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Abstract

Nowadays, in the quick development of science and technology, human life is getting more
and more modern convenient with machines. Especially, computers and the internet are
the major factors that help people connect together by storing, sharing, and searching
for knowledge information in any domain. However, most of this information is written
in unstructured data using human natural language, which is hard for logical searching
as well as retrieval the meaningful information given complex questions. Therefore, this
study aims to investigate the Semantic Parsing task in Natural Language Processing
(NLP) that map a natural language sentence to machine-understandable information
representation. In the developing history of this task, there are many kinds of semantic
representations have been introduced and developed such as logical form, semantic frame,
semantic graph, etc.

In this thesis, we introduce the effective methods using the neural network to solve the
Semantic Parsing task. We focus on two kinds of widely used logic representations, logical
form, and semantic frame as well as the issues of these semantic schemes. To this end, we
propose the potential approaches to deal with the challenges of Semantic Parsing task,
and present powerful methods for this tasks in the legal domain.

The first challenge we targeted is the local context integration in Semantic Parser. In-
spired by grammar-based methods, the semantic representation of a sentence is the com-
bination of sub-meaning representation generated by phrases in a sentence. Besides, the
current state-of-the-art models using Transformer adapted from Neural Machine Trans-
lation task do not have components modeling phrase information. Therefore, we propose
the Phrase Transformer - a new architecture incorporating representation of phrase via
n-gram chunking into Self-Attention mechanism of the original Transformer. Our ex-
perimental results show that the proposed model works effectively and beat the original

Transformer by utilizing local context features better.



The second issue we explored is the class imbalance in logical representation using
semantic frames. The significant difference between the majority and minority classes
causes the semantic parsing model confused in minority classes recognition. The observa-
tions on well-known datasets show that this problem is highly critical, special among Slot
classes. To deal with this problem, we propose the Classify Anonymous Entities (CAE)
mechanism by using multitask joint-learning to split the conventional Slot Filling task
into two sub-task: detect anonymous entity by sequence tagging and classify recognized
anonymous entities tasks.

Finally, we focus on constructing the semantic parser in the legal domain. The main
challenges relate to the length and content of legal documents containing complex con-
straints about the conditions of articles. Besides, the limited annotated semantic parsing
data also is a difficulty in this domain. Based on the DAPRECO Knowledge Base (KB),
we firstly re-construct the GDPR (General Data Protection Regulation) Semantic Parsing
dataset mapping a GDPR article points into its expression in DAPRECO KB. We also
implement a Semantic Parser on this data and propose two mechanisms: Sub-expression
intersection and Predicate REtrieval & Sub-Expression Generation (PRESEG) to deal
with the problems in the legal domain.

To summarize, our study is centered on dealing with fundamental problems to model
Semantic Parser using a deep learning approach and adapting to the legal domain. The ex-
perimental results and detailed analysis proved the effectiveness of the proposed methods
as well as the potential for domain adaptation. Despite the experiments being conducted
on limited kinds of semantic schemes, the proposed models and solution ideas have the
potential to be widely applied to other types of semantic representations or to various
tasks in NLP in futher research.

Keywords: Semantic Parsing, Phrase Transformer, Neural Machine Translation, Class

Imbalance, Spoken Language Understanding, Legal Semantic Parsing.
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Chapter 1

Introduction

1.1 Introduction

Currently, computers and the internet are one of the most important factors in human life.
Data is digitized in most fields and professions of life. In the digital age, more and more
human-generated text data is created by the time such as articles, blogs, advertisements,
etc. These data contain human intellectual information in an unstructured form, which is
hard for organization as well as retrieval of the meaningful information given complicated
questions. Therefore, this study aims to investigate the Semantic Parsing task in Natural
Language Processing (NLP) that builds a system to parse a natural language utterance
to its structured (machine-understandable) representation. Besides, this task also plays
a key role in the human-machine communication field [Woods, 1973, Herzig and Berant,
2019, Jia and Liang, 2016]. For examples, the virtual assistants or smart speakers (e.g.
Google Home, Amazon Alexa) became popular rapidly in recent times [Herzig and Berant,
2019]. Therefore, we expect that this study can be widely applied not only in the research

community but also in practical application to improve human life.



1.2 Background

Recently, the development of machine learning and deep learning is extremely fast, espe-
cially in the NLP field. In that context, semantic analysis tasks are also of great interest
in the research community. In this part, we show an overview of Semantic Parsing task,

the problems and directions of our research.

1.2.1 Semantic schema

As we mentioned above, Semantic Parsing is the task mapping from a natural sentence into
its logical representation. In the developing history of this task, many kinds of semantic
representations have been introduced and developed. The most prominent are schemas
using the logical form [Zelle and Mooney, 1996], and semantic frame [Fillmore and Baker,
2001]. For the syntax of logic representation, the logical forms typically use Lambda ()
calculus or Prolog syntax, semantic frames with Intent, and Slot information. Both kinds
of semantic representation are able to present detailed information in the sentence. In

Table 1.1, we show examples to compare the difference between kinds of Logic schemas.

Table 1.1: Examples of Semantic Parsing task on ATIS dataset. The abbreviations LF
and SF' refer to two kinds of logic presentation logical form using lambda calculus and
semantic frame, respectively.

Natural sentence Schema Logic representation
( lambda $0 e ( and ( flight $0 ) (
LF airline $0 dl :al ) ( from $0 boston :ci

) ( to $0 philadelphia :ci ) ) )
which delta flights fly from © piilladelipfila -ci

boston to philadelphia Intent: atis flight
SF Slots: airline name: delta

fromloc.city name: boston
toloc.city name: philadelphia

( lambda $0 e ( and ( miles distant $0 )
LF ( to_city $0 boston :ci ) ( from airport
$0 bos :ap ) ) )

what is the distance from

boston airport to boston Intent: atis_quantity
SF Slots:  fromloc.airport_name: boston airport

toloc.city name: boston




Logical form

Lambda () calculus is a formal system in mathematical logic that is introduced by Church
[1941], that is typically used for formalizing the meanings of programming languages. Al-
though this kind of meaning representation uses a mathematical formal language, it is
close to the human natural language and easy to understand. In the first example in Ta-
ble 1.1, the user want to search the flights of “Delta” airline, which fly from “Boston” city
to “Philadelphia” city. In the lambda expression of this example, the variable $0 save
information of the flights need to be return. The structure information is constructed

by open “(” and close “)” bracket pairs (Figure 1.1). The sub-expressions (flight

(lambda $0 e
(and
(flight $0 )
(airline $0 dI :al )
( from $0 boston :ci )
( to $0 philadelphia :ci ) ) )

Figure 1.1: The structure of logical form using lambda calculus syntax.

$0), (airline $0 dl :al), (from $0 boston :ci), and (to $0 philadelphia :ci)
defines the semantic types, and related conditions in user question of variable $0, respec-
tively. Finally, the function and is used to combine all sub-expressions to get the full logic
representation.

To parse a natural sentence to logical form using lambda calculus syntax, a semantic
parser need to deal with challenges such as the structure of logical form [Dong and Lapata,
2016], retrieving the related functions or compositional operators [Wang et al., 2015], and
the corresponding arguments (e.g. string constants boston, philadelphia) [Jia and Liang,

2016, Nguyen et al., 2019] given the input sentence.

Semantic frame

The Semantic Frame is a type of knowledge representation introduced by Fillmore and
Baker [2001], which construct the meaning of a sentence via defined frames and slots

information. The main idea of this approach is to create a bank of semantic frames



(e.g. FrameNet [Ellsworth et al., 2021], PropBank [Palmer et al., 2005]), with each frame
being an unambiguous meaning containing related slots information as arguments. In the
task-oriented dialog system, this kind of semantic schema is regularly used because of its
simplicity [Tur and De Mori, 2011, Chen et al., 2019, Qin et al., 2021b]. In the first example
in Table 1.1, the semantic frame information is considered as intent value atis_flight,
which contains slots airline name, fromloc.city name, and toloc.city_name are filled
by string constant extracted from the input sentence.

In this approach, a semantic parser needs to deal with two main challenges: semantic
frame, and slots (or entity) recognition [Tur and De Mori, 2011]. Compared with the

approach using logical form, the output of the parser is well formed without syntax errors.

1.2.2 Methods

In this section, we present several methods that currently exist for the Semantic Parsing
task grouped by Semantic Schemas. With the semantic representation using the logical
form, one of the first methods is grammar-based and rule-driven semantic interpretation
procedures [Waltz and Goodman, 1977]. Then, the grammar-based methods incorporat-
ing with probability models (e.g. Probabilistic Categorial Grammar) are introduced and
developed [Zettlemoyer and Collins, 2005, 2007]. In recent years, with the great develop-
ment in parallel computing using GPU, the approaches using neural networks have been
applied with outstanding efficiency [Dong and Lapata, 2016, Jia and Liang, 2016, Dong
and Lapata, 2018, Cao et al., 2019]. With the semantic representation using the seman-
tic frame, the neural network approach also achieved the SOTA results such as using
Recurrent Neural Network (RNN)-based [Ravuri and Stolcke, 2015, Wang et al., 2018],
Self-Attention-based with Transformer [Vaswani et al., 2017b] model with pre-trained lan-
guage model [Chen et al., 2019, Castellucci et al., 2019b, Qin et al., 2020, 2021a]. Based
on the results achieved recently, in this study, we focus on the neural network methods
and deal with some issues in this approach. For more understanding, we describe the basic

architectures for tasks: Sequence Generation and Sequence Labeling and Classification.



Sequence Generation

Sequence-to-sequence. This model architecture is firstly proposed by Sutskever et al.
[2014] for machine translation task and achieves a drastic improvement when incorporating
the attention mechanism [Bahdanau et al., 2015, Luong et al., 2015]. This architecture

contains two main components: Encoder and Decoder (Figure 1.2). The encoder uses

Encoder g X Y </s> Decoder
’ LSTM H LSTM }—> % LSTM H LSTM H LSTM }—> % LSTM ‘
,Z B </s> <s> X Z

Figure 1.2: The architecture of basic Sequence-to-sequence model where special tokens
<s>, </s> refer to the start and end of sentence; the the source and target words are
denoted by [A, B, ..., </s>] and [<s>,X,Y, ..., </s>], respectively.

Long Short-Term Memory (LSTM) architecture [Hochreiter and Schmidhuber, 1997] to
encode the source sentence as a compression vector, and the decoder also uses LSTM
architecture to decode the encoded vector into the sentence in the target language.

To apply this architecture in the semantic parsing field, Dong and Lapata [2016] firstly
promoted an effective solution by considering semantic parser as a neural translation
model. In this way, the natural sentence and its logical form are treated as a source and
target sentence, respectively. Finally, a trained model can learn the alignments among

words in the natural sentence with tokens in the logical form.

Transformer. Recently, a new powerful model, Transformer, introduced by Vaswani
et al. [2017b] got impressive performance in machine translation tasks by using the self-
attention mechanism. Similar to the previous architecture, this model also contains two
components Encoder and Decoder, separately. Compared with the model Sequence-to-
sequence using LSTM, this architecture is based on the attention score between pairs
of words to compute the dependencies between them. Therefore, it can overcome the
vanishing gradient problem with the long sentence. Besides, this architecture is proven

to be effective in transferring knowledge with pre-trained language models, especially on



machine reading comprehension tasks [Devlin et al., 2019b]. Therefore, our work focus

on improving Transformer architecture for the Semantic Parsing task.

