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Investigating the Suitability of Preconditioned GMRES Method on GPU
2010008 Kenichi Ito

Numerical simulation involves solving large and sparse simultane-
ous linear equations obtained by discretizing partial differential equations
describing physical phenomena using the finite difference method or the finite
element method. Attempts are being made to perform numerical simulations
in an on-site environment by utilizing a GPU, which are small in scale but
have high computing performance, rather than large-scale computers such as
clusters or supercomputers. For example, in the medical field, from the view-
point of information management and simulation control, it may be desirable
to use the computer of the own organization rather than the computer of the
external organization.

GPUs are used as accelerators, but since the characteristics of CPUs and
GPUs are different, it is expected that the suitable algorithm will also be
different. Therefore, this research evaluated the preconditioned GMRES
method on a GPU (NVIDIA A100 PCle) and CPUs (HPC System “KA-
GAYAKI”) to reveal GPU-friendly numerical solution methods for large and
sparse simultaneous linear equations, obtained by discretizing differential
equations with finite difference methods or finite element methods.

The iterative method, which is for solving simultaneous linear equations,
starts from an appropriately chosen initial value and successively creates a
sequence of approximate solutions that converge to the true solution. As an
iterative method, there is a Generalized Minimal RESidual (GMRES)
method based on the Krylov subspace. The GMRES method starts from
the right-hand vector b and generates an orthonormal basis vy, v, ..., V)41,
expanding the Krylov subspace. It updates the approximate solution x; so
that the residual norm |||/ = ||b — Az;||> is minimized at each step.

The convergence of the Krylov subspace method generally depends on
the eigenvalue distribution of the coefficient matrix, and the smaller the
eigenvalue distribution and the closer it is to 1 (identity matrix), the faster
the convergence. To improve convergence and stability, the coefficient matrix
is ordered and preconditioned before starting the iteration.

I compared the Classical Gram-Schmidt 2 (CGS2) and Modified
Gram-Schmidt (MGS) methods, for orthogonalization used during itera-
tions in the GMRES method on the GPU. The results of the evaluation by
CUDA show that the CGS2 method on the GPUs has much shorter process-
ing time than the MGS method with no convergence issues.

The Incomplete LU decomposition (ILU) preconditioned GMRES
method was evaluated for ILU(0), ILU(1), or ILU(2), and it was found that



heavy preconditioning (such as ILU(2)) is required for ill-conditioned prob-
lems. Regarding the level at which fill-in is allowed in ILU, it was found that
the appropriate level at which the processing time is minimized depends on
the increase in the number of nonzero elements and convergence.

For ordering, Reverse Cuthill-McKee (RCM) and Nested Dissec-
tion (ND) were evaluated by the GMRES method. Although it depends
on the matrix to be solved, in general, the application of RCM on CPUs
improved convergence and reduced processing time, while the application of
RCM on GPUs improved convergence but increased processing time. In the
case of GPUs, it was found that using ND for ordering reduced the GMRES
processing time in general, although it depends on the matrix to be solved.
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