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ABSTRACT This paper evaluates speech emotion and naturalness recognitions by utilizing deep learning
models with multitask learning and single-task learning approaches. The emotion model accommodates
valence, arousal, and dominance attributes known as dimensional emotion. The naturalness ratings are
labeled on a five-point scale as dimensional emotion. Multitask learning predicts both dimensional emotion
(as the main task) and naturalness scores (as an auxiliary task) simultaneously. The single-task learning
predicts either dimensional emotion (valence, arousal, and dominance) or naturalness score independently.
The results with multitask learning show improvement from previous studies on single-task learning for
both dimensional emotion recognition and naturalness predictions. Within this study, single-task learning
still shows superiority over multitask learning for naturalness recognition. The scatter plots of emotion and
naturalness prediction scores against the true labels in multitask learning exhibit the lack of the model; it fails
to predict the low and extremely high scores. The low score of naturalness prediction in this study is possibly
due to a low number of samples of unnatural speech samples since the MSP-IMPROV dataset promotes
the naturalness of speech. The finding that jointly predicting naturalness with emotion helps improve the
performance of emotion recognition may be embodied in the emotion recognition model in future work.

INDEX TERMS Speech emotion recognition, speech naturalness recognition, multitask learning, affective
computing, speech processing.

I. INTRODUCTION

Speech emotion recognition (SER) is an emerging field of
study in the field of speech processing. The goal of SER is
to predict an affective state within speech, either in terms of
emotion categories, emotion dimensions/attributes, or both.
In this article, the terms ‘attribute’ and ‘dimension’ will
henceforth be used interchangeably for representing valence,
arousal, and dominance (VAD) as measures of an affective
state. While the research of categorical SER is well estab-
lished, there is a debate on how many attributes of emotion
should be investigated [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ananya Sen Gupta

Among many, three-dimensional emotions with valence,
arousal, and dominance is the most common attributes to
represent an affective state or emotion. In this view, the
affective state is measured from pole to pole in these three
attributes. Categorical emotions such as anger and sadness
can be represented in a valence-arousal space [2]. In addition,
dominance shows the degree of control of the speaker for that
emotion (e.g., degree of control of anger). Using these three
attributes completes the representation of emotion recogni-
tion by a computer/robot that mimics the human response to
emotion (as proposed in [3]).

Naturalness recognition from the speech is a new appli-
cation of speech processing technique to predict the degree
of naturalness score from unnatural to very natural scores
for an utterance [4]. This technique can be applied for such
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applications as filmmaking, theatrical show, and emergency
call center. In the latter application, a naturalness score could
help the call center staff determine the authenticity of the call.

While the previous study on speech naturalness recognition
is only intended to predict naturalness scores within speech
datasets [5]-[7], it is worth studying the performance of the
method on two tasks (emotion and naturalness) since the
dataset used in the previous method also provided dimen-
sional emotion scores. The concurrent speech emotion and
naturalness recognition could be approached by utilizing
multitask learning: one is to predict valence, arousal, and
dominance of the speech signal, and the other is to predict the
naturalness score of the same utterance. Indeed, predicting
valence, arousal, and dominance simultaneously also can be
regarded as a multitask learning problem [8].

The study of multitask learning to tackle several problems
together is not new. Parthasarathy and Busso [9] proposed
multitask learning for jointly predicting valence, arousal,
and dominance from cross datasets. Lee [10] proposed to
predict language labels in addition to emotion categories by
utilizing multitask learning approach for multilingual speech
emotion recognition. Both kinds of research show the supe-
riority of multitask learning compared to single-task learn-
ing. We adopt that multitask learning approach to tackle
the problem of concurrent speech emotion and naturalness
recognition.

This study contributes to the previous studies in two
aspects. First, we show the ability to multitask learning
dimensional emotions and naturalness scores simultaneously
with a small loss in naturalness recognition performance
scores (while improving dimensional emotion recognition
scores). Second, we evaluated our models in a 6-fold cross-
validation evaluation to fill the gap in the previous studies,
which only evaluated the performance of the models on a
single fold. This cross-validation evaluation enables us to
infer conclusions from the results that are more reliable and
accurate than in previous studies.