Sequence Labeling and Classification

As we mentioned above, on the task-oriented dialog system with logic representation
using the semantic frame, the semantic parsing process can be addressed by joint Intent
prediction, and Slot recognition sub-tasks [Tur and De Mori, 2011]. To solve both two
sub-tasks, the architecture LSTM can be used [Ravuri and Stolcke, 2015, Wang et al.,
2018]. With the Intent prediction task, the sentence representation vector is the last
hidden state of sequence input, which is feed-forwarded to an output layer (e.g. softmax
layer) to get the probabilities in each intent class. With the Slot recognition task, the
hidden state of each word is used to get the probabilities in each slot class. Slot classes
are typically followed the BIO schema similar to the other sequence labeling tasks in NLP
(e.g. Named Entity Recognition - NER). Finally, the trained model can learn the relation
between input words and their labels as well as the intent of whole sentence.

Recently, a new powerful pre-trained language model BERT is firstly introduced by
Devlin et al. [2019a] achieved amazing results in Machine Reading Comprehension tasks
with only small number of fine-tuning epochs. In semantic parsing tasks, this model also
shows the strong improvement [Chen et al., 2019, Castellucci et al., 2019b] (Figure 1.3).
To deal with the Sequence Labeling sub-task, the hidden states of each word also are

Intent: atis_flight (\,2,6\8 &N

X
o &0 o0 o
(I |

0
N G T

Pre-trained Language model
(e.g. BERT)

fof Ak Ak
[CLS] which delta flights fly from boston to philadelphia

L

Figure 1.3: The architecture for joint of Intent classification and Slot recognition tasks.

used for calculating Slot label probabilities similar to LSTM architecture. In the Intent

6



detection sub-task, the hidden state of special token [CLS] is used for intent prediction.
Compared with the model using LSTM, BERT model has more advantages because it is

pre-trained on large-scale text data, which contains a huge human knowledge insight.

1.3 Research Direction and Contribution

In the quick development of machine learning and NLP recently, in the semantic parsing
area, there are many kinds of semantic schema, and the model is introduced and investi-
gated. In this research, our target is to obtain efficient methods for semantic parsing tasks
in NLP related to two semantic schemes: logical form and semantic frame. We explore the
basic problems this tasks: a fundamental problem of local context modeling, the imbalance
classes related to semantic parser using sequence labeling approach, and domain-specific
problems related to constructing a semantic parser in the legal domain. Based on the
SOTA results recently, we focus on applying the Transformer architecture [Vaswani et al.,
2017b] and pre-trained language model (e.g. BERT [Devlin et al., 2019a]) to this task.
To this end, our study improved the semantic parsing system in three problems: local
context modeling, diminishing class imbalance in Spoken Language Understanding, and

dealing with complex constraints in parsing legal domain.

Local Context Integration. Inspired by grammar-based methods, the semantic rep-
resentation of a sentence is the combination of sub-meaning representation generated by
phrases in a sentence [Zettlemoyer and Collins, 2005]. Besides, the current SOTA mod-
els adapted from Neural Machine Translation task treat the sentence input as a word
sequence that do not have components modeling phrase information. For example, a
sentence “which delta flights fly from Boston to Philadelphia”, the phrase “from Boston
to Philadelphia” has a different meaning with “from Philadelphia to Boston”. However,
based on our error analysis, the Transformer model is confusing between them. Therefore,
we propose the Phrase Transformer - a new architecture incorporating representation of

phrase via n-gram chunking into Self-Attention mechanism of the original Transformer. In



detail, LSTM architecture is used for phrase modeling, reinforcing the linguistic ordering
features of words in a phrase.

The experimental results show that our PhraseTransformer beat the original Trans-
former by utilizing local context features better. Besides, the extensive experiments on
the Machine Translation task also show a solid improvement proving the generalize of our

proposed model.

Class Imbalance in Spoken Language Understanding. As we mentioned, the se-
mantic parsing task in task-oriented dialog systems (or Spoken Language Understanding)
is addressed by Slot Filling and Intent Detection sub-tasks. The number of classes of
the Slot Filling sub-task is typically large and unbalancing among classes. Especially, the
imbalance is more critical between minority classes and negative class (the outside entity
class - label 0). This problem causes the semantic parsing model confused in minority
class recognition. To deal with this problem, we propose the Classify Anonymous Enti-
ties (CAE) mechanism by splitting the conventional Slot Filling task into two sub-tasks,
detecting anonymous entities by sequence tagging and classifying recognized anonymous
entities, and using multitask joint-learning to train end-to-end model.

According to the experimental results, our proposed mechanism enhances semantic
parsing performance compared with the conventional model, notably in the Slot Filling
sub-task. Besides, we also present the effective way of integrating local context into the
pre-trained language model and its contribution to this task. In addition, our experiments
on the NER task also show the improvement that is proof of the applicability of our CAE

mechanism to other tasks using sequence labeling.

Semantic Parsing in the Legal Domain. In the legal domain, the main challenges
relate to the length and content of legal documents containing complex constraints about
the conditions of articles. Besides, the limited annotated semantic parsing data also is
a difficulty in this domain. Therefore, we firstly re-construct the GDPR (General Data

Protection Regulation) Semantic Parsing dataset based on the DAPRECO Knowledge



Base (KB), which contains pairs of a GDPR article points in its expression in DAPRECO
KB. We also implement a Semantic Parser on this data and propose two mechanisms: Sub-
expression intersection and Predicate REtrieval & Sub-Expression Generation (PRESEG)
to deal with the problems in the legal domain. Based on the experimental results, our
proposed mechanisms show better performance when compared with the baseline model.
Furthermore, we also conduct experiments integrating local context into the semantic

analysis model in this domain and show improved results.

1.4 Dissertation Outline

Firstly, we investigate the effect of local context problems in the semantic parsing task
with two kinds of semantic schema, logical form and semantic frame, which is usually
represented by phrases in natural sentences [Zettlemoyer and Collins, 2005, 2007, Jia and
Liang, 2016]. Local context is a fundamental problem, which exists in almost semantic
analyses system such as semantic searching, Spoken Language Understanding (SLU) of
Virtual Assistant, etc.

In addition, we focus on the problem of data imbalance between classes of a seman-
tic parsing system representing meaning via semantic frames as a with intent and slots
information. Compared to the first problem, the imbalance problem is occurring to a
narrower extent, in systems using sequence labeling mechanisms. This problem typically
does not exist in semantic parsing systems using logical form because these systems do
not require label all words in a natural sentence. However, with the rapid development of
virtual assistant systems today [Herzig and Berant, 2019], the imbalance problem in SLU
has high applicability in practical applications as well as the other tasks such as Named
Entity Recognition, POS tag, etc.

Finally, we apply SOTA methods in semantic parsing tasks for a particular Legal do-
main. In this challenge, we based on DAPRECO KB [Robaldo et al., 2020] to re-construct
the semantic representation of the law articles and build a semantic parser for the GDPR

dataset. Similar to logical form, the logic representation in this data is the combination



of formulae containing many sub-conditions or triples. Besides local context problems,
we also focus on solving the particular problems related to the legal domain: the long
document, and complex logic representation. To this end, our proposed solutions can be
applied to many different kinds of legal data, or the other domain containing complicated
in a long input sentence.

We have introduced the abstract as well as presented the research direction of our work
in this Chapter. In the remainder of this thesis, we provide the detail of the experiments

and our proposed model architecture following (Figure 1.4):

e Chapter 2 describes the detail of PhraseTransformer architecture improving sentence
meaning representation by injecting phrase features as local context information.
The experiments and results on three public Semantic Parsing datasets (Geo, Atis,
and MSParS) along with three Machine Translation well-known datasets (IWSLT14
German-English, IWSLT15 English-Vietnamese, and WMT 2014 English-German)

are illustrated and analyzed.

e Chapter 3 interprets our CAE mechanism for diminishing class imbalance in the Slot
Filling of the SLU task. The conducted experiments on prominent SLU datasets

Snips ATIS and ATIS Vietnamese version are presented.

e Chapter 4 reports our empirical evaluation of constructing a GDPR semantic parsing
dataset along with a parsing model adapted to the legal domain. Besides, the error

analysis of existing issues as well as the further solutions are discussed.

e Finally, in Chapter 5 we conclude our research with a summary of our findings

throughout this dissertation and the future directions based on this work.
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Figure 1.4: The overall of our work and the relations among problems.
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Chapter 2

Local Context Integration

Semantic parsing is a challenging task in NLP that attracts the attention of many re-
searchers for a long. Recently, approaches using Neural Machine Translation (NMT) have
achieved many promising results, especially Transformer, because of the ability to learn
long-range word dependencies. However, the typical drawback of adapting the vanilla
Transformer to semantic parsing is that it does not consider the phrase in expressing the
information of sentences while phrases play an important role in constructing the sentence
meaning. Therefore, we propose an architecture, PhraseTransformer, that is capable of
a more detailed meaning representation by learning the phrase dependencies in the sen-
tence. The main idea is to incorporate Long Short-Term Memory into the Self-Attention
mechanism of the original Transformer to capture the local context of a word. Experimen-
tal results show that our proposed model captures the detailed meaning better than the
original Transformer, and raises the model local context-awareness. Besides, the proposed
model achieves strong competitive performance on Geo, and MSParS datasets, and leads
to SOTA performance on the Atis dataset in methods using neural networks. In addition,
to prove the generalization of our proposed model, we also conduct extensive experiments
on three translation datasets IWLST14 German-English, IWSLT15 Vietnamese-English,

WMT14 English-German, and show the solid improvement.
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2.1 Introduction

Semantic parsing is an important task that can be applied in many applications such as
Question Answering and searching systems using natural language [Woods, 1973, Waltz
and Goodman, 1977]. For example, the sentence “which state borders hawaii” can be
represented as a logical form (LF) using A-calculus syntax “(lambda 30 e (and (state:t
$0) (next_to:t $0 hawaii)))”. There are various strategies to address the semantic pars-
ing task such as constructing handcraft-rules [Woods, 1973, Waltz and Goodman, 1977,
Hendrix et al., 1978], using grammar-based (e.g. Combinatory Categorial Grammar -
CCGQG) [Zettlemoyer and Collins, 2005, 2007, Kwiatkowski et al., 2011], adapting statis-
tical machine translation method [Wong and Mooney, 2006, 2007], and Neural Machine
Translation (NMT) [Dong and Lapata, 2016, Jia and Liang, 2016, Cao et al., 2019].
Among them, the grammar-based approaches are fundamental and effective to show
how the logical form is constructed from sub-parts of a sentence. The major factor of this
method is based on the alignments of sub-parts (lexicons or phrases) between a natural
sentence and corresponding logical form and to learn how best to combine these sub-parts.
In particular, the phrase “borders hawaii” is aligned to “(next_to:t 30 hawaii)” in LF and
the word “borders” plays a role as a local context of “hawaii” that makes the meaning of
this phrase more comprehensive than every single word. Conversely, the methods using
Neural Machine Translation digest the sentence via an encoder into a context vector which
is decoded into LF. Despite the lack of linguistic relationship in local context of sub-parts,
the current SOTA models comes from NMT-based models such as Sequence-to-Sequence
(Seq2seq) using Long Short-Term Memory (LSTM) [Dong and Lapata, 2018, Cao et al.,
2019] on Geo, Atis and Transformer [Ge et al., 2019] on MSParS. The strength of NMT-
based methods depends on the automatic text understanding architecture without any
handcrafted features. However, recent NMT-based approaches in Semantic Parsing give
a little attention to linguistic constraints and relationship in the typical characteristics
of natural languages. Therefore, it is highly potential to improve these approaches by

incorporating the local context of phrases whose effectiveness and necessity is proved in
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many previous works of grammar-based approaches.

