decision preparation: A
same discrete log proof is used in the randomiza-
tion of ZKEP-AC. Therefore, the randomization
process is public verifiable.

— Phase 4. M + 1st-bid decision: The proof of same
discrete logrithm that ui‘j’ and public key y; = g%

has same discrete logrithm x; is public verifiable.
Thus, the decryption step in ZKEP-AC is public
verifiable.

— Phase 5. Winner decision: A public verifiable
equality proof of a;j,,,,.«1 = Ency(z') is used to
prove a bidder wins the auction. Thus, the winner
decision is public verifiable.

« Correctness: The correctness of each phase is as
follows:

— Phase 1. Bidder initialization: All public keys
yi=g"%,i=1,..,B are publicly verified. Thus, the
correctness holds.

— Phase 2. Bidder submit their bids: public verifi-
able proofs of Dec(Vj;) € {z,z'} j = 1,..,P and
Dec(]‘[le Vij) = z!' are verified by SC. Thus, the
correctness of the bidding vector V; holds. V;
contains exactly P—1 amount of Ency(z°) and one
Ency(z}).

— Phase 3 and 4. M + 1st-bid decision: According to
the rule of M + 1st auction, the Mst bidding price
must be different from the M + 1st bidding price.
Thus, the smallest j where Dec(cj;1) = M is the
M + 1st bidding point. The correctness holds.

— Phase 5. Winner decision: Only bidders who can
prove a;j,,..+1 = ENncy(z!) can win the auction.
i jyng+1 = ENcy(z!) if and only if b; < jyeie + 1.
Thus, the correctness holds.

« Financial fairness: The seller and all bidders are
asked to deposit some amount of ether in the smart
contract when they join the auction. If they perform
any malicious behavior, smart contract can send
their stake to others as compensation.

IV. IMPLEMENTATION AND OPTIMIZATION

There are two main parts to this protocol, smart con-
tract ! and web3 client ?. The gas usages are estimated
by ganache-cli, a successor of ethereumjs-testrpc. Figure
3 shows the gas usage by using 1024-, 2048- and 3072-
bit primes. To reach 3072-bit security level, the cost is
tremendous and unacceptable. By adopting the elliptic
curve cryptography (ECC), the cost reduced up to 80%
for 256-bit ECC compared with 3072-bit DLP. Both of
them have same security level. On average, the gas usage
is 12,000,000P for each bidder, where P is the length
of the price list. If the gas price is 50 Gwei, and the
ethereum is 1,000 USD/ether, the cost of an auction is
600P USD for each bidder.

To inspect how many gas is needed from removing
the manager and how much gas can we save from
removing mix and match, a manager scheme (based on
AS [1]) and a no manager scheme (based on HM [7]) was
implemented. Table III shows the gas usage of different
phases. In phase 2 and phase 3, as the most costly part

Ihttps://github.com/tonypottera24/m-1st_auction_dlp_sol
Zhttps://github.com/tonypottera24/m-1st_auction _dlp _py
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Fig. 3: Gas usages of 1024-, 2048-, 3072-bit DLP and 256-
bit ECC

TABLE III: The gas usage of [1], [7], and our scheme by
using ECC 256 (3 bidders and 6 bidding prices).

| AS[1] | HM [7] | Our scheme

Manager Yes No No

Mix & match Yes Yes No

Role / cmp Manager | Bidder @ AS | Bidder HM  AS
1. | 1 | 1 0% | 1 0% 0%
g: ‘ 523 ‘ 353 _igofi > —85%  =90%
4. | 79 | 52 —-34%| 21 —60% —73%
5. | 9 | 8 -11%| 3 —63% —67%
6. | 4 | 2 —-50%| 0.3 -85% —93%
Overall | 618 | 416 -33%| 79 -81% —87%

of an auction protocol, are improved up to 90% after we
use zero-knowledge proof to replace mix and match.

V. COMPARISON

The detailed comparisons of each phases are as fol-
lows:

1) Phase 1. Bidder initialization: In previous research
[1]-[3], [14], the bids are encrypted only by man-
agers public key. The bid secrecy, bidder anonymity,
etc are relied on the trusted manager. On the other
hand, in our scheme, the ciphertexts are encrypted
by all bidders” public key. Without all bidders” col-
laboration, no one can break the bid secrecy and
bidder anonimity, etc.

Phase 2. Bidder submit their bids: A valid bidding
vector V; = (Vj, ..., Vip) should contain exactly P —1
amounts of Ency(z’) and one Ency(z!). In previ-
ous research [1]-[3], [14], bidding vector verification
contains two parts. 1. Vi € {Ency(z°), Ency(z!)}; 2.
Zle Vij = Ency(z'). The first part is accomplished
by mix and match [15]. This requires T (trusted)

2)

mix servers to perform mix (secure shuffle [16]-[18])
and match (zk equality proof). The second part is
accomplished by asking trusted manager to decrypt
Zf:l Vij.

In our scheme, instead of asking trusted manegers to
verify the bidding vector V;, bidder B; submit non-
interactive zero-knowledge proofs to prove their
bidding vector V; is valid. SC can verify these
proofs immediately without any other bidders” help.
Compared with previous works, this reduces the lo-
cal computation cost and communication cost from
O(BP) to O(P).