Il. METHODS

A. DATASET

This study employed MSP-IMPROV dataset, a mix of an
acted and natural-interaction corpus, to study emotion per-
ception while promoting naturalness in the recording [11].
There are four scenarios recorded in the dataset: Target -
improvised, Other - improvised, and Natural interaction, and
Target - read sentences. Note that not all the speech data is
acted; the natural interaction scenario is fully natural speech
recorded during the breaks of recording.

The total number of utterances in the MSP-IMPROV
dataset is 8438 samples, and all samples are evaluated in this
study. The recording in the dataset is split into six sessions;
each session contains an interaction of two speakers (male
and female). At least five evaluators annotated emotion and
naturalness labels. The emotional labels are provided in both
categorical and dimensional emotions; we adopted dimen-
sional emotion since it has the same scale as the naturalness
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TABLE 1. Number of utterances for training/test split for each fold in
6-fold cross-validation in the MSP-IMPROV dataset.

Fold  Training (%) Test (%)
7449 (88%) 989 (12%)
7006 (83%) 1432 (17%)
6661 (79%) 1777 (21%)

7325 (87%)
6933 (82%)
6816 (81%)

1113 (13%)
1505 (18%)
1622 (19%)

AN RN =

score. The scores were on a five-point Likert-like scale; we
normalized the scores to the range of —1 to 1 in the deep
neural network (DNN) learning process.

The dimensional emotion contains three attributes; the
naturalness score contains a single attribute. The attributes
of dimensional emotion are valence, arousal, and dominance.
Valence is the degree of positive or negative emotion, arousal
refers to the level of activation from sleepiness (low) to
awakeness (high), and dominance is the degree of con-
trol over the emotion [12]. The naturalness labels represent
the most unnatural speech (score 1) to the most natural
speech (score 5).

We split the dataset into two parts: training and test. A por-
tion of 20% of the total training data is used for evaluation or
development within the training phase (to adjust the weights
of layers in the neural network models). We adopted leave-
one-session-out (LOSO) cross-validation to evaluate the per-
formance of the method. In this evaluation, one session
is allocated for test data while the other five sessions are
allocated for training data. Since each session is recorded
by different speakers, this LOSO split is also a speaker-
independent evaluation. The number of utterances in each
session is different; Table 1 shows the number of utterances
in each session/fold for training and test. The number of folds
in that Table 1 also represents the session for the test set. For
instance, Session 1 is used for the test set in fold 1 (while
sessions 2-6 are for training). All test data is unseen (held-out)
data except for the calculation of performances. The reported
performances were the average of the performances of the six
LOSO folds.

B. ACOUSTIC FEATURES

We evaluated four different acoustic features below. For each
acoustic feature set, we only extracted high-level statistical
functions (HSF) from all frames in an utterance. This feature
type is also known as the global feature.

1) pyAudioAnalysis (pAA)

We extracted 136-dimensional features from the audio signal
using the pyAudioAnalysis library [13]. The features include
34 acoustic features and their deltas (68 in total). For these
68 features, we calculated the mean and standard deviation
of the feature values from all frames in each utterance. The
frame size (window size) is 0.025 seconds with a frameshift
length (hop size) of 0.01 seconds.
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2) ComParE

We extracted 6373-dimensional features from the audio sig-
nal using the Python-version of openSMILE library [14]. The
configuration for the feature set is “ComParE_2016" [15]
with “functionals” feature level.

3) eGeMAPS

We extracted 88-dimensional features from the previous
openSMILE library with the “egemaps” feature set. The
configuration for the feature setis “eGeMAPSv02” [16] with
also “functionals” feature level.

4) EMOBASE
We extracted 988-dimensional functional features from the
previous openSMILE library with the “emobase” feature
set. The configuration for the feature set is ‘“‘emobase’,
which is provided at the INTERSPEECH 2010 Paralinguistic
Challenge [17].

