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Abstract

In this thesis, our aim is to employ the many-valued logic to the multi-agent
system. First, we extend the semantics of epistemic logic to a many-valued
one. Second, we introduce many-valued semantics to express the epistemic
states instead of Kripke semantics. To obtain such bases, we focus on the
following issues in this thesis.

The first issue is to employ a 4-valued epistemic logic to distinguish the
public/private information passing in the multi-agent system. Thus far, the
agent communication has often been modeled in dynamic epistemic logic,
where each agent changes his/her belief, restricting the accessibility to pos-
sible worlds in Kripke semantics. On some occasions, the recipient changes
he/she belief since he/ she may not have enough background knowledge to
understand it or the information may be encrypted and he/ she may not know
how to decipher it. Here, we generalize those messages as private information.
For this purpose, we employ 4-valued logic where each proposition is given 2
(true and false) times 2 (private or public) truth values.

The second issue is to build a n-topic semantics for the infectious logic.
Beall advanced a new and interesting interpretation of Weak Kleene logic, in
terms of on-topic/off-topic. In brief, Beall suggests to read the third value
as off-topic, whereas the two classical values are read as true and on-topic
and false and on-topic. Building on Beall’s new interpretation, we offer an
alternative semantic framework that reflects our motivations, then we provide
a new interpretation of the logic of Castuskoti. Finally, we offer a general
result that will allow us to make sense of a family of infectious logics in terms
of Beall’s on-topic/off-topic reading.

The third issue is to provide many-valued semantics instead of Kripke
semantics to show the epistemic states of agents. Employing epistemic logic
to express the epistemic states is often too complicated to build because we
should consider all possibilities of the knowledge between agents. Here, we
employ a many-valued logic to express the epistemic states of agents. We
consider that there exist three kinds of epistemic states of known, truth-value
unknown, and content unknown. And furthermore, we introduce two kinds
of agent communication in our semantics, i.e., teaching and asking, and show
how the epistemic states of agents will change.

Keywords: Epistemic logic; Many-valued logic; Multi-agent system,;
Infectious logic; On-topic/off-topic; Agent communication
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Chapter 1

Introduction

1.1 Background and motivation

Our motivation is to employ many-valued logic to the multi-agent system.
Therefore, this thesis focuses on the following two questions.

Epistemic logic is a branch of philosophical logic that seeks to formalize
the logic of discourse about knowledge. In the multi-agent system, we usually
use epistemic logic to express the epistemic state of each agent. For epistemic
logic is much influenced by modal logic, we usually use Kripke model as its
semantics. Thus far, a bunch of researches have been studies have to extend
the epistemic logic, that can be usually divided to three types.

e Offering operators to show the knowledge change, i.e., the dynamic
epistemic logic, while such operators are called dynamic operators.
For example, the operator [A] stands for public announcement, [Lg7?A]
stands for epistemic actions, and [!,A] stands for agent announcement. (
[44,46])

e Providing modal operators to show other epistemic states than knowl-
edge or belief that are shown by K or B. For example, Van [43]
provided the operator Z to express the ignorance of agents, Fan [16]
used the operator /A to show an agent knows whether a formula is true
or not, and Wang [47] proposed Kh that stands for knowing how.

e Extending the Kripke frame (model) to obtain more information.
For example, Hatano [23] added {Cup}apea to normal Kripke models
to express the channels between agents, Nomura [28] provided the
epistemic narrow-doxastic model by adding another binary relations
on possible worlds.

(Q1) Can we extend the semantics of epistemic logic to a many-valued one?

Actually, if we build the Kripke model perfectly and consider that every
agent has the common sense which is shown in the model, the representation
of epistemic states and the simulation of agent communication usually work



very well. However, it is often too complicated to show the epistemic states
of multi-agent system in the modal logic because we should consider all
possibilities of knowledge between agents, e.g., agent a knows that b knows
p while agent b doesn’t know that agent a knows that agent b knows p.
Moreover, normally an agent can hardly take care of the knowledge like
K, KyK,A. As a result, it is difficult for agents to obtain the common
knowledge.

If we avoid using Kripke semantics, a natural idea is to employ many-
valued logic whose values express more than classical logic. In classical logic,
we assume that every proposition it may be ascribed exactly one of the
two logical values, truth or falsity, called the principle of bivalence. Many-
valued logic, as its name, provided more than two truth values. Since the
birth of many-valued logic in 1920s, there have been enormous amount of
many-valued logics motivated and introduced in the literature. The three-
valued logics have been discussed since 1930s, by Dmitri Bochvar in [6],
followed by Soren Halldén in [21] and Stephen Cole Kleene in [25] among
others. Lukasiewicz introduced a n-valued logic by considering the values as
{0,1/n—1,2/n—1...;1} ( [26]). Around 1977, Belnap and Dunn provided a
4-valued logic called first-degree entailment logic.

(Q2) Can we express the epistemic states by many-valued logic simply
instead of Kripke semantics?

In the remaining of this chapter, we introduce the solutions for these
questions.

1.2 Our Proposals

In the previous section, we have seen the background of our questions. In
this section, we present our proposals to solve such questions.

1.2.1 4-valued logic for agent communication (Chapter
3)

As for a solution of our question (Q1), we provide a 4-valued logic which
can distinguish the public/private information.

In [46], there has been distinguished the following difference in agent
communication.

e public announcement: every agent receives the same information.
e whisper: other agents notice there happens an information transmission
among others but the contents cannot be seen.



e channel: one to one communication, i.e., other agents cannot notice
there has been an information transmission.

In addition, we would distinguish the public/private message passing, i.e.,
it is possible that the recipient cannot read nor understand what is written. A
probable case is that the information is meaningless for the recipient because
he/she does not have enough background knowledge, e.g., the message might
be written in an unknown foreign language. Another probable case is that
the message is encrypted and the recipient cannot decipher it; in the latter
case a simple tip or a password may suffice to read it. In either way, we can
generalize these cases into a category, that is, private information. Here, we
distinguish the following two categories.

e the contents of the message is only privately understood.

e the contents of the message is publicly understood.

Here, we distinguish if the message passing is successful and the recipient
surely has received the message (T/F), and if his/her belief is affected even
though the message might contradict to the belief of the recipient, since the
agent could not decipher the contents. Here, the communication may fail in
three cases shown in Figure 1.1.

Figure 1.1: Three different miscommunication; top: the sender does not
believe the contents of the information, middle: there is no channel between
two agents, bottom: the recipient cannot decipher the contents.



1.2.2 Semantics for infectious logics(Chapter 4)

As for a preludes of our question (Q2), first, we introduce the n-topic
semantics based on Beall’s off-topic interpretation, whose structure can be
used to express epistemic states of n-agent later.

Beall’s new interpretation of WK suggests to read the two classical values
as true and on-topic and false and on-topic, and off-topic for the third value.
In view of this interpretation, the semantic consequence relation of WK
can be now understood in terms of the preservation of true and on-topic,
not merely the preservation of truth simpliciter (which, in fact, is not even
available under Beall’s interpretation). The new interpretation also has
the advantage of being able to account for the failure of Addition, or the
introduction of disjunction:

AFAVB.

Indeed, Addition is still truth preserving, but not on-topic preserving. Intu-
itively, Addition allows one to gratuitously add off-topic items to a theory,
violating the requirement that theories are not about every topic expressible
in their languages.

Although we are in complete agreement with Beall on his new interpreta-
tion of WK, we still think that there is some room for further improvement
in his reading. More specifically, we have the following two motivations in
mind.

(M1) First, given the distinction of truth/falsity part and on-topic/off-topic
part made by Beall, it seems natural and even well-motivated to divide
propositions that are off-topic into true and off-topic and false and
off-topic.

(M2) Second, given that there may be a number of different topics under
consideration, it seems to make a lot of sense to relativize Beall’s ideas,
especially the first two conditions, with respect to some topics.

Given these motivations, the aim here is threefold. First, we aim at
making these two ideas more precise with the help of an alternative semantic
framework. Second, by looking at our new formal framework, we will combine
this with another theme from Beall on his preferred logic FDE, and draw a
connection to the logic of Catuskoti. Finally, we will generalize our result,
which will allow us to make sense of a family of infectious logics in terms of
Beall’s on-topic/off-topic reading.



1.2.3 Semantics for multi-agent system(Chapter 5)

As for a solution of our question (Q2), we provide a 4-valued logic which
can distinguish the public/private information.

Thus far, there are some studies concerning giving epistemic interpreta-
tions to many-valued logics. Dubois [15] considered that the assumption of
truth-functionality is debatable because “belief is never truth-functional”.
His argument can be reasonably summarized as follows. If our consideration
is classical, i.e., any statement A can only be either true or false even if we
have no information concerning its truth-value, the statement AA—A can be
unmistakably at any time predicted as being false and the statement A A —A
can be unmistakably at any time predicted as being true.

On the other hand, Ciucci [9] provided three-valued logics for incomplete
information and epistemic logic by giving a translation from the strong
Kleene logic to the meta epistemic logic [1]. Szmuc [40] considered the third
value in the paraconsistent weak Kleene logic as an epistemic interpretation.
Also, in first degree entailment logic, if we consider the computer as an agent,
the 4 values can be seen as the epistemic states of the agent, i.e., true(T)
and false(F) mean that p is known to the agent, while neither(IN) and
both(B) mean that p is unknown to the agent.

However, both of the representations only show the epistemic state of a
single agent, while it can be the case that a certain proposition is known
to some agents while unknown to others in a multi-agent system. Here, we
give a new many-valued logic semantics to express the epistemic states in
the multi-agent system. We consider that each proposition is either true or
false as the classical logic, while we add several additional values to show the
epistemic states of agents. Therefore, all of the propositions have the same
classical values for each agent, while the epistemic states is different between
the agents.

1.3 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we introduces
technical background that is needed in this thesis. In Section 2.1, we recall
the basic epistemic logic as a starting point of our studies. Then, we show
two extensions of epistemic logic, i.e., the ignorance logic which uses the new
modal operator Z, and the semi-private announcement logic which obtains
the dynamic operator [Al{]. We introduce the languages, Kripke semantics,
and proof systems of the logics. In Section 2.2, we give the language and the
many-valued semantics of many-valued logic, and introduce some famous



many-valued logic. Then, we give the definition of infectious logic, which
is an important branch of many-valued logic, and show several readings of
the infectious value. Finally, in Section 2.3, we introduce two many-valued
modal logic by showing the language and semantics of them.

In Chapter 3, we propose a 4-valued logic that can distinguish the
private/public information passing. In Section 3.1, we introduce the idea
behind this logic, i.e., consider that every proposition can be either public
or private while obtaining the classical values true and false. In Sections
3.2 and 3.3, we show the syntax and semantics of this logic. In Section 3.4,
we revise the belief change by private/public information passing and give
an example. And then in Section 3.5, we show the recursion axiom to the
ordinary dynamic epistemic logic, that is sound and complete. Finally, in
Section 3.6, we give the relation between this logic to other many-valued
modal logics.

In Chapter 4, we provides the semantics for infectious logic. In Section
4.1, we first make clear our intuitive idea, which is based on Beall’s off-
topic interpretation. Then, in Sections 4.2 and 4.3, we introduce our two-
valued semantics for single topic and multi topics, and give the proofs that
the semantics can be considered as same as classical logic and weak Kleene
logic. In Section 4.4, we give a FDE-based n-topic model to show a new
interpretation of the logic of Catuskoti, and give the proof that it can also be
considered as FDE logic. Afterward, in Section 4.5, we give a many-valued
semantics which can be both relating to the semantics with and without an
infectious value. Finally, in Section 4.6, we show some expansions of our
semantics with new connectives.

In Chapter 5, we provide many-valued semantics for multi-agent system.
In Section 5.1, we propose the intuitive idea behind the semantics. In Sections
5.2 and 5.3, we introduce two pair semantics for two readings of knowledge.
In Section 5.4, we propose a binary relation between agents. Finally, in
Section 5.5, we combine the two semantics to express the epistemic states of
multi-agent system, and then introduce two kinds of agent communication
in our semantics.



Chapter 2

Preliminaries

This chapter introduces technical background that is needed in this thesis.
In Section 2.1, we recall the basic epistemic logic as a starting point of
our studies. Then, we show two extensions of epistemic logic, i.e., the
ignorance logic which uses the new modal operator Z, and the semi-private
announcement logic which obtains the dynamic operator [Al{]. We introduce
the languages, Kripke semantics, and prove systems of thelogics. In Section
2.2, we give the language and the many-valued semantics of many-valued
logic, and introduce some famous many-valued logic. Then, we give the
definition of infectious logic, which is an important branch of many-valued
logic, and show several readings of the infectious value. Finally, in Section
2.3, we introduce two many-valued modal logic by showing the language and
semantics of them.

2.1 Epistemic logic

2.1.1 Basic epistemic logic

Thus far, epistemic logic is very much influenced by the development of
Kripke models of model logic, which is also considered as the possible world
semantics. The idea of possible world semantics for knowledge and belief is
to think of the information that an agent has in terms of the possible worlds
that are consistent with the information of that agent. We say that an agent
knows or believes that something is true if and only if it is true in all possible
worlds that are accessible to the agent.

Normally, the language and semantics of epistemic logic are defined as
following [46].

Definition 2.1 (Basic epistemic language). Let Prop be a countable set of
propositional variables and A be a finite set of agents, The language Ly for
multi-agent epistemic logic is generated by the following Backus-Naur form:

Lxo>Au=p|-A|ANA| KA

7



where p € Prop and a € 2.

For every agent a, K, A is interpreted as “agent a knows that A”. We define
AV B as 7(-wAAN-B)and A — B as 7AV B as usual as classical logic.

Definition 2.2 (Semantics). A Kripke model M is a structure (W, {Ra}aea, V),
where W is a set of states, R, C W x W 1s the binary relation on agent a
and V' : Prop — 2% is the valuation. Then the satisfied function = is defined
as following:

M,w = p iff weVp)

M, w = —-A iff MywlE A

MwEAANB iff MwkEA and M,w =B

Mow = K,A  iff For all u: wR,u implies M,u = A

We usually use the S5 system for knowledge. The axiomatization is as
following;:

All instances of tautologies
K,(A— B) - (K,A — K,B) distribution of K, over —
From A and A — B infers B modus ponens

From A infers K,A necessitation of K,
K,A— A truth(T)

K,A— K,K,A positive introspection(4)
-K,A— K,~K,A negative introspection(5)

Table 2.1: Axiomatization of S5 system

2.1.2 Ignorance logic

In the epistemic logic, we usually pay attention to the “knowledge” by the
operator K. However, sometimes it seems somewhat weak. For example, if
we say that an agent a does not know a fact p which is written —=K,p , it
may be the case that a knows that p is false which is written as (K,—p).
Actually, it seems a bit strange because we don’t need to ask someone twice
like “do you know p?” and “do you know —p?” in a real case. Normally,
the question “do you know p?” does not only means that “do you know p is
true?”, because the intention of the questioner is to ask “do you know the
truth value of p?”. Van [43] considers that an agent is unable to answer if
he/she is ignorant about the value of the information it is being asked. A
key property here is the state of ignorance. By the state of ignorance about
A he/she refers to a mental state in which the agent is unsure about the
truth value of A, so the agent does not know neither the truth value of A



nor that of =A. In the ignorance logic, a new operator Z was added to the
language and semantics of epistemic logic. ZA is
M,wETA iff there exists uy, us such that wRu; and wR,us:
M,uy |E Aand M, uy A

A formula Z A is to read as “the agent is ignorant about A”, i.e., the agent
is not aware of whether A or = A is true. Actually, we can use [J to express
the operator Z as ZA <> —=[JA A —[J-A. However, we can use the operator Z
to express [ only if the frame is T-frame that is reflexive, as [JA <> AAN-TZA.

The prove system is as following:

70  All instances of tautologies

71 TA+I-A

72 Z(AANB) —-TAVIB

73 ZANI(ANB)ANZ(A—= C)NI(DN(A—C)) - (RZCNZ(BNQ))
74 —-TANIB—I(ANB)VI(AN-B)

RZ  From A infer ~ZAA (ZB — Z(A N B))

MP From A and A — B infers B

Sub  Substitution of equivalences

Table 2.2: Axiomatization of ignorance logic

Fan [16] considers in the opposite way by using the operator A. A formula
AA is is to read as “the agent knows whether A or —A is true 7. The
semantics is defined as following:

M,w E AA iff for all uy,us such that wRu; and wRus :
M,Ul ):A iHM,UQ ): A

Here, it is easy to see that ZA <> —=AA from the semantics. Therefore,
we can see that the “ignorance” in the modal logic just means that “not
knowing whether”.

2.1.3 Semi-private announcement

Hatano [23] showed a modal epistemic language which has formalized agents’
belief and channels.

Definition 2.3 (Syntax). Let Prop = {p,q,...} be a finite set of proposi-
tional variables and G = { a,b,...} a fized finite set of agents. The language
L, 15 generated by the following Backus-Naur form:

Larn, D Au=p|ca |BaA| [ALSJA| -A| AV A

where p € Prop,a € G,b € G.



Here, ¢y stands for “There is a channel from agent a to agent b”, B, A
stands for “agent a believes that A”, and [Al{]B stands for “after the agent
a sent a message A to the agent b via a channel, B holds”

Definition 2.4 (Semantics). A Kripke model M is a tuple:
M = (W, Rg,Cg,V)

where W is a non-empty set of worlds, G is a non-empty set of agents,
Re = {R, | a € G} and R, C W x W s an accessibility of agent a on
W, Ce ={Cuw | a € Gb € G} and Cyp C W is a channel relation, and
V i Prop — P(W) is a valuation function. Here, Coy = W for all a € G
because each agent must have a channel to itself.

