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Chapter 1

Introduction

1.1 Motivation

The vehicle routing problem is a well-known and widely used problem in
the field of operations research. In real-world business applications in the
logistics industry, it is essential to find efficient routes for drivers because
drivers’ salaries are usually proportionate to the working hours of each driver,
so if a driver delivers more parcels within the same time range, it reduces the
total running cost for the delivery operation. Furthermore, it is predicted
that the number of delivery drivers is not going to increase while the number
of parcels increases rapidly in Japan. If a driver is able to deliver parcels
more efficiently, it can resolve or prevent the problem of a lack of delivery
drivers.

In the vehicle routing problem, vehicles must start from the depot (start-
ing point) and return to the same depot. The goal of the vehicle routing
problem is to find optimal routes for vehicles to deliver goods to a given set
of customers, visiting each customer exactly once. If the number of vehicles
is fixed to 1, the problem is called the traveling salesman problem (TSP).
Real world applications demand additional constraints, such as a demand
capacity constraint and a time window constraint. The capacitated vehicle
routing problem (CVRP) is a VRP with a demand capacity constraint, in
which vehicles have a limited volume capacity – they can deliver parcels such
that the total volume of parcels does not exceed the vehicle’s capacity. In the
vehicle routing problem with a time window constraint (VRPTW), each ve-
hicle has to visit customers within a specific time windows. The capacitated
vehicle routing problem with time windows (CVRPTW) is a combination of
CVRP and VRPTW, in which each vehicle has to satisfy both the capacity
constraints and the time window constraints.
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Although adding these constraints makes the problem more complicated,
it is possible to find an approximate solution in a reasonable time by using
heuristic algorithms. Heuristic algorithms, such as local search and guided
local search, are widely used to find an approximate solution for efficient
routing in real-world business settings. However, heuristic algorithms are
not the ideal method because the running time required to find an optimal
solution increases exponentially in the size of the input. In many real world
applications, such as same-day delivery, a quick computation time is critical.
Recently, there have been some attempts to apply deep learning techniques
to VRP [2, 3, 4, 7, 8, 9, 10, 11, 12, 14] (detailed in the next section). The
running time of deep learning models (the execution time of the trained
model) which find an approximate solution is relatively fast compared to
heuristic algorithms. Therefore, this approach has the potential to replace
classic heuristic algorithms. However, the field of applying deep learning
techniques to VRP is still in its infancy. Therefore, the goal of this study is
to apply machine learning techniques to solve CVRPTW and to develop the
use of deep leaning in the field of logistics.

1.2 Related work

There have been several results on the application of deep learning to VRP.
Bello et al. [3] proposed using the Actor-Critic method to train a Pointer Net-
work model [2]. Kool et al. [4] introduced the use of an attention network as a
decision-maker (policy) of reinforcement learning and trained the network by
the policy gradient method. The network of [4] is based on the Graph atten-
tion network [5]. These works focus on simplified problems, where instances
have no time window constraints (CVRP). Zhang et al. [6] proposed to add
a helper module on an attention network to learn time window constraint
penalties on a traveling salesman problem instance.

There are some works on VRP with a time window constraint. Ke et al. [7]
proposed to apply an attention mechanism to VRP with a soft time window
constraint (VRPSTW). In their problem setting, the number of vehicles is
fixed. The network successfully finds a solution for VRPSTW but the soft
time window constraint is loose. It is allowed to violate the constraints if the
number of vehicles is not enough to follow all the time window constraints. In
our use case the number of vehicles is unbounded so it is enough to deliver all
parcels while adhering to the constraints. Lin et al. [8] proposed an attention
network that is able to handle the electric vehicle routing problem with time
windows (EVRPTW). EVRPTW has another constraint that demands that
the vehicle has to visit a charging station before it runs out of battery.
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They consider time window constraints, capacity constraints and battery
constraints, so their problem setting is more strict than ours. However, their
model’s running time (the time to execute the trained model and find a
solution) is relatively long. Furthermore, the performance of their model is
lacking. Although they conduct experiments on N = 5 to N = 100, they
compare their results with a heuristic algorithm on instance of size N = 5
to N = 30, and it does not outperform. Joe et al. [9] studies reinforcement
learning for dynamic VRP (DVRP) where the number of customers and
their information is unknown when the vehicle starts. While these works
show that deep reinforcement learning is a promising method for VRP with
a time window constraint, our use case is more specific to CVRPTW.

For the same problem setting as our case, the following are the related
works. Sultana, N.N. et al. [10] proposed a reinforcement learning architec-
ture for both CVRPTW and the capacitated vehicle routing problem with
time windows and dynamic routing (CVRP-TWDR). CVRP-TWDR is simi-
lar to CVRPTW but not all customer’s information is known before the depot
departure time, and new customers emerge during the vehicle travel. They
use a simple fully connected neural network as a decision-maker and compare
the performance with a genetic algorithm (GA). Although their problem set-
ting is very similar to ours, they simplify it by fixing the number of vehicles.
They successfully show their model outperforms the GA on CVRP-TWDR
instances. However, on CVRPTW, their proposed architecture is worse than
GA by more than 10% on N=25, 50, 100 instances (N is the number of
nodes in the graph). Lei et al. [11] suggested a combination of reinforcement
learning and a heuristic algorithm to solve CVRPTW. They show that their
proposed model outperforms other heuristic algorithms. But they don’t men-
tion the running time of their algorithm, which is an important factor from
a practical point of view.

