
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
型に基づくパターンマッチングコンパイル方式の構築

と実装

Author(s) 纓坂, 智

Citation

Issue Date 2004-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1794

Rights

Description Supervisor:大堀 淳, 情報科学研究科, 修士



Type-based formulation of pattern matching
compilation and its implementation

Satoshi Osaka (210016)

School of Information Science,

Japan Advanced Institute of Science and Technology

February 13, 2004

Keywords: pattern matching, compilation, type, decision tree.

Pattern matching is a mechanism of functional languages, including ML,

Haskell, and OCaml. It allows the programmer to distinguish and to use
the values of complex types simply by writing the desired set of patterns. In

order to achieve the branches of the structured values, a compiler translates

this high-level primitive into an sequence of primitive operations consisting
of equality test for atomic types, tag test for union types, and sequential

decomposition for product types. This process is one of the most elaborate

parts of a compiler of a functional language; and various ways of it have

been proposed. One of the major approaches is to construct a “decision-
tree”.

Compared to the other approaches, This approach has better features

such as to generate efficient code that performs the same test only once

for any given input, and to detect redundancy and non-exhaustiveness of a
given set of patterns. However, a decision tree model which literature has

been treated indicates the strategies only for a set of essential patterns, and

is not sufficient to construct a pattern matching compiler for a practical
languages. It is not at all clear how to construct a decision tree for a set of

practical patterns, how to detect redundancy and exhaustiveness, or how

to construct binding. The correctness of the algorithm also has not been

shown. Our result can shed some lights these problems.

Copyright c© 2004 by Satoshi Osaka

1



The goal of this paper is to establish a type theoretic basis for the pat-

tern matching compilation, and to impliment a practical pattern matching

compiler. In order to achieve this goal, we go forward with our research by

following strategies.

1. We define a denotational semantics for pattern matching. We view

a given set of patterns as a disjoint set of subsets of the terms that

partition the domain of a given type, and regard a pattern matching
construct as a primitive to determine the subset to which a given term

belongs. This view allows us to define a denotational semantics for

pattern matching. We can derive a pattern matching algorithm and

can prove its correntness and other properties.

2. We define tree representations for the denotational semantics and de-

rive a pattern matching compilation algorithm. The algorithm we
derived is a basic principle for pattern matching compilation. We im-

prove the algorithm so as to compile a pattern matching expression

efficiently and to allow easy implementation of a pattern matching
compiler for a practical language.

3. We prove the correctness of the algorithm and other properties. We
prove that a tree which has been constructed by the algorithm is cor-

rect with respect to the denotational semantics we have defined. We

can then prove that the algorithm is correct and can detect redun-

dancy and non-exhaustiveness of a given patterns.

Our second goal is to implement a practical pattern matching compiler

based on above type theoretical basis. The compiler has been implemented

for the full set of Standard ML pattern languages and has been extended for
or-pattern. Additionally, We have introduced some optimization techniqus

such as to make the compilation faster and to generate efficient code. The

pattern matching compiler we have implemented will be a part of an ML

compiler which we have been developing in JAIST.

2