Given any model M, any world w € W and any formula A, we define
the satisfaction relation inductively as follows:

MwEDp iff we V(p)

M,w | cp iff weCy

M, w = -A iff M,w A

MwEAVB iff MwEAor MwEB

M,wlE= B,A it forallu e W : (w,u) € R, implies M,u = A

Here, we say A is valid on M if M,w |= A for any w € W, and A is valid
in a class of Kripke models if A is valid on any M in the class. Then, it
is clear that all of the axioms in the following table are valid and all of the
rules preserve validity on M.

(Taut) A, A is a tautology.

(Kp) B.,(A— B) = (B,A — B,B) (a € G)
(Selfchn) ¢4, (a € G)

(MP) From A and A — B, infer B

Necgp From A, infer B,A (a € G)

Table 2.3: Hilbert-style Axiomatization K. of Static Logic

We often use public announcement to express the communication between
agents. However, in general, most of the announcements are made between
a group of agents, so that only the agent in the group can get the message,
while others cannot know what they are talking. This kind of announcement
is called semi-private announcement ( [35]).

Here, we use the dynamic operator [A]{], which means “after the agent
a sent a message A to the agent b via a channel”, to express the semi-private
announcement. Then, [A]#]B stands for ‘after the agent a sent a message A

10



to the agent b via a channel, B holds”. We provide the semantics of [Al{|B
on a Kripke model M = (W, Rg, Cg, V) as follows:

Mw = [AlYB iff M2 w B
where MM = (W, R, Cg, V) and R € R, is defined as:
o Ifi =0, forallz e W,
R (z) = {Rb(x) N[Ar  if M,x‘): Cap N By A
Ry(x) otherwise.
e Otherwise, R, := R;.
Here, [A]a is called the truth set of A in M, which is defined as follows:
[A]vi = {w e W | M,w = A}

Semantically speaking, [Al¢] revises agent b’s belief when agent a believes
A, and there is a channel from a to b. Otherwise, agent b’s belief will not be
restricted( [2]). It is easy to see that others than b will not revise their belief
while they don’t get the message A. Here, all of the agents are considered as
believable and receivable, while they can only tell the truth and they receive
any message made by others ( [37]).

In the syntax including [Al}] B, B is valid on the class of all finite Kripke
models iff B is a theorem in K[ -/3] of Table 2.4 as follows:

In addition to all the axioms and rules of K., we add:

[AlG]p < op

[Ai/g]ccd < Ced

A-B o -[AlgB

[ALIBVC & [ARIBV[AGIC

ALSIB.B ¢ B.B(c#1)

[Ai/g]BbB e (Cab A BaA — Bb(A — [Ai/z‘]B))/\
(= (cap N BoA) — By[Al}]B)

(Neciaz)) From B, infer [Al}]B

Table 2.4: Hilbert-style Axiomatization K[ -/3]

2.2 Many-valued logic

2.2.1 Language

In the classical logic, we usually consider that the propositional language
consists of a set {—, A, V} of propositional connectives and a countable set
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Prop of propositional variables.

Normally, in the many-valued logic, we use the same language as the
classical logic, while we usually use ~ instead of —. The reason is that
usually we consider that the meaning of negation in many-valued logic is
different of that in the classical logic. Therefore, we give the definition of
language of many-valued logic as following;:

Definition 2.5 (Language). Let Prop = {p,q,...} be a finite set of proposi-
tional. The language L is generated by the following Backus-Naur form:

Lo>A:=p|~A|ANA
The disjunction AV B is defined as ~ (~ AN ~ B) as the classical logic.

We denote by Form the set of formulas defined as usual in £, denote a
formula of £ by A, B, C, etc. and a subset of Form by ', A, 3, etc.

Sometimes, other connectives are used in many-valued logics. For exam-
ple, De [13] introduced several negation operators in first-degree entailment
logic; in three-valued logic, the operators T and + are used to show whether a
formula is true or not and whether a formula is the third value or not [7] [21].
For the binary operators, ® and & are usually used in first-degree entailment
logic which are considered as the informational conjunction and disjunction
[32]. However, in this thesis, we only take care of the connectives {~, A, V},
for these connectives exist in all many-valued logic besides classical logic, and
the considerations of them are almost the same.

2.2.2 Many-valued semantics

As the name of many-valued logic, normally, we pay attention to the
semantics. The semantics can be shown by truth tables, however, sometimes
different logics may have the same truth table while the consequence relation
are different, e.g., the weak Kleene logic and the paraconsistent weak Kleene
logic, or the strong Kleene logic and the logic of paradox. There are several
ways to distinguish such logics, e.g., Bolc [8] introduced the definition of
a propositional calculus. Here, we show a fundamental of many-valued
semantic consequence relation [41].

Definition 2.6 (Many-valued semantics). A many-valued semantics for the
language L is a structure M = (V. D, §), where

e V is a non-empty set of truth values,

e D is a non-empty proper subset of V,

e 0 contains, for every m-ary connective % in the language, a truth-
function 6, : V" — V.
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A interpretation is a pair (M, p), where M is such a structure, and u is an
evaluation function from Prop to V. Given an interpretation, p is extended
to a map from Form to V recursively, by the following clause:

o u(x(Ar,. .. Ay)) = 0. (u(A), ... u(An)).

Finally, T =M A iff for all interpretation (M, u), if u(B) € D for all B €T,
then u(A) € D.

Semantically speaking, V shows the values in the logic, D shows the
designate values, and ¢ shows the truth table. Here, the designate values are
considered as acceptable values which are the same as the true value in the
classical logic.

In classical logic, the semantic consequence relation I' = A holds iff A is
true under all valuations that make all B in T true [42]. By this semantics, the
semantic consequence relation =g, for classical logic is obtained by setting

V= {tf}, D= {t}.

2.2.3 Some many-valued logics

Here, we introduce some famous many-valued logic using the semantics.
Strong Kleene logic is a three-valued logic that obtains the third value i.
Normally, i is read as unknown, undecided, underdetermined, etc.

Fact 2.1 (Strong Kleene logic). The semantic consequence relation =gk for
strong Kleene logic is obtained by setting V = {t,i,f}, D = {t}, and § as the
following truth table:

|~ At i f VIt i f
t]f t|t i f t{t t ¢
i|i ijiif it i

t f|f ff flt if

Lukasiewicz’s three-valued logic has the same semantic consequence relation
as above. The difference between two logics is the implication. In strong
Kleene logic, A — B is considered as ~ AV B as the same as classical logic,
while the value of i — i is considered as t in Lukasiewicz’s three-valued logic.

Logic of paradox has the same truth tables as strong Kleene logic, while
the designate values are different. The value i in this logic is normally read
as overdetermined, etc.

Fact 2.2 (Logic of paradox). The semantic consequence relation =ypp for
logic of paradox is obtained as above except that we replace D = {t} by
D = {t,i}.
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Weak Kleene logic, also called Bochvar logic, is a three-valued logic that
obtains the third value i. The truth tables are all different from the above
except for negation. Normally, i can be read as meaningless, undefined, off-
topic, etc.

Fact 2.3 (Weak Kleene logic). The semantic consequence relation =wk for
weak Kleene logic is obtained by setting V = {t,i,f}, D = {t}, and § as the
following truth table:

R e

e h 2
e | >
e |
[N
R e Hh| R
e [ <
e |
[N
e | Fh

If we consider that the third value i is also the designated value, we can
obtain paraconsistent weak Kleene logic.

Fact 2.4 (Paraconsistent weak Kleene logic). The semantic consequence
relation |=pwk for paraconsistent weak Kleene logic is obtained as in WK
except that we replace D = {t} by D = {t,i}.

Belnap [4] considered a 4-valued logic called first-degree entailment logic
FDE. The four values are usually written as {t,f b,n}, where b
stands for both true and false and n stands for neither true nor
false.

Fact 2.5 (First-degree entailment logic). The semantic consequence rela-
tion of |ErpE for first-degree entailment logic is obtained by setting V =
{t,f,b,n}, D= {t,b}, and § as the following truth table [32]:

~ Alt b n f Vit b n f
t| f t|t b n f tjt t t t
b|b b/b b f f b|t b t b
n|n nin f nf nit t nn
flt f|f f f f f|t bnf

Deutsch [14] considered another 4-valued logic that is usually
called that is called Sy4 logic. The reading of values is the same as
FDE, while the truth tables are different except for negation:

Fact 2.6 (Syq logic). The semantic consequence relation of =ggae for Sfae
logic is obtained by settingV = {t,f,b,n}, D = {t,b}, and § as the following
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truth table [17]:

~ Alt b n f Vit b n f
t| f t|t b n f tjt t n t
b|b b/b b n f b|t b n b
n/n nin nn n nin n n
f|t f|f f nf f|t b nf

Priest [33] provided a 5-valued logic called logic of Catuskoti.

Fact 2.7 (Logic of Catuskoti). The semantic consequence relation =rpg, for
the logic of Catuskoti [33] (FDE,) is obtained by setting V = {t,b,n,f, e},
D = {t,b}, 0 as the following truth tables:

~ Alt b n f e Vit b n f e
t | f t|t b n f e t|t t t t e
b|b b|b b f f e bt b t b e
n|n nin f n f e njit t n n e
f|t f|f f f f e f|t b n f e
el e e|le e e e e ele e e e e

Remark 2.1. In this section, we use the letters b,n and e to show the non-
classical values in many-valued logic. Actually, the expressions are not fixed.
For example, the third value can be also written as i or u; in first-degree
entailment logic, we may use the symbols T, L instead of b,n. Moreover,
we can use the set of numbers {1,0.5,0} as the value set V of a three-valued
logic, or the set of pairs {(1,1),(1,0),(0,1),(0,0)} as that of a 4-valued logic.

2.2.4 Infectious logic

Normally, we say a logic is infectious if it has an infectious truth-
value, that is, a truth-value such that it is assigned to a compound
formula whenever it is assigned to at least one of its components. A
more formal definition of infectious logic is considered as following
[31]:

Definition 2.7. A semantics M = (V,D,0) for the language L is infectious
iff there is an element x € V such that for every n-ary connective * in the
language, with an associated truth-function 6, € 6 and for all vy,...,v, € V
it holds that: if x € {vy,...,v,}, then 6,(vy,...,v,) = .

By the definition, we can see that weak Kleene logic, Sy
logic, and the logic of Catuskoti are infectious logic. Actually,
the infectious logic can be seen as a non-infectious logic adds an
infectious value. In fact,
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e If we add an infectious value to classical logic, we can obtain
weak Kleene logic.

e If we add an infectious value to strong Kleene logic, we can
obtain the Sy, logic.

e If we add an infectious value to FDE logic, we can obtain the
logic of Catuskoti.

There are several readings of the infectious value. Kleene [25]
introduced four meanings for the three-valued logic with that the
predicates are partially recursive,

(i) ‘true’, ‘false’ and ‘undefined’ whose example is that QV R is
‘undefined’ if and only if () and R are not defined as ‘true’ or
‘false’. Formally, ‘undefined’ is to be unassigned the particular
value to the predicates.

(ii) ‘true’, ‘false’ and ‘unknown’ which is a category means that we
do not know or choose for the moment. ‘unknown’, however,
does not exclude the other two possibilities ‘true’ and ‘false’.

(iii) ‘decidable by the algorithms to be true’, ‘decidable by the
algorithms to be false’ and ‘undecidable by the algorithms
whether true or false’.

(iv) ‘known to be true’, ‘known to be false’ and ‘unknown whether
true or false’ with a fixed state of knowledge about givens.

Fitting [19] states the third value in [25] can be regarded as L of
Belnap’s four-valued logic when the system is built on the bilattice
structure ({true, false, L, T} <;,<j). Since true AT is still true, and
also false N'T is still false in this structure, T is not suitable for the
third value on Kleene’s strong three-valued logic. On the other
hand, 1 behaves as same as u in the above discussion.

Ferguson [18] considers the infectious value as “nonsense” or
“meaningless”. The idea is from the failure of addition. In classical
logic, the addition rule that A = AV B is always valid. However,
in a system of analytic implication, sometimes the formula is ill-
formed, for example “AV V”. The second V is called “nonsense” or
“meaningless”. So the disjunction AV B will be true if and only if
either A or B is true, and both A and B are meaningful.

Beall [3] showed another way to express truth values of the weak
Kleene logic. The terminology think of a theory in the logician’s
sense is considered as a set of sentences closed under a consequence
relation. Beall motivates his new interpretation via the following
ideas:
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1. A theory is about all and only what its elements — that is,
the claims in the theory — are about.

2. Conjunctions, disjunctions, and negations are about exactly
whatever their respective subsentences are about:

(a) Conjunction AA B is about exactly whatever A and B are
about.

(b) Disjunction AV B is about exactly whatever A and B are
about.

(c) Negation —A is about exactly whatever A is about.

3. Theories in English are rarely about every topic expressible

in English.

Based on these ideas, Beall’s new interpretation of weak Kleene
logic suggests to read the two classical values as true and on-
topic and false and on-topic, and off-topic for the third value.
In view of this interpretation, the semantic consequence relation
can be now understood in terms of the preservation of true and
on-topic, not merely the preservation of truth simpliciter (which,
in fact, is not even available under Beall’s interpretation). The new
interpretation also has the advantage of being able to account for
the failure of Addition, or the introduction of disjunction:

AFAVB.

2.3 Many-valued modal logic

2.3.1 4-valued modal logic

Odintsov and Wansing [30] showed that 4-valued logic can also be
used in modal logic, whose operators includes O and ¢( [5]).

Definition 2.8. To define the language of Belnap-Dunn Modal Logic BK®,
first the language LP was considered as following:

[P3Au=p|L|~A|ANA|AVA|A— A|OA

where ~ stands for “strong negation” and other operators are defined as
follows:
“A=A—-1, A< B:=(A— B)AN(B— A)

0A:=~0On~A, A B:=(A© B)A(~ Ao~ B)

Then, the language BK® was defined as the least L°-logic containing the
following three groups of axioms:
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o Axioms of classical propositional logic in the language V, N\, —, L.
e Strong negation axioms:

~(Aq) < (~pV~q)

~(p—=q) o (pA~q)
~(pPVag) < (~pA~q)
~~p 4 p, and ~ L
o Modal axioms:
Op—q — Op—0q¢) ~~OpOa~p
The semantics of 4-valued modal logic is defined as following.

Definition 2.9 (Semantics [29,30]). A BK-model is a tuple M = (W, R, V)
where W is a non-empty set of worlds, R C W xW is an accessibility relation
on W, and V : Prop x W — {t,f,b,n} is a valuation function. It will be
convenient to have another definition close to the standard Kripke model, so
we assign functions v*, v~ : Prop — 2V defined as follows instead of V :

v (p) = {wlV(p,w) € {t,b}}

v (p) = {w[V(p,w) € {f,b}}

For a BK-model M = (W, R,v",v™), we define =" and = between the
worlds of M and formulas as follows:

M,w =T p & wevt(p)
M,wlE="p & wev (p)
MwETAANB & M,wkE" A and
M,wETB
MwE"ANB & MwlE" Aor
M,wE" B
MuwETAVB & MwETAor
M,wETB
MwlE"AVB & M,wlE" Aand
M,wkE" B
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MwETA—-B & MwE"A=

M,wETB

MwpE"A—-B & M,wE"Aand
M,wlE=" B

Mw T L always

MwE" L always

Mw =T~ A & MwE"A

MwlE"~A & MuwkETA

Mw ETOA & Yue W(w,u) € R=
M,u =T A)

M,w =" 0OA & Jue W((w,u) € R and
M,u =" A)

2.3.2 3-valued modal logic

Correia [12] showed a Kripke semantics based on weak Kleene logic.
The language is the same as normal modal logic and the semantics
is defined as following.

Definition 2.10. A Correia Kripke model M is a tuple (W, R, V'), where
W is a set of worlds, R C W x W s a binary relation on W, and V :
Prop x W — {0,1,2} is a 3-valued valuation. The satisfaction = is defined
as follows:

M,wE=p iff V(p,w)=1
M, w = -A iff d(p,w, M) and M,w [~ A
MwEAANB it MwkEAand M,wE= B
M, w = 0OA iff d(A,w, M) and for all v € W,
if wRv and d(A,v, M), then M,v = A

where p € Prop, and d(A,w, M) holds if and only if for every atom p in A,
V(p,w) # 2, which means that “A is defined at world w in model M”.

Here, the value 1 was considered as true, 0 was considered as
false, and 2 was considered as undefined.
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Chapter 3

4-valued logic for agent commu-
nication

In this chapter, we propose a 4-valued logic that can distinguish
the private and public information passing. In Section 3.1, we
introduce the ideal behind this logic, i.e., consider that every
proposition can be either public or private while obtaining the
classical values true and false. In Sections 3.2 and 3.3, we show
the syntax and semantics of this logic. In Section 3.4, we revise
the belief change by private/public information passing and give an
example. And then in Section 3.5, we show the recursion axiom to
the ordinary dynamic epistemic logic, that is sound and complete.
Finally, in Section 3.6, we give the relation between this logic to
other many-valued modal logics.

3.1 Idea behind the logic

Consider two people Ann and Bill, who are chatting on the
Internet. Ann learned a new dance and she believes that her dance
is very good, so she wants to tell Bill it. Then she sends a video
of her dance to Bill. However, Bill doesn’t get the message that
Ann’s dance is good. The possible reasons are as follows:

e The Internet is not connected.
e Bill’s computer is too old to watch the video.

so he cannot get the message to revise his belief. Also, it can be
explained in other ways. For another example, let agents a and
b be two companies. p means that “a is faced with bankruptcy”.
Obviously, if ¢« and b are opponents, they won’t tell it to each other
if they believe p or the negation of p. Such p can be seen as a
private proposition.