Inspired by grammar-based methods, the semantic representation of a sentence is the
combination of sub-meaning representation generated by phrases in a sentence. However,
Transformer architecture only learns the dependencies between single words without con-
sidering the local context by the phrase. Therefore, we propose a new architecture named
PhraseTransformer that focuses on learning and integrating the relations of phrases in a
sentence into the Transformer-based architecture. The typical example of our proposed
approach is presented in Figure 2.1. Together with word representation, our incorporation
of phrase information is useful enough to learn local context and relationship and under-
stand the global information via Transformer-based architectures. Although there were
numerous works considering to utilize phrase representation on NMT [Yang et al., 2018,
Nguyen et al., 2020, Xu et al., 2020b], our proposed approach is highly novel and effective
in Semantic Parsing. Instead of using handcrafted-features as well as syntactic informa-
tion, our approach takes advantage of LSTM-based and Transformer-based approaches

into a completed system to automatically understand the sentence representation.

PhraseTransformer {Encoder iciO to cilgione wayﬁbefor tiOé «— hi could i get a one way ticket from ci0 to cil

x could you pleas give me a one way fare from ciO to cil
Y . < . =

what is the fare from ci0 to cil on coach one way

Decoder (lambda $0 e ( andi( oneway $0 )ég( < ( departure_time $0) ti0 )Eé( from $0 ci0 ) (to SO cil )i) )

Figure 2.1: Pharse alignments in PhraseTransformer.

To this end, we particularly use the power of LSTM architecture to represent the local
context meaning of n-gram phrases in the sentence. Then, we modify the Multi-head
Attention [Vaswani et al., 2017b] in Transformer by applying the self-attention mecha-
nism into phrases instead of single words. Based on the interaction of words and phrases,
we propose two variants of our integration between local and lexical context in Trans-
former architecture. Both of them are proved the effectiveness in two important tasks
of sequence learning including Semantic Parsing and Machine Translation. Even that,

in Semantic Parsing task, our proposed models obtain the significant results on three
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benchmark datasets including Geo, Atis, and MSParS. It highlights the importance of
phrase information in current sentence representation approaches. In this work, our main

contributions are:

e We propose a novel model, PhraseTransformer, incorporating phrase information
as a local context into Transformer architecture that works effectively for Semantic
Parsing and Machine Translation tasks. The phrase integration layer is lightweight

and does not require any external information.

e We conduct experiments to confirm the awareness capacity of the model, as well as

the contribution of phrase information in each task.

e Our work achieve competitive performance on Geo, MSParS datasets and new SOTA
performance on Atis, in the methods using Neural Network. To the best of our
knowledge, our work is the first to use phrase mechanism in using Sequence to

sequence model to solve the Semantic Parsing task.

e The PhraseTransformer architecture can be adapted to many tasks using Trans-

former architecture such as Text Summarization and Text Classification.

2.2 Related Work

In Semantic Parsing task, recent works have shown that deep learning approaches
achieved potential results. Traditionally, these methods are often divided into four groups:

Decoder Customization. Dong and Lapata introduce the Seq2tree model modifying the
decoding method to deal with the tree structure of the LF. On another aspect, some
works [Dong and Lapata, 2018, Li et al., 2019] focuses on the design of intermediate
representations for LF, and the decoding process is split into two steps: generate the
template of LF and fill the low-level information into the template. Pursuing a different
direction, we tackle the challenge of improving the understanding capacity of the model

in comprehending input sentences because semantic parsers need to capture complicated
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characteristics in the natural sentences before decoding them. Therefore, our work focuses
on designing the Encoder architecture to improve the understanding capacity of the model.

Data Augmentation. There are numerous works that put the concentration on data
augmentation to improve the performance of the semantic parsing model [Berant and
Liang, 2014, Wang et al., 2015, Jia and Liang, 2016, Ziai, 2019, Herzig and Berant, 2019].
Jia and Liang propose hand-craft rules based on Synchronous Context-Free Grammar
to recombine data. This step increases the size of the training data and grows the per-
formance of the model. Similarly, Ziai proposes a method that automatically augments
data based on the co-occurrence of words in the sentence. These works suggest that
the complicated queries are constructed by a combination of many sub-conditions that is
phrases. Therefore, modeling phrases for Semantic Parsing is a potential way to enhance
the generalize of the model.

Weak Supervision. Some typical approaches use semi-supervised learning for semantic
parsing task such as [Kocisky et al., 2016, Yin et al., 2018, Goldman et al., 2018, Cao
et al., 2019, 2020]. These works are promising approaches for the data-hungry problem
because of the ability to extract latent information such as unpaired logical forms. In our
proposed model, we aim to construct the latent representation for phrases and learn these
representations via the self-attention mechanism of the Transformer. We hypothesize that
complicated sentences are constructed from various phrases, so learning to represent these
phrases makes the model more generalizable.

Sketch Prediction and Slot Filling. There are many recent works that pay attention to
the approach using sketch (or intent) prediction and slot filling to deal with the Semantic
Parsing task [He et al., 2021, Tang et al., 2020, Xu et al., 2020a]. Besides, SQL parsing
is also one of the Semantic Parsing task attracting many works Xu et al. [2017], Bogin
et al. [2019], Wang et al. [2020], Yu et al. [2021], Xie et al. [2021]. The main challenge
in the SQL parsing task is the generalization of database schema such as the alignment
between natural text and column names, primary, foreigner keys of a table. Differently
from that, in this work, we focus on the challenge of generalizing the sub-conditions and

relations among them in a complicated query by phrase modeling mechanism.
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In Neural Machine Translation task, the approach using phrase information or
constituent tree is proved to be effective in many works [Wang et al., 2017, Wu et al.,
2018, Wang et al., 2019, Hao et al., 2019, Nguyen et al., 2020]. The difference in our
work are: (1) our model is capable of learning without any additional information (e.g.
constituent tree), (2) in the training process, although we do not force the attention
or limit the scope of the dependencies, our model is able to pay high attention to the
important phrase automatically. Compare with Yang et al. [2018], the purpose of using
local context information is similar but different in localness modeling: based on the
distance, Yang et al. [2018] cast a Gaussian bias to change attention score while our
method is simpler by incorporating multi different n-gram views as the various local
contexts. Compare with Xu et al. [2020b], the authors used numerous parameters to
learn the attention score of each token in phrase representation that makes the model
size is larger 2 times than the original Transformer while our proposed architecture size

is close to the original model.

2.3 Model Architecture

Our novel architecture is based on the Encoder-Decoder of Transformer [Vaswani et al.,
2017b]. We define a new model named PhraseTransformer to improve the encoding
quality of Transformer by enhancing the Encoder architecture while keeping the original
Decoder. Besides, we proposed two architecture variants to construct phrase representa-
tion appropriate for characteristics of Semantic Parsing and Machine Translation tasks:

PhraseTrans. g,z and PhraseTrans.cyosss -

2.3.1 Background

The Transformer model contains two parts Encoder and Decoder. In the basic setting,
both parts contain similar architecture that is based on the self-attention mechanism
to understand and extract linguistic features of words in a sentence. Particularly, in

Transformer Encoder architecture, Vaswani et al. [2017b] proposed a stack of N Identical
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layers which consists of two sub-layers: Multi-Head Attention layer and Position-wise
Feed-Forward layer.

Mathematically, Let € = [x1, ..., ®|g] be an input vector synthesized from the vector
word embedding and positional encoding where |S| is sentence length. In the Multi-
Head Attention layer, Vaswani et al. use the Linear layer to get multi-views for the
inputs. This layer processes the input vector (x) and generates H distinct featured
vectors {q;, ki, v; }L, where H is the number of heads (Equation 2.1). These features are
forwarded to Self-Attention layer using Scaled-Dot Product (Equation 2.2). After that, all
heads are processed by Concatenation operator and Linear layers to compute the output

of the Multi-Head layer.

q; ki,vi=axW, a:Wf, xW? (2.1)
head; = Attention(q;, k;, v;) (2.2)
hyrun = |heady; ...; head g |W° (2.3)
hyorm = LayerNorm(hprup + @) (2.4)

ho.: = LayerNorm(FeedForward(hyorm) + Pnorm) (2.5)

where W is the parameters; Attention is Scaled Dot-Product Attention as follows:

qz'k%‘T

\/d_h> v; (2.6)

Attention(q;, k;, v;) = softmax(

where dj, is dimensions per head, ¢ is the identical index of head (0 < i < H), LayerNorm,

FeedForward are the functions that are used similar to Vaswani et al. [2017b].

2.3.2 Proposed Architecture

In Transformer architecture, Encoder layer plays an important role to digest and extract
the textual features of input sequence. With our powerful Encoder, it is essential enough to
address the lack of phrase information in vanilla Transformer approaches. In our proposed

architectures, we propose a modification of the MultiHead Attention layer in the Encoder
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by integrating the phrase features. Particularly, we add a new layer, Phrase Integration,
before Scaled Dot-Product Attention layer. It is effective to provide the locally contextual
information of words and their relationship into original Encoder. The overview of our
model is visualized in Figure 2.2. Based on our observation, we propose two variant of

Phrase Integration to combine the phrase information and word representation as follows:

e PhraseTrans.g.,y is designed to have a relation modeling among phrases. In this
architecture, we apply different n-gram models to make various phrase represen-
tations in each separated head in the Multi-Head layer. After that, the phrase
representation is forwarded into the Self-Attention layer to extract the relations

between them.

e PhraseTrans.q,..sg is designed to improve word representation by incorporating
phrases characteristic. Compare with the above architecture, in this architecture,
we aim to mitigate the lost information of single words when integrating phrase
information, therefore, we only apply phrase mechanism query and key vectors to
learn the attention scores and keep the original value vectors. Besides, with each
n-gram model, we apply the phrase mechanism in all heads of the Multi-Head layer.
After that, the word representation is concatenated by phrase representation and

forwarded to the Self-Attention layer.

xN
 Transformer | Multi-Head Attention
gEncoder PhraseTransformer
!Identical i
iLayer
A Concat

Multi-Head | | i !