All acoustic feature sets above are normalized to zero mean
and unit variance over all data globally.

C. CLASSIFIERS

We evaluated the following two classifiers: multilayer per-
ceptron and long short-term memory networks. The choice
of these classifiers is based on the performance of the pre-
vious studies [4], [5]. The best values for hyperparameters
are searched with a brute-force search mechanism. These
values, shown in Table 2, are optimized for each classifier
independently. For instance, the number of layers is searched
in ranges [1..6] with a number of units/nodes in variations of
the following: 16, 32, 64, 128, 256, and 512.

1) MULTILAYER PERCEPTRON (MLP)

We built a three-layer MLP with hidden shared layers of
size 512, 256, and 128 units (Fig. 1) and logistic activation
function. This simple MLP is trained on 200 maximum
iterations (epoch) with ten patiences. The observation
showed that the training epoch never reaches the maximum
number of iterations for obtaining the best performance. The
training is batched in size of ‘auto’, which chooses a min-
imum number between 200 or a number of samples. The
model is implemented with MLPRegressor in scikit-learn
toolkit [18].

2) LONG-SHORT TERM MEMORY (LSTM)

We built an LSTM network with three shared layers and an
independent layer of size 128, 64, 32, and 16 units (Fig. 2).
We used the default “tanh” activation for LSTM layers but
“ReLU” for the Dense layer. The network is trained on
100 epochs with ten patiences of early stop criteria. The
observation also showed that the training epoch never reaches
the maximum number of epochs for obtaining the best per-
formance. The training is batched in size 8. The model is
implemented with LSTM and Dense layers in Tensorflow
toolkit [19].

VOLUME 10, 2022

TABLE 2. Values of the hyperparameters for the MLP and LSTM networks.

Parameters MLP LSTM

Shared layers (SL) 3 3

Independent layers (IL) - 1

Nodes (SL + IL) (512,256, 128) (128, 64, 32, 16)

Optimizer adam RMSprop

Learning rate 0.001 0.001

Batch size ‘auto’ 8

Epoch 200 100

Early stop Yes Yes

Tolerance 10 10
Valence Arousal Dominance Naturalness

Input Layer

FIGURE 1. DNN architecture for MLP networks with MTL. The shared
layers contain three MLP layers with 512, 256, and 128 nodes. For STL, the
network predicts either valence-arousal-dominance scores or naturalness
scores.

Naturalness

Valence Arousal Dominance

Output
Layer

Independent
Layer

Shared
Layers

Input Layer

FIGURE 2. DNN architecture for LSTM networks with MTL. The shared
layers contain three LSTM layers with 128, 64, and 32 nodes. The
independent layer is four single dense layers with 16 nodes each. For STL,
the output layer is either three single-node dense layers (emotion) or a
single-node dense layer (naturalness).

D. EVALUATION METRIC AND LOSS FUNCTIONS

We evaluated the performance of the classifiers using the con-
cordance correlation coefficient (CCC) between predictions
and labels. CCC is claimed to be better than Pearson correla-
tion since it penalizes deviation in scale (e.g., the prediction’s
scale is shifted from the original labels) [20]. It also replaces
mean squared error in many modern multivariate regression
analyses [21]. The CCC is formulated as follows:

20050y

cce = )
O'XZ + O'yz + (x — ,U«y)2
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where o is the standard deviation, o2 is the variance, and nw
is a mean value of the variable (prediction for x or label for
¥). p is the Person correlation coefficient (PCC) between two
variables formulated as follows,
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A direct approach to maximize CCC is by minimizing the
CCC loss function (CCCL) which is formulated as follows,

CCCL =1-cCcCC. 3)

In single-task learning (STL), the loss function is either
sum of three loss functions from valence (CCCLy), arousal
(CCCL,), and dominance (CCCLp) or naturalness (CCCLy)
(notice that jointly predicting VAD is called multitask learn-
ing in the previous study [9] but now is called STL in this
study). In multitask learning (MTL), when CCC loss is used
as a single metric for all arousal, valence, dominance, and
naturalness, the CCCL;,,; is a combination of those four
CCC loss functions defined as follows,