Xin et al. [12] propose a combination of reinforcement learning and the
Lin-Kernighan-Helsgaun algorithm [13] (a strong heuristic algorithm for the
problem). Their problem setting is mainly TSP but they also extend the
model for CVRPTW. The performance is good enough for practical appli-
cations, but the running time is long. It uses the deep neural network as an
encoder and decoder to embed the node information and edge information,
and create a solution candidate to narrow the search space. Then it uses the
Lin-Kernighan-Helsgaun (LKH) algorithm to search for a solution. Since the
LKH is an iterative heuristic algorithm, it takes a long time to find a solu-
tion. Jonas et al. [14] proposed an augmented attention based model. The
original attention network on VRP [4] decides the next node to visit sequen-
tially. The second route is created after the first one is created. When the
second route is being created, nodes visited in the first route are not allowed
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to be visited. Thus, later routes are not optimized because the number of
customers available is limited. Jonas et al. modifies the model so that it can
create multiple routes in parallel, which means the first route, the second one
and the next ones are created in turn. For instance, the second route’s first
customer is decided after the first route’s first customer is decided, not after
the first route is completed. Once a customer is visited it will be masked,
so visiting one customer twice is not allowed. By doing this, each route has
more options of a next node to visit, and the decision where to go next is
made based on more information than the original one. They experiment
on CVRPTW in various sizes (N = 20, 50, 100) and show that their model
outperforms ORtools [16] (ORtools is widely used in the logistic field.).

1.3 Research objective

As mentioned in the previous section, there have been several works that
propose an application of a neural network and reinforcement learning for
the vehicle routing problem. Since this field is still in its infancy, the problem
settings are too simplistic to be useful for real-world problems. Specifically,
assuming a Euclidean distance between nodes, means existing works are not
able to consider winding roads or traffic conditions. Therefore, we focus on
the following two objectives. Some related works tackle CVRPTW but use
a combination of heuristic algorithms and deep learning. Although it is a
promising architecture, it has a slow run time, and the architecture itself is
often complicated.

1. To extend the attention network for VRP with a time window con-
straint. Since it is an end-to-end model, the architecture itself is sim-
pler, and the run time can be shorter than heuristic hybrid models.

2. To extend the attention architecture so that it can take distance matrix
as input. The information in the distance matrix is arbitrary, so it can
contain both traffic conditions and indirect distance.

1.4 Significance

The vehicle routing problem is widely used in the logistics industry, since
it can help operators and drivers to find efficient routes for package deliv-
ery. There are several open-source software packages that use the heuristic
method to solve the vehicle routing problem. These meta-heuristic methods
make decisions by following some rules, which might be able to be parame-
terized by neural networks if these rules are seen as policies. That is, neural
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networks have the potential to replace existing meta-heuristic methods and
it might be possible to make the logistic industry more efficient. Therefore,
this work will contribute to the development of reinforcement learning for
solving routing problems and, as a result, will develop the logistics industry.
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Chapter 2

Problem setting and network
architecture

2.1 Problem setting

Given an positively edge-weighted fully connected graph G = (V,E),V =
{d = v0, v1, ., vi, ., vN} where N is the number of customers and d is a special
depot node. Let we denote the weight of e. Note that the edge weights imply
a symmetric distance matrix (where all entries are finite as the graph is fully
connected).

D =


w(d,d) w(d,v1) ... w(d,vN )

w(v1,d) w(v1,v1) ... w(v1,vN )

... ... ... ...
w(vN ,d) w(vN ,v1) ... w(vN ,vN )


We often consider the case that the vertices are points in R2, in which case
the distances are Euclidean.

Each vi has the following attributes: package demand qi ∈ R+, and a time
window [si, fi] ⊂ R+. Given G and a fleet of identical vehicles uniformly
capacitated by Q ∈ R+, our goal is to assign delivery routes to vehicles
(paths in the graph) such that each customer must be assigned to a single
vehicle exactly once and all routes start and end in the depot. In our setting
the size of the fleet is unbounded and it is a parameter which is part of
the solution outputted by the algorithm (together with the routes for each
vehicle). Let us denote the number of vehicles by k ∈ N. Note that this
does not fix the number in advance and we only use it for notation (e.g.,
to define our cost function). A route for each vehicle is formally defined as
ri = (d = vi1 , vi2 , . . . , vim = d) such that vi′j ̸= vij if j ̸= j′. Furthermore,

ri ∩ ri′ = {d} if i ̸= i′ and ∪k
i=1ri = V (we slightly abuse notation and treat
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ri as a set when it is convenient).
Each customer has their own demand that a vehicle must deliver. The

demand can be thought of as a volume or a weight of a package. Every vehicle
has a capacity Q that is the load limitation for parcels to be delivered. So as
the capacity constraint, the total customer demands of parcels that a vehicle
delivers must be less than Q. Formally:∑

v∈ri

qv ≤ Q

For the time window constraint, the arrival time at each customer must be
before the end of the time window. Arriving earlier than the start time
would be fine, but the vehicle has to wait until the start time. For the j-th
vehicle with route rj = (d = vi1 , vi2 , . . . , vim = d), the arrival time at the k-th
customer is denoted as ajk. The arrival time is formally defined as

ajk = max(ajk−1 + w(vik−1
,vik )

+ c, svk) (2.1)

Where aj0 = 0 and c is the service time – the time it takes to deliver the
package to the customer. We take the service time to be a constant (e.g.,
10). We define aj = ajm−c (where m is the length of the route) as the working
time of route j (we deduct c as there is no service time in the depot). We
enforce the following constraints:

∀t ∈ [N ], ft ≥ akj , vt = vik ∈ rj

This constraint is called a hard time window constraint – it does not allow
a vehicle to arrive later than the end time for each customer. A soft time
window constraint allows arrival after the end time. We consider the hard
time window constraint because it is more applicable to real-world business
setting. The objective value which we aim to minimize is the total working
hours of all drivers.

cost =
k∑

j=1

aj (2.2)

2.2 Network overview

As mentioned in the previous chapter, there have been some works that try
to apply deep learning models to TSP and VRP. We focus on the attention
neural network architecture because it is an end-to-end model with a fast
computation time (compared to the heuristic method).

We implement two models which extend the architecture of the attention
network [15] such that it satisfies our two objectives:
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• (Version 1) An extension of the attention network such that for every
node, vi, it is able to encode a time window, [si, fi], a demand, qi, and
the node’s XY coordinates Xi ∈ R2.