Attention i i [ Scaled Dot-Product {

gkt v i Attention

| — Vi 1 il

Positional 6 >_>€ | Phrase Integration
Encoding ? Lo % 5 5

Input Embedding |

@ . i [Linear J | Linear | [Linear |

Inputs w1 8 heads:
(ciO to ci1 one way befort0) ... 9............] k... Vo

Figure 2.2: Overview of PhraseTransformer
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Phrase Integration on Separated Head (PhraseTrans.s.,;z) We replace the word
vector representations in the MultiHead layer by its context representations that are
combined by its n-gram words. More detail, after H heads are generated by Linear
layer, we use n-gram model to split the sentence into grams and use Bidirectional LSTM
[Hochreiter and Schmidhuber, 1997] to extract the local context information of these

grams (Figure 2.3). Besides, we assume that the meaning phrases are usually composed

Legends
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l

a' (a'1a2)|(a'3[a'4 L | LSTMPLSTMP{LST™

2-gram| [3-gram| [4-gram| i i

LSTM]<LSTM}«{LSTM]
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Figure 2.3: PhraseTransformer Encoder architecture using n_gram LSTM in MultiHead
layer. In this case, n_gramLSTM layer is built with n = [0,0,2,2,3, 3,4, 4], 2-gram, 3-
gram, 4-gram models apply to every two heads from head 3 to head 8.

by difference lengths, therefore we use various n-gram models. To this end, the Phrase

function is in Equation 2.7:

n;gramLSTM(s;) if n; #0
Phrase(s;, n;) = (2.7)
S; otherwise

where s; is a sequential hidden state of a sentence of head i (0 < ¢ < H) in Multi-Head
layer; n € N¥ is gram size vector for H heads; n; is the gram size corresponding to head

1; n;_gramLSTM is a procedure that splits the sequential input into grams by n;_gram
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model, and applies Bidirectional LSTM for each gram k of s;:

n;-gramLSTM(s;) = [n;,_gramLSTM, (s;)] (2.8)

where n;_gramLSTM;,, is the Bidirectional LSTM computed by sum of forward and back-

ward final hidden states:

nifgramk(si) = [Hk—ni—i-la Hy 2, Hk] (2-9)

n;_gramLSTM, (s;) = LSTM/ (n;_gram, (s;)) + LSTM’(n;_gram,(s;)) (2.10)

where H, is the hidden state corresponding to word index k in a sentence, n;_gram, is the
gram index k that is a list of n; continuous hidden states, n;_gramLSTM,(s;) is the vector
to capture local context of the gram index k. Besides, for parallel computing, we used
the left padding zero mechanisms to get the same shape between input and output when
applying different n-gram models. Finally, the query (q;), key (k;), value (v;) matrixes

(Equation 2.2) are replaced by Phrase function:

q,, k., v, = Phrase(q;, n;), Phrase(k;,n;), Phrase(v;, n;) (2.11)

head; = Attention(q}, k,, v}) (2.12)

7

Phrase Integration Cross Heads (PhraseTrans.c,.ssz) Compared with the previ-
ous PhraseTrans.g.pp, in this architecture, we construct phrase representation across all
heads with each n-gram model. After that, we replace the original query, key vectors in
each head by the concatenation of single words vectors and phrase vectors and forward
them to the Self-Attention layer (Figure 2.4).

We use a new hyper-parameters m = {m; | m; € N} to store the set of gram sizes
applied to all heads in the Multi-Head layer. Although this hyperarameters open a un-
limited searching space, our experiments show that m € {{2,3}, {3}, {4}} help model get

the best performance on many NMT datasets. Let zip be the concatenation function in
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Figure 2.4: PhraseTrans.c.ssg architecture using n_gram LSTM in MultiHead layer. In
this case, the phrase representations are built with m = {2,3}, 2-gram, 3-gram models
apply to all 8 heads.

the second dimension of a matrix (Equation 2.13), and unzip be the reverse function of
zip. The query and key matrices in Equation 2.2 are replaced by a zip of word and phrase

vector representations:

zip(A, B) = [AT; BT|T (2.13)
q;, k; = zip(q;, ph), zip(ki, phy) (2.14)
head; = Attention(q}, k}, v;) (2.15)

where ¢/, k; € RISI*(mI+1)%dn are the new query, key vectors fused phrase features, re-
spectively; |S| is a sentence length; |m/| is the number of applied n-gam models. Here,
we remind that in the original Transformer, the query, key vectors in the head ¢
(q;, k; € RI¥I¥dr) actually are the weighted hidden states of sentence generated by Equa-
tion 2.1. Compared with the PhraseTrans.g.,n architecture each head use one kind of
n-gram model, while in this architecture, we aim to inject many kinds of n-gram model
into each head as a linguistic features for key, query vectors. For mathematically, phrase

representation vectors for all gram sizes of query and key in the head " in MultiHead
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layers (ph?, pht € RISI*ImI"d) are computed:

phf’mt,phg’mt = unzip( Phrase(zip(q;, k;), my) ) (2.16)
ph! = zip({ph{,,, | m, € m}) (2.17)
ph} = zip({ph},,, | mi € m}) (2.18)

where the Phrase procedure of each gram size value (m;) is computed similar to the
PhraseTrans.se, architecture. Beside, we use zip function on the query and key vec-
tors of each head before forwarding it into LSTM architecture to utilize the relation
between query and key vectors. The function zip(q;, k;) generates a aggregating matrix
in RISIx 2% gpace, that is input of Phrase procedure. To this end, in this architecture,
with each gram size value, we apply the phrase mechanism for all heads in the Multi-
Head layer, and we can compute phrase vector representations of all heads by parallel

processing in constant time.

Training method The training objective is to maximize the Log-Likelihood function

of the probabilities to generate the LF (y) given a sentence (x) from annotated dataset

(D):

maximize : Z log pe (y | x) (2.19)

<z,y>€D

2.4 Experiments

The purpose of experiments is to compare the performance of PhraseTransformer and
its variants models with the original Transformer on both Semantic Parsing and NMT
tasks. Besides, we explore the awareness of the phrase alignment between a sentence and

generated LF by PhraseTransformer.
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2.4.1 Datatsets

We conduct the experiments on three datasets Geo [Zelle and Mooney, 1996], Atis [Dahl
et al., 1994], MSParS [Duan, 2019] for Semantic Parsing task and three datasets IWLST14!
(German < English), IWLST15% (Vietnamese <> English), WMT14? (English — Ger-
man) for NMT task. Table 2.1 shows the statistics of these datasets. Geo and Atis
datasets are small in size but more complicated in nested conditions than the MSParS
dataset. The average length of LFs on Atis dataset (28.4) is about twice longer than that
on MSParS dataset (14.7). With both Atis and Geo, we used the version preprocessed by
Dong and Lapata [2016] by replacing all entities by numbered markers (e.g. “new york”
— “s0”). The original MSParS dataset have large vocabulary (around 40k) because it
consists of various entities name in the open domain. Therefore, we preprocess this dataset
similarly to Ge et al. [2019] by replacing character “” by “<space>_<space>" and using
the byte-pairs-encoding (BPE) [Sennrich et al., 2016] to deal with rare-word problem. For
the NMT task, we preprocess all datasets with the Moses toolkit* for tokenizer, apply the

BPE method and share vocabulary between source and target sides (Table 2.1).

Table 2.1: Statistics information of all datasets. Vocabulary size and average length of
source (Src) and target (Tgt) side are computed on training set.

Datatset #examples #vocab Average length

Train Dev Test Src Tgt Src Tgt
Geo 600 0 280 433 51 10.6 18.7
Atis 3434 491 448 120 166 7.3 28.4
MSParS 63K 9K 9K 5K 6K 128 23.9
IWSLT14 de<ven 160K 7K K 10K 10K 24.2 23.6
IWSLT15 vi<ven 133K 15K 1.3K 10K 10K 20.3 24.8
WMT14 en—de AM 40K 3K 41K 41K 29.1 28.4

thttp://workshop2014.iwslt.org/
Zhttps://workshop2015.iwslt.org/
3http://www.statmt.org/wmt14/
4https://github.com/moses-smt /mosesdecoder
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2.4.2 Evaluation Metric

On all datasets of the Semantic Parsing task, we report sentence-level accuracy by using
logic matching (LM) that developed by Dong and Lapata [2018]. Base on the parsed
structure of output logic form, LM metric is able to measure the variant of expression.
For example, the predicted LFs in different order of and logic: and ( oneway $0 ) ( <(
departure_time $0 ) ti0 ) is equal to and ( <( departure_time $0 ) ti0 ) ( oneway $0 ) . In
the NMT task, we evaluated performance by averaging 5 latest checkpoints and compute
BLEU score via SacreBleu [Post, 2018] on WMT 2014 datasets® and use multi-bleu script®
on IWSLT 2014, 2015 datasets for comparable with previous published results. Besides,

we also conducted significant test following Koehn [2004].

2.4.3 Settings

In training processes of all datasets (except Geo dataset), to prevent overfitting, we use the
early stopping conditioned on metric accuracy on dev set. Because Transformer is quite
sensitive in hyperparameters, we keep most hyperparameters the same as Transformer-
base model [Vaswani et al., 2017b] such as the number of layers N = 6 and number
of heads in Multi-Head layer is H = 8; hidden size d,,,qe; = 512; dropout is selected in
{0.1,0,3}; Adam optimizer with 3; = 0.9, 85 = 0.998, ¢ = 107°. The weights of models are
initialized with Xavier initialization [Glorot and Bengio, 2010]. The embedding vectors
are shared among the source-side and target-side, between the input-to-embedding layer
and output-to-softmax layer in Decoder. We also retain the learning rate decay method:

~15) where step is the current step

Ir(step) = d.0° - min(step™®®, step - warmup_steps
number. The n-gram size for each head is selected in {0,2,3,4}. The hyperparameter
gram sizes are fine-tuned on the development set to get the best setting and re-evaluate on
the test set. With the Geo dataset, because this dataset does not contain the development

set, we adapted the best setting of the Atis dataset to this dataset, and run five times in

SOur SacreBleu signature: BLEU+case.mixed+lang.en-de+numrefs.l+smooth.exp
+test.wmt14/full +tok.13a+version.1.5.1
Shttps://github.com/moses-smt /mosesdecoder /blob/master /scripts/generic/multi-bleu.perl

25


https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl

different random seeds and report the average value of the last check point. The weights
of Bidirectional LSTM layers in the heads using the same n-gram model (e.g. heads 3, 4
in Figure 2.3) are shared.

In Semantic Parsing task, the experimental dataset sizes are quite different, therefore
we use three hyper-parameter sets”: Geo: warmup_step = 100 learning rate init selected
from {0.05,0.1}, batch_size = 128 (the batch size using number of tokens), the maximum
training step max_steps = 15000; Atis: warmup_step = 100; learning rate init selected
from {0.1,0.2}, batch_size = 4096, the maximum training step is 250000; MSParS:
warmup_step = 8000, batch_size = 8192, max_steps = 250000. On this dataset, we
conducted preliminary experiments to check the number of BPE operations in 6K, 8K,
12K, 16K (Figure 2.5). Based on those results, we use the MSParS dataset preprocessed

by BPE 6000 operations for all other experiments.

Token-level Acc.

99 |
98 |

-= BPE 6K
97 | —— BPE 8K

BPE 12K

96 | BPE 16K
95

‘ Steps (x1000)

3 4 5 6 7 8 9 10
Figure 2.5: The impact of BPE preprocessing to performance of PhraseTransformer on
MSParS dev set.

In Machine Translation task, we also use Transformer base setting. All datasets are
pre-processed tokeinze with the standard Moses toolkit®. With IWSLT14, IWSLT15
datasets: warmup_step = 4000, batch_size = 4096 tokens, number of heads H = 4,
WMT14: warmup_step = 8000, number of heads H = 8 similar to Transformer-base

model [Vaswani et al., 2017b], batch_size = 8192 tokens.

"The model using bold value is achieved a better performance than other values in our experiments.
8https://github.com/moses-smt/mosesdecoder
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2.4.4 Main Results

We compare the performance of PhraseTransformer with the original Transformer and
the previous works’ methods on three Semantic Parsing datasets (Table 2.2) and three

Machine Translation datasets (Table 2.3).