CCCLyy = CCCLy + CCCLA + CCCLp + CCCLy. (4)

The equation 4 above applies to LSTM network. For
the MLP network, we applied the similar mean squared
error (MSE) loss function as follows,

MSE,;,; = MSEy + MSE4 + MSEp + MSEjy . 5)

While this research did not evaluate the CCC loss
for MLP due to its difficulties in implementation with
Scikit-learn [18], future research could tackle this limitation
for a fair comparison with LSTM network.

It should be noted that for both CCC and MSE loss func-
tions in MTL, we treated each attribute as important as the
other (a factor of “1” for each attribute). For SER, with
three attributes, the total importance is 0.75 compared to all
tasks. For naturalness recognition with a single attribute, the
importance factor is 0.25 compared to all tasks.

The pre-trained model generated by the research methods
above will be hosted at https://github.com/bagustris/sner and
free to use for academic and non-commercial purposes. The
pre-trained model is trained on the whole dataset, i.e., all data
is used for training without a test phase.

Ill. RESULTS AND DISCUSSION

We conducted experiments on the different features and clas-
sifiers. When experimenting with different features, we hold
the classifier; when experimenting with different classifiers,
we hold the features. The evaluations are performed in 6-fold
CV (Table 3). The additional results on a single fold (with
session six as a test set) are shown for a benchmark to the
previous studies (Table 5).

A. EXPERIMENT RESULTS

Table 3 shows the results of the experiments of concur-
rent multitask learning for predicting valence, arousal, domi-
nance, and naturalness. Using CCC as the evaluation metric,
the results show moderate performance on all four tasks.
All models achieved the highest performance in predicting
arousal, strengthening the previous findings [5]. As it has
been found in that paper, we also found that MLP achieved
better performances than LSTM in predicting naturalness in
addition to valence, arousal, and dominance.
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TABLE 3. CCC scores (higher is better) for the 6-fold cross-validation (CV)
speech and naturalness recognitions on the MSP-IMPROV dataset
with MTL.

Feature Val Aro Dom Nat
MLP
PAA 0.329 0.577 0440 0.237

ComParE 0364 0.596 0.444 0.273
eGeMAPS 0352 0574 0436 0.239
emobase 0361 0.559 0421 0.264
LSTM
PAA 0276 0.542 0416 0.279
ComParE 0290 0.505 0.385 0.278
eGeMAPS 0352 0574 0436 0.239
emobase 0.289 0.508 0.399 0.288

Among four different global acoustic feature sets and
two classifiers, ComParE feature set achieved the highest
performance among all variations. ComParE achieved the
top performance on MLP networks (in terms of average
CCC from all tasks with CCC average = 0.419) with small
differences from the emobase feature set (CCC average =
0.401) and eGeMAPS (CCC average = 0.400). Feature set
emobase achieved the top performance for predicting the
naturalness score with CCC = 0.288 with LSTM networks,
while ComParE attained CCC = 0.278 on the use of the same
LSTM networks. Nevertheless, the performance of ComParE
using MLP on this naturalness task was also competitive
(CCC=0.273) to that score by emobase using LSTM. In MLP
models, this CCC score of ComParE for naturalness is the
highest among the same MLP models.

B. VISUALIZATION BY SCATTER PLOTS

Following the previous research [5], we visualize the pre-
dictions of MLP model against true labels for dimensional
emotions (Fig. 3) and naturalness score (Fig. 4). Both figures
are obtained from the last fold, i.e., the sixth fold. It can
be inferred from the scatter plots that the model fails in
predicting very low and very high scores, particularly on
naturalness recognition. The original value (in [1, 5]) was
scaled to [—1, 1] for the deep learning model, while the
obtained naturalness predictions are in [—0.14, 0.74] for nat-
uralness. For the dimensional emotion (valence, arousal, and
dominance) the predictions are in the range of [—0.66, 0.88].
This result is in line with the obtained CCC scores in Table 3
where dimensional emotions obtain higher CCC scores than
naturalness.