• (Version 2) An extension of the attention network that encodes a time
window [si, fi], a demand qi and is able to take a distance matrix D as
input instead of the node’s XY coordinates.

The attention network architecture consists of an encoder and a decoder.

Encoder The encoder is a stack of layers whose goal is to encode the
instance information, such as the constraints, the distance matrix (for Version
2), and the customer’s Euclidean coordinates (for Version 1) into an embedded
vector. That is, the instance information is packed into a vector space, called
the embedded vector space. We denote the dimension of this space by dimemb

and for our architecture we set dimemb = 128.

Decoder The decoder is a stack of layers whose goal is to decode the
embedded vector into meaningful values. In our case it assigns values (we
call it the score) to nodes, such that a greedy route construction algorithm
can use these values to construct efficient vehicle routes for the problem.
Once scores are assigned to nodes, the greedy algorithm picks the node with
the highest score as a next node to visit.

The route construction mechanism is explained below.

1. Routes are created sequentially, that is, the route starts from the depot
and picks the next nodes to visit one by one. While picking nodes,
the decoder checks if unvisited nodes can be visited without violating
constraints. When there is no node available, the vehicle has to return
to the depot. If there are nodes which are not visited yet, a new vehicle
starts traveling. Since we assume the number of vehicles is not limited,
a new vehicle is generated until all nodes have been visited exactly
once.

2. The route construction routine is as follows. First the decoder calcu-
lates the scores of all nodes. Second, the greedy route construction
algorithm picks the node with the highest score as a next node. For
instance, the decoding phase starts with the vehicle at the depot as a
starting point. The decoder calculates the scores for all nodes, and the
greedy algorithm picks the node with the highest score as the node to
visit first. Then, the decoder calculates scores for all nodes while it puts
−∞ on first visited node’s score. The greedy algorithm picks the next
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node again by picking the node with the highest score. A construction
of one route continues like this until there is no node available due to
constraints or because all nodes are already visited.

3. To calculate scores, the decoder uses the output of the encoder which
is the encoded graph vector and the current state. The current state is
a vector which has information of the current (partial) solution, which
changes during the decoding phase. The current state includes all
routes constructed until now, the current (partial) route being con-
structed and the elapsed time. This information is critical for the de-
coder to be able to compute a meaningful score. The definition of
the current state and how the decoder creates scores is detailed in the
section 2.5.

We prepare two datasets, the training dataset and the test dataset based
on the same distribution. Instances of CVRPTW are generated based on a
given distribution which is explained in Chapter 3. The models are trained
on the training dataset. The objective of the model is to create routes {ri}
such that the cost (Equation 2.2) of solution is to be minimized while all
vehicles follow the time window constraints and the capacity constraints.

Figure 2.1 and Figure 2.2 show an overview of the network architecture
of Version 1 and Version 2. The difference between Version 1 and Version 2
is the way the encoder receives the distances between nodes. In Version 1
(Figure 2.1), the encoder takes in each node’s XY coordinates as one of the
encoded targets. On the other hand, the encoder in Version 2 doesn’t take
the node’s XY coordinates but takes the distance matrix (Figure 2.2).

Figure 2.1: Architecture overview of Version 1.
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Figure 2.2: Architecture overview of Version 2.

2.3 Basic encoder architecture

We describe the general architecture for both Version 1 and Version 2, the
only difference is the input of the encoder (described in this section for Ver-
sion 1, and in the next section for Version 2). An overview of the encoder
architecture is shown in Figure 2.3. The encoder is composed of a stack of 2
layers. Before the 2 layers, there is a simple linear projection. The two layers
include a Multi-Head Attention sublayer and a simple feed-forward sublayer
(we call a small component in a layer a sublayer. A layer consists of a batch
normalization sublayer, a Multi-Head Attention sublayer and a feed-forward
sublayer). After a Multi-Head Attention sublayer and a feed-forward sublayer
a batch normalization sublayer is applied. These 2 sublayers are explained in
this section. We denote an input vector of each layer by zli where l ∈ {1, 2}
is the layer number and i ∈ {0, 1, . . . , N} is the index of graph nodes in an
input instance (i.e, the i-th node in an instance).
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Figure 2.3: The encoder overview.
Next to every sublayer we write the notation for the weights of the layer.

The goal of the first linear projection is to project the input into a 128
dimensional vector (we follow the previous work [4] to choose 128 as the size
of dimension.) by multiplying it with Wlp. The weights Wlp can be learned
during the network training. Wlp is of size 5 × 128 for Version 1 (the input
dimension is 5 and output dimension is 128). The input of the encoder is
V = (d = v0,v1, . . . ,vN) where d denotes the depot (the depot is always
the first entry, therefore the network always knows where the depot is). As
mentioned in the previous section, each node v has several attributes. z1i
denotes the i-th node’s feature vector after the first linear projection. Version
1 takes 5 features, XY coordinate, demand, time window. Therefore vn can
be described as:

vi = [xi, qi, si, fi] (2.3)

xi = (xi, yi)

where [,] is a horizontal concatenation. So for Version 1 the dimension of the
input for each node is five.

For the linear projection we denote an intercept as blp with 128 dimen-
sions. The output of the first linear projection is denoted as Z1 (setting
l = 1). The output of the first projection is the input of the first layer of the
encoder.
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Z1 = VWlp + blp

Z1 = (z10, z
1
1, . . . , z

1
N)

Z1 is passed to the first layer. The first layer and the second layer have a
multi-head attention sublayer. The attention sublayer has three parameters,
Ul, El and Al. These parameters are given by a linear projection of the same
input, zl, with independent learnable weights Wl

query, W
l
key, W

l
value of size

128 × 128. The query, key and value can be seen as a mapping of key-value
pairs and a query. The multiplication of a query of node A and a key of node
B calculates the weight between node A and node B. The weight means how
much node A should pay attention to node B. Finally, the value of B (the
value can be seen as node B’s feature vector) is added to an output vector
corresponding to node A after the value is multiplied by the weight. When
the weight is large (which means that node A’s query and the node B’s key
is similar), node B’s value has a strong effect on the output of node A, and
vice versa. This mechanism is shown in the equation 2.7.