Hatano [23] considered the case of disconnection by channels,
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while not distinguishing the different kinds of information.

Here, we use a pair (a,b) to express the value of a proposition
A. (ae{t,f},b€{0,1})

A:(t,1) means “A is true and public.”
A: (t,0) means “A is true and private.”
A:(f,1) means “A is false and public.”
A: (f,0) means “A is false and private.”

If A is public, other agents can get this message, and if A is private,
others cannot revise their beliefs by this message.

3.2 Syntax

Here, we define a new kind of 4-valued logic different from BK-
model we showed in Section 2.3.1.

Definition 3.1. Let Prop = {p,q,...} be a finite set of propositional
variables and G = { a,b,...} a finite set of agents. a set Form,, of formulas
of the language L, is inductively defined as follows:

Form, > A:=plcay | B, AP A|[Af]JA| A AN A
where p € Prop,a € G,b € G.

Here, c,, means “There is a channel from agent a to agent b”,
B, @ means “agent a believes a.”, and P A means “A is public”.

3.3 Semantics
First, we consider the truth tables of non-modal connectives
-, AV and —. The truth-table of — is as follows. Here, we

can see that the negation only changes the classical values t and f.

A -A

Y

t
t,
f,
f

?

S = O =
— — — —

P Py

Table 3.1: Truth-table of —
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A pub 4
(t,1) | (t,1)
(t,0) | (£,1)
(f,1) | (¢t,1)
(f,0) | (£,1)

Table 3.2: Truth-table of Pu?

The truth-table of — is as follows. Here, we let P**A be always
public, i.e., the statement that shows whether a formula is public
or not is always a public message.

Remark 3.1. Actually, we can also let P**A be public if and only if A is
public. It means that the statement whether A is public or not is depended
on whether A is public or not.

For the 4-valued logic, we consider the truth table of conjunction
A. Let A and B be two propositions. Then the proposition A A B
is true if and only if A is true and B is true. And A A B is public if
and only if A is public and B is public. We define the truth-table
of N as follows.

A (6,1) (6,00 (£,1) (£0)
©D (&) (6.0) (£1) (£0)
(6.0) | (£.0) (t.0) (£0) (£,0)
(£1) | (£.1) (£.0) (1) (£0)
(£,0) | (£0) (£.0) (£0) (£0)

Table 3.3: Truth-table of A

We define the function V as follows as usual:
AV B := —|(ﬁA/\ﬁB)

Then, the truth-table of V is shown as follows:

<

AN N N TN
e e
O~ O
N’ N e

Table 3.4: Truth-table of Vv
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Here, we should take notice of the truth-table of V. In this
paper, we define that if AV B is public if and only if A is public
and B is public. In other words, if A is private, AAB and AV B are
all private even if B is public. It is because that if we cannot tell
A to others, anything related to A like AA B or AV B also cannot
be told to others.

Finally, we define the “—” as follows:

A—- B:=-AVDEB

The truth-table of — is shown in as follows.

S (61 (-0 (1) (£0)
€D (&) (t0) (1) (£0)
(6,0) | (£0) (t.0) (£0) (£0)
(£1) ] (61) (£0) (£1) (6,0)
(£,0) ]| (£0) (£.0) (£,0) (t,0)

Table 3.5: Truth-table of —

Notice that A — B is public if and only if A is public and B is
public, which is similar to the operator V.
Here, we use Kripke semantics with our syntax.

Definition 3.2. A Kripke model M 1is a tuple:
M = (W, Rg,Cg, V)

where W is a non-empty set of worlds, G is a non-empty set of agents,
Rc ={R, | a€ G} and R, CW x W is an accessibility of agent a on W,
Ce ={Cuw | a € Gb € G} and Cyy, € W is a channel relation such that
Coa =W foralla € G, and V : Propx W — {(t, 1), (t,0), (£, 1), (f,0)} is the
valuation function. In many cases it is convenient to replace the four-valued
V by two function, so we assign functions v',v? : Prop — 2V defined as
follows to express V :

Ut(p) = {w\V(p,w) S {(t’ 1)a (t,O)}}

v(p) = {w|V(p,w) € {(t,1), (£, 1)}}

Given any model M, any world w € W, and any formula A, we define
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the satisfaction relation M,w = A and M,w =P A as follows:

M,wErp iff w e vi(p)

MwEAANB it MwE'A and M,w ="' B
MwEAvB it MwE'Aor M,wE'B
MuwEA—- B iff MjwpE A or MywE="B
M w = -A iff M,wlp A

Mow [ PA iff Miw P A

M w E B, A iff forallue W : (w,u) € R, implies M,u =" A
M, w E g iff weCly,

M,w =P p iff w e vP(p)

MuwEPANB it MywEP A and M,w =P B
MwEPAVB  iff MywEP A and M,w =P B
MwEPA—-B iff MwEPAand M,w =" B
M w P = A iff M,wErA

M, w =P PP A always
M, w =P B, A iff M,wkEr A
M,w EP ey always

Here, M,w P B,A iff M,w P A means that if A is public, the
message that agent a believes A is also public and vice versa.

Remark 3.2. Here, we define that the channel constant cqp is always public.
Actually, 1t is just for convenience. We can also consider that some channel
constants are private by adding another function to our Kripke model.

Also, let the value of A be (a,b) in world w , we can define '
and =P in the other way as follows:

MwEA iff a:=t
MwEPA iff b:=1

Semantically speaking, in a model M, M,w ' A means A is
true in world w, and M, w " A means A is public in world w.

Then we give some propositions. First, we give the proposition
about channel which is also provided in [22].

Proposition 3.1. For any a € G, M, w E' ¢4, in any Kripke model M and
any world w.

Proof. Fix any a € G, any model M and any world w in M. We show
M,w E! chq, 16, w € Cyy. By definition, C,, = W and it follows that
w € Cyy. O
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For we add an operator ”*’, we give some propositions about
this operator.

Proposition 3.2. For any formula A, M,w ' PP=A < PPA in any
Kripke model M and any world w.

Proposition 3.3. For any formula A and B, M,w ' P*(A A B) <
(PPAN PLB) in any Kripke model M and any world w.

Proposition 3.4. For any formula A and any agent a, M,w ' PPA <
P B A in any Kripke model M and any world w.

Proposition 3.5. For any formula A, M,w =t P PA in any Kripke
model M and any world w.

Proposition 3.6. For any formula A and any agent a,b, M, w ' P cy
in any Kripke model M and any world w.

Proof. The proofs above are similar and easy to see from the semantics we
provided. Here, we give the proof of Proposition 3.2. Fix any a € G, any
model M and any world w in M. We show M,w ! P®—A <5 PubA
Myw =t Pb—A 5 Pub A
iff (M,w " P®=A and M, w ' PP A) or
(M, w £ PP—=A and M, w £t P A)
iff (M,w " A and M,w =P A) or (M, w P =A and M, w [£P A)
iff (M,w EP Aand M,w P A) or (M, w [£P A and M, w [P A)
iff M,wEP Aor Mw P A
We can see the M, w =P A or M, w P A is always true. O

3.4 Multi-agent communication

In this paper, we use the same dynamic operator [Al{] as [23], which
means “after agent a sends a message A to agent b via a channel”,
and [A]{]|B means “after agent a sends a message A to agent b via a
channel, B holds”. Here, the communication [Al{] will success only
if the following hold:

e There is a channel from agent a to agent b.
e Agent a believes the content of the message A.
e The message A is public.

In [23], all of the message is regarded as public message, which
can be told to others. Here, we use 4-valued logic which can express
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whether a formula is public or not, so even if agent a believe A and
there is a channel from a to b, the communication will fail if A is
private, which is different from [23].

The semantics of [A|¢| B on a Kripke model M = (W, Rg, Cg,v",v7)
is given as follows:

Mw = [AB  iff MA% w = B
M, w =P [AEB it M w =P B

where M = (W, R, Cg,v',v*) and R, € Ry is defined as:
o If 1 =0, for all x € W,

Rb(x)ﬂ [[A]]M if M,[L' ):t Cab/\BaA
Ry(x) := and M,z =P A
Ry(z) otherwise.

e Otherwise, R, := R,.
The truth set [A] . is defined by:

[Alpy ={weW | M,wE" A}

Semantically speaking, after [A]}], agent b will revise his/ her
belief if there is a channel from agent a to b, agent a believes the
content of the message A, and A is public. Otherwise, agent b will
not revise his/ her belief. Other agents than b will not change
beliefs because they get no message.

Example 3.1. Here, we give an example to show the belief change after a
semi-announcement. Consider a Kripke model M = (W, Rg, Cg,v*, v?) that
1s shown as the Figure 3.1.

As the configuration above, p is only true in wi,ws, w3 and is
only public in wy,wy, ws. According to the definition of B, A, we
can see that agent a believe p in world w;,w; and ws, while not
believing anything in world ws;. Agent b doesn’t believe anything
in any world. There are channels from agent a to b in wy, ws, wy,
while no channel exists in ws.

Now, consider the model M“¥ which shows the new accessibility
relation after the action agent a sends the message A to agent b.

e In world w;, agent a believes p so a can send the message,
there is a channel from agent a to b so the message can be
sent to b, and as p is public so b can understand the message
p. As the result, b will revise his/ her belief to believe p.
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Figure 3.1: Accessibility relations of agents a and b.

e In world w,, agent a believes p so a can send the message, and
as p is public so b can understand the message p. However,
there isn’t a channel from agent a to b so the message cannot
be sent to b. So as the result, b won’t revise his/ her belief.

e In world w3, agent a believes p so a can send the message, and
there is a channel from agent a to b so the message can be
sent to b. However, as p is private so b cannot understand the
message p. As the result, b won’t revise his/ her belief.

e In world wy, there is a channel from agent a to b so the message
can be sent to b, and as p is public so b can understand the
message p. However, agent a doesn’t believe p so a cannot send
the message. As the result, b won’t revise his/ her belief.

We can see that after the action [A|]] which means that agent a
tells b the message p, agent b becomes to believe p only in world w;.
In other worlds, agent b doesn’t change his/ her belief. So in the
new model MM = (W, R., Cg, vt vP), Ry =W x W/{(wy,ws), (wi,w,)}
shown in Figure 3.2.

27



private public

Figure 3.2: Accessibility relation of agent b after the announcement.

3.5 Hilbert-style Axiomatization

Here, we provide a similar with Hatano [22] to give the proof of
completeness and soundness. Although we gave two satisfaction
relations =" and |=*, our goal is to show that -y, A iff ' A for all
formula A. First, we present the sound and complete Hilbert-style
axiomatization K, without the dynamic operator.

(Taut) A, A is a tautology.

(Kp) B.,(A— B) - (B,A — B,B)
(Selfchn) c¢,,

(MP) From A and A — B, infer B

Necy From A, infer B, A

Pub., pub A ¢y Pub A

Pub, P(ANB) ¢ (PPAN PURB)
Pubg Pub A s PR A

Pchhn pUbCab

Pub pub pub A

Here, a,b € G.

Table 3.6: Hilbert-style Axiomatization K, of 4-valued logic

First, we give some definition of canonical model.

Definition 3.3. For the awziomatic extension K,, the canonical model
K, K

MEr = (W, Rg",C’g”,vt Poup?) is defined by:
o WE» :={T"| T is a mazimal K,-consistent set}.
o TREPA iff BoA € T implies A € A for all formulas A.
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e TcClyiffcel.
e v ”(p)iffpel.
o D cup?(p) iff p €.

Then we can show the Lindenbaum’s Lemma and Truth Lemma.

Lemma 3.1 (Lindenbaum’s Lemma). If I' is any K,-consistent set, then
there exists a mazimal K,-consistent set I'" such that I' C .

Lemma 3.2 (Truth Lemma). Give any formula A and any mazimal K,-
consistent set T, M®r =t A 4ff A€T.

Proof. Proved by induction on A. Here, we only show the case for A be the
form P“*B because others are almost the same as [22]. Our goal is to show
that M%» =t PBiff B € T'. We show it by induction on B.

e If B is a proposition p, MEr =t Pubpiff T € vfp (p), therefore Pup € T’
by Definition 3.3.

o If B is the form C' A D, M®» 1 7o(C' A D) iff M®r =1 PC and
MEr =8 Pub ) which can be proved by Proposition 3.3, and we have
rubC e T and P D € T’ by L.H. Therefore, we can show ?**(C'A D) € T.

e If B is the form B,C, M®» |t reB C iff MKr =t Pu0C which can
be proved by Proposition 3.4, and we have ?“*!C' € T" by I.H. Therefore,
we can show P**B,C € T..

e If B is the form P°C, M&r |2t PubPub( ig always true by Proposition
3.5, and P*PuC' € T for I is a maximal K),-consistent set. Therefore,
we have MEr |t pubpubCrjff pub pub(r € T,

o If B is the form P“c,,, M¥Er =t Pubc,, is always true by Proposition
3.6, and P“* ¢,, € T for I' is a maximal K,-consistent set. Therefore,
we have MEr =t Pubc , iff Pubc,, € T

Therefore, we prove our lemma. O

Then, we use filtration technique to obtain the completeness of
Ko with respect to finite models.

Definition 3.4. Giwen any formula A € L,, we define the subformulas
Sub(A) : Form, — P(Form,,) by:

Sub(p) = {pr}.

Sub(Cap) = A{cw},

Sub(—=A) = {=A}U Sub(A),

Sub(P®A) = {PWA} U Sub(A),
Sub(ANB) := Sub(A)USub(B)U{AA B},
Sub(B,A) = {B.A}U Sub(A),
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We also define Sub(-) for the set ' of formulas as follows:
Sub(T’ U Sub(A

Ael

We say that the set I' of formulas is closed under taking subformulas if
Sub(A) C T for all formulas A € T.

Definition 3.5. Let M be a Kripke model and I" be a finite set of formulas
that is closed under taking subformulas. We define the equivalence relation
~r on W by:

w~r v iff (M,wE"A iff Myv =" A) for all A€T.
We define the equivalence class of w € W with respect to ~r by:
w] :={veW |w~r v}

Definition 3.6. Let M be a Kripke model and T' be a finite set of
formulas that is closed under taking subformulas. The model MY :=
(WY RE, CE vy, UII;) 15 a filtration of M through U if it satisfies the following
conditions:

wr = W/ ~r={[w] [w e W}.

[w]R [ T iff wR,v fro some w' € [w] and v' € [v].

[w ]eC,fb iff we Cop.

ul € ot () iff w € u(p).

[w] € v, (p) iff w € v(p).

We can see that if I is finite then W' is also finite.

Theorem 3.1 (Filtration Theorem). Let M = (W, Rg,Cs, V) be a model
and I" be a finite set of formulas that is closed under taking subformulas. For
any w € W and any formulas A € T,

M,w =" A iff MY [w] =" A

Theorem 3.2. Let A be a formulas in Form, and 9 be the class of all finite
Kripke models.

ME"Aiff Fg, A
Proof. 1t is easy to see soundness, so here we focus on the completeness with
respect to the class of all finite Kripke models. We establish the completeness
of K, by the filtration. Our goal is to show that if t/x, A, then I [ A
By canonical model for K, and Lemmas 3.1 and 3.2, we can obtain that
ME» L8 A Since the domain of the canonical model ME? is infinite, we

use the filtration to boil the model down to a finite model. By Theorem 3.1
to ME» £ A, we obtain (ME?) [w] £ Ajie., M £ A. O
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Theorem 3.3. K, is decidable.

Proof. By the Theorem 3.2, we have that if I/, A, then there exists a model
M such that M }£! A i.e., the model M is a finite counter model. Therefore,
K, is decidable. O]

Then, we present the Hilbert-style Axiomatization K[ -|%] with
dynamic operator.

In addition to all the axioms and rules of K, we add:

[Alp]p “ o

[mg]ccd < Cad

[Alp]-B © -[Al7]B

[ALs]P B < B

[AGI(BAC) « [A)BA[AKIC

AIB.B & BIAEIB(c £D)

[A\Lg]BbB <~ ((Cab N BaA NPub A) — Bb(A — [/LLZ]B))
A(=(Cap A BoA NP A) = By[Al¢]A)

(Neciaz)) From A, infer [A|}]A

Table 3.7: Hilbert-style Axiomatization K[ -J2] of 4-valued logic

Since we can regard the system K[ -/%| as an axiomatic exten-
sion of K),, we define a derivation and a theorem in K[ -3].

Definition 3.7. The translation t : Formpg,[ ;o) — Formy, is defined by:

t(p) P,

t(Can) = Cab,

t(—A) = ~t(A),

t(rA) = P(A),

t(AN B) = t(A)At(B),

t<BaA> = Bat<A>;

t([Alg]p) = p

t([Alg]cca) = Ced

t([Alg]=B) = —t([Al3]B),

t([Al"" B) = P([AlF]B),
t([ARI(BAC)) = t([AlF]B) At([ALF]0),
t([Al3]B.B) ;= Bet([Alg]B), (c # b)
t([Al]ByB) = ((cap A Bat(A) AP t(A)) — By(t(A) — t([Alg]B))),

A(=(cap A Bat(A) AP t(A)) — Byt([AL3A)),
t([Algaq1B) = H([AlF]t([ALG]B)).
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Lemma 3.3. Given any formula A € Formg, | ),
'_Kp[ 4] A+ t(A)

Theorem 3.4. Let A be a formulas in Formg, [ 4o and M be the class of all
finite Kripke models.
M =" A iff bry o] A

Proof. The soundness is clearly by the semantics of the dynamic operator
[Al¢#]. To show the completeness, the goal is to show that if 9 ' A then
Fr,[4e) A. Assume that I ! A, by the soundness and Lemma 3.3, we
obtain that 9 ' t(A). For t(A) € Form,, by the completeness of K, we
obtain kg, t(A). Since K[ -/}] is an axiomatic extension of Kj,, we also
obtain that g, [ ja t(A). Finally, by Lemma 3.3, we obtain k[ o A. O

3.6 Relation to many-valued modal logic

In this chapter, although we called our semantics as 4-valued logic,
it is not a traditional many-valued logic as Kleene logic, FDE logic,
etc.. Here, we consider that each proposition has 4 values, while the
values could not be considered as truth-values. Actually, we built
this semantics by using the similar structure of 4-valued modal
logic we introduced in Section 2.3.