One possible explanation for the low score of nat-
uralness is that the model is trained on a low num-
ber of unnatural samples. The number of samples in
MSP-IMPROV dataset based on scenarios are 620, 652,
2758, and 4381 for Target-read, Target-improvised, Natural-
interaction, and Other-improvised. While we did not take into
account this unbalance condition in the model, future research
may consider balancing the dataset before training the model
or developing a model which can handle unbalanced data.

Another potential solution to tackle the limitation of the
current model is by shifting the continuous score to the

VOLUME 10, 2022
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1.00
FIGURE 3. Scatter plot of the true labels (blue) and predictions (orange)
for valence, arousal, and dominance (dimensional emotions) on the sixth
fold as the test data by the MLP model and ComParE feature set. For
numerical value on how close/far predictions vs. true labels, see CCC
scores in Table 5.
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FIGURE 4. Scatter plot of the true labels (blue) and predictions (orange)
for naturalness scores on the sixth fold; the MLP model with ComParE
feature set fails to predict low and very high scores of naturalness.

ordinal categorical label. It has been argued in [22] that emo-
tion is ordinal by nature. Instead of predicting the continuous
score of valence, arousal, and dominance, the authors of [22]
have shown that labeling emotion in ordinal rating has been
found to be more accurate and beneficial. A similar approach
(ordinal label) may also be applied to the naturalness score.
The original score in [1, 5] may be mapped into the ordinal
label of low, medium, and high categories.

C. MTL VS. STL
The previous results were obtained using MTL as proposed
in this research. While the basic idea in this research is to
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TABLE 4. CCC scores (higher is better) for the 6-fold cross-validation (CV)
speech and naturalness recognitions on the MSP-IMPROV dataset with
STL; note that scores of Naturalness is obtained independently (in a
single task learning) from scores of Valence, Arousal, and Dominance.

Feature [ Val Aro Dom [ Nat
MLP
PAA 0.334  0.572 0432 | 0.237

ComParE 0352 0.574 0.434 | 0411
eGeMAPS | 0354 0.544 0.419 | 0410
emobase 0.352  0.551 0.416 | 0.399
LSTM
PAA 0272 0.536  0.415 | 0.273
ComParE 0266 0.503 0.384 | 0.283
eGeMAPS | 0.283 0.501  0.391 | 0.270
emobase 0.301 0.508 0.379 | 0.289

combine speech emotion and naturalness recognition simul-
taneously, it is necessary to evaluate these tasks indepen-
dently using single task learning (STL). Two STLs could be
evaluated. One STL is to predict scores of valence, arousal,
and dominance. Another STL is to predict naturalness score
only.

Table 4 shows our STL result for both emotion recog-
nition and naturalness recognition. Note that the scores of
valence, arousal, dominance, and naturalness for each row
are obtained independently using a single model (a model
that predicts three attributes in the case of VAD), either using
MLP or LSTM. To our surprise, while the scores of VAD in
STL evaluations are less than MTL, the scores of naturalness
are higher than MTL in this research and the similar STL in
the previous research [4]. The best result in previous research
was obtained using statistical features of pAA with four-layer
LSTM (512, 256, 128, 64). In this research, evaluating MLP
with three layers (512, 256, 128) leads to better performances.
Although the higher CCC scores obtained by SER could
be explained by their importance factors, the discrepancy in
naturalness performances between MTL and STL left room
for improvement for future research.

From this evaluation of MTL vs. STL, it has been found
that recognizing naturalness in speech helps improve the
prediction of dimensional emotion but not vice versa. This
information that naturalness improves recognition of emotion
is in line with human perception of emotion, in which the
more natural the speech is, the more likely the emotion to
be recognized. Instead of multitask learning, the naturalness
information (in the form of features) could be embedded into
the speech features to improve the performance of the speech
emotion recognition model in the future.