The parameters Ul, El,Al are size (N + 1) × 128 matrices for one head
in a simple attention sublayer. However, in our model, we use a multi-head
attention sublayer, so these parameters are divided into eight matrices (we
denote the number of heads as nhead = 8). Thus, a (N +1)×128 size matrix
become eight matrices of size (N + 1) × 16. Each of these eight matrices is
called a head in the context of multi-head attention sublayer.

Ul = zlWl
query (2.4)

El = zlWl
key (2.5)

Al = zlWl
value (2.6)

We denote by dimz the dimension of the input zl which is 128. The super-
script T over a vector denotes its transpose. The attention mechanism is as
follows.

Attention(Ul,El,Al) = softmax(
Ul(El)T√

dk
)Al (2.7)

dk =
dimz

nhead

The multiplication of U and E is to compute compatibility of queries with
all nodes features. We denote it as c, defined below.

c = UET (2.8)
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The compatibility expresses how much one node should pay attention to
other nodes’ vectors.

√
dk is a scaling factor. Finally, the softmax function

is applied.
In our attention based model, a multi-head attention sublayer with 8

heads is used. The multi-head attention sublayer is denoted as MHA. We
denote by nh a head number. Wl

nh,out is a learnable weights matrix of size

16 × 128 (as the dimension in one head is 16). Gl
nh is the output of the

attention function of size (N + 1) × 16. Ul
nh, El

nh and Al
nh are also of size

(N + 1) × 16. MHA is defined as follows:

MHA(Zl) =
nhead∑
nh=1

Gl
nhW

l
nh,out (2.9)

Gl
nh = Attention(Ul

nh,E
l
nh,A

l
nh) (2.10)

There is a connection that connects the input and output of MHA directly
(a skip connection) in the attention sublayer. It is followed by a batch nor-
malization sublayer where input data is normalized. We denote the batch
normalization sublayer as BN. l ∈ 1, 2 is the number of layers in the encoder
as mentioned above.):

Ẑ
l
= BN(MHA(Zl) + Zl)

ẑli denotes the output of the i-th node after the batch normalization sublayer
in the l-th layer. This output is passed to a feed-forward sublayer FF with
a ReLU activation function. This feed-forward sublayer consists of 1 hidden
layer. We denote by Wl

f0, W
l
f1 the weights (of size 128x128) and by bl

f0,b
l
f1

the intercepts (size 128). The feed-forward sublayer is described as follows:

FF(Ẑ
l
) = ReLU(Ẑ

l
Wl

f0 + bl
f0)W

l
f1 · +bl

f1

Finally, we apply batch normalization:

Zl+1 = BN(FF(Ẑ
l
) + Ẑ

l
) (2.11)

2.4 Distance matrix extension (Version 2)

We extend the network so that it can take a distance matrix directly as input.
We call this extension Version 2. In previous works, networks take location
information via XY coordinates, and assume that the distance between cus-
tomers is the Euclidean distance. It is fine to assume Euclidean distance to
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demonstrate the theoretical effectiveness of the network, however, it is essen-
tial to allow the network to take in a distance matrix as input for real-world
business operations. This is because winding roads and traffic conditions may
drastically affect the distance. To achieve the above objective, we implement
a direct connection from the distance matrix D to the compatibility c from
the equation 2.8.

Figure 2.4: Attention layer with a distance matrix connection

As mentioned above, we use an attention layer with multiple heads. We
denote the m-th head’s compatibility as cm. The size of cm is (N+1)×(N+1).
We define:

ĉm = Norm(cm) −D (2.12)
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The Norm is defined as follows (where cij is an element of cm):

cmax = max(|ci,j|), i, j ∈ {0, 1, . . . , N}

∀i, j, ci,j =
ci,j
cmax

The architecture is shown in figure 2.4. Version 2 doesn’t encode XY
coordinates at the encoding phase, instead it adds the distance matrix D to
compatibility.

The compatibility expresses the weight of all combinations of pairs of
nodes, which is used in the multiplication by A (in the equation 2.6) in the
subsequent process. It means the compatibility value can be regarded as
a weight signifying how much should a node pay attention to every other
node. Since Version 2 encodes node parameters (qn, sn and fn), cm will have
a compatibility value based on these parameters. That is, the original cm has
information of the capacity constraints and the time window constraints. By
subtracting the normalized distance matrix value, the value of the compati-
bility is reduced proportionally to the distance between nodes. This means
that far nodes pay less attention to far away nodes. Therefore, equation 2.12
merges the encoded information with the distance information.

The input of the first linear projection of Version 2 is different from the
input of Version 1. More specifically, the node location is not passed as input:

vn = [qn, sn, fn]

Compared to equation 2.3, the dimension of input vn is reduced from 5 to 3.

2.5 Decoder

The goal of the decoder is to construct efficient routes for a fleet of vehicles.
In section 2.2 we presented an overview of the decoder, and in this section
we presented a more detailed description.

We start by describing the construction of a single vehicle route. We
introduce a new variable p, which denotes the step in the current route being
constructed. It indicates how many nodes the vehicle visited already during
the decoding phase. When the vehicle is at the starting point (the depot),
p = 0. For every node visited, p is incremented.
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Figure 2.5: Decoder mechanism
The black node is already visited. The dark gray node is the last node the
decoder chose to visit. The light gray nodes are not visited yet. From the
current location (the dark gray node), the decoder chooses which node to

visit next based on the score of each node. The bars shown near each node
show the score which the decoder calculates. In this figure, red is the

highest score, so the decoder chooses that node to visit next.