However, the interesting point here is that although we did
not take care of the 3-valued modal logic, the semantic can be
considered similarly if we read the public as defined and private
as undefined. Moreover, Correia [12] considered two choices to the
truth-clause for necessity as following and focused on the latter
choice:

e [JA is true at w iff A is defined at w and A is true at every
world accessible from w;

e [JA is true at w iff A is defined at w and A is true at every
world accessible from w at which A is defined.

If we only take care of the connectives —,V,A,— and the modal
operator B, and consider that only true and public statements are
valid, our semantics is the same as the 3-valued modal semantics
that focus on the first choice.

Remark 3.3. There exists other studies of many-valued modal logic. Santos
[36] showed another kind of four-valued epistemic logic. The consideration of
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the 4 values was based on F'DE logic, i.e., the readings of values were true,
false, both, neither, whose idea was different from our research.

Another research that is similar with our study is the awareness logic.
Ditmarsch [45] provided the epistemic awareness model that could express the
awareness besides knowledge. The state of aware is similar to our reading of
public, for it is similar to our semantics that agent a is aware of = A iff a is
aware of A, and a is aware of AN B iff a is aware of A and a is aware of B.
However, the epistemic awareness model provided a more complex structure
which was more expressive, while our study gives a simpler Kripke model
which is similar to the weak Kleene logic.

33



Chapter 4
Semantics for infectious logics

This chapter provides the semantics which is based on Beall’s off-
topic interpretation for infectious logic. In Section 4.1, we first
make clear our intuitive idea. Then, in Sections 4.2 and 4.3,
we introduce our two-valued semantics for single topic and multi
topics, and give the proofs that the semantics can be considered
as same as classical logic and weak Kleene logic. In Section 4.4,
we give a FDE-based n-topic model to show a new interpretation
of the logic of Catuskoti, and give the proof that it can also be
considered as FDE logic. Then, in Section 4.5, we give a many-
valued semantics which can be both relating to the semantics with
and without an infectious value. Finally, in Section 4.6, we show
some expansions of our semantics with new connectives.

4.1 Idea behind the semantics

There are several reading of the infectious value in the infectious
logics. The reading meaningless or undefined seems that the truth
values are two-dimensional for we can read the value true/false
as true/false and meaningful/defined, however, we don’t consider
that a meaningless/undefined proposition is true or false normally.
On the other hand, if we consider the Beall’s off-topic interpre-
tation [3], it seems natural and even well-motivated to divide
propositions that are off-topic into true and off-topic and false
and off-topic.
Our idea for the new semantics is rather simple:

e The idea motivated by (M1), is to add another valuation to
take care of the on-topic/off-topic aspect, besides the usual
classical valuation that will take care of the truth/falsity as-
pect. Basically, the idea is that the distinction ‘truth/falsity’
and ‘on-topic/off-topic’ should be seen as two distinct parallel
dimensions available for each sentence of our language.
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e The idea motivated by (M2), is to consider that there may be
a number of different topics under consideration. It seems to
make a lot of sense to relativize Beall’s ideas, especially the
first two conditions, with respect to some topics.

4.2 Alternative semantics (I): implementing
(M1)

4.2.1 Basics

Definition 4.1. A two-valued interpretation for the language L is a pair
(Vi, Vi), where V; : Prop — {t,f} and V,, : Prop — {0,1}. Valuations V;,V,,
are then extended to interpretations Iy, I,, by the following conditions.

Ii(p)= iff Vilp)=t,

Li(~ A=t iff ( )=

Ln(~ A=1  iff Ln(A)=1

L(AAB)=t  iff L,(A)=t and L,(B)=t

I,(AANB)=1 iff I,(A)=1 and I,,(B)= 1,
L(AVB)=t iff It(A):t or I;(B)=t,
I,(AvB)=1 iff I,(A)=1 and I,,(B)=1.

Remark 4.1. Note that this style of semantics with two components can be
also found in a paper by Hans Herzberger in [24], as well as Peter Woodruff

in [48].

Now that there are four combinations for elements of Prop, we
may easily turn the above two-valued semantics into a four-valued
matrix.

Definition 4.2. A four-valued interpretation of L is a function I, : Prop —
{t1,t0,£0,f1}. Given a four-valued interpretation Iy, this is extended to
a function that assigns every formula a truth value by the following truth
functions:

Al~A AANB|t1 t0 fO f1 AvB|tl t0O f0 f1
tl | f1 tl1 | tl t0 fO f1 tl | t1 t0O t0 ¢l
t0 | f0 t0 | t0 tO fO f£0 t0 | t0 t0 tO t0
fo | tO fo | f0 fO fO0 fO fo | t0 tO fO fO
f1| t1 f1 | f1 fO0 f0 f1 f1 | t1 t0O f0 f1
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4.2.2 Some results

Given an interpretation of the language under consideration, we
need to specify the set of designated values to define the semantic
consequence relation. To this end, we introduce three different sets
of designated values as follows:

e D = {tl};
o Dy:= {t1,t0};
o Dy := {t1,t0, f0}.

Based on these sets of designated values, we define three conse-
quence relations as follows.

Definition 4.3. For ' U{A}CForm, I" =; A iff for all four-valued interpre-
tations Iy, 1,(A)€D; if 1,(B)ED; for all BET.

Remark 4.2. [t should be clear that we can also define the above consequence
relations in terms of two valued semantics. We will, however, focus on the
four-valued representation since that is more easy to connect to the three-
valued logics.

Then, we can show the facts as following.

e =, is weak Kleene logic.
e |=, is classical logic.
e |=; is paraconsistent weak Kleene logic.

We first deal with the case in which tl is the only designated
value. To this end, we prepare a lemma.

Lemma 4.1. For all three-valued valuation vs for L, there is a four-valued
valuation vy such that for all A € Form, (i) I4(A) = t1 iff I5(A) = t, and
(11) I4(A) = f1 iff I3(A) = 1.

Proof. Given a three-valued valuation vs, we define vy : Prop — {t1,t0,f0,f1}
as follows:

t1 vs(p) =t
va(p)=¢ £f0 w3(p)=u
f1 wvs(p) =f

Then we prove the desired result by induction on the complexity of the
formula. For the base case, the desired result holds by the definition of
vg. For the induction step, we split the cases depending on the form of the
formula A.

If A is of the form ~B, then for (i), we have I,(A) = t1 iff I[,(~B)=t1 iff
I,(B)=f1 (by def. of 1) iff I3(B)=f (by IH) iff I3(~B)=t (by def. of I3) iff
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I3(A)=t. For (i), I4(A) = f1 iff I4(~B)=f1 iff I,(B)=t1 (by def. of I,) iff

If A is of the form BAC, then for (i), [4(A)=tl iff I,(BAC)=tl iff
I4(B)=tl and I4(C)=tl (by def. of 1) iff I3(B)=t and I3(C)=t (by IH)
iff I3(BAC)=t (by def. of I3) iff I3(A)=t. For (ii), [4(A)=f1 iff I,(BAC)=f1
iff (I4(B)=tl and I4(C)=f1) or (I4(B)=f1 and I,(C)=tl) or (I4(B)=f1
and I,(C)=f1) (by def. of 1) iff (I3(B)=t and I3(C)=f) or (I3(B)=f and
I3(C)=t) or (I3(B)=f and I3(C)=f) (by IH) iff I5(BAC)=f (by def. of I3)
iff I3(A)=f.

The case for disjunction is similar. O

We are now ready to prove one of the directions.
Proposition 4.1. For I' U {A}CForm, if I'=1 A then I'=wk A.

Proof. Suppose I' /wk A. Then, there is a three-valued valuation vg :
Prop — {t,u,f} such that [3(B) = t for all B € I and I3(A) # t. Now,
in view of (i) of Lemma 4.1, there is a four-valued valuation v, such that
I4(B)=t1 for all Bel and I4(A) # t1, namely I' |5, A, as desired. O

For the other direction, we prepare another lemma.

Lemma 4.2. For all four-valued valuation vy for L, there is a three-valued
valuation vy such that for all A € Form, (i) I3(A) = t iff I[,(A) = t1, and
(i1) I5(A) = £ iff I4(A) = f1.

Proof. Given a four-valued valuation vy, we define vz : Prop — {t,u,f} as
follows:

t w(p) =tl1

vg(p){u v4(p) = t0 or vy(p) = £0
f wu(p) =f£1

Then we prove the desired result by induction. O]

Then, again, the proof is similar to the above case.
Proposition 4.2. For I' U {A}CForm, if IEwkA then I'=1A

Proof. Suppose I' [ A. Then, there is a four-valued valuation vy : Prop —
{t1,t0,f0,f1} such that I,(B)=t1 for all B€I" and I,(A) # t1. Now, in view
of (i) of Lemma 4.2, there is a three-valued valuation v such that I3(B)=t
for all B€I" and I3(A)#t, namely I' rwk A, as desired. O

In view of the above propositions, we obtain the following.

Theorem 4.1. For allT' U{A} C Form, I' Ewk A iff I =1 A.
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In other words, we established that our new semantics is equiva-
lent to the well-known three-valued semantics for the weak Kleene
logic WK.

Let us now turn to the dual case of WK, namely the case for
PWK in which t1, t0 and f0 are taken as designated values. In fact,
the proofs are basically the same with the cases for WK but with
small changes, as we observe in the following.

Proposition 4.3. For I' U {A}CForm, if '=3A then '=pwk A.
Proof. We only note that we use (ii) of Lemma 4.1. ]
Proposition 4.4. For I' U {A}CForm, if I' EFpwk A then I =3 A
Proof. We only note that we use (ii) of Lemma 4.2 O
By combining these results, we obtain the following result.
Theorem 4.2. For all' U{A} C Form, I' Fpwk A iff I’ =3 A.
Finally, we consider the case in which t1 and t0 are designated.

Lemma 4.3. For all two-valued valuation vy for L, there is a four-valued
valuation vy such that for all A € Form, (i) I,(A) = t1 iff [,(A) = t, and
(11) I4(A) = f1 iff [,(A) = 1.

Proof. Given a two-valued valuation vy, we define vy : Prop — {t1,t0,f0,f1}
as follows:

Jtl wa(p) =t
m(p){ﬂ va(p) = £
Then we prove the desired result by induction. O]

Then, we obtain the following result.
Proposition 4.5. For I' U{A}CForm, if I'=2A then I'=cLA.

Proof. Suppose I" e, A. Then, there is a two-valued valuation vy : Prop —
{t,f} such that I5(B) =t for all B € I" and I,(A) = f. Now, in view of
Lemma 4.3, there is a four-valued valuation vy such that I4(B) = t1 (i.e.
I4(B) € D,) for all B €T and I4(A) = f1 (i.e. I4(A) € D,), namely I' &, A,
as desired. O

For the other direction, we prepare one more lemma.

Lemma 4.4. For all four-valued valuation vy for L, there is a two-valued
valuation vy such that for all A€Form, (i) I,(A)=t iff I,(A)e{t1,t0}, and
(ii) I,(A)=f iff I4(A)e{f1,£0}.
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Proof. Given a four-valued valuation vy, we define vy : Prop — {t,f} as
follows:

f wi(p) € {£1,10}
Then we prove the desired result by induction. O]

W(p)_{t va(p) € {t1,t0}

Proposition 4.6. For I' U {A}CForm, if ' Fcr A then I =9 A

Proof. Suppose I' 25 A. Then, there is a four-valued valuation v, : Prop —
{t1,t0,£0,f1} such that I,(B) € D, for all B € I and I4(A) € D,. Now, in
view of Lemma 4.4, there is a two-valued valuation vy such that I(B) =t
for all B € I" and I3(A) = f, namely I' fcr A, as desired. O

By combining these results, we obtain the following result.
Theorem 4.3. For allT U{A} C Form, I' Ecr, A iff T =2 A.

Remark 4.3. The results so far show that our semantics allows us to
compare three logics by a single four-valued truth table, by varying the set
of designated values. This is not possible with the three-valued truth table
unless we allow different sets of truth values that will allow us to define p-
and q-consequence relations.

4.2.3 Reflections on the results so far

The results so far show that our semantics allows us to compare
three logics by using our four-valued truth tables for the connec-
tives, by simply varying the set of designated values. This is not
possible with the three-valued truth tables unless we pursue the
p-consequence relation (cf. [20]), or more recently known as ST in
the literature (cf. [10,11]).

Furthermore, the four-valued semantics captures quite nicely a
more refined reading of Beall’s intuitive semantics: we can now
properly distinguish not only ‘true and on-topic’ and ‘false and
on-topic’ from off-topic sentences, but we can grant that the off-
topic ones will also have their own truth value, as expected in a
context where it is assumed that classical truth values are somehow
maintained and attributed to each sentence, independently of
issues concerning topic. That is, Beall’s reading, by employing
the three-valued semantics, although highly illuminating for WK,
is not without problems, given that it is unable to account for such
a feature of off-topic propositions. This is one of the advantages of
our framework.
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Now, we mentioned that the truth values have a completely
classical behavior. The expansion to four combinations with on-
topic and off-topic allows us to explicitly understand the working
of propositions, when it comes to their truth values, completely in
terms of CL. When it comes to topic relativity, on the other hand,
the second component of our semantics plays the major role. In this
sense, CL is still the underlying logic when we restrict ourselves
exclusively to the behavior of the truth values. But that is not
all: as we have showed, CL is also the resulting logic when, in the
consequence relation, only truth and falsity are considered relevant,
that is, when issues concerning topic are not playing any role. One
can see the resulting framework as describing in general terms
what happens to CL when an addition of further requirements of
topicality is produced, and the resulting distinct systems, CL and
WK, may be seen as resulting from emphasizing different aspects
of the framework: to require only truth preservation, on the one
hand, or truth and on-topic, on the other.

What this kind of reading of the framework we proposed allows
us to do now opens some very interesting venues for discussion on
some of the features typically said to characterize the nature of
logic itself. As we have seen, the presented semantics captures the
reading proposed by Beall very well; demanding on-topic preser-
vation results in WK, and demanding mere truth preservation
independently of on-topic preservation results in CL. In both cases,
the connectives behave classically for the truth values and their
truth conditions. Under these circumstances, and considering
that the topic is an addition to the classical truth conditional
apparatus, it could be claimed that CL embodies nicely the widely
held idea that logic is ‘topic-neutral’. That is, given that CL is the
resulting system when we require that logical consequence should
be ‘blind’ to the topics, it reflects topic neutrality. WK, on the
other hand, represents a more ‘material’ approach to consequence
relation, recording inferences that are truth preserving and are
topic relative (and our generalization that follows will allow us to
express this idea quite nicely).

Obviously, we are not claiming here that CL, in opposition to
other systems, uniquely captures topic neutrality. Rather, what we
claim is to be understood in conditional form: given the classical
nature of our basic framework and of Beall’s proposed reading, CL
is the one that results when topics are left behind. The fact that
the theories obtained by closing over CL and over WK are different
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may be read, as it were, as reflecting different interests concerning
the role of topics: either they do play a role (WK), or else they do
not (CL).

4.3 Alternative semantics (II): implementing
(M2)

Let us now turn to our second motivation (M2). Again by building
on Beall’s three key ideas, this will amount to turn the first two
ideas presented by Beall as follows (our additions are emphasized
by italicizing the text).

1. A theory is about all and only what its elements — that is,
the claims in the theory — are about. And there are n topics
that the theory is about.

2. Conjunctions, disjunctions and negations are about exactly
whatever their respective subsentences are about:

(a) Conjunction A A B is about exactly whatever topic t A
and B are about.

(b) Disjunction AV B is about exactly whatever topic t A and
B are about.

(c) Negation ~ A is about exactly whatever topic t A is about.

3. Theories in English are rarely about every topic expressible
in English.

4.3.1 Basics

The relativisation we are suggesting can be represented by adding
n valuations, instead of one valuation, by thinking that there can
be n different topics that the theory under consideration will cover.

Definition 4.4. A n-topic model for the language L is a pair (Vi,{V,}aea),
where Vi : Prop — {t,f}, V, : Prop — {0, 1}, and 2 is a finite and non-empty
set with n elements. Valuations Vi, V, are then extended to interpretations
Iy, 1, by the following conditions:

Li(p)=t iff Vi(p)=t L.(p)=1 iff Va(p)=1

It(N A>:t Zﬁ It(A):f I(z(N A):l Zﬁla(A>:1

L(A N B)=t iff I,(A)=t and I;(B)=t I,(AA B)=1iff I,(A)=1 and 1,(B)
L(AV B)=t iff ,(A)=t or I,(B)=t  I,(AV B)=1 iff I,(A)=1 and 1,(B)
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Remark 4.4. In Beall’s account [3], a topic is held fized and sentences
are either on-topic or off-topic, with no possibility of distinguishing distinct
topics. However, the states of on-topic and off-topic usually depend on
situations. For example, in a seminar, the statements about studies are on-
topic and the private statements are off-topic, while it becomes reversed in an
entertainment party. In fact, when people are chatting, the main topic that
they take care of changes with time normally.