Table 2.2: Evaluation results using Logic Matching on all datasets. The reported results
on Geo are mean and standard deviation values. The values marked (*) mean that
the evaluation metric is denotation match that different from others using sentence-level
accuracy. This table contains two parts: previous works and our results. . The notations
I, indicate the corresponding result is statistically significant difference with the baseline
(Transformer) in levels p < 0.01 [Koehn, 2004].

Model Geo Atis MSParS
2&C [Zettlemoyer and Collins, 2007] 86.1 84.6

A-WASP [Wong and Mooney, 2007] 86.6

FUBL [Kwiatkowski et al., 2011] 88.6 82.8

TISP [Zhao and Huang, 2015] 88.9 84.2

Seq2tree [Dong and Lapata, 2016] 87.1 84.6
Seq2seq+Copy [Jia and Liang, 2016] 89.3%* 83.3
Coarse2Fine [Dong and Lapata, 2018] 88.2 87.7
DualLearning [Cao et al., 2019] 89.1
Bert-Sketch [Li et al., 2019] 84.47
Transformer [Ge et al., 2019] 85.68
Transformer (ours) 86.8+£0.76  87.7 85.92
PhraseTrans. crossi 87.74£0.41%  89.1  85.43
PhraseTrans. sepn 87.94+0.36! 90.4F  85.72

In the Semantic Parsing task, the experimental results show that all PhraseTransformer
models outperform Transformer on two datasets Geo and Atis, especially on Atis with
2.7% Logic Matching in sentence level. On the Geo dataset, we show the learning curve of
five runs with different random seeds (Figure 2.6). This result proves that PhraseTrans-
former clearly outperforms Transformer on the Geo dataset on all checkpoints. On the
MSParS dataset, the PhraseTrans.SepH model achieves competitive performance with
the original Transformer. We observe that this dataset has diverse object names with
more than 75% words in vocabulary appearing less than 4 times in training set. One
of the challenges of this open-domain dataset is to recognize the object names and their

types [Duan, 2019]. For example, the gold logic representation of the input sentence “what
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Table 2.3: Evaluation results using BLEU score on NMT task on test sets IWSLT14
(de-en) and WMT14 (en-de). The notations I, 1 indicate the corresponding result is
statistically significant difference with the baseline (Transformer) in levels p < 0.01 and
p < 0.05, separately [Koehn, 2004].

IWSLT14 IWSLT15 WMT14

Model : .

de-en  en-de  en-vi  vi-en en-de
Transformer [Vaswani et al., 2017b] 3442 28.35 27.30
MG-SA[Hao et al., 2019] 28.30
BPE-dropout [Provilkov et al., 2020] 33.27 32.99 28.01
Tree-structured [Nguyen et al., 2020]  35.96  29.47 28.40
Transformer (ours) 3593  29.63 3220 31.17 27.34
PhraseTrans. cross i 36.31% 30.06' 32.79" 31.84"  27.67

is birth date for chris pine” is “( lambda ?x ( mso:people.person.date_of_birth chris_pine

2z ) )” while the incorrect output of both the Transformer and PhraseTrans.SepH is:

“( lambda ?z ( mso:biology.organism.date_of birth chris_ pine ?x ) )”. In this case, the

semantic parser should have an object information type, “Chris Pine” is a person instead
of the organism for generating the correct logical form. Therefore, the PhraseTransformer
model that supports learning the relation between phrases is hard to show the improve-
ment on this dataset. Compare with the previous works, our model achieves better results
on Atis, MSParS and competitive results on the Geo dataset. While our method does
not use augmented datasets similarly to Jia and Liang [2016], Ge et al. [2019] or the
sketch information [Dong and Lapata, 2018], these results show that our model learns
more effectively than the others.

In the Machine Translation task, the PhraseTrans.c,.ssp improves the performance of
the original Transformer on all datasets without external information such as syntactic
tree [Nguyen et al., 2020]. Based on the result of the development set of IWSLT14 de-en
(detail in the Subsection 2.4.5), because the PhraseTrans.g.,n architecture do not show
the improvement, we do not evaluate the performance of this architecture on all other

MT datasets.
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Figure 2.6: Token-level accuracy (min, max and average) of PhraseTransformer and the
original Transformer on Geo test set.

2.4.5 Model Variations

We conducted experiments to evaluate the impact of gram sizes on performance on the
development set of Atis and MSParS (Table 2.4) and IWSLT14 de-en (Table 2.5) datasets.
Besides, we also compare the effectiveness of each PhraseTransformer architecture on both

Semantic Parsing and Machine Translation tasks.

Gram Sizes

Based on the result on the Atis dataset, we found that performance increases when ap-
plying various gram sizes. The result of both PhraseTrans.g.,; and PhraseTrans.crossi
architectures on Atis dataset achieve best performance on setting using three gram sizes
2, 3,4 (Table 2.4). By using various gram sizes, the PhraseTransformer model can observe
different linguistic features in various local context sizes in Multi-head layers. For domain
adaptation, the gram sizes can be chosen depending on observing the number of words in
meaningful phrases. Using various gram sizes makes PhraseTransformer more generalized.
Besides, using LSTM to represent spans on all layers helps PhraseTransformer capture
more sequential information than Transformer.

In the Machine Translation task, based on the results on IWSLT14 dev set, we found

three settings of gram sizes ({2, 3}, {3} and {4}) achieved competitive performance
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Table 2.4: Sentence-level accuracy using logic matching (LM) on two dev sets of Atis and
MSParS. The underline values (the best values in each architecture) indicate the setting
that will be used in the test set.

Model gram sizes #Para.(million) Atis MSParS
Transformer (origin) 47.1 87.17 86.07
Transformer (larger) 80.0 (+70%) 87.00
[0:0;0;0;2:2:2:2] 47.5 (+1%) 88.80  85.99
PhraseTrans.s [0;0;0;0;3;3;3;3]  47.5 (+1%) 88.80 86.52
SepH10:0,0;0;2;2;3:3] 47.5 (+1%) 88.19  85.99
[0;0;2;2;3;3;4;4] 48.3 (+2%) 89.21 86.24
R 2y 508 (+8%) 87.98 8550
{3} 50.8 (+8%) 87.37 85.39
PhraseTrans.crossy {4} 50.8 (+8%) 87.78 85.48
(2,3} 52.4 (+11%) 87.37  85.62
(2,3, 4} 54.0 (+15%) 88.59  85.72

(Table 2.5). Therefore, we only used these settings to optimize the hyperparameters for
other Machine Translation datasets. The solid improvement on all other datasets in five

pairs of languages (Section 2.4.4) proved the robustness of our proposed model in domain

adaptation.
Table 2.5: BLEU score on IWSLT14 (de-en) dev set.
Model gram sizes BLEU
Transformer (origin) 37.10
[0; 0;0; 2] 37.20
PhraseTrans. se,i [0; 0;2; 3] 37.15
B - B
(2 37.31
{3} 37.47
PhraseTrans.crossy {4} 37.58
{2,3} 37.56
{2,3,4} 37.44
Model Size

We compare the number of parameters in PhraseTrans. g,z and PhraseTrans.cyossg with
the original Transformer of experiments on MSParS (Table 2.4). The number of param-

eters of the PhraseTrans.g.,y is slightly increased (less than 2%) when compared with
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the original Transformer while the PhraseTrans.c sz increase arround 15% with three
different gram sizes. The reason is that in the Phrase Trans.c,ossg, the n-gram LSTM is
applied with a hidden size larger two times than PhraseTrans.g.,y by zip method on the
query and key vectors. Besides, we also increase the hidden side of the original Trans-
former to a large setting, which increases nearly two times (4+70%) of the base model
size, however, the result does not improve. This result proves our model architecture is

efficient.

Computation time

We compare the training speed between the Transformer and PhraseTransformer on the
Atis dataset (Table 2.6). This experiment is conducted on an NVIDIA®) Tesla®) P100
16G with batch size of 4096 tokens. Compared with the original Transformer, the training
speed of PhraseTrans.g.,y model is decreased 15% and PhraseTrans.cqssp model is de-
creased 35%. The computation cost of PhraseTrans.cyoss i is larger than PhraseTrans. gepn
because with each gram size in CrossH architecture, phrase modeling mechanism is ap-
plied on all heads, while in SepH architecture, each gram size is applied with corresponding
heads following hyper-parameter setting instead of all heads.

In fact, although we used LSTM on heads of Multi-head layers, the computation time
is not dependent on the length of sentence because we can forward and backward all
n-grams of all sentences in a minibatch at the same time. Therefore, the computation

time is more dependent on the gram size (in this case, the maximum gram size is 4).

Table 2.6: Computation time comparison between our PhraseTransformer and the original
Transformer on Atis dataset (K indicate thousands words processed per second).

Model Training Speed Inferring Speed
Transformer (ours) 8.0 K 15.7 K
PhraseTrans.sep,nr - 6.8 K (-15 %) 11.8 K (-25%)
PhraseTrans.crossg 5.2 K (-35 %) 10.6 K (-32%)
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Phrase Intergration

Finally, we observe the effectiveness of two PhraseTransformer architectures on two tasks
Semantic Parsing and Machine Translation. In the Semantic Parsing task (Table 2.4), the
results showed that the PhraseTrans.g.,n are more appropriate than PhraseTrans.cyossm -
On both MSParS and Atis datasets, the architecture PhraseTrans.g.,y achieves perfor-
mance better than PhraseTrans.c,.ssg in almost settings of gram sizes. In the Machine
Translation task (Table 2.5), the architecture PhraseTrans.cpossy achieved performance
better than PhraseTrans.g.,n architecture in all settings of gram sizes. We argue that
the reason comes from the characteristics of data in two tasks. In the Semantic Parsing
task, the vocabulary of the dataset is small for a special domain (Geo, Atis) or in a set of
limited question types (MSParS), and the content of these datasets is the combination of
sub-conditions together or paraphrasing them. Therefore, the phrase representation and
relation between phrases play an important role to generate the correct logical form. In
the Machine Translation task, the content of the dataset is more general with a vocab-
ulary larger than the Semantic Parsing dataset. By replacing the word representations
with phrase representations, some important information of single words is missed. In
PhraseTrans.c,.ssy architecture, we keep all original representations of single words and
append phrase representations as a context that improves the meaning representation of
each word.

In addition, we conducted experiments to study the affect of different methods incor-
porating local context information into word representation. For mathematical, Equa-

tion 2.11 is replaced by following formulas:

q., k., v, = F(q;, Phrase(q;,n;)), F(k;, Phrase(k;,n;)), F(v;, Phrase(v;, n;))  (2.20)

where F is the incorporating function chosen from {Min, Max, Average}. After that,
new query, key, value vectors is forwarded to the next layer. We showed the result of this
ablation study on Atis dev set in Table 2.7. The result showed that with all different

incorporating methods, PhraseTransfomrer is better when compared with the original
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Transformer (87.17% sentence accuracy). Besides, the results of different incorporating

methods are quite competitive together.

Table 2.7: Variants model using the different methods incorporating local context into
word representation on Atis dev set.