The architecture of the decoder is just one attention layer. Before data
is passed to the attention layer, a linear projection is applied to the input
vector. The embedded vector Ze is passed to the decoder from the encoder.
Ze is the output of the encoder (and the input of the decoder), where e
denotes the decoder. Initially, Ze is projected to the same dimension by a
linear projection. Win are learnable weights for the initial projection of size
128 × 128.

Ẑe = ZeWin

After the linear projection, the projected matrix Ẑe is also projected into
two matrices Ee and Ae respectively by independent learnable weights We

key,
We

value as in equations 2.5, 2.6.

Ee = Ẑ
e
We

key (2.13)

Ae = Ẑ
e
We

value (2.14)

These matrices are used as fixed graph embedding, that is, these matrices
are not changed during the decoding phase. It is necessary for the network
to know the current state. The current state Cp contains three variables (the
subscript p is the step as mentioned in the beginning of this section). The
first variable is the current node embedded vector Pp. This is a vector in the
output of the encoder (from the equation 2.11) corresponding to the current
visited node. The second one is the current available capacity Rp which is
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defined as follows (qv is the demand of node v. ri is the i-th node in the route
currently being constructed).

Rp = Q−
p∑

i=1

qri (2.15)

The third one is the elapsed time t which is the same as arrival time defined
in equation 2.1. The current state is defined as follows.

Cp = [Pp, Rp, t]

The input of the attention layer is prepared with another linear projection
as follows (We

query is a learnable weight matrix of size 130 × 128 and [,] is a
horizontal concatenation):

Ue
p = [Ẑe,Cp]W

e
query

The attention mechanism is the same as for the encoder (see equation 2.7).
Ue

p, E
e and Ae are used as input for the decoder’s attention layer. The at-

tention layer in the decoder uses multi-head attention, MHA, and the output
of the layer is projected by a linear projection with learnable weights Wo.
Op is a N+1 dimensional vector representing the node scores.

Op = WoMHA(Ẑ
e
)

The output score is clipped by tanh. After the clipping, the output is filtered
by a mask to prevent visiting nodes unavailable due to constraints. The mask
is described in the next section. C is a constant value. We set it to 20.

Ôp = C · tanh(Op) (2.16)

Ô
m

p = mask(Ôp) (2.17)

Finally, the next node to visit, gp, is decided by picking the max value of

Ôp.(i means i-th node)

gp = arg max
i

(Ôm
p )

2.6 Masking

To prevent visiting a node which violates the constraints, a masking tech-
nique is used in our decoder. The current available capacity Rp (defined in
equation 2.15) and all unvisited nodes’ demand (qi for i-th node) is checked
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to determine which node cannot be visited due to capacity constraints. If
the node cannot be visited next, the corresponding score for the node in
Ô (equation 2.17) is replaced with −∞. mi is a Boolean value indicating
whether the i-th node is not available (it is true if the node is not available).

mask(Ôi) =

{
Ôi, if mi is false.

−∞, otherwise

After visiting a node, Rp is reduced by qi given the next node is the i-th
node. For instance, if the given vehicle capacity is Q = R0 = 10 and the first
customer’s demand is qi = 3, R1 becomes 7 (Figure 2.6).

Figure 2.6: Capacity is used as the vehicle is traveling.

If there is no node that satisfies the capacity constraint, the vehicle must
return to the depot. Figure 2.7 shows such a scenario. In the figure, the
current available capacity is R2=3 and the other nodes’ demand is more
than 3, which means that the vehicle is not able to visit any node. So it has
to return to the depot.
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Figure 2.7: Return to the depot due to a capacity constraint.

As mentioned before, we enforce a hard time window constraint, thus, it
is not allowed for a vehicle to arrive after the end time of the time window.
However, it is allowed to arrive before the start of the time window. In this
case, the waiting time at the node is included in the elapsed time t.

The time elapsing is shown in Figure 2.8. Suppose that the start time
is 10:00 and the distance between the depot and the first customer is 30
minutes, then the elapsed time t is 30 minutes and the time is 10:30 when it
reaches the first customer.

Figure 2.8: the time elapsing
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If there is no node that satisfies the time window constraint, the vehicle
must return to the depot. Figure 2.9 shows two scenarios.

Figure 2.9: return to the depot (time window constraint)

In the first scenario the vehicle arrives earlier than the start time si and
has to wait until si. Suppose the current time is t=10:30 at the first customer.
Then, the vehicle visits the second customer which is 15 minutes away from
the first one. It arrives at t=10:45 but s2 = 11 : 00 so it has to wait until
t=11:00. In the second scenario the vehicle must return to the depot because
there is no customer that can be reached before the end time of the time
window. The current time t=11:00 is later than other customers’ end time.
In this situation, the vehicle must return to the depot to finish working. As
mentioned in the previous section, after one vehicle returns to the depot and
there are still unvisited nodes, a new vehicle starts to travel from the depot
to make deliveries for rest nodes.

So far we have described the capacity constraint and the time window
constraint individually, however, CVRPTW must maintain these constraints
simultaneously. Therefore, the mask is constructed with a logical OR. Let
ai and bi denote the mask boolean of the capacity constraint and the time
window constraint respectively. When either ai or bi is true, then the mask
is true, which means that the node is not available.
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Chapter 3

Experimental setup

We conduct experiments to show the effectiveness of our attention network
on CVRPTW. We use Google-ORtools [16] as a benchmark to evaluate
the performance (quality of the solution) of our models. The performance of
Version 1 and Version 2 is compared with ORtools. Regarding the comparison
of the performance of our models, our main goal is not to outperform ORtools.
Even if the objective value is not much better than ORtools, it is desirable
to shorten the computation time while producing similar quality solutions.
The computing hardware environment is as follows. CPU - 64 core, 1GHz.
Main memory - approximately 500GB. GPU - GeForce RTX 2080.

3.1 Dataset

We use the well-known Solomon dataset [17] for both training and testing.
The Solomon dataset is a handcrafted CVRPTW problem set with various
patterns. The Solomon dataset has 3 types of instances, type R, type C, and
type RC. We do not use the bare Solomon data but create a new dataset
based on the Solomon dateset’s distribution (this is standard practice in the
literature).