4.3.2 Some results

Definition 4.5. For allT'U {A} C Form,

o I' =1 A iff for all n-topic models, I;(A) = t and I,(A) = 1 for all
a€C,ifforall BeT, I,(B)=t and [,(B) =1 for all a € 2.

o ' =0 A iff for all n-topic models, I,(A) = t, if forall B € T, [,(B) = t.

o I' =4 A iff for all n-topic models, I,(A) # f or I,(A) = 0 for some
ac if forall Bel, I(B)#f or 1,(B) =0 for some a € 2.

We now turn to show the following facts.

e =7 is weak Kleene logic.
e =1 is classical logic.
e =! is paraconsistent weak Kleene logic.

Lemma 4.5. For all three-valued valuation vs for L, there is an n-topic

model (Vi,{Va}aen) such that for all A € Form,

(i) L,(A) =t and I,(A) =1 for all a € C iff I3(A) = t, and
(ii) I;(A) =1 and I,(A) =1 for all a € C iff I3(A) =f£.

Proof. Given a three-valued valuation vs, we define (V;, {V, }4e2) as follows!:

t us(p) =t
Vilp) == £ ws(p) = Valp) = {(1) Zgg iz
t Ug(p> =u ’

Then we prove the desired result by induction on the complexity of the
formula. Since the proofs are similar, we only deal with the case for (i).

For the base case, the desired result holds by the definition of (V;, {V, }sen)-
For the induction step, we split the cases depending on the form of the
formula A.

IThe value of V;(p) when v3(p) = u can also be f.
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e If A is of the form ~ B, we have

Ii(A) =t and I,(A) =1forallaeC

iff ,(~ B)=tand I,(~B)=1forallaeC

iff ,(B)=fand I,(B)=1forallaeC by def. of I; and I,
iff I(B) = f by IH
iff I3(~ B) =t by def. of I3
iff I3(A) =t

o If A is of the form BAC, we have

Ii(A) =t and [,(A) =1forallaeC
iff I,(BAC) =t and I,(BAC) =1forallaeC

(BA
iff I,(B) =1,(C) =t and I,(B) =1,(C)=1forallaecC
iff I3(B) =t and I3(C) =t
iff I3(B A ) =t
The case for disjunction is similar. O

We are now ready to prove one of the directions.
Proposition 4.7. For all'U{A} C Form, if I' =} A then I' =wk A.

Proof. Suppose I' fewk A. Then, there is a three-valued valuation vz :
Prop — {t,u,f} such that I3(B) = t for all B € I and I3(A) # t. Now,
in view of (i) of Lemma 4.5, there is an n-topic model (V, {V,}aeca) such
that [,(B) =t and [,(B) =1 for all a € C for all B € I" and I;(A) # t or
I,(A) # 1 for some a € C, namely I' j£} A, as desired. O

Lemma 4.6. Given an n-topic model (Vi,{V,}aca) for L, there is a three-
valued valuation vs such that for all A € Form,

(i) Is(A)=t iff (A) =t and I,(A) =1 for all a € C, and
(i) I3(A)=f iff (A) =1 and I,(A) =1 for alla € C.

Proof. Given an n-topic model (V;, {V,}aca), we define vs : Prop — {t,u, f}
as follows:

-+

Ii(A) =t and [,(A)=1foralla € C
Ii(A)=f and [,(A) =1 foralla e C
u [,(A) =0 for some a € C

-

v3(p) ==
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Then we prove the desired result by induction on the complexity of the
formula. Since the proofs are similar, we only deal with the case for (i).

For the base case, the desired result holds by the definition of v3. For the
induction step, we split the cases depending on the form of the formula A.

e If A is of the form ~ B, then

iff ,(B)=f and [,(B)=1forallaeC
iff I,(~ B)=tand [,(~B)=1forallaecC
iff I,(A) =t and I,(A) =1forallaeC
o If A is of the form B A C,
BAC) =

The case for disjunction is similar. O
Then, again, the proof is similar to the above case.
Proposition 4.8. For allI'U{A} C Form, if I' Fwk A then I' =7 A

Proof. Suppose I' j£7 A. Then, there is an n-topic model (V;, {V,}aen) such
that [;(B) = tand [,(B) = 1foralla € C for all B € T" and [;(A) #
t or I,(A) # 1 for some a € C. Now, in view of (i) of Lemma 4.6, there is
a three-valued valuation v such that I3(B)=t for all B € T" and I3(A)#t,
namely I' Fewk A, as desired. O

In view of the above propositions, we obtain the following.
Theorem 4.4. For allT' U{A} C Form, I' =Ewk A iff ' =} A.

Remark 4.5. Note that by making use of (ii) of Lemmas 4.5 and 4.6, we
also obtain the following result: for all ' U {A} C Form, I' Epwk A iff
I =5 A

Lemma 4.7. For all two-valued valuation vy for L, there is an n-topic model

(Vi, {Va}aen) such that for all A € Form, I,(A) = I,(A).
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Proof. Given a two-valued valuation vy, we define an n-topic model (V;, {V, }sen)
as follows:

Vi(p) :== v2(p) Va(p) =1

Then we prove the desired result by induction on the complexity of the
formula. O

Lemma 4.8. Given an n-topic model (Vi,{V,}aca) for L, there is a two-
valued valuation vy such that for all A € Form, I,(A)=I,(A).

Proof. Given an n-topic model (V;, {V, }4ea), we define vy : Prop — {t,f} as
follows:

va(p) == Vi(p)

Then we prove the desired result by induction on the complexity of the
formula. O

By the lemmas above, we can get the theorem following.
Theorem 4.5. TU{A} C Form, I' = A iff I' =cL A.

Proof. For the left to the right direction, suppose I' o, A. Then, there
is a two-valued valuation vy : Prop — {t,f} such that I;(B) = t for all
B €T and I,(A) = f. Now, in view of Lemma 4.7, there is an n-topic model
(Vi, {Vi}aen) such that I,(A) = I(A) for all A € Form. Therefore, we obtain
that [;(B) =t for all B € I' and I;(A) = f, namely I' £} A, as desired.

For the other direction, suppose I" &5 A. Then, there is an n-topic model
(Vi,{Va}aen) such that I;(B) =t for all B € I' and I(A) # t. Now, in view
of Lemma 4.8, there is a two-valued valuation vy such that Ir(A) = [;(A)
for all A € Form. Therefore, we obtain that I5(B) = t for all B € T" and
I(A) = f, namely I' ¢y, A, as desired. O

4.3.3 Another way to view WK

One interesting aspect of this discussion is that independently of
how many distinct topics one adds, the underlying logic of truth
and topic preservation is always WK. One could be led to think
that topic neutrality could be reached in a straightforward way:
by adding more and more topics, with the demand that logic
consequence is defined as truth and on-topic preservation for all
topics. That, it could be thought, would progressively make the
system more and more insensible to the content specific to each
such context, bringing us closer to CL and its topic neutrality.
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However, that is not what happens. CL only obtains when we
disregard all that is relative to a topic, and not when we bring
in all that is relevant to every topic. In this sense, we could say,
perhaps, in Wittgensteinian terms, that a logic that preserves truth
and on-topic property is, somehow, more informative, given that
it takes the topic into account, while CL, by disregarding topics, is
not informative, because it holds in every topic, independently of
what the topic is about.

One could perhaps also speculate whether it makes any differ-
ence for the resulting logic whether one demands that one topic is
preserved, two, or all of them. The answer is that it doesn’t. Our
next result establishes that. In intuitive terms, it says that topic
neutrality is a matter of all or nothing: either one chooses that
no topic will have an influence, and has CL for that, or else one
chooses at least one topic, and that is already enough to give us
WK.

Given a set G C C such that G # (), we may consider the following
definition of a consequence relation.

Definition 4.6. For all TU{A} C Form, T' =9 A iff for all n-topic models,
Ii(A) =t and I,(A) =1 for alla € G if for all B € T', I;(B) = t and
I,(B) =1 foralla€g.

Then, a careful inspection of the proofs reveals that nothing
specific about C played a role in the proofs. Therefore, by repeating
the proof with suitable modifications will establish the following
theorem.

Theorem 4.6. For allT'U{A} C Form and G C A where G # 0, I Ewk A
T EM A

In other words, WK is also obtained not only by preserving all
the topics, but also by preserving some of the topics as well.

4.4 A new interpretation of the logic of Catuskoti

As we have seen, there is a sense to be made that logic is topic
neutral in the context of our interpretation, if we choose our des-
ignated values so that truth is preserved independently of topics.
Given that it is CL that governs the behavior of the connectives
in the context of the framework we have been discussing so far, it
is only natural that the resulting logic when topics are ignored is
CL.
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4.4.1 Basics

We now turn to reflect the above considerations in a slightly formal
terms. The models will have the four-valued FDE-valuations, in
place of the two-valued classical valuations.

Definition 4.7. An FDE-based n-topic model for the language L is a pair
(Vi; {Va}aen), where V; : Prop — {t,b,n,f}, V, : Prop — {0,1}, and A
1s a finite and non-empty set with n elements. Valuations V; are extended to
interpretations I; by the usual manner for FDE, and valuations V, are then
extended to interpretations 1, by the following conditions:

I (p)=1 iff Va(p)=1

I (~ A)=1 iff I,(A)=

L(AAB)=1 iff I,(A)=1 and I,(B)=1
L(AV B)=1 iff I,(A)=1 and I,(B)=1

Based on these models, we define two kinds of semantical
consequence relation, one focusing on the preservation of truth,
and the other also preserving the topics.

Definition 4.8. For allT'U {A} C Form,

o I' 1" A iff for all FDE-based n-topic models, I,(A) € {t,b} and
I,(A) =1 foralla € C if for all BT, I,(B) € {t,b} and I,(B) =1
for alla € C.

o ' =5 A iff for all FDE-based n-topic models, I,(A) € {t,b} if for all
BeTl, I,(B) € {t,b}.

Remark 4.6. We may also consider the more tolerant consequence relation,
defined as follows: T' =5 A iff for all n-topic models, I;,(A) # £ or I,(A) =0
for some a € C if for all B € T, I,(B) # £ or I,(B) = 0 for some a € C.
However, for the purpose of saving some space, we will focus on the above
two consequence relations.

4.4.2 Some results

We will now turn to connect the above consequence relations to
those known in the literature. More specifically, we will observe
that our consequence relations are equivalent to those for the logic
of Catuskoti FDE, and FDE, respectively.

o =" is FDE,.

e =" is FDE.
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We will first deal with the case for FDE,.

Lemma 4.9. For all five-valued valuation vs for L, there is an n-topic model

(Vi, AV} aet) such that for all A € Form,

(i) ;(A) =t and I,(A) =1 for all a € C iff I5(A) = t, and
(ii) I;(A) =b and I,(A) =1 for all a € C iff I5(A) = b, and
(iii) [1(A) =n and I,(A) =1 for all a € C iff I5(A) = n, and
(iv) I,(A) =f and I,(A) =1 for all a € C iff I5(A) = f.

Proof. Given a five-valued valuation vs;, we define an FDE-based n-topic
model (V;, {V,}aen) as follows?:

(

t vs(p) =t
b wus(p)=Db
V)= n vl =n V) {; T
f ous(p)=¢£ °
([t ws(p)=e

Then we prove the desired result by induction on the complexity of the
formula. Since the proofs are similar, we only deal with the case for (i).

For the base case, the desired result holds by the definition of (V;, {V, }seu)-
For the induction step, we split the cases depending on the form of the
formula A.

e If A is of the form ~ B, we have

Ii(A) =t and I,(A) =1forallaeC
iff Iy(~ B)=tand [,(~ B)=1forallaeC

o If A is of the form B A C, we have

Ii(A)=tand [,(A) =1forallaeC

iff I,(BAC) =t and I,(BAC) =1foralla eC
iff I,(B)=1;(C)=t and [,(B)=1,(C)=1 for all a € C
iff I;(B)=t and I5(C)=t
iff I5(B A C) =t

iff I5(A) =

2The value of V;(p) when vs(p) = e can also be other values.

48



The case for disjunction is similar. O]
Proposition 4.9. For all'U{A} C Form, if T ):11" A then T =ppg, A

Proof. Suppose I' £Fppg, A. Then, there is a five-valued valuation vs :
Prop — {t,b,n,f e} such that I;(B) € {t,b} for all B € T" and I;(A) ¢
{t,b}. Now, in view of (i) and (ii) of Lemma 4.9, there is an FDE-based
n-topic model (V;,{V,}aeca) such that I;(B) € {t,b} and I,(B) = 1 for all
a €C forall BeTl and I;(A) € {t,b} or I,(A) # 1 for some a € C, namely
I 1" A, as desired. O

Lemma 4.10. Given an FDE-based n-topic model (V;, {Vy}aca) for L, there
1S a ﬁve-valued valuation vs such that for all A € Form,

): iff I,(A) =t and I,(A) =1 for alla € C, and
)=b iff ,(A) =b and [,(A) =1 for alla € C, and
A)=n iff ,(A) =n and [,(A) =1 for all a € C, and
A)=f iff L,(A) =f and I,(A) =1 for alla € C.

Proof. Given an FDE-based n-topic model (V;,{V,}sen), we define vs :
Prop — {t,b,n, f e} as follows:

(

t Vip)=tand V,(p)=1forallaecC
b Vi(p)=tand V,(p)=1forallaeC

vs(p) :=4¢n Vi(p)=tand V(p)=1forallaeC
f Vip)=fand V,(p)=1forallaecC
e V,(p) =0 for some a € C

Then we prove the desired result by induction on the complexity of the
formula. Since the proofs are similar, we only deal with the case for (i).

For the base case, the desired result holds by the definition of v3. For the
induction step, we split the cases depending on the form of the formula A.

e If A is of the form ~ B, then
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e If A is of the form B A C,

I5(A) = t iff I;(BAC) =

iff I;(B) =t and I5(C’) =t

iff I,(B)=1;(C)=t and [,(B)=1,(C)=1for all a € C
it ,(BAC)=tand [,(BAC)=1forallaeC
iff ,(A) =t and [,(A)=1forallaeC

The case for disjunction is similar. O]
Proposition 4.10. For allT'U {A} C Form, if I' =ppg, A then T’ =" A

Proof. Suppose I’ bézlln A. Then, there is an FDE-based n-topic model
(Vi, {Vi}aen), such that I;(B) € {t,b} and [,(B) = 1 for all a € C for all
B € T and I,(A) ¢ {t,b} or I,(A) # 1 for some a € C. Now, in view
of (i) and (ii) of Lemma 4.10, there is a five-valued valuation vs such that
I5(B) € {t,b} for all B € I" and I5(A) ¢ {t,b}, namely I' Frpg, A, as
desired. O

In view of the above propositions, we obtain the following.
Theorem 4.7. For all T U{A} C Form, T |=ppr, A iff T =1 A.

Remark 4.7. In view of this result, we may also interpret FDE,, in a rather
different manner from Priest’s interpretation presented in [33]. On the one
hand, for the purpose of reflecting the reading in terms of emptiness for the
value e, the construction through the framework of plurivalent semantics due
to Priest himself will be more suitable. On the other hand, based on our
semantics and the result above, FDE, can be understood in a completely
different way, that is, as a logic introduced via FDE-based n-topic models,
defining the consequence relation in terms of the preservation of on-topic
truth.

We now turn to the case for the second consequence relation.
Again, the proof will be basically the same with the case we treated
CL, but with some changes as expected.

Lemma 4.11. For all four-valued valuation vy for L, there is there is an
FDE-based n-topic model (Vi,{V,}aeu) such that for all A € Form, I;(A) =
I4(A).

Proof. Given a four-valued valuation v,, we define an FDE-based n-topic

model (V;,{V,}aca) as follows:
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Vi(p) == va(p) Vi(p) =1

Then we prove the desired result by induction on the complexity of the
formulas. O

Lemma 4.12. Given an FDE-based n-topic model (V;, {Vy}aen) for L, there
is a four-valued valuation vy such that for all A € Form, I,(A)=I,(A).

Proof. Given an FDE-based n-topic model (V;,{V,}aca), we define vy :
Prop — {t,b,n, f} as follows:

va(p) == Vi(p).

Then we prove the desired result by induction on the complexity of the
formula. O

Theorem 4.8. For all T U{A} C Form, T’ =ppg A iff I =" A.

Proof. For the left to the right direction, suppose I' fppr A. Then, there
is a four-valued valuation vy : Prop — {t,b,n,f} such that I,(B) € {t,b}
for all B € T" and I4(A) € {t,b}. Now, in view of Lemma 4.11, there is
an FDE-based n-topic model (V;, {V,}aen) such that I;(B) € {t,b} for all
BeT and I(A) & {t,b}, namely ' j£3" A, as desired.

For the other direction, suppose I' bé;l” A. Then, there is an FDE-
based n-topic model (V;, {V,}sea) such that I,(B) € {t,b} for all B € T
and I(A) ¢ {t,b}. Now, in view of Lemma 4.12, there is a four-valued
valuation vy such that I4(B) € {t,b} for all B € I' and [,(A) ¢ {t,b},
namely I' fcppg A, as desired. O

4.5 Beyond FDE family

A careful inspection of the proofs of the previous section shows
that we may take K3 or LP, instead of FDE, for all the results.
This may then make us wonder to which extent we can generalize
the results we have established so far following the themes from
Beall. The aim of this section is precisely to address this question.