Model Sent. Accuracy
PhraseTrans.sepn 89.21
PhraseTrans.gcpm (F = Average) 88.59
PhraseTrans.gepn (F = Max) 88.39
PhraseTrans.gepm (F = Min) 88.59

2.5 Result Analysis

2.5.1 Examples of Improvement

We analyze examples that our PhraseTransformer improved over the original Transformer
(Table 2.8). The improvement can be grouped into three types of errors: (1) 46.2% the
errors are caused by Transformer confusing the role of entities name such as “ci2” and
“ci0” (row 1 on Table 2.8); (2) 27.3% missing semantic components such as “(round_trip
$0)” (row 2); (3) 27.3% wrong in predicate name of logic component (row 3). In addition,
we also show an incorrect prediction of both models in row 4. In this sample, the Phrase-
Transformer improved from, to, and round_trip sub-expressions, which are confused by
Transformer. Although there is still a different sub-expression (fare) with the gold logic,
the meaning of both is the same. These results proved that the superior of the Phrase-
Transformer over the Transformer is due to the improvement of the capacity of capturing

local context information as well as the meaning relation between phrases.

2.5.2 Length Analysis

To analyze the impact of input sequence length on the performance of Transformer and
PhraseTransformer, following the previous works [Bahdanau et al., 2015, Xu et al., 2020b]

we conducted the experiment by splitting and evaluating the test sets of the IWSLT14
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Table 2.8: Examples that frequent incorrect predictions of Transformer, are improved
in PhraseTransformer on the Atis test set. The red tokens indicate the wrong token
predictions of the semantic parser. The notations (v, X) indicate the correct and incorrect
prediction at the sentence level, respectively.

Sentence what are the flight from cil to ci2 that stop in ci0

Gold LF ( lambda $0 e ( and ( flight $0 ) ( from $0 cil ) ( to $0 ci2 ) ( stop
$0 ¢i0 ) ) )

Transformer X (lambda $0 e (‘and ( flight $0 ) ( from $0 cil ) ( to $0 ci0 ) ( stop
$0 ¢i2)))

PhraseTransformer v (lambda $0 e ( and ( flight $0 ) ( from $0 cil ) ( to $0 ci2 ) ( stop
$0 ci0 ) ) )

Sentence give me the cheapest round trip flight from ci0 to cil around mn0
dn0

Gold LF (‘argmin $0 (‘and ( flight $0 ) ... ( month $0 mn0 ) ( round_trip $0
) ) ( fare $0 ) )

Transformer X (argmin 30 ( and ( flight $0 ) ... ( month $0 mn0 ) ) ( fare $0 ) )

PhraseTransformer v ( argmin 30 ( and ( flight $0 ) ... ( month $0 mn0 ) ( round_trip
$0 ) ) ( fare $0 ) )

Sentence show me the airport servic by al0

Gold LF ( lambda $0 e (‘and ( airport $0 ) ( services al0 $0 ) ) )

Transformer X (lambda $0 e ( and ( airport $0 ) (airline $0 al0 ) ) )

PhraseTransformer —« ( lambda $0 e ( and ( airport $0 ) ( services al0 $0 ) ) )

Sentence give me the flight and fare for a trip to ci0 from cil on da0

Gold LF ( lambda $0 e ( exists $1 ( and ( flight $0 ) ( from $0 cil ) ( to $0
ci0 ) (day $0 da0 ) ( fare $0 $1 ) ) ) )

Transformer X (lambda 30 e ( exists $1 (‘and ( flight $0 ) ( round trip $0 ) ( from
$0 ¢i0 ) (to $0 cil ) (day $0 da0 ) (= (fare $0 ) $1) ) ))

PhraseTransformer X

( lambda $0 e ( exists $1 (and ( flight $0 ) ( from $0 cil ) ( to
$1

$0 ci0 ) (day $0 da0 ) ( = (fare $0 ) $1))))
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de-en and Atis datasets into groups of different lengths (Figures 2.7, 2.8). These results

show that our proposed model beat the vanilla Transformer in all groups of sentence

length, which show our model generalization abilities. In addition, the improvement

of the proposed model is more clearly in the long sentences on both Semantic Parsing

and Machine Translation tasks. The PhraseTransformer architecture work effectively in

all groups of sentence length because the meaning representations of single words are

improved by the phrase representations as local context information.

38+
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Figure 2.7: BLEU scores of PhraseTransformer (best model on dev set) and the Trans-
former on IWSLT14 de-en test set with respect to the source sentence length. The number
of samples in each sub-set is 3176, 2499, 760, 228 and 87, respectively.
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Figure 2.8: Performance comparison of PhraseTransformer and the Transformer on Atis
test set with respect to the source sentence length. The number of samples in each sub-set
is 44, 236, 130, and 38, respectively.
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2.5.3 Self-Awareness

Attention Alignment We inspect the information learned in PhraseTransformer in

Attention layers (Figure 2.9). We observe that PhraseTransformer could represent at-
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Figure 2.9: Heatmap visualization of Encoder-Decoder Attention of the original Trans-
former (left) and PhraseTransformer (right). Considering one row, the value in each
column is corresponding to the rate of the attention of token in LF to the word in the
sentence.

tention information more clearly than Transformer. In both two models, the token
ground_transport in LF is aligned correctly to phrase “ground transport” in the sentence
(red alignments). In PhraseTransformer, tokens to_city, from_airport are also correctly
aligned to the corresponding words “ap0”, “ci0” in the sentence (green and yellow align-
ments) because these word vectors probable to capture local context better than Trans-
former. Besides, all tokens decoded by PhraseTransformer paid the same attention to
other words that is not key information, such as “is there”, “into”, “citi”. These evi-
dences is positive signals showing that the self-awareness of PhraseTransformer is better

than Transformer.
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Meaning Phrase In this experiment, we explore the natural language understanding
capacity of our PhraseTransformer. We use the Principal Component Analysis (PCA)
method to visualize the similarity of phrases in PhraseTransformer best setting on Atis
dataset (Figure 2.10) by using hidden state of heads 7, and 8 (the vector [g%; q5] where
q; from Equation 2.11). We also highlight 30 closest points (the distance using Cosine
distance) to the particular phrase carrying key information such as “round trip”, “from cil
to ci0”. Besides, we also visualize the vector of words ([g;; gg] where g, from Equation 2.1)
to show the lacked local context information of word vectors in the original Transformer

in Figure 2.11b.
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(b) Phrases closest to “from cil to ci0”

A (355, 2) could i have
4 (356, 2) could i have
(364, 2) tell me again
(408, 2) find me all
(377, 2) pleas list all
(283, 2) show me a

oL -10 (151, 2) tell me all
B Phrasgs ) 4 (261, 2) pleas list all
Phrases closest to “round trip" ~ (346, 2) pleas list all
Phrases closest to "list the" 1 4 (376, 2) pleas list all
Phrases closest to "from cil to ci0" & (382, 2) pleas list all

Phrases closest to "from ciO to cil" -20 abd A (318, 2) tell me all

¢ Phrases closest to "about the ground transport" K‘: A (279, 2) find me all
Phrases closest to "show me all" —25 P (400, 2) show me all
A (330, 2) show me all

-6 -4 -2 [ 2 4 6
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(a) All phrases (c) Phrases closest to “show me all”

Figure 2.10: Figure a draws the representing vector of phrases in Selft-Attention layer of
PhraseTransformer using PCA on Atis test set. Figures b, ¢ are zoomed-in view of the
blue and red clusters. The labels are annotated for each point show the information of
the phrase corresponding to point following the template (sentence_id, pharse_position)
phrase_content.

Considering two frequent phrases “from cil to c¢i0” and “from ci0 to cil” of Atis dataset
on PhraseTransformer (Figure 2.10a), the phrases closest to two phrases concentrate on
blue and cyan clusters. These two clusters are closest to each other but separate without

overlapping. Compare with the original Transformer (Figure 2.11a), these clusters are
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& - (172, 0) [show]
N A (443, 2) is there [ground]
(365, 2) i want [a]
o A (221, 3) find flight from [cil]
4 (307, 9) ap0 into ciO [citi]
(254, 2) list seat [capac]
B A (253, 2) list flight [from]

-6.0 -5.5 -5.0 -45 -a.0 -35 -3.0

(a) All words (c) Words closest to “all” in “show me all”

Figure 2.11: Figure a draws the representing vector of words in Selft-Attention layer of
the original Transformer using PCA on Atis test set. Figures b, ¢ are zoomed-in view of
the blue and cyan clusters. The labels are annotated for each point in two figures show
the information of the word corresponding to point following the template (sentence_id,
word_position) phrase_contezt [considering_word).

overlapped together. This feature helps the decoder decode different semantic components
such as (from $0 c¢i0) (to § 0 ci1) and (from $0 ci1) (to $0 ci0). We argue that, this
is the useful sequence characteristic that LSTM architecture contribute to the original
Transformer architecture. In other aspect, Figure 2.10b shows that the phrase “from ci1
to ci0” is represented by the similar vectors in various contexts as well as positions. For

example, this phrase in Atis data sentence 175 “show me nonstop flight from cil to ci0”

has the same meaning in sentence 339 “a flight from cil to ci0 arriv between ti0 and ti1”.

In Figure 2.10c, there are many different phrases having the same meaning that the
model finds out, such as “could i have”, “tell me again”, “find me all” or the phrases
closest to “list the” and “show me all” in Figure 2.10a. These phrases do not contain
query information, which is the robust feature of human natural language, this is an

evidence that the model can learn complicated characteristics of natural language.
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2.5.4 Encoder Self Attention

Figure 2.12 shows the difference between heads in Self-Attention Encoder of PhraseTrans-
former using PhraseTransformer architecture. The self-attention in heads that do not use

n_gramLSTM is more incoherent than other heads. For example, in head 1, almost words
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dnO -
arriv -
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tio -

Figure 2.12: Heatmap visualization of Attention. This figure shows Self-Attention in 8
heads of the last PhraseTransformer Encoder layer. Two blue rectangles are zoomed-in
separately of head 1 (not use n_gramLSTM), head 3 (use 2_gramLSTM).

in query focus on “ci1” and the other words are paid attention is key information words
such as “da0”, “arriv”, “ti0” (the green rectangles). From head 3 to 8, the attention fo-
cuses on the separated clusters, which shows that model learned the dependencies of the
phrases instead of the single words. On these heads, the attentions are usually between
groups important words such as “flight” with “cil on”, “da0 nm0 dn0 arriv” with “nm0

dn0” (the orange rectangles).
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2.6 Conclusion

In this work, we proposed a novel model named PhraseTransformer that can improve the
performance of the Transformer in semantic parsing task and NMT task. We enhance
Transformer Encoder to improve the representing ability of the detailed meaning of a
sentence based on learning the phrase dependencies. In the methods using Neural Net-
work, this model obtains SOTA results on the Atis and MSParS datasets and achieves a
competitive result with the SOTA in other datasets. We also conducted experiments to
compare with Transformer and show the improvement of self-attention in PhraseTrans-
former architecture. In future work, we would like to extract more information about the
relationship between words or phrases leveraging this architecture and investigate on how
to inject prior knowledge to improve it. We believe that this architecture can be widely
applied in many problems using sequence to sequence models such as neural machine

translation and abstract text summarization.
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Chapter 3

Class Imbalance in Spoken Language

Understanding

In the semantic parsing field, Spoken Language Understanding (SLU) is one of the tasks
widely applied in realistic applications in recent years. In the success of the pre-trained
BERT model, NLU is addressed by Intent Classification and Slot Filling task with sig-
nificant improvement performance. However, classed imbalance problem in NLU has not
been carefully investigated, while this problem in Semantic Parsing datasets is frequent.
Therefore, this work focuses on diminishing this problem. We proposed a BERT-based
architecture named JointBERT Classify Anonymous Entity (JointBERT-CAE) that im-
proves the performance of the system on three Semantic Parsing datasets ATIS, Snips,
ATIS Vietnamese, and a well-known Named Entity Recognize (NER) dataset CoNLL2003.
In JointBERT-CAE architecture, we use multitask joint-learning to split conventional Slot
Filling task into two sub-task, detect Anonymous Entity by Sequence tagging and Classify
recognized anonymous entities tasks. The experimental results show the solid improve-
ment of Joint BERT-CAE when compared with BERT on all datasets, as well as the wide

applicable capacity to other NLP tasks using the Sequence Tagging technique.
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3.1 Introduction

Nowadays, with the rapid development of virtual assistants and dialog systems such as
Google Home, Amazon Alexa, numerous researches investigate the SLU task which is the
core component of smart speakers. The SLU task is typically addressed by two essential
sub-tasks that include Intent Prediction (ID) and Slot Filling (SF) tasks [Tur and De Mori,
2011]. Recently, the impressive improvements [Chen et al., 2019, Castellucci et al., 2019b]
are largely based on the success of pre-trained language models with little fine-tuning (e.g.
BERT [Devlin et al., 2019a]).