• Type R - An instance with randomly distributed customers.

• Type C - An instance with customers distributed in a way that they
are packed into several clusters.

• Type RC - A mixture of the above two types, some of customers are
clustered and others are randomly located.

Each type has 2 patterns. Pattern 1 is an instance with a relatively short
time horizon. The time horizon is the time within delivery to all costumers
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must complete and the vehicle must return to the depot. A short time
horizon allows a vehicle to deliver only to a few customers, while Pattern 2 is
an instance with a relatively long time horizon. We use Type R with Pattern
2 (R201) for our experiments because this type suits our use case the best.
The reason for this is that in real world scenarios customers are distributed
randomly. Also, the time horizon is similar to that in a business setting, in
which delivery may span several hours. The same dataset is used in previous
works [14]. Below is a description of our dataset.

• Location

– All customers and the depot are located in 2-dimensions. X-Y
coordinates are in [0, 100] for both x and y.

– Both customers and the depot are distributed uniformly.

– The number of customers can be arbitrary. We create the dataset
with N=25,50,100,150,200.

• Demand

– The capacity of each vehicle is 200.

– Demand for each customer follows a normal distribution.
q ∼ max(min(N (15, 10), 42), 1)

• Time window

– Time horizon is [0, 1000].

– The start time (the beginning of a time window) is uniformly
distributed.
s ∼ U(max(100, distance from depot), 849)

– The length of the time window is normal distribution. The due
time (the end of a time window) is the following.
f ∼ s + min(N (115.96, 35.78), 1000)

The following is an example from the generated dataset. The left-most
column is the index of each customer. The XCOORD and YCOORD columns
represent X and Y coordinates, respectively. The DEMAND column is cus-
tomer demand. The READY TIME column is the start time of the time
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window and DUE TIME is the end time of the time window. The first row
is for the depot.

Table 3.1: An instance from the dataset.

We create the training dataset, test dataset and validation dataset inde-
pendently. These three datasets are created based on the same distribution
(described above).

3.2 Training

The training dataset contains 12800 instances. The number of epochs is 25
and each epoch has 512 batches with a batch size of 1024. After each epoch,
the learned network parameters are saved, and the best network parame-
ters are used at inference time. This is done by evaluating the network of
each epoch on the validation dataset (1000 instances) and picking the best
performing model.

During the training phase, the network learns using the REINFORCE
algorithm [18], where the objective value is defined in equation 2.2. Although
usually the objective value for VRP is the total number of vehicles, we set
the objective value as the total working time because it better captures the
cost of real-world businesses. The distance between nodes is given by the
distance matrix, even for Version 1. Although Version 1 doesn’t take the
distance matrix as input, it uses the distance matrix just for the calculation
of the distance between nodes during the decoding phase. It doesn’t mean
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the network encodes the distance matrix to use in the decision making, but
it just refers to the matrix to get distances for checking constraints and
calculating the elapse time.

3.3 Hyperparameters

For our model (attention based encoder decoder model), the number of en-
coder layers is 2, and the number of decoder layer is 1 as mentioned in the
previous chapter. Each node is encoded into a 128 dimensional vector before
it is passed to the encoder layer, and the output of the encoder is embed-
ded into a 128 dimensional vector before it is passed to the decoder layer.
Adam [20] is used as an optimizer with learning rate lr = 0.0001. At the
decoding phase, the score is clipped by tanh (Equation 2.16). The constant
value C in equation 2.16 is set to 20, which means the output score is in the
range [-20, 20].

3.4 Testing

The test dataset is independently generated based on the same data distribu-
tion. We conduct the testing with 1000 instances and compare the objective
values. We report the average value of all instances’ costs, the number of
vehicles, and runtime. We conduct the experiment on three test patterns
(recall that a service time is the time it takes to deliver the package to the
customer upon arrival):

1. Instance without a service time.

2. Instance with a service time.

3. Instance without a service time. The distance matrix is replaced by a
different distance matrix with the same distribution.

The first case is the simplest setting. The second case is an instance with a
service time that is set to 10 for all customers. All tests (N = 25, 50, 100, 150, 200)
are done with the network learned with N = 50. We choose N = 50 as the
training dataset size because the training time is shorter and the model’s
performance is good on other size of test data. The goal of the third pattern
is to evaluate the effectiveness of the direct distance matrix connection of
Version 2.

Version 1 encodes the XY coordinates xi, therefore the network under-
stands the XY coordinates of each node from the encoded vector. However,
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in the real-world the distance between nodes is not Euclidean. For instance,
suppose the distance between a point A and a point B is 10 minutes in Eu-
clidean distance. However the street between point A and point B is always
busy and it takes 40 minutes to transit between these nodes. On the other
hand, point C and point D are 60 minutes apart in Euclidean distance, but
there is a high way between them and it takes only 15 minutes to get from one
node to the other. The above scenarios often occurs in real world instances,
making Euclidean distance highly unreliable.

Even though Version 1 has access XY coordinates, it is useless if the
actual distance between nodes is different. On the other hand, Version 2
does not take XY coordinates but instead takes in the distance matrix. If
the distance matrix has the true distance between nodes, Version 2 can be
expected to be much more realiable in a real-world setting. In Pattern 3, we
replace the distance matrix provided for evaluating the objective function.
The new distance matrix is seen as a true distance, and the old distance
matrix is the mere Euclidean distance. This simulates the above example.
Since it is hard to completely characterize the relation between the Euclidean
distance and the true distance, we replace the matrix with an independently
generated distance matrix with the same distribution.
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Chapter 4

Results

4.1 Performance

Table.1 shows our experimental results. Pt 1, Pt 2, and Pt 3 correspond to
the test cases described in the previous section.