4.5.1 Basics

First, we recall a rather general way, described by Priest, to obtain
infectious logic building on a given many-valued semantics.
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Definition 4.9 (Priest). Let M = (V,D,d) be a many-valued semantics
for L. Then we define a many-valued infectious semantics based on M,
= (V°,D°,6°) for L as follows:

o V¢ =V U{e},

e D¢ =1D,

e 0° contains a function 6° that extends, if needed, each d. by letting
08(vs,...,v8) = e iff v¥ = e for some vf € V°. Otherwise, 63 = 0,.

’ e n

Remark 4.8. As one can see, this is a generalization of both WK and
FDE,. Indeed, by taking the many-valued semantics to be the two-valued
semantics for CL and the four-valued semantics for FDE, respectively, then
the resulting many-valued infectious semantics will be those for WK and
FDE,, respectively.

Then, note that the results established by Priest in [34] show
that plurivalent semantics will allow us to make sense of the many-
valued infectious semantics based on M when M is one of the many-
valued semantics for the FDE-family. Our aim in this section is
to provide another way to interpret the many-valued infectious
semantics based on M in terms of on-topic/off-topic reading along
Beall. Interestingly, our method works for any many-valued
semantics, not restricted to the FDE-family. In what follows, we
will focus on one topic case, although the same construction will
also work well with more than one topic.

Definition 4.10. Given a many-valued semantics M = (V,D,6) for the
language L, an M-based topic model for the language L is a triple (M, V;, V),
where V; : Prop — V, V, : Prop — {0,1}. Valuations V;,V, are then
extended to interpretations Iy, I, by the following conditions:

Ii(p)=Vi(p) I (p)=1 iff Vu(p)=1

Ii(~ A)=0.(I;(A)) To(~ A)= iff I(A)=
L(AAB)=6,(I(A), I(B)) IL.(A ): iff I,(A)=1 and I,(B)=1
L(AV B)=0,(L(A), I,(B)) I,(A v B)=1 iff I,(A)=1 and I,(B)=1

We will again define two kinds of consequence relations.

Definition 4.11. For allT'U {A} C Form,

o I' EM A iff for all M-based n-topic models, I;,(A) € D and I,(A) = 1
if for all BT, I,(B) € D and I,(B) = 1.

o I' =M A iff for all M -based n-topic models, I;(A) € D if for all B € T,
L(B) € D.
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4.5.2 Relating to the semantics with an infectious value

We will now turn to relate the first semantic consequence relation
=M to the semantic with an infectious value.

Lemma 4.13. For all interpretation (M®, ), there is an M-based topic
model (M, V;,V,) such that

(1) if u(A) # e, then I,(A) = u(A) and I,(A) =1, and
(i) of p(A) =e, then I,(A) = 0.

Proof. Note first that for all interpretation, there is at least one designated
value. In what follows, we will refer to this value as d.

Given an interpretation (M€, u), we define a M-based topic model
(M, V;, V,) as follows:

~Julp) i p(p)
Vt(p)_{d if 1u(p)

[IN

e 1 ifpulp) #£e
e V"(p)_{o if u(p) =e

Then we prove the desired results by induction on the complexity of the
formula.

Ad (i) For the base case, the desired result holds by the definition of V; and
V.. For the induction step, we split the cases depending on the form of the
formula A.

e If Ais of the form ~ B, then assume p(A) # e. Given this assumption,
note that we obtain u(B) # e. Indeed, if u(B) = e, then u(A) = p(~
B) = 05 (u(B)) = e by the definition of §*. It then remains to show
that I;(A) = u(A) and I,(A) = 1 which can be checked as follows.

Ii(A) = Ii(~ B) = 6-.(1,(B)) (by def. of I;)
= 0~(u(B)) (by IH)
= p(~ B) (by def. of )
= u(A).

Moreover, since u(B)#e, we have I,(B)=1 by IH, and thus /,(~ B)=1,
le. I,(A)=L.

e If Ais of the form BAC, then assume pu(A) # e. Given this assumption,
note that we obtain u(B) # e and p(C) # e. Indeed, if u(B) =
e or u(C) = e, then p(A) = (B A C) = o3(u(B), u(C)) = e by
the definition of 0*. It then remains to show that [,(A) = u(A) and
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I,(A) = 1 which can be checked as follows.

I,(A) = I,(B AN C) = 6,(1(B), I,(C)) (by def. of I;)
= 0a(u(B), u(C)) (by IH)
=u(BAC) (by def. of u)
= pu(A).

Moreover, since u(B)#e and pu(C)#e, we have I,(B)=1 and [,(C)=1
by IH, and thus I,(B A C)=1, i.e. I,(A)=L.

The case for disjunction is similar.

Ad (ii) For the base case, the desired result holds by the definition of V; and
V,. For the induction step, we split the cases depending on the form of the
formula A.

e If Ais of the form ~ B, then assume p(A) = e. Given this assumption,
note that we obtain u(B) = e. Indeed, if u(B) # e, then by the
definition of 0%, we obtain p(A) # e. Therefore, by IH, we obtain
I,(B) = 0. Therefore, by the definition of I,, we obtain I,(A) = I,(~
B) =0, as desired.

e If Aisof the form BAC, then assume p(A) = e. Given this assumption,
note that we obtain u(B) = e or u(C) = e. Indeed, if u(B) # e and
w(C) # e, then by the definition of 6*, we obtain u(A) # e. Therefore,
by IH, we obtain [,(B) = 0 or I,(C) = 0. Therefore, by the definition
of 1, we obtain [,(A) = I,(B A C) =0, as desired.

Again, the case for disjunction is similar. O
Proposition 4.11. For allT U {A} C Form, if T =) A then T EM* A.

Proof. Suppose I' [£M° A. Then, there is a interpretation (M®, 1) such
that puo(B) € D for all B € T" and po(A) ¢ D. Then, by making use of (i)
of Lemma 4.13, for an M-based topic model (M, V;,V,), uo(B) € D for all
B € T implies that [;(B) € D and I,(B) = 1 for all B € I'. Moreover, by
making use of both (i) and (ii) of Lemma 4.13, we obtain that po(A) & D
implies I;(A) € D or I,(A) # 1. Indeed, if u(A) # e, then we use (i) to
obtain I;(A) ¢ D, and if u(A) = e, then we use (ii) to obtain I,(A) # 1.
Therefore, we obtain that I' M A, as desired. O

Lemma 4.14. For all M -based topic model (M, V;,V,), there is an interpre-
tation (M®, ) such that for all A € Form,

(i) if 1,(A) =1, then u(A) = I(A), and
(i) of I.(A) =0, then pu(A) = e.
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Proof. Given a M-based topic model (M, V;, V), we define an interpretation

(Me, p) as follows:
M(p):{Vt(p) if Va(p)

1
e if Va(p) =0

Then we prove the desired result by induction on the complexity of the
formula.

Ad (i) For the base case, the desired result holds by the definition of u. For
the induction step, we split the cases depending on the form of the formula

A.

e If Aisof the form ~ B, then assume I,(A) = 1. Then, by the definition
of 1,, we obtain that [,(B) = 1. Therefore, by IH, we have that
p(B) = I(B), and thus u(A) = p(~ B) = 6.(u(B)) = 0.(L(B)) =
I;(~ B) = I,(A), as desired.

e If A is of the form B A C, then assume [,(A) = 1. Then, by the
definition of I,, we obtain that I,(B) = 1 and I,(C) = 1. Therefore,
by IH, we have that u(B) = [,(B) and u(C) = I,(C), nd thus ,u(A)
W(BAC) = 6,(u(B). u(C)) = 0, (1i(B), 1(C)) = (B AC) = L(A), a

desired.

The case for disjunction is similar.

Ad (ii) For the base case, the desired result holds by the definition of x. For
the induction step, we split the cases depending on the form of the formula
A.

e If Aisof the form ~ B, then assume I,(A) = 0. Then, by the definition
of 1,, we obtain that I,(B) = 0. Therefore, by IH, we have that
u(B) = e, and thus pu(A) = pu(~ B) = o.(u(B)) = é(e) = e, as
desired.

e If A is of the form B A C, then assume [,(A) = 0. Then, by the
definition of I,, we obtain that [,(B) = 0 or I,(C) = 0. Therefore, by
IH, we have that u(B) = e or u(C) = e, and thus u(A) = u(BAC) =
In((B), u(C)) = e, as desired.

The case for disjunction is similar. O
Proposition 4.12. For allT' U {A} C Form, if T " A then T =M A.

Proof. Suppose I' M A, Then, there is an M-based topic model
(M, Vi, V) such that I, (B) € D and I,,(B) = 1 for all B € T', and
Ii,(A) & D or I,,(A) # 1. Then, by making use of (i) of Lemma 4.14,
I,,(B) € D and [,,(B) = 1 for all B € I" imply that uo(B) € D for all
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B €T, and by making use of both (i) and (ii) of Lemma 4.14, I,(A) € D or
I.,(A) # 1 implies that pg(A) € D. That is, I' £M° A, as desired. O

By combining Propositions 4.11 and 4.12, we obtain the follow-
ing.

Theorem 4.9. For allT U{A} C Form, T =M A iff T EM® A.

Remark 4.9. This result can be interpreted as the wide applicability of
Beall’s reading involving on-topic/off-topic. More specifically, as far as the
theory, in Beall’s sense, is closed under a many-valued consequence relation,
then we may tell the same story as Beall did in [3].

Besides the two examples we already examined in some details, namely
WK and FDE,,, we can add two more examples by looking at the four-valued
semantics. That is, Oller’s logic can be seen as based on LP-based topic
models, and Ciuni, Ferguson, and Szmuc’s semantics can be seen as WK
or PWK-based topic models, depending on the value nl being designated or
not. It is of course a separate issue if these ways of making sense of the
semantics will serve for similar philosophical applications. It may well be the
case that the framework of the plurivalent semantics will be more suitable for
certain applications.

4.5.3 Relating to the semantics without an infectious
value

We now turn to relate the second semantic consequence relation
to the original semantics M.

Lemma 4.15. For all interpretation (M, ), there is an M-based topic model
(M, V;, Va) such that for all A € Form, (i) I,(A) = p(A) and (i) 1,(A) = 1.

Proof. Given an interpretation (M, u), we define an M-based topic model
(M, Vi, V,) as follows:

Vi(p) := p(p) and V,(p) := 1.

Then we prove the desired result by induction on the complexity of the
formula. For the base case, the desired result holds by the definition of V;
and V,. For the induction step, we split the cases depending on the form of
the formula A.
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e If A is of the form ~ B, then

Ii(A) = I,(~ B) = 6-.(1,(B)) (by def. of I;)
— 5.(u(B)) (by TH)
= p(~ B) (by def. of )
= u(A).

Moreover, we have I,(B)=1 by IH, and thus I,(~ B)=1, i.e. [,(A)=1.
e If A is of the form BAC, then

Li(A) = (BAC) =0I4(B), L,(C)) (by def. of I;)
= 0p(1(B), u(C)) (by IH)
=uw(BAC) (by def. of u)
= u(A).
Moreover, we have I,(B)=1 and I,(C)=1 by IH, and thus [,(BAC)=1,
ie. I,(A)=L.
The case for disjunction is similar. O

Proposition 4.13. For all T U {A} C Form, if T =) A then T EM A.

Proof. Suppose I' ™ A. Then, there is an interpretation (M, o) such
that puo(B) € D for all B € T' and po(A) ¢ D. Then, by making use of
Lemma 4.15, for some M-based topic model (M, V;,V,), uo(B) € D for all
B e I' implies that [,(B) € D (and [,(B) = 1) for all B € I'. Moreover, we
obtain that po(A) ¢ D implies [;(A) ¢ D (and I,(A) = 1). Therefore, we
obtain that T' &) A, as desired. O

Lemma 4.16. For all M-based topic model (M, V;,V,), there is an interpre-
tation (M, p) such that for all A € Form, u(A) = I,(A).

Proof. Given a M-based topic model (M, V;,V,) , we define an interpretation
(Me®, 1) as follows:

u(p) == Vi(p)

Then we prove the desired result by induction on the complexity of the
formula. For the base case, the desired result holds by the definition of
p. For the induction step, we split the cases depending on the form of the
formula A.
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e If A is of the form ~ B, then

p(A) = p(~ B) = 6.(u(B)) (by def. of )
= 0~(1(B)) (by IH)
= I;(~ B) (by def. of I)
= p(A).
o If A is of the form B A C, then
1(A) = p(B A C) = 07(u(B), u(C)) (by def. of p)
= 0n(L(B), L,(C)) (by IH)
=L(BAC) (by def. of I;)
The case for disjunction is similar. O

Proposition 4.14. For allT U{A} C Form, if T EM A then T EM A.

Proof. Suppose T' M A, Then, there is an M-based topic model
(M, Vi, Vi) such that I (B) € D for all B € I', and I;,(A) ¢ D. Then, by
making use of Lemma 4.16, I, (B) € D for all B € T" imply that po(B) € D
for all B € T, and I;,(A) ¢ D implies that po(A) € D. That is, T' M A, as
desired. O

By combining Propositions 4.13 and 4.14, we obtain the follow-
ing.

Theorem 4.10. For all T U{A} C Form, I' EM A iff T =M A.

Remark 4.10. This result may be interpreted as showing the advantage
of M-based topic models being able to capture the original many-valued
semantics M, unlike the many-valued infectious semantics M€ which requires
to go non-Tarskian to recover some part of the semantic consequence relation
based in M.

4.6 Some expansions

One of the advantages of the new semantics can be observed
through the applicability of our framework to expansions of L. We
will here focus on two connectives, characterized by the following
truth tables, discussed by Bochvar in [7, p.91] and Halldén in [21,
p.47], respectively:
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A‘TA‘—i—A
t t t
u f f
f f t

Now, these connectives seem to resist treatments in the negative
plurivalent semantics. In contrast, we have a very straightforward
way to capture both connectives in our new semantic framework.
First, consider the following conditions in the most simple seman-
tics M1:

I(TA) =t iff [,(A) =t and [,,(A) =1,

I,,(TA) =1 for all A € Form.

Li(+A) =t iff [,,(A) =1,

I,(+A) =1 for all A € Form.

Equivalently, we obtain the following four-valued truth table:

A|TA| +4
tl | tl tl
to | f1 f1
£0 | £1 | f1
f£1] f1 | t1

Then, the proof of establishing the equivalence of the original three-
valued semantics and our semantics will carry over to the expanded
cases. Moreover, we can obtain n connectives in the n-topic model
which can be written as +,,+,... or T,, T, where a,b € 2.
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Chapter 5

Semantics for multi-agent sys-
tem

In this chapter, we provide many-valued semantics for multi-agent
system. In Section 5.1, we propose the intuitive idea behind the
semantics. In Sections 5.2 and 5.3, we introduce two pair semantics
for two readings of knowledge. In Section 5.4, we propose a
binary relation between agents. Finally, in Section 5.5, we combine
the two semantics to express the epistemic states of multi-agent
system, and then introduce two kinds of agent communication in
our semantics and give an example.

5.1 Idea behind the semantics

In Chapter 4, we proposed several semantics based on Beall’s off-
topic interpretation. For our aim in to build the semantics for
multi-agent, it is a very natural idea to consider n-agent instead
of n-topic. Moreover, as the reading off-topic (or private we
introduced in Chapter 3) of the additional value is infectious, we
need to find an infectious epistemic state of agent.

Normally, we consider epistemic states as known and unknown,
while the readings are sometimes ambiguous. For example, con-
sider the following situation,

Example 5.1. Let p,q are two propositions. p is known to agent a while q
is unknown to a. Assume that p is true, is pV q known to agent a?

Actually, agent a can acquire the knowledge that pVq is true, which
is the same in epistemic logic that Op — O(p V ¢) no matter what ¢
is.

However, sometimes we don’t say that pV ¢ is known to a. For
instance, if we consider that ¢ is unknown to agent a as a doesn’t
know the content of ¢, then we cannot say that « knows the content
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of pV ¢q. In this case, we consider that a formula A is known to a
agent if and only if all of the atoms of A are known to the agent.
Therefore, the state unknown is infectious. Here, we call such
known as well informed to distinguish from other known.

Then we can read the interpretation as follows:

e [,(A)=1 as agent a is well informed of A;
e [,(A)=0 as agent « is not informed of A.

Consider it more, even though a proposition may possess an
objective truth value, an agent may not acquire its truth unless
he/she could interpret it. In agent communication, for example,
although an agent receives a message from other agents, he/she
may not be able to read it. This case happens when the message
is enciphered; when recipient a possesses the key to decipher the
cryptography of A as I,(A) = 1, the agent could be said to be well
informed of A. By the way, there can be unintended encryption.
For non Roman-alphabet languages, there could be multiple differ-
ent ways to encode their characters into ascit codes. If encoding
and decoding are not consistent, called mis-conversion, the message
becomes illegible. Such a proper decoder or a translator is regarded
as a kind of decryption key.

In this case, the different consequence relations defined, for
weak Kleene and classical logic do represent inferences according
to different standards. According to the weak Kleene consequence
relation, consequence means that truth of the messages is pre-
served, and that every agent is well informed about its meaning,
that is, every agent is able to interpret the message. That could
represent well cases where drawing inferences depend on a message
being collectively known. In the case of classical logic, inferences
are allowed that preserve truth, and no relation to the ability
or possibility of agents to be informed about them is required.
Notice that the apparatus seems to capture the fallibility of agents
in being well informed about some truths, given the difference
between classical logic and weak Kleene. That is, agents are only
allowed to infer, collectively, from propositions they are informed
about and that are true; they cannot infer merely assuming truth
of propositions without knowing their meaning (which in a context
involving encryption seems quite reasonable).