However, most previous works have not considered the class imbalance problem in
the Slot Filling task. Based on our primary analysis about the distribution of entity
types in two well-known SLU datasets: Snips [Coucke et al., 2018] and ATIS [Hemphill
et al., 1990] (Figure 3.1), we found that the class imbalance problem in these datasets

is highly critical, especial on ATIS. Indeed, the target of the SF task is to extract slot
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Figure 3.1: Distribution of Slot classes in ATIS (top) and Snips (bottom) datasets. For
the space limitation, some Slot classes in ATIS are ignored. In the graph, x, y denotes
the Slot class name and the number of instances.
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information that usually is the text span in the input natural sentence. Similar to the
Named Entity Recognition (NER) task in Natural Language Processing (NLP), this task
is solved by sequence labeling technique with BIO schema [Wang et al., 2018, Chen et al.,
2019, Castellucci et al., 2019b, Qin et al., 2021b]. In the NER area, the class imbalance
problem is also investigated by previous works [Wang et al., 2021, Grancharova et al.,
2020]. In the SLU task, given a sentence, the required output is the intent and slots
information of the sentence. With each kind of intent, the type of slot information may
differ, therefore, the number of slot information types is ordinarily high. For example,
there are 79 different Slot types in ATIS. Besides, not only the imbalance among classes
of entities but also the imbalance between positive and negative words is also important.
In detail, there is a small number is positive words that are inside entity names, while
there is a large number of negative words which are outside entity span. Both kinds of
imbalance affect the performance of the SF task as well as the overall system [Grancharova
et al., 2020].

The previous works [Grancharova et al., 2020, Wang et al., 2021, Li et al., 2020a]
related to the class imbalance almost show the solutions on the NER task. [Grancharova
et al., 2020] proposed a re-sampling data method to diminish this problem by duplicating
the samples of less occurrence class. This method is proven to work well on Stockholm
EPR PHI Corpus [Grancharova et al., 2020] which has the most common class larger 24
times than the smallest class. However, the authors choose the threshold of oversampling
size manually without explanation. Besides, in the Semantic Parsing task, especially on
Atis, the most common class is larger 400 times than the smallest class, which leads to
the number of oversampling that might be larger than the size of the original dataset.
Recently, [Wang et al., 2021, Li et al., 2020a] proposed the approaches based on Machine
Reading Comprehension-based (MRC) to solve the NER task. These works replace each
class label with its natural description and pair it with the original sentence to make the
input of the MRC model for entity position detection. However, this approach increases
the data training size by the number of entity classes (|C|) times [Wang et al., 2021].

While the number of entity classes in Semantic Parsing datasets is a large number (e.g.
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the number of entity classes of ATIS is 79). This characteristic is the main factor that
makes difference between the NER and the Slot Filling tasks in SLU.

In this work, we introduce a mechanism named Classify Anonymous Entity (CAE) in-
spired from the previous works using MRC-based architecture [Wang et al., 2021, Li et al.,
2020a] to deal with Slot Filling in SLU task. In our proposed mechanism, we also split
the original entity recognition (or slot detection) process into two sub-tasks (Figure 3.2):
determine the span of the entity or slot information as an anonymous entity, and classify

the recognized anonymous entities into the related class. However, the main difference
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Figure 3.2: Comparison of SLU task using Joint ID and SF task between original approach
(left) and our proposed approach using CAE mechanism (right).

between our mechanism and previous works using MRC-based architecture is that the
span entity detection and classify entity are done by sequence tagging architecture. In
our method, it is unnecessary to expand artificial samples in the training process. Besides,
the proposed mechanism diminishes the class imbalance between entity classes with the
outside entity (0) class. More detail, we design a new entity class called Object for span
entity recognition and replace all original entity classes labels by new entity Object label.
For example, B-PER, B-0RG labels are replaced by B-0bject label, and apply by similar
way to the I-* labels. After that, each anonymous entity is classified into the related

entity class in the second step.

Class-imbalance Measuring. Follow the information theory [Shannon, 2001], Entropy
(H) is the measure of uncertainty of a random variable or the amount of information
required to describe a variable. Therefore, we use the Entropy measurement to compute

the balance degree of the slots classes that classifiers need to process in the original

44



approach and our approach using CAE mechanism.

k

1 C; C;
balance degree = “Toalh) * Z ElOg(E) (3.1)

where k is the slots class number, n is the number of example given in whole dataset, ¢;
is the number examples of slot class i’ in the dataset. For example, in the best balancing
case, the slot classes have the same number of example (¢; = n/k examples), balance degree
is 1; in the worst imbalance case, the number of classes is 1 (k = 1), balance degree is 0.
More specifically, we show the slot classes distribution and balance degree in Figure 3.3 in
the original approach and the approach using the CAE mechanism. In our mechanism,
the first classifier only deals with three classes to detect the anonymous entity span, so
the balance degree is high with 0.76 scores; the second classifier only considers to begin
of slot classes B—* (skip outside entity class - 0 and inside entity class I-*) so the balance
degree is also improved with 0.62 scores. Therefore, our mechanism can diminish the slots

class imbalance in the Slot Filling sub-task of the SLU system.

o

fromloc.city_nan
oc.city_name

l-object v

(a) Original slot distribution, | (b) Slot distribution of two classifier in CAE mechanism
balance degree is 0.38 with balance degrees are 0.76 and 0.62, respectively.

" I-toloc.city_name
B-fromloc.city_name I-fromloc.city hame .
B-toloc.city_name B-object

Figure 3.3: Comparison of slot class distribution between original approach (Figure 3.3a)
and our approach using CAE mechanism in Atis dataset (Figure 3.3b).

Briefly, our contributions are summarized as follows.

e We propose a simple yet effective mechanism, CAE, to handle the class imbalance

problem in the Slot Filling task of SLU as well as the NER task.

e Our experimental results show that our proposed model improves the performance

of the Slot Filling task using the F1 score leads to improve performance of the
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overall system on two Semantic Parsing datasets Snips, ATIS, and well-known NER

dataset, CoNLL 2003, compared with the original approach.

e The proposed model achieves new SOTA performance on ATIS Vietnamese dataset

[Dao et al., 2021] with a 1.4 F1 score improvement.

3.2 Related Work

3.2.1 SLU task

The SLU task using the Deep learning model has been attracted by numerous works for a
long time [Xu and Sarikaya, 2013, Wang et al., 2018, Chen et al., 2019, Castellucci et al.,
2019b, Qin et al., 2021b, 2020, He et al., 2021, Qin et al., 2021a]. In the first development
period of this task, two sub-tasks ID and SF are typically addressed by Convolutions
Neural Network (CNN) [Xu and Sarikaya, 2013] and Long Short-Term Memory (LSTM)
Network [Ravuri and Stolcke, 2015, Wang et al., 2018]. In the success of pre-trained
language using the Self-Attentive model [Vaswani et al., 2017a, Devlin et al., 2019a] and
two-stage training fashion in the last few years, the performance of the SLU system is
substantially improved in many recent works [Chen et al., 2019, Castellucci et al., 2019b].
Together with the strength of pre-trained language models, many approaches put much
more effort into improving the overall systems. In particular, [He et al., 2021] focuses on
incorporating external knowledge (e.g. WordNet) to enhance the performance of SF sub-
task, especially boosting out-of-vocab words recognition. [Goo et al., 2018, Li et al., 2018,
Qin et al., 2019, 2020] introduces architectures targeted to intent-slot interaction, and [Qin
et al., 2020] shows the advancement on the SLU multi-intent task. Besides, [Qin et al.,
2021a] also focuses on co-interaction between intent and slot information. This work is
inspired by vanilla Transformer with intent while slot information is considered as a query
and key component in the self-attention mechanism. Difference from the previous works,
our work focus on the class imbalance of the Slot Filling task. To our best knowledge, we

are the first to investigate this problem in the SLU task.
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3.2.2 Class Imbalance in Sequence Labeling

Based on the primary analysis shown in the introduction section, we found that the
imbalance class in the Slot Filling of SLU is quite critical. To deal with this problem,
there are lots of approaches in previous works, especially in the NER task [Li et al.,
2020b,a, Grancharova et al., 2020]. [Li et al., 2020b] introduces a dynamic adjusted-
weight loss function that reflects the importance of easy-negative examples in training
data. [Grancharova et al., 2020] proposes methods for re-sampling training data based
on the distribution of entity classes, especially oversampling approach. The works [Wang
et al., 2021, Li et al., 2020a] focus on adapting MRC architecture to deal with the NER
task. By this approach, the model can ignore the imbalance between positive (inside
entity) and negative (outside entity) words, however, it is a bias into imbalance among
entity classes and increases the number of training examples. In our proposed model using
the CAE mechanism, the imbalance among positive and negative words is diminished by
combining all original entity classes into a special object entity class (Object). Besides,
this mechanism in technical also abates the imbalance among entity classes by removing
meta labels (B-*, I-*) in each entity class. Therefore, the number of training samples has

remained and the imbalance problem is partly addressed by our delicate consideration.

3.3 Methodology

In this section, we describe the detail of the competitive baselines, the oversampling
mechanism [Grancharova et al., 2020] and our proposed model using CAE mechanism

incorporating with Conditional Random Field (CRF) layer.

3.3.1 Baseline Model

BERT model. The architecture of this model is the combination of multiple Trans-
former Encoders [Vaswani et al., 2017a] layers. In each Encoder layer, the major com-

ponent to extract and digest linguistic features is the Self-Attention layer that learns the

47



long-range dependencies between the pairs of words in a sentence. Given the input is
the natural sentence (s = {wk}|15| where |s| is the number of words'), by using BERT
model, we get the hidden vector representation of each word (hy). For the classification
task, the authors Devlin et al. [2019a] introduce a simple method adding a special token
(/CLS]) into the input sentence and using the hidden vector of this token for sentence

representation.
h[CLS] pord — BERT(s) (3.2)
where k is the word index in the sentence.