Table 4.1: Results of the experiments

ORtools Attention ver 1 Attention ver 2

Cost k Time Cost k Time Cost k Time

N
=

25

Pt 1 2692.7 3.5 119.1 2073.7 2.6 3.7 2034.7 2.5 3.3
Pt 2 2895.3 3.7 118.6 2385.9 3.0 3.6 2377.2 3.0 3.2
Pt 3 2785.9 3.6 122.3 2266.7 2.9 3.7 2039.7 2.5 3.2

N
=

50

Pt 1 4018.2 5.0 315.7 3155.7 3.8 4.4 3129.3 3.7 4.3
Pt 2 4439.0 5.4 311.8 3783.0 4.4 4.5 3752.6 4.4 4.3
Pt 3 4121.3 5.1 380.7 3686.0 4.4 4.3 3151.8 3.8 4.3

N
=

10
0 Pt 1 5961.1 7.3 1049.1 4923.5 5.7 8.0 5058.0 5.9 8.5

Pt 2 6899.9 8.3 815.6 6120.5 6.8 8.0 6305.2 7.1 8.6
Pt 3 5925.9 7.3 1082.5 6395.0 7.4 8.0 5069.2 5.9 8.5

N
=

15
0 Pt 1 7424.1 9.1 2152.3 6571.5 7.4 12.2 6787.0 7.7 13.3

Pt 2 8992.2 10.7 2320.3 8456.4 9.3 12.4 8730.6 9.8 13.6
Pt 3 7449.7 9.1 2757.8 8691.5 10.0 12.4 6802.8 7.7 13.5

N
=

20
0 Pt 1 8658.7 10.5 4149.0 8015.4 9.0 17.6 8324.5 9.4 19.5

Pt 2 10798.1 12.7 3478.8 10656.5 11.7 17.4 10922.4 12.1 19.2
Pt 3 8701.9 10.5 4224.5 10876.1 12.4 17.5 8346.2 9.4 18.9
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Attention ver 1 is Version 1. Attention ver 2 is Version 2. The size of the
instance for the test is varied from a small size, such as an instance with 25
nodes (N=25) to a relatively large size such as an instance with 200 nodes
(N=200). Although the objective value of the test is the total working hours
of all drivers (denoted as cost in the table), we report the number of vehicles
(denoted as k) as well. Furthermore, as the objective of our work, shortening
the running time is essential for business operations, so we also report the
running time to compute a solution. The running time is the total computing
time to solve 1000 instances (denoted as Time, measured in seconds).

Our results show that the running times for both Version 1 and Version
2 are much shorter than ORtools in all cases. The running time of ORtools
increases exponentially with the size of an instance. On the other hand, our
running time increases almost linearly with the size of the instance. Regard-
ing the performance (quality of the solution), both Version 1 and Version 2
outperform ORtools on small instances on pattern 1 and 2. The performance
is about the same level on large instance (N=200). Both Versions result in a
smaller number of the vehicles than ORtools.

4.2 Learning process

As mentioned in the previous section, the training is done with a dataset
where N=50. Figure 4.1 shows the learning curves for both Versions.

Figure 4.1: The learning curve for Version 1 and Version 2.
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Both versions converge, however Version 2 converges faster than Version
1. As mentioned in the previous section, the training is done with learning
rate lr = 0.0001. The approximate computing time for the training for 25
epochs is 123 minutes for Version 1 and 129 minutes for Version 2.

4.3 Solution examples

Next we plot several solution examples. We compare our solutions to OR-
tools. The black dots are customers and the red dot is the depot. The XY
axes of the figure correspond to the coordinates of customers (and the de-
pot’s) location. Arrows show the movement of vehicles between nodes, and
arrows with the same color indicate that the delivery is done by the same
vehicle.

A notable difference between ORtools and our results is the number of
vehicles (k). In the figures below , ORtools uses k = 5 vehicles and both
Version 1 and 2 use only k = 3 vehicles. This is in line with the general trend
observed in Table 4.1.

Figure 4.2: ORtools solution example with N = 50
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Figure 4.3: Version 1 solution example with N = 50

Figure 4.4: Version 2 solution example with N = 50
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Compared to ORtools’ solution, the solutions of both Versions tend to
find a near node as the next node in the route. Due to the capacity con-
straint and the time window constraint, it is not always possible to visit the
nearest customer. However, Version 1 takes the nodes’ XY coordinates into
consideration because it encodes the nodes’ Euclidean coordinates; it tends
to choose neighbor nodes to reduce the cost. Similarly, since Version 2 takes
in the distance matrix, it tends to choose neighbor nodes too. Neverthe-
less, we can still observe that sometimes far away nodes are chosen for the
route. This is because the customer distribution is not very dense in a small
instance, and it is not possible to pick neighbors every time.

Contrasted with our approach, ORtools uses local search. In local search,
a random initial solution is created, and then modified by swapping nodes
or inserting nodes iteratively. Thus, the routes appear to be more evenly
constructed.

The figures below show examples of solution plots for instances where
N = 25. Since the density of customers is smaller than for instances where
N = 50, routes are less densely packed than in the previous plots. In this
example, the solution generate by ORtools uses a larger number of vehicles,
k = 3, compared to our models.

Figure 4.5: ORtools solution example with N = 25
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Figure 4.6: Version 1 solution example with N = 25

Figure 4.7: Version 2 solution example with N = 25
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The figures below are for instance of size 150 (N = 150). The plot looks
messy because the customers are densely packed and the number of vehicles
is larger than the in previous plots. The key takeaway is that both Versions
tend to pick neighboring nodes for some vehicles but it is not always the case.
The models pick nodes greedily. This means that in the decoding phase the
routes created earlier have a much larger selection of nodes to visit, compared
to those created later. Toward the end of the decoding phase, the number
of available nodes becomes very small because nodes are already assigned
to existing routes. Meanwhile, ORtools exhibit a good balance, because
the local search modifies all routes iteratively and there is less bias between
routes.