The key to read the received message has another view, that
concerns whether the recipient is authorized to read the message.
Namely, the recipient of the message may not be able to read it
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unless he/she is officially permitted to do so. We can implement
this permission in terms of communication channel [39] so that
an agent is admitted to send/read messages only via approved
channels. When agent a is sent A and is authorized to access and
read it as [,(A) = 1, we could say again that the agent is well
informed of A.

The same interpretation concerning the information of agents
relative to a proposition could be used to codify the role of agents
in organizations. For instance, one could have two agents that play
the leading role in an organization, and they can only proceed in
the business of the organization whenever both are informed of the
propositions involved. That would justify restricting inferences to
propositions that are true and of which both are aware of. More
general scenarios may be considered with more agents involved,
and, as we shall see when we introduce more structure in the set
of agents, we can codify the idea that some kind of hierarchy exists
between them.

Note that although this reading seems similar to the “igno-
rance” we introduce in the previous study, the consideration is
totally different. For example, if agent a is informed of p while not
informed of ¢, then we say that agent a is not informed of p A q.
However, if p is false, actually agent a has the ability to judge the
formula p A q as false, so a knows whether p A ¢ is true or not. In
other word, “informed” is stricter than “not ignorance”.

5.2 Semantics (I)

By this consideration of unknown , we give a semantics for infec-
tious logic the same as Chapter 4.

Definition 5.1. A two-valued interpretation for the language L is a pair
(Ve vy where V¥ o Prop — {t,f} and V" : Prop — {0,1}. Valuations

Vi, VIV are then extended to interpretations Iy, I, by the following conditions.

o I(p)=t iff V*(p)=t

o I3(p)=11ff V;(p)=1

o [[V(~A)=t iff I}'(A)=f

o [¥(~A)=1 iff [*(A)=1

o [['(ANB)=t iff I}'(A)=t and I}*(B)=t
o IU(AADB)=1 iff I*(A)=1 and I*(B)=1
o [[(AV B)=t iff I['(A)=t or I}*(B)=t



o [Y(AV B)=1iff I¥(A)=1 and I¥(B)=1

Definition 5.2. A four-valued interpretation of L is a function I}’ : Prop —
{t1,t0,f0,f1}. Given a four-valued interpretation IS, this is extended to
a function that assigns every formula a truth value by the following truth
functions:

Al ~A AAB | t1 t0 f0 f1 AVB | t1 t0 f0 f1
t1 | f1 tl |[t1 t0O f0 f1 tl | tl t0 t0 ¢l
t0 | f0 t0 [t0 tO fO fO t0 | t0 t0 t0 tO
f0 | t0 f0 | fo fo fo fO f0 | t0 t0 fo fO
f1| t1 f1 | f1 fo fo f1 f1 | t1 t0 fo f1

We introduce three different sets of designated values as follows:
e DY := {tl};

e DY := {t1,t0};

e DY := {t1,t0,f0}.

Based on these sets of designated values, we define three conse-
quence relations as follows.

Definition 5.3. For all T U {A} C Form, I' = A iff for all four-valued
interpretations I}', I}'(A) € DY if I'(B) € DY for all B € T, where i €
{1,2,3}.

We have already shown the facts in Chapter 4 that:

e =Y is the weak Kleene logic;
e =Y is the classical logic;
e =Y is the paraconsistent weak Kleene logic.

5.3 Semantics (II)

In the previous section, we gave a semantics for the case we
considered unknown be infectious. Actually, if we think in the
different way, i.e., we consider that a formula A is known to a
agent if and only if the agent knows whether A is true or not, then
we can obtain a new semantics as following. Here, attention that
this semantics should be similar with that of epistemic logic.

Definition 5.4. A two-valued interpretation for the language L is a pair
(Vi2,VEY, where V7 : Prop — {t,f} and V? : Prop — {0,1}. Valuations
V2, V2 are then extended to interpretations I}, 17 by the following conditions.
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A)=t and I}(B)=t

II(ANB)=1 iff (I;(ANB)=t and I3(A)=1 and I3(B)=1) or (I;(A)=f

and I$(A)=1) or (I;(B)=f and I}(B)=1))

IF(AV B)=t iff I} (A)=t or I}(B)=t

o [(ANB)=1 iff (I;(AANB)=f and I3(A)=1 and I}(B)=1) or (I} (A)=t
and 13(A)=1) or (I;(B)=t and I3(B)=1)

The definition of [3(A A B) and [:(AV B) may seem strange.
Actually, we just consider it as the S5 system of the epistemic logic.
For example, we consider the [(AAB) =1 as 0,(AAB)vO,~(AAB).
Therefore there exists three possible cases in all S5 models that

e ANB and J,AV[,~A and (J,B Vv [,—B;
e -A and [, AV [0O,—A;
e -B and UU,B Vv [U,—B.

which is the same as the definition we showed above. Also, we can
see the semantics more clearly by the truth table.

Definition 5.5. A four-valued interpretation of £ is a function I : Prop —
{t1,t0,£0,f1}. Given a four-valued interpretation I, this is extended to
a function that assigns every formula a truth value by the following truth
functions:

Al ~A AAB | t1 t0 f0 f1 AVB | t1 t0 f0 f1
t1 | f1 tl |[tl t0O fOo f1 tl | tl t1 t1 ¢l
t0 | f0 t0 [ t0 tO fo f1 t0 [t1 t0 t0 t0
f0 | t0 f0 | fo fo fo f1 f0 | t1 t0 fo fO
f1] t1 f1 |f1 f1 f1 f1 f1 [t1 t0 fo f1

We introduce three different sets of designated values as follows:
o D :={tl};
e D5 := {tl1,t0};
e Dj := {t1,t0,f0}.
Based on these sets of designated values, we define three conse-
quence relations as follows.

Definition 5.6. For all ' U {A} C Form, I' = A iff for all four-valued
interpretations I, I3(A) € D; if I;(B) € D} for all B € T, where i €
{1,2,3}.
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Then, we can show the facts that:

e |=; is the strong Kleene logic;
e |=5 is the classical logic;
e |=; is the logic of paradox.

We first deal with the case in which t1 is the only designated
value. To show the first fact, we prepare a lemma.

Lemma 5.1. For all strong Kleene three-valued valuation vi for L, there is
a four-valued valuation v such that for all A € Form, (i) Ij(A) = t1 iff
I5(A) =t, and (i) I;(A) = f1 iff I5(A) = 1.

Proof. Given a three-valued valuation v§, we define v§ : Prop — {t1,t0,f0,f1}

as follows:
tl vi(p) =t
vi(p)=4 f0 v3(p) =b

£l vi(p) =t
Then we prove the desired result by induction on the complexity of the
formula. For the base case, the desired result holds by the definition of
v;. For the induction step, we split the cases depending on the form of the
formula A.

If A is of the form ~B, then for (i), we have I§(A) = t1 iff Ij(~B)=tl
iff I3 (B)=f1 (by def. of I}) iff I§(B)=f (by IH) iff I5(~B)=t (by def. of I3)
iff I5(A)=t. For (ii), Ij(A) = f1 iff Ij(~B)=f1 iff I](B)=t1 (by def. of I})
iff 15(B)=t (by IH) iff I5(~B)=f (by def. of I3) iff I5(A)=f.

If Ais of the form BAC, then for (i), I;(A)=tl iff IJ(BAC)=t1 iff
I{(B)=t1 and I;(C)=t1 (by def. of I}) iff I3(B)=t and I5(C)=t (by IH) iff
I5(BAC)=t (by def. of I3) iff I5(A)=t. For (ii), I;(A)=f1 iff IJ(BAC)=f1
iff Ij(B)=f1 or I;(C)=f1(by def. of I}) iff I5(B)=f or I5(C)=f(by IH) iff
I5(BAC)=f (by def. of I3) iff I5(A)=f.

The case for disjunction is similar. O
We are now ready to prove one of the directions.
Proposition 5.1. For I' U {A}CForm, if I''={A then I'=gk A.

Proof. Suppose I' Fesix A. Then, there is a three-valued valuation v§ :
Prop — {t,b,f} such that I§(B) =t for all B € T and I5(A) # t. Now,
in view of (i) of Lemma 5.1, there is a four-valued valuation vj such that
I3(B)=tl for all B€I' and I;(A) # t1, namely I" =] A, as desired. O

For the other direction, we prepare another lemma.
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Lemma 5.2. For all four-valued valuation vi for L, there is a strong Kleene
three-valued valuation v§ such that for all A € Form, (i) I5(A) =t iff I§(A) =
t1, and (i) I3(A) = £ iff I3(A) = f1.

Proof. Given a four-valued valuation vj, we define v§ : Prop — {t,b,f} as
follows:

t vi(p) =tl
v3(p)=qb vi(p) = t0 or vj(p) = £0
£ ovi(p) =11
Then we prove the desired result by induction. O]

Then, again, the proof is similar to the above case.
Proposition 5.2. For I' U {A}CForm, if =gk A then I'i=5A

Proof. Suppose I' 5 A. Then, there is a four-valued valuation vj : Prop —
{t1,t0, 0, f1} such that I (B)=t1 for all B€I' and I§(A) # t1. Now, in view
of (i) of Lemma 5.2, there is a three-valued valuation v§ such that [5(B)=t
for all BeI" and I§(A)#t, namely I' fegi A, as desired. O

In view of the above propositions, we obtain the following.
Theorem 5.1. For allT U{A} C Form, I s A iff T' 5 A.

In other words, this semantics is equivalent to the strong Kleene
logic.

Then, consider the case for the logic of paradox, in which t1,
t0 and f0 are taken as designated values. In fact, the proofs are
basically the same with the cases for the strong Kleene logic.

Theorem 5.2. For alll' U{A} CForm, ' =r.p A iff T =5 A.

Proof. We use (ii) of Lemma 5.1 and Lemma 5.2. O
Finally, we consider the case in which t1 and t0 are designated.

Theorem 5.3. For allI' U{A} C Form, I' = A iff T =5 A.

Actually, the proof is just the same as =Y of Semantics (I) which
we showed in [38]. The reason is that if we ignore the additional
value that shows the epistemic state, it is easy to see that the two
semantics are the same.
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5.4 Relation in 2

Given an model with 2, we can naturally consider introducing
relations among the elements of 2, concerning the legibility/
interpretability of propositions.

A pair or a subset of 2l may possess an arbitrary meaning in
regard to their valuations. Remember V,(p) = 1 implies p holds
for a« € 2. For example, suppose such a relation that for any
p and (a,b) in this relation V,(p) # Vi(p). Then, agent a and b
have completely disjoint sets of decryption keys, that is, a cannot
decipher what b can, and vice versa. Suppose, next, such a subset
G Cc ™A that ), . V,(p) = 1. It means that if agents in G cooperate,
every encrypted sentence becomes readable, covering any method
of encryption. This means the wisdom of crowds.

However, we can naturally expect that an ordered pair of
(a,b) (a,b € 2A), or a Cartesian product of 2 would bear useful fruits.

5.4.1 Binary relation in 2
Definition 5.7 (Binary relation in ). Let R C A x A. We first consider

Va(p) < Vi(p) iff (a,0) € R. (5.1)

Then, since V,(p) = V,(p), R is reflexive, and also, since V,(p) <
Vio(p) and Vy(p) < V.(p) implies V,(p) < V.(p), R becomes transitive,
so that R becomes preorder. For convenience, we may write a < b
for (a,b) € R, and thus V,(p) < V,(p) iff a < b for (5.1).

We are motivated to define R as (5.1), considering the following
probable readings upon V,(p) < Vi(p), e.g., agent b possesses more
decryption keys than agent a, or b has more knowledge on decoding
than a. If we regard this as a power relation, b is more authoritative
than ¢ and can access all the information which a can.

Example 5.2 (Authorized agents). A judge in a court is more authoritative
than the prosecutor and the lawyer for the defendant. The judge can collect
all the information which reside in either side. Furthermore, the prosecutor
18 more authoritative than the police.

On the other hand, we can consider the relation as the agent
communication. For example, there are two agents a and b and at
first only agent a is well informed of A, i.e., [,(A) =1 and I;(a) = 0.
If we have (a,b) € 2 which means agent a should tell agent b all
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he/she is informed of, then at last both « and b are informed of A,
i.e., finally I,(A) = I(a) = 1.

We can consider various additional laws on R. First, if we
introduce the symmetric relation, (<) becomes the equivalence re-
lation. If we, instead, add the anti-symmetric relation, 2 becomes
a partially-ordered set (poset). According to the above discussion
on new interpretations, we assume hereafter that R be a poset,
unless otherwise mentioned. A subset of R can happen to be totally
(linearly) ordered, or as a special case, R itself may be in the linear
order.

We may define a maximal element in 2 in terms of (<X). When
there exist the maximum and minimum elements in any subset of
20, the relation constructs a lattice.

Example 5.3 (Judge in court). Let j,p and | be agents of judge, prosecutor,
and lawyer, respectively. Then, for all proposition p that V;(p) > V,(p) and
Vi(p) > Vi(p), however, there is no relation between V;(p) and Vi(p). Here,
the judge is the mazximal element in terms of (<) relation.

The investigator of police (agent i) collects information from the accused
(a), and the official record of police investigation must be submitted to the
prosecutor (p). Therefore, their power relation is locally linear, as

Vi(p) > V,(p) > Vi(p) > Va(p).

The witness (a) must tell what he/she knows to the police (i). Also a
tells the story to the lawyer (1). The judge (j) hears all the stories both from
the prosecutor and the lawyer, and thus, the valuation should be under the
condition as lattice.

Vip) > {V,(p), Vi(p)} > Va(p).

5.4.2 Distinguished element in 2

In this semantics, we presuppose a special member o in 2 that the
valuation V,(p) = 1 for all p € Prop. The meaning of such o can be
considered as an omniscient agent that is well informed of anything.
Here, we do not assume that for all 2 there exists a distinguished
element. From the reading, we have that if o is such a distinguished
element of 2, then for all i € 2 that (i,0) € R. It is easy to see
that a distinguish element should be the maximum element of .
However, a maximum element is not always a distinguish element,
e.g., the judge is the maximum element in the example above, while
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there may exist something that the judge is not informed (so none
is informed of that naturally). Actually, if we consider the case as
a novel, a distinguished element is more likely the reader that can
get all the information in the story.

Remark 5.1. McCarthy [27] also considered that there may exist a special
agent that called “any fool”. The knowledge of such agent obtained the
common knowledge of all agents in a model, i.e., every agent should know
at least what “any fool” knows. Therefore, we can see that the ommniscient
agent here can be seen as the opposite of the agent “any fool”, for every agent
should know at most what the omniscient agent knows.

5.4.3 Some results

Here, we check that whether the valuation is closed under the
binary relation. That is, we prove the proposition as following:

Proposition 5.3. Given a set 2 and R C A x 2, the valuation V,(a € A)
is under the condition that: if (a,b) € R then for all p € Prop that V,(p) <
Vi(p), then the extension valuation I,(a € ) is also under the condition

that: if (a,b) € R then for all formula A that I,(A) < I,(A).

Semantically speaking, we show that the relation R is not only
limit the value of proposition. If agent b has more authoritative
than agent a ((a,b) € 2A), then not only for all proposition but also
for all statements that a is informed is informed by agent b.

Also, we investigate whether the valuation is closed under the
distinguish element. That is, we prove the proposition as following:

Proposition 5.4. Given a set 2 and o € A, the valuation V,(p) = 1 for all
p € Prop, then the extension valuation I,(A) =1 for all formula A.

Semantically speaking, we show that the a distinguish element
is not only informed of all propositions but also all statements in
the model.

5.5 A many-valued semantics for multi-agent
system

In the previous sections, we give two different semantics for the
different readings of unknown. If we consider the two reading of
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unknown as two different epistemic states, we can give a more
general semantics.
Actually, we can consider the epistemic states as following:

e The agent knows that A is true or agent knows that A is false.
(I:(A) =1 in Semantics (I) or [(A) =1 in Semantic (II))

e The agent doesn’t know the content of A. (I¥(A) = 0 in
Semantics (I))

e The agent considers that A is possibly true and A is possibly
false, i.e., the agent knows the contents of A but doesn’t know
whether A is true or not. (/:(A) =0 in Semantic (II))

Therefore, we combine the two semantics above and extend
the valuation V, to three-valued {1,0.5,0}. We read the values as
following:

e V,(p) = 1: Agent a knows the content of p and whether p is
true or not.

e V,(p) =0: Agent a doesn’t know the content of p.

e V,(p) =0.5: Agent a knows the content of p but doesn’t know
whether p is true or not.

Also, if we consider the case as programming or in the database,
we can read the values as following:

e V,(p) = 1: The value of p is decided in the database (either
true or false).

e V,(p) =0.5: pis assigned but the value of p is undecided in the
database.

e V,(p) =0: p is not assigned in the database.

According to the consideration above, first, we give the semantics
for a single agent.

5.5.1 Many-valued semantics for single agent

Definition 5.8. A many-valued semantics for the language L is a pair
(Vi, Vi), where Vi : Prop — {t,f} and V, : Prop — {0,0.5,1}. Valuations

Vi, Vo are then extended to interpretations Iy, I, by the following conditions.

1; 1s the same as the classical logic.

