JAIST Repository

https://dspace.jaist.ac.jp/

POSIX¥EHLOSD AT Y a—F% i G L UM 7 AN T

e BB B
Author(s) BRI, 4

Citation

Issue Date 2022-09

Type Thesis or Dissertation

Text version

author

URL http://hdl.handle.net/10119/18057
Rights

L Supervisor: B A FI58, SelmblEE it 7e R, &+ (FH
Description

B)

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Exhaustive Testing for a Scheduler of POSIX-compliant OS
2010146 Akira Hasegawa

Nowadays, in the field of embedded systems, IoT and Al features are in high
demand. As a result, POSIX-compliant operating systems (POSIX-compliant
OSs), such as Linux, are used as the OSs. Since typical POSIX-compliant OSs
and middleware applications are provided as open source software and readily
available, there is a significant advantage that developers can make a prototype
easily and quickly. Moreover, typically, POSIX-compliant OSs have much more
flexibility to add additional functions than traditional real-time OSs.

However, since POSIX is originally a specification for general-purpose OSs,
there are parts where strict behavior is not specified to improve the versatility.
Therefore, even if OSs comply with POSIX, their behavior can be completely
different. For instance, POSIX does not specify how to allocate threads to each
CPU core, and it depends on the implementation of each OS. In addition, since the
behavior of OS itself is more complicated than traditional OSs, testing for them is
challenging.

Unlike desktop and server applications computers, embedded systems are of-
ten used when failures can enormously impact human life. For instance, recently,
an application for self-driving cars has also been considered, and Adaptive AU-
TOSAR, an extension of POSIX, has already been created. In such a mission-
critical system, it is highly possible that the introduction of bugs will severely
impact society and human life, so it is crucial to ensure the quality through testing
or verification.

Especially, scheduling functions are essential for mission-critical systems, and
they must not have bugs. Scheduling is the process of managing the execution
order of each program (threads/processes). If a bug is included here, it will easily
affect the entire system, leading to malfunctions or hangs.

Scheduling-related APIs are stateful; that is, the execution results change
depending on the calling order of the APIs. In this case, model-based testing
(MBT) is used. To apply MBT, first, we need to create a model that represents the
desired behavior using the specification such as POSIX. And secondly, create test
cases using the model and execute them.

Through the exhaustive testing for the scheduling-related APIs, we can obtain
confidence that the scheduling functions work as we think. However, since POSIX
has a problem that did not occur in testing for traditional real-time OSs, such
as OSEK/VDX-compliant OSs, the traditional MBT method cannot be directly
applied to POSIX-compliant OSs. For instance, consider a situation where the
limitation of parallel running threads is two and two threads with low priority,
TID 1 and TID 2, are already running, and a new thread TID 3, which has higher



priority, is now created. In this case, two behaviors satisfy POSIX: (1) since TID 1
has lower priority than TID 3, TID 1 is suspended, and TID 3 starts to run instead
of TID 1, and (2) since TID 2 has lower priority than TID 3, TID 2 is suspended
and TID 3 starts to run instead of TID 2. In this research, we call this property
that the execution results are not uniquely determined from the specification as the
indeterminacy of the execution result.

Traditional real-time OSs such as OSEK/VDX-compliant OSs do not have this
property, and the specification determines only one correct behavior. However,
since POSIX-compliant OSs have the property, the traditional MBT is not reason-
able for POSIX-compliant OSs. In this study, we have proposed an MBT method
that supports the indeterminacy of execution results and achieved exhaustive testing
for the scheduling-related APIs of POSIX.