Figure 4.8: ORtools solution example with N = 150
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Figure 4.9: Version 1 solution example with N = 150

Figure 4.10: Version 1 solution example with N = 150
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Figure 4.11: Version 2 solution example with N = 150

4.4 Discussion

Overall, the performance of both versions is competitive enough to use in
practice on Pattern 1 and 2 instances. Even on relatively large instances
(N = 200), both Versions achieve good solutions (compared to ORtools).
The performance of Version 1 and Version 2 is similar on Pattern 1 and 2
instances.

The main difference is the performance on pattern 3 instances, where
Version 2 achieves better performance. Recall that Pattern 3 are the instance
where the distance matrix use to evaluate the objective function is replaced
with a different matrix taken from the same distribution, and that Version
1 encodes Euclidean coordinates to determine where customers are located.
However, after changing the matrices, the XY coordinates are no longer
reliable.

That is, the network makes a decision based on unreliable distance infor-
mation. Table 4.1 shows that the cost of Version 1 gets worse on Pattern 3
compared to Pattern 1 for all sizes. On the other hand, Version 2 uses the
distance matrix to make decisions, instead of relying on nodes’ XY coordi-
nates.

The result shows that the ORtools gives better performance than Version
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1 on a large instance (N = 150, N = 200) which is intuitive. However,
Version 1 achieves better performance on a small instances (N = 25, N = 50).

Trying to understand why Version 1 outperforms ORtools for small in-
stances, we must look deeper at the objective values achieved. Since Pattern
1 and 3 have no service time, the cost consists of the distance and the waiting
time (when the vehicle arrived at a node before the start time of the time
window, it has to wait). Table 4.2 shows the values of these factors of pattern
1 and pattern 3 on instance size N = 50, N = 100 and N = 150. Specifically,
distance denotes the total transit time and wait denotes the total waiting
time. The biggest difference between our models and ORtools is that the
total transit time of ORtools’ solution is smaller than that of our models.
Although ORtools takes the waiting time into consideration as the objective
value, the solution tends to have more waiting time than our models. That
is, as the instance becomes bigger the transit time takes up a larger fraction
of the total value of the objective function. Therefore the larger the instance
gets, the less competitive version 1 becomes on Pattern 3 instances (as it
does not have access to the actual distances between clients).

Table 4.2: Comparison of total transit time and waiting time

ORtools Attention ver 1 Attention ver 2

distance wait distance wait distance wait

Pt 1 1136.5 2881.7 2131.9 1023.8 2146.4 982.9
N=50 Pt 3 1134.5 2986.8 2417.9 1268.1 2141.7 1010.1

Pt 1 1719.7 4241.4 3636.5 1287.0 3773.4 1306.6
N=100 Pt 3 1722.1 4203.8 4384.8 2010.2 3784.3 1284.9

Pt 1 2186.8 5237.3 5009.1 1562.4 5504.9 1282.1
N=150 Pt 3 2193.1 5256.6 6355.7 2335.8 5529.5 1273.3

Next we compare the distribution of distances between consecutive nodes
the constructed routes for Version 1. We compare the distribution between
Pattern 1 and 3 for large (N = 150) and small (N = 50) instances.

35



Figure 4.12: The example of the distance distribution of routes on Pattern
1, N=50

Figure 4.13: The example of the distance distribution of routes on Pattern
3, N=50
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Figure 4.14: The example of the distance distribution of routes on Pattern
1, N=150

Figure 4.15: The example of the transit time distribution of routes on Pattern
3, N=150
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Since the customer location is less dense in the small instances, the transit
time between nodes tends to be larger even in Pattern 1 solutions. Comparing
Figure 4.12 and Figure 4.13, the transit time distribution shifts to the right
because the network does not have access to the distance matrix. The total
transit time of the solution for Pattern 1 (N = 50) instance is 2131.9, and
for Pattern 3 (N = 50) is 2417.9. Thus, after replacing the distance matrix,
the total transit time increases by 13.4%. On the other hand, comparing
Figure 4.14 and Figure 4.15, the transit time distribution also shifts to right,
however, the total of the transit time of the solution increases by 26.9% (the
total transit time on pattern 1 (N = 150) is 5009.1, and that of the transit
time on pattern 3 (N = 150) is 6355.7).

Therefore the larger the instance becomes the transit times becomes a
more important part of the total objective, which explains the phenomena
we observed.
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Chapter 5

Conclusions

5.1 Conclusion and future work

In this study, we proposed two attention based networks (Version 1 and 2)
for CVRPTW. We achieve the following results:

1. We successfully extend previous work to support time window con-
straints. The experimental results shows that both versions achieve a
solution quality similar to that of ORtools, with a much faster running
time.

2. While Version 1 assumes Euclidean distance between nodes, Version
2 accepts a distance matrix directly as input. We believe it is more
useful in practice, as a distance matrix is a much more robust way of
encoding distance, compared to XY coordinates. Version 1’s perfor-
mance is slightly better, but Version 2 still outperforms ORtools on
small instances.

5.2 Future work

As future work, we would like to use our attention based solver for real-
world instances and get detailed feedback. There is an abundance of research
regarding VRP (CVRPTW) in the academic setting, however, major solvers
that are used in real world business setting are based on heuristic algorithms
that are slow on large instances.

We believe that our work is important for the logistics field because there
is no solver that is able to solve CVRPTW within a reasonably short time
on large instances. In Japan, there are several delivery companies that de-
liver tens of thousands of parcels every day. In Japan, an increased demand
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for packages is predicted, while the number of delivery drivers is expected
to remain the same. Thus, it is critical to increase the efficiency of delivery
services. CVRPTW solvers are a key tool for these businesses. As mentioned
above, heuristic based solvers take a prohibitively long time to execute on
large instances, which makes it hard to implement customer friendly delivery
services such as delivery within X hours and same-day-delivery. We believe
that our attention based solver is able to solve the typical CVRPTW in-
stance sufficiently fast while achieving good performance. Therefore, the
next natural step is to apply our solver in real-world businesses settings.
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