D. CROSS COMPARISONS

To evaluate the performance of the models in this study,
we conducted cross-comparisons of the best models in this
study to the previous results published on the MSP-IMPROV
dataset. The results are shown in Table 5. Our system in
this study is the only one that predicted both dimensional
emotions and naturalness scores (MTL) in addition to STL.
In this case, STL is either predicting emotion attributes:
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TABLE 5. Summary of benchmarking results (CCC scores) in this study
(MTL and STL) against previous studies (STL). Reference [8] used subsets
of MSP-IMPROV with improvised and natural interaction parts

only (MPSIN) using both acoustic and linguistic features.

Reference
This study MTL
This study MTL

Test setting Val Aro Dom Nat
Session 6 0361 0.595 0452 0.323
6-foldCV 0364 0.596 0.444 0.273

This study STL 6-fold CV 0.352  0.574 0434 0411
[5] Session 6 0.204 0.525 0.361 -
[4] Session 6 - - - 0.302
[8] Session 6 0.291 0.570 0.405 -

(MSPIN)

valence, arousal, and dominance, or predicting naturalness
only. In addition, we also performed cross-validation for a
more confident evaluation, while the previous studies only
evaluated their models on the sixth session as the test set.

Table 5 shows that our results on both single-fold test
and six-fold cross-validation are better than the previous
studies for all tasks. We improved recognition of valence
on Session 6 as the test set from 0.291 to 0.361 by employ-
ing ComParE feature set with MLP. Similarly, we improved
arousal and dominance recognitions from 0.57 to 0.595 and
from 0.405 to 0.452. For naturalness, we obtained a small
improvement from 0.302 to 0.323 (MTL). Note that in [8],
the authors only evaluated parts of the MSP-IMPROV dataset
with improvised and Natural-interaction scenarios. The per-
formance for the complete MSP-IMPROV dataset for that
model (acoustic-linguistic fusion) may be lower since the
remaining scenario contains Target-read, which sounds dif-
ficult if linguistic information is utilized.

Finally, a cross-validation evaluation is more reliable than a
single-test evaluation. Our results on cross-validation evalua-
tion show that our models are more accurate than the previous
studies for dimensional emotion recognition. For naturalness
recognition, which is new in the field of speech processing,
there is a need for more accurate models. Although the mul-
titask learning model is not optimized for emotion, the model
predicts emotion better than naturalness. The weight of nodes
in the deep learning model may tend to learn the emotion
dimensions (three attributes) more than naturalness labels
(a single attribute). The suggested studies in the previous
subsections can be considered for future work.

IV. CONCLUSION

In this paper, we simultaneously evaluate speech emotion and
naturalness recognitions by utilizing deep learning models
with multitask learning and single-task learning approaches.
The emotion model accommodates valence, arousal, and
dominance attributes known as dimensional emotion. The
naturalness ratings are labeled on a five-point scale as dimen-
sional emotion. The results with multitask learning show
improvement from previous studies on single task learning
for both dimensional emotion recognition and naturalness
recognition. Within this study, the performance of naturalness
recognition with multitask learning is lower than that of
single-task learning, whereas the performance of dimensional
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recognition is improved. The scatter plots of emotion and
naturalness scores exhibit the lack of the model; it fails to
predict the low and extremely high scores. The disadvantage
of this study on naturalness prediction is possibly due to a low
number of samples on unnatural speech. This presumption is
based on the fact that MSP-IMPROV dataset is intended to
promote the naturalness of speech.

Future research can be directed to studying the acous-
tic features that correlate to the naturalness of speech. The
appropriateness of features can vary from unnatural speech
to natural speech, as revealed in other domains [23]. A gap
between the naturalness recognition performance of MTL
and STL needs to be improved in the future. Future work
may also include a balancing strategy to improve the model
performance, as well as mapping continuous scores to ordinal
labels. While the best results in this study are obtained with
MLP with MSE losses, we believe a pair of MLP with CCC
losses could improve the current results in terms of CCC
scores.
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