L.(p)=Va(p)

[a(NA):[a<A)

I.(ANB)=1 iff (I(AANB)=t and I,(A)=1 and 1,(B)=1) or (I,(A)=f
and I,(A)=1 and 1,(B)#0) or (I;(B)=f and I,(B)=1 and I,(A)#0))
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o I.,(AN B)=0.5 uff (I,(ANA B)=f and 1,(A)=0.5 and 1,(B)=0.5) or
(I.(A)=t and 1,(A)=0.5 and I,(B)#0) or (I;(B)=t and I,(B)=0.5
and I,(4)#£0)

o I,(ANB)=0 iff I,(A)=0 or I,(B)=0

o I,(AV B)=1 iff (I,(AV B)=f and I,(A)=1 and 1,(B)=1) or (I;(A)=t
and I,(A)=1 and 1,(B)#0) or (I;(B)=t and I,(B)=1 and I,(A)#0))

o [,(AV B)=0.5 iff (I,(AV B)=t and 1,(A)=0.5 and 1,(B)=0.5) or
(I,(A)=f and 1,(A)=0.5 and 1,(B)#0) or (I,(B)=f and 1,(B)=0.5
and 1,(A)#0))

e I,(AV B)=0 iff I,(A)=0 or 1,(B)=0

Definition 5.9. A siz-valued interpretation L is a function I : Prop —
{t1,t0.5,t0,£0,£0.5,f1}. Given a siz-valued interpretation Ig, this is ex-
tended to a function that assigns every formula a truth value by the following
truth functions:

A | ~A AAB| t1 t05 t0 fO f0.5 f1
tl f1 tl tl  t0.5 t0O f0O f0.5 f1
t0.5 | f0.5  t0.5 | t0.5 t0.5 t0O f0 f0.5 f1
t0 fo t0 t0 t0 t0 fO fO fO
fo t0 f0 fo fo fo fo fO0 f0
f0.5 | t0.5 f0.5 | f0.5 f0.5 f0O fO f0.5 f1
f1 tl f1 f1 f1  fo fOo f1 f1

We introduce three different sets of designated values as follows:

e D, := {tl}, if we ask the agent that what true statement it
knows;

e D, := {t1,t0.5,t0}, if we ask that what true statement is(may
be answered by an omniscient agent);

e Dy := {t1,t0.5,f0.5}, if we ask the agent that what statement
the agent considers that may be true.

Based on these sets of designated values, we define the conse-

quence relations as follows.

Definition 5.10. For all T'U {A} C Form, I' |=; A iff for all four-valued
interpretations Ig, I5(A) € D; if I§(B) € D; for all B € ', wherei € {1,2,3}.

Then, we can show the facts that:

e =, is the classical logic;
e =3 is the Sy logic.
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The proof of |, is just the same as above because it is just the
classical logic if we only take care of V;, and [;. To deal with the
case of =3, we prepare two lemmas.

Lemma 5.3. For all S¢qe valuation vssqe for L, there is a siz-valued valuation
vg such that for all A € Form,

(1) I6(A) = t1 iff Ispae(A) = t;

(11) Is(A) = t0.5 or Ig(A) = £0.5 iff Ipac(A) =b;

(iii) Ig(A) = t0 or Is(A) = £0 iff I,;qe(A) = n;

() Is(A) = £1 iff Isq.(A) = £;

Proof. Given a Sy4 valuation v 4., we define vg : Prop — {t1,t0.5, t0, £0, f0.5, f1}
as follows:

tl Usfae(p) =t
v ( )_ f0.5 Usfde(p) =b
6\P)= fO Usfde(p) =n

fl  vspae(p) =f
Then we prove the desired result by induction on the complexity of the
formula. Since the proofs are similar, we only deal with the case for (i).
For the base case, the desired result holds by the definition of V5. For the
induction step, we split the cases depending on the form of the formula A.

o If A is of the form ~ B, we have

T6(A) = t1

o If A is of the form B A C, we have

Is(A) = t1
iff I4(BAC) = t1

iff I5(B)=I4(C)=t1

iff I,7q0(B)=t and Jsfde(C) t
iff Ispae(B A O)
iff Igpae(A) =

The case for disjunction is similar. O]

72



Lemma 5.4. For all siz-valued valuation vg for L, there is a strong Kleene
three-valued valuation vggqe such that for all A € Form,

(i) [sfde(A) =t iff IG(A) =tl;

(ii) Isfde(A) =b iﬁ]ﬁ(A) =t0.5 or IG(A) = f0.5;
(i) Ioyae(A) = 1 iff To(A) = t0 or Io(A) = £O;
(i) Topac(A) = £ iff To(4) = £1;

Proof. Given a four-valued valuation v, we define v§ : Prop — {t,b,f} as
follows:

t u(p) =t
)b wg(p) =10.5 or vs(p) = £0.5
vsae(p)= n vg(p) = t0 or vs(p) = 0
f wvs(p) =f£1
Then we prove the desired result by induction. O

Actually, it is easy to see that |=; is the logic if we replace the
designate values D of S;, by D = {t}.

5.5.2 Many-valued semantics for multi-agent system

Consider that there are several agents, therefore there should be
several valuations of V,. Then we give a many-valued semantics for
multi-agent system.

Definition 5.11. A many-valued semantics for the language L is a pair
(Vi, {Va}tacag), where Ag is a non-empty set of agents, V; : Prop — {t,f}
and V, : Prop — {0,0.5,1}. Valuations V;,V, are then extended to
interpretations Iy, I, by the following conditions.

I, is the same as the classical logic.
L.(p)=Va(p)
Iu(~A)=1 — I,(4)
I.(ANB)=1 iff (I,(ANB)=t and I,(A)=1 and [,(B)=1) or (I,(A)=f
and I,(A)=1 and 1,(B)#0) or (I,(B)=f and I,(B)=1 and I,(A)#0))
e I,(ANB)=05 iff (I.(AN B)=f and I,(A)=0.5 and I,(B)=0.5) or
(I.(A)=t and 1,(A)=0.5 and I,(B)#0) or (I;(B)=t and I,(B)=0.5
and (A)20)
e [,(ANB)=0 iff I,(A)=0 or I,(B)=0
I.(AV B)=1 iff (I,(AV B)=f and I,(A)=1 and 1,(B)=1) or (I,(A)=t
and 1,(A)=1 and I,(B)#0) or (I(B)=t and 1,(B)=1 and 1,(A)#0))
e I[,(AV B)=0.5 iff (I.(AV B)=t and I,(A)=0.5 and I,(B)=0.5) or
(I.,(A)=f and 1,(A)=0.5 and 1,(B)#0) or (I;(B)=f and 1,(B)=0.5
and 1,(A)#0))
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o I.(AA B)=0 iff I,(A)=0 or I,(B)=0

We introduce some different sets of designated values as follows.
To see it clearly, we write the value as I;,1,,,...1,,.

e Di:={t 1,,...1,, : I, =1}, if we ask the agent k that what k
knows that is true;

o Df = {t, I,,.... 1o, : I, € {1,0.5,0}(j € (1,n))}, if we ask that
what is true(may be answered by an omniscient agent);

o D = {t,1,,.. 1., : I, € {1,05}} U{f, L.,,.... [, : I,, = 0.5} , if
we ask the agent k£ that what £ knows that is not false.

Based on these sets of designated values, we define three conse-
quence relations as follows.

Definition 5.12. For all T U{A} C Form, T =F A iff for all interpretations
I, I(A) € DF if I(B) € DF for all B € T, where i € {1,2,3}.

We can show the facts that:

e =4 is the classical logic.
e =% is the S}, logic.

The proof is the same as case of a single agent.

5.5.3 Agent communication

We can see that, in the many-valued semantics for multi-agent
system, the valuation shows both the classical values and the
epistemic states of each agent. In other words, the valuation can
be considered as a model like the Kripke model we use in the
dynamic epistemic logic. Therefore, we can consider several kinds
of valuation change like the dynamic operators to express the agent
communication. First, we give a definition of consequence relation
which is like the epistemic logic.

Definition 5.13. Let Ag be a non-empty set of agents, Prop be the set of
propositions and V = {Vi,{V,}eea,} be the valuation where V; : Prop —
{t, f} and V, : Prop — {1,0.5,0}. Then we can define the satisfied functions
EL and E™ as following:

VELA ff L(A)=tand [,(A) =1

VE™A 4f (I(A)=t and I,(A)=1) or I,(A) =0.5

Semantically speaking, V . A means that agent a« knows that
A is true, and V ™ A means that agent a considers that A may
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be true. Actually, = stands for the =¥ and " stands for the |=£.
It is easy to see from the definition that: for all V and A, V =" A
if V =/ A. In other words, if agent a knows that p is true, then «
considers that p may be true.

In the dynamic epistemic logic, there are several operators to
show the communication between agents. [44] showed the semantics
of agent announcement that one agent tells others some statement
instead of the public announcement. [23] considered the channel
communication as the semi-private announcement. Unlike the
studies of dynamic epistemic logic above, we do not use a Kripke
model so that we cannot show all of the belief changes. However, it
is very simple to show a certain kind of changes of knowledge by our
semantics. Moreover, we can give some new ideas by considering
two kinds of agent communication: teaching and asking. Here, we
consider that textitteaching is the communication from agent a to
a set of agent G that a will tell every proposition he/ she knows
to the member of G. We write such agent communication by the
operator |}. Semantically speaking, teaching is considered as the
act that the teacher teaches the knowledge to the students. If G
has only one member, then the act can be considered as the semi-
private announcement. If (G is the set of all agents, then the act
can be considered as the agent announcement.

Definition 5.14. Let the original model be V. After the act that agent a
teaches the group G, the new valuation VY& is defined as following:
For all p € Prop,

o Ifi ¢ G, then V% (p) = Vi(p), and
o Ifiec G, then
a 1 if Vo(p) =1
Vi (p) = FVate)
Vi(p)  otherwise.

Semantically speaking, the students of a can acquire the knowl-
edge that is known to a, and the epistemic states of other agents
will not change.

Then, consider the situation that the student asks the teacher
questions. The student possesses several propositions that he/ she
doesn’t know whether true or false, and if the teacher knows that,
the student can obtain the answer to know that proposition. It
seems that asking is just the opposite of teaching so that the results
that a teaches b and b asks a are the same. However, actually
sometimes the two cases are different for the epistemic states of
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teacher may also be changed by asked questions. For example, a
is the teacher and b is the student, let V,(p) = 0 and V,(p) = 0.5,
b doesn’t know whether p is true or not, so he/ she will ask «
about p, while the teacher doesn’t know even the content of p at
the moment. Therefore, after asking, student b cannot obtain an
answer, while teacher a becomes to know the content of p. Then, we
define the model V" that show the model after b asks a questions
as following:

Definition 5.15. For all p € Prop,
o Ifid{ab}, then V" (p) = Vi(p);

o [fi=ua, then
V;Tg (p) = 1 if Va(p)' = 0.5 and Vy(p) =1
Vi(p)  otherwise.
and
o [fi=0b, then

v g( ) 0.5 if Va(p) = 0.5 and Vi(p) =0
bW Vo(p)  otherwise.

Remark 5.2. Here, we only consider the acts as valuation change. We
don’t consider it as dynamic operators because the for we don’t want to
change the language of our logic which is the same as classical logic. To
add the dynamic operators and give proofs completeness and soundness are
the remaining future works.

5.5.4 Example

Here, we give an example to show some agent communication in
our semantics. Let Ag = {a1,as,a3} be the set of agents and Prop =
{p,q,r} be the set of propositional variables. Assume that V,(p) =t,
Vi(q) = £, Vi(p) = f, and the epistemic states of each agent are shown
in the following table.

Then in the original model, we have that V =, p, V [~ ¢ and
V [~ r, which mean that agent a; only knows that p is true. Also
we have V =0 p, V =M q, V £ r, which mean that agent a;
considers that p and ¢ are possible true. If we take care of the
formula pVr, we have I, (pVr) =0so V [~ pVr which means that
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| Va,(p)

Vo, (@) Va,(r)
)

aq 1 0.5 0
a9 0.5 0
as | 0 0 0.5

Table 5.1: The epistemic states in V'

a; cannot respond that p V r is true while he/ she knows that p is
true.
Then, we consider some cases of agent communication.

e If a; teaches others the knowledge a; knows, the new epistemic
ag
states in V') are shown in Table 5.2:

‘ V;zi (p) Vai (Q> Vai(r)

ap |1 0.5 0
(05} 1 1 0
as 1 0 0.5

Table 5.2: The epistemic states in VHaz.as)

We can see that at first V }£! p and after teaching we have

Vi?iz’as} =" p, which means that a, becomes to know p is true
after the communication. For agent a3, he/ she becomes to
know that p is true while he/ she still doesn’t know the content
of ¢ because the teacher doesn’t say any statement of ¢.

e If ay, asks a; what ay, doesn’t know, the new epistemic states
in V'« are shown in Table 5.3.

| Vas(p)  Vaila)  Vau(r)
0

5

a; | 1 0 0
(05} 1 0
ag | 0 0 0.5

Table 5.3: The epistemic states in Vel

Comparing with the states in Vy{léwz%}, we can see that the
results of the case that a; teaches ay and the case ay asks a;
are the same.

e If a3 asks a; what a3 doesn’t know, the new epistemic states
shown in V'4i are shown in Table 5.4.
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| Va(p) Vala) Va(r)
a; | 1 0.5 0.5
a9 0.5 1 0
as | 0 0 0.5

Table 5.4: The epistemic states in Vel

Comparing with the states in Vi{‘llzvﬂs}, we can see that the
results of the case that a; teaches a3 and the case a3 asks a;
are different, for a; becomes to know the content of r.

We can see that the epistemic state of the teacher will change if
he/ she is asked a question that he/ she doesn’t know the content.
In other words, the teacher becomes to know that he/ she did not
know the answer of the question.
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Chapter 6

Conclusions and Further Direc-
tions

6.1 Conclusion

As we explained in our introduction, the aim of this thesis is to
employ the many-valued logic to the multi-agent system. Let us
turn back to the two questions:

(Q1) Can we extend the semantics of epistemic logic to a many-
valued one?

(Q2) Can we express the epistemic states by many-valued logic
simply instead of Kripke semantics?

We can summarize our answers for these questions and technical
contributions in the following two items:

(A1) We have shown a 4-valued logic which distinguishes the
ordinary truth value of each proposition as well as the information
is private or public. By private information transmission, since the
recipient cannot read the contents he/ she does not change his/
her belief. This unsuccessful message passing corresponds to such
practical situations that the information needs other background
knowledge, password, deciphering protocol, and so on.

We have reconstructed the dynamic epistemic logic including
the 4-valued logic, and have introduced the two kinds of negations,
the truth tables for the logical connectives, their semantics, and its
Hilbert-style axiomatization. Since the recursion axioms can re-
duce the formulae with dynamic operators to those without them,
we can ensure the completeness and soundness if we disregard the
second value of the pairwise truth.

(A2) We provided several many-valued semantics instead Kripke
modal to express the epistemic states.
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e First, we introduced many-valued semantics based on Beall’s
off-topic interpretation. We have presented a semantic frame-
work which not only overcomes some of the limitations of the
three-valued semantics that Beall made use of, but also that
is able to generalize the treatment to include different topics.
We have shown, furthermore, that the framework provides
a stable basis from which to have CL and WK. It is just a
matter of adjusting the set of designated truth values. We
have seen that this mixes two different issues: the attribution
of truth values to a sentence, and the issue of whether it is on-
topic or off-topic, given a settled topic. Therefore, the next
step is to show our framework can be employed to an FDE
basis, in order to introduce the on-topic/off-topic distinction
with such a logical basis. As a result, we may also have
gluts and gaps being on-topic or off-topic. The resulting
system may be seen as the logic of Catuskoti, which acquires
a new interpretation now, as an FDE-based system with on-
topic/off-topic distinction on the top of it. The finally step is
to generalize the addition of the on-topic/off-topic distinction
over a logic not only to FDE, but also to any many-valued
based case. The simplicity in covering both the influence of
the topic distinction as well as of recovering the underlying
consequence relation one started with is a great advantage of
the method, and shows how fruitful Beall’s interpretation is,
when in connection with the semantic framework advanced
here. It also highlights that topic neutrality, at least in this
context, is a matter relative to the logic one advances as a
basic case over which the topics are inserted.

e Second, we showed a many-valued semantics regarding n-
agent as n-topic to express the epistemic states in multi-
agent system, avoiding Kripke model. We introduced two pair
semantics to express the different considerations of knowledge,
and showed that they could be considered as the two three-
valued logic: weak Kleene logic and strong Kleene logic. We
showed that we could use the relation between to limit the
valuation. Then, we gave a new semantics by combining the
two semantics and the two states of unknown, and extended it
to express the epistemic states of multi agents. Moreover, we
gave two kinds of agent communication,teaching and asking,
and showed the results of them could be different.
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6.2 Further Directions

In the current stage, there are a number of directions for future
research. First, we can continue the study of a many-valued epis-
temic logic based on Kripke model. In Chapter 3, our formalization
may still have redundancy; in the case we need a password for the
private information, the password itself would be formalized in the
very similar way to the channel variables. However, our objective
is to formalize the unsuccessful communication in general. Thus,
we will further develop the distinction between miscommunication
by lack of necessary information and that by unsuccessful message
transmission in future.

Second, we need to look for other useful and practical reinter-
pretations of the multiple values. Instead of topics, or agents, the
difference of language could be a target. Also, we should search
for other purposeful binary relations between topics/ agents/ lan-
guages so that we can represent natural partial orders between
them.

Third, in Chapter 5, we ignored the situation of misunder-
standing and introduced only two kinds of agent communication.
Therefore, we may add a new epistemic value to express the state
of misunderstanding, and give more kinds of agent communication
besides what we introduced, e.g., the action discussing that makes
a group of agents exchange their knowledge, or forgetting that lets
some agents lose some information they knew before, etc.

Fourth, in Chapter 4, there is still a lot of ground to be
covered by applying this semantic framework. For example, to add
modal expansion of the language, say temporal operators, etc., in
particular by revisiting the modal expansions of WK, explored by
Fabrice Correia in [12], with our new framework.
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