Phase 3 and 4. M + 1st-bid decision: In previous
research [1]-[3], [14], the M + 1st bidding point j
is defined as Dec(cj) ¢ {2 ..,z™} but Dec(cj.1) €
{29, ...,zM}. The test is accomplished by using mix
and match over T mix servers. This method can find
Jj without revealing array c. However, if cj;1 # M,
i.e. some bidders bid the same bidding price as the
M + 1st bidder, there are less than M bidders wins
the auction. Previous research will still determine
these bidders as winner. This violates the rule of the
M + 1st auction. There should be exactly M winner
wins the auction by paying the M + 1st price.

In our scheme, we used a greedy strategy. Instead
of using mix and match to test M values, we only
need to use zero-knowledge equality proof to test
if Dec(cj) = z™. This reduced the time complexity
by T (no mix server) and M (only test z™). This test
may repeat up to P times, and each time cost O(1)
for each bidder. Therefore, the time complexity of
this phase is O(P) for each bidder. Compared with
previous works, this reduces the local computation
cost and communication cost from O(BPM) to O(P).
Phase 5. Winner decision: In previous research [1],
trusted manager(s) decrypts all 4;,,,+1, 1 = 1,..., B
to find out the winning bidders. In our scheme,
each winning bidder B; can provide a proof that
Dec(a;,,,,+1) = z' to prove that he is a winner.
Therefore, the time complexity is only O(1) for each
bidder. Compared with previous works, this reduces
the local computation cost and communication cost
from O(B) to O(1).

Phase 6. Payment: Different from previous research,
the goods in our design are encrypted by winners’
public key and sent to SC. Seller also gets the ether
from SC for the goods.

3)

4)

5)

Compared with previous research, our design is more
scalable since the complexity of each bidder is O(P), not
O(BP). The cost for each bidder will not increase when
the number of bidders increased. Table IV shows that we
do not use trusted manager and trusted mix server. The
(posterior) bid secrecy, bidder anonymity, and robustness
are also not based on TTPs. Also, the usage of smart
contract and zero-knowledge proof ensures the public



TABLE IV: Comparison of previous researches and our scheme (TM: Trusted Manager, B: Bidder)

(Posterior)

Manager  Mix server [ Did Secreey & - Robustmess i Rl scalablit
idder Anonymity

AS [1] Yes Yes Based on TM Based on TM No No No

OM [5] Yes Yes Based on TM Based on TM No No No

MMO [3] Yes Yes Based on TM Based on TM No No Scalable on P
GY [4] Yes Yes Based on TM Based on TM Interactive Yes No

HM [7] No No Yes Yes Yes Yes No

Our scheme No No Yes Yes Yes Yes Scalable on B and M

TABLE V: Comparison of the complexity with previous works. (T: the number of trusted managers and mix servers,
B: the number of bidders, P: the number of bidding prices, M: number of goods)

| Manager | Bidder | Smart Contract
Local Communication Local Communication Computation Communication Storage

computation costs computation costs p costs used
AS [1] | O(BPM) O(TBPM) | O(P) O(P) | - - -
OM [5] | O(BPM) O(TBPM) | O(P) o(pP) | - -
MMO [3] | O(BlogPM) O(TBlogPM) | O(logP) O(log P) | - - -
GY [4] | O(BPM) O(BPM) | o(P) o(P) | O(TBPM) O(TBPM) O(TBPM)
HM [7] | - - | OBPM) O(BPM) | O(B*PM) O(B*PM) O(BPM)
Our scheme | - - | O(P) O(P) | O(BP) O(BP) O(BP)

verifiability and financial fairness. Compared with Hsu’s
scheme [7], we removed the Mix servers and improved
the scalability.

Table V compared the local computation cost, commu-
nication cost, and space used by manager, bidder, and
smart contract. In terms of communication costs, since
AS [1], OM [5], and MMO [3] didn’t use smart contract,
all T mix servers’ messages are sent back to the manager.
The communication cost of manager is T times of the
local computation cost. GY [4], HM [7], and our scheme
used smart contract as a message center, so it is T times
in GY, and B times in HM and our scheme.

Since our scheme does not use trusted mix servers,
our scheme is T times better than previous researches.
The greedy strategy also reduced the complexity by M.
Thus, the local computation cost and communication
cost is only O(P) for each bidder. As a scheme without
a trusted manager, this is a great improvement com-
pared to Hsu’s scheme. Mitsunaga [3] did great work
to compute bids in binary format to reduce P to logP.
However, their construction is based trusted manager,
mix and match, and full-homomorphic BGN encryption.
Their local computation costs and communication costs
are also not scalable on B.

VI. CoNcLUSION

In our research, by utilizing smart contracts, this pro-
tocol reached the ultimate goal of decentralized apps

(DApps): Decentralized: no TTP or manager is used.
Scalable: the time and space complexity for each bidder
is not related to the number of bidders. Robustness, the
auction do not necessarily need to restart if there are
some malicious bidders at the first time.
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