JointBERT model. We follow the previous work [Chen et al., 2019] to handle sub-
tasks Intent Detection (ID) and Slot Filling (SF) by joint learning all sub-tasks together.
For ID task, hidden vector of [CLS] token (hl“*) is forwarded to Dense layer to reduce

dimension and processed by a softmaz function to get intent probabilities.
y!'P = softmax(WIPhCLS 1 plD) (3.3)

where WP b'P is learnable parameters. For SF task, after we get the hidden vector of
words (h*"") encoded by BERT model, these vectors are also forwarded to Dense and

softmaz layers.
Y P = softmax(WF prord 4 1) (3.4)

where W5 b5 ig learnable parameters. Besides, if a word in the sentence is split into
sub-words (by the BERT Tokenizer module), only the first sub-word will be used for the
whole original word representation for Slot label prediction. Finally, for the joint training

process, the objective loss function is computed by the weighted sum of the Cross-Entropy?

'We use “word” to simplify, however, in the practice, it should be sub-words split by a BERT Tokenizer
module (e.g. WordPiece).
2Use mean reduction in implementation.
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losses of SF and ID sub-tasks.

|s|

L = CrossEntropy (y'?, y9'?) + \ x Z CrossEntropy (y; 7, yiSF) (3.5)
k=1

where A is the hyper-parameters to adjust the strength of SF loss; y9* is the gold labels

from SLU datasets.

3.3.2 Oversampled data

The result from the previous work [Grancharova et al., 2020] shows that oversampling
technique on NER tasks can improve the performance of the overall system for imbal-
anced datasets. The target of this mechanism is to duplicate the samples of minority
classes and endeavor the balance among entity classes in training data. To this end, we
construct a threshold r is the ratio of samples in minority entity classes (0 < r < 1) that
need to be reached when comparing with the largest entity class. After that, the sentences
that contained labels of minority classes are randomly selected until the ratio of all these

entity classes reaches the threshold 7.

3.3.3 Proposed model
Joint BERT-CAE model.

In this architecture, we use two different classifiers for the SF task (Figure 3.4). The first
one is used for anonymous entity span recognition while the second is for related entity
(slot) classification. Especially, the second classifier only considers positive words which
are in the recognized anonymous entity span. To this end, the second classifier does not
face the imbalance problem between positive (inside entity) and negative (outside entity)

words. For the ID task, we follow the baseline model architecture. Mathematically,
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Equation 3.4 is replaced by the following formulas:

yii! = softmax(W5FThwerd 4 b9 (3.6)

y£F2 —_ SoftmaX(WSFQhZuordEntity + bSF2) (37)

where W*, b* is learnable parameters; h*" ¥y is the hidden states of positive words
(the bold words in the example of Figure 3.4). Finally, the objective loss function is also
computed by combination of the weighted Cross-Entropy losses of SF and ID sub-tasks

for the joint training process.

s|
L = CrossEntropy (y'”, y?'") + A x <CrossEntr0py(ygF1, yIoth
1

i

+ fr X CrossEntropy(yfm,yism)) (3.8)

where y9* is the gold labels from SLU datasets; fi is the flag storing positive (fy = 1) or

negative (fy = 0) word information.
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Figure 3.4: JoinBERT-CAE model architecture using joint ID and SF sub-tasks incorpo-
rating our proposed mechanism (CAE).
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Conditional Random Field.

Many previous works show the use of CRF layer incorporating with neural network on
the top of model architecture to support sequence label tagging Lafferty et al. [2001], Ma
and Hovy [2016], Chen et al. [2019]. Therefore, it is potential to adapt this architecture
to our proposed model. We aim to utilize the strong relation between Intent and Slot
types, so our CRF layer is constructed to process Intent and the Slots (or entities) without
considering outside entity words. In detail, we treated Intent as a Slot class of special
token [CLS]. Difference from Chen et al. [2019], Dao et al. [2021], CRF layer in these

works only considers relations between Slot types without Intent information.

|s] s|

score(s,y) = Z(Weh;mwmty +b)[y:] + Z(Wt [Vis Yis1]) (3.9)
i=1 i=0
exp(score(s,y))

4 exp(score(s,y’)) (3.10)

p(yls) = 5

where yg,y,41 is additional start and end of Slot label; We b¢, Wt are the learnable
parameters for emission and transmission scores. By using CRF layer, the model is

trained to maximize the log-probability of gold Slot sequence labels.

Local Context Integration.

We aim to evaluate the contribution of local context to SLU tasks when using a pre-trained
language model, therefore, we study the effective way to inject phrase information into
it. Compared with the training process of PhraseTransformer architecture trained from
scratch, in this model, weights of Encoder are initialized from a pre-trained model. For
mitigating the catastrophic forgetting of previous knowledge, we only apply the local
context extraction layer on the top of the text Encoder component (e.g. BERT).

We use Phrase function (Equation 2.7) to extract local context features. Let define
n_gramy(s) = [hyord hyerd . hiord] is the procedure extracting n neighbor hidden

states of word index k given a sentence (s) (similar Equation 2.9). After that, we integrate

phrase features into word vector representation for context fusing. The main idea is to
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build up the attention scores of words with neighbor words and accumulate them to get a
new representations of words. Then, the original and new word features are concatenated

to achieve the final representation (h}):

¢ = Phrase({h? " n) (3.11)

1, = n_gramy(c) (3.12)

hle = softmaX(WQh}“wrd(Wklk)T) - WPhyord (3.13)
Vdy

hj, = (b cx; hy] (3.14)

where n is the hyper-parameter gram size or local context length, |s| is sentence length,
dy, is hidden size of word vector, W* is the learnable weights, [-;-] is the concatenation
method. Finally, the new hidden state of word index k (h},) is replaced for the original

word hidden state (h¥°"?) in Equation 3.4.

3.4 Experiments and Analysis

3.4.1 Datasets

We conducted experiments on three public benchmark SLU datasets, Snips [Coucke et al.,
2018], ATIS [Hemphill et al., 1990], Vietnamese ATIS [Dao et al., 2021]. Besides, to prove
the generalization of our proposed model, we also verify performance of our model on
CoNLL 2003 dataset for NER task [Tjong Kim Sang and De Meulder, 2003]. Snips dataset
contains 13,084 training samples, 700 testing samples, and 700 development samples. En-
glish ATIS and Vietnamese ATIS datasets are the same sizes with 4,478 training samples,
893 testing samples, and 500 development samples. With the Vietnamese ATIS dataset,
we use a word version having data is segmented [Hemphill et al., 1990]. CoNLIL2003
dataset contains 14,041 training samples, 3,453 testing samples, and 3,250 development
samples. Based on our analysis (Section 3.1), the SLU datasets have more entity (Slot)

classes than NER datasets, and the imbalanced class problem is more critical.

52



3.4.2 Experimental Settings

We aim to evaluate the performance of our proposed model, we organized experiments us-
ing JointBERT-CAE, Joint BERT-CAE using CRF layer on top, and baseline Joint BERT
(re-implemented) models on all datasets. Similar to previous work [Chen et al., 2019
on ATIS and Snips datasets, with pre-trained model, we used the BERT-based setting®
[Devlin et al., 2019a] with 12 Encoder layers, 12 heads, 768 hidden size. On ATIS Viet-
namese dataset, we also used the pre-trained Vietnamese model PhoBERT* [Nguyen and
Nguyen, 2020] with base setting. On CoNLL 2003 dataset, we used pre-trained BERT-
based setting version case sensitive® and pre-trained RoBERTa-Large [Liu et al., 2019]
model®. For fine-tuning hyper-parameters process, all experiments are conducted on the
dev set of each dataset wich the number of epochs is selected in {5, 10, 20,30}, the weight
of SF loss (1)) is selected in {0.2,0.3,0.4, 1.0}, init learning rate is selected in {2¢7°, 5e5}.
Besides, to compare with the previous approach using Oversampled training data [Gran-
charova et al., 2020] for imbalance entity class problem, we conducted experiments on
ATIS dataset by duplicating samples minority class with ratio threshold (r) is selected in
{0.01,0.02,0.03,0.04,0.05}. In these experiments, only training data is re-sampled while
the test and dev set is original data. For comparison with the previous works, we use
three common metrics to evaluate our experiments: Intent accuracy, Slot F1 score (entity

level), and Sentence Frame accuracy.

3.4.3 Experimental Results
Main Results

We show the experimental results of our proposed models on three SLU datasets in Ta-
bles 3.1, 3.2, and NER CoNLL 2003 dataset in Table 3.3. To overcome the limits related

to the experimental environments and libraries, we re-implemented the JointBERT as

3Downloaded from https://huggingface.co/bert-base-uncased
4Downloaded from https://huggingface.co/vinai/phobert-base
®Downloaded from https://huggingface.co/bert-base-cased
6Downloaded from https://huggingface.co/roberta-large
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our baseline system. Firstly, we found that the Slot F1 scores of our proposed model
Joint BERT-CAE on three datasets achieve SOTA performance. Through comparison
with our baseline, it increases 0.4 points on Snips, 0.3 points on ATIS, and 0.6 points on
Vietnamese ATIS. These results proved that our proposed model using the CAE mecha-
nism works effectively while the model size almost does not change. Therefore, it boosts
the performance of the overall system in Sentence Frame Accuracy score, especially on
ATIS, and Vietnamese ATIS datasets. In the comparison with the previous works on the
Sentence accuracy metric, the JointBERT-CAE model improves 0.3 points on ATIS, 1.6
points on ATIS Vietnamese, and promising results on Snips. By using the CRF layer
on the top of the pre-trained model, the results are slightly decreased, which is similar
to the result shown in previous works [Chen et al., 2019, Dao et al., 2021]. We argue
that joint learning using the pre-trained model is powerful enough in learning the relation
between Intent and Slot information. Therefore, the CRF layer does not show a clear

improvement.

Table 3.1: Result of our proposed models on the test set of two SLU datasets: Snips and
ATIS . The bottom part of the table presents the results of experiments conducted in this
work.

Snips ATIS

Model Intent Slot Sent Intent Slot Sent

BERT-Joint [Castellucci et al., 2019a]  99.0  96.2 91.6  97.8  95.7 88.2

JointBERT [Chen et al., 2019] 98.6  97.0 9238 97.5 96.1 88.2
Stack-propagation [Qin et al., 2019] 99.0 97.0 92.9 97.5 96.1 88.6
JointBERT (ours) 98.6 96.6 92.0 97.4 95.8 &7.6
JointBERT-CAE 98.3 97.0 926 97.2 96.3 88.9
JointBERT-CAE +CRF 98.3 96.9 92.7 97.5 96.0 884
JointBERT-CAE +phrase 98.4 96.9 924 97.8 96.0 &88.2

Local Context integration

We also conducted experiments for integrating local context by phrase features into a

pre-trained BERT model using the CAE mechanism. The Slot F1 scores on the dev set of
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Table 3.2: Result of our proposed models on the test set of ATIS Vietnamese dataset.
The bottom part of the table presents the results of experiments conducted in this work.

ATIS (vietnamese)
Intent Slot Sent

JointIDSF [Dao et al., 2021]  97.6 95.0 86.3

Model

JointBERT (ours) 97.7 949 86.5
JointBERT-CAE 97.7  95.5 87.9
JointBERT-CAE +CRF 97.8 954 87.6
Joint BERT-CAE +phrase 97.4 95.4 87.0

ATIS are depicted in Figure 3.5. This result showed that although the phrase mechanism
slightly improves Joint BERT using the CAE mechanism, this mechanism helps the pre-
trained model to converge earlier. The results on the test set of three SLU datasets

(Tables 3.1, 3.2) also show the competitive performance when integrating the phrase

mechanism.
Slot F1
98 1
97 | A —— JointBERT-CAE +phrase
—— Joint BERT-CAE
JointBERT (ours)
96 |

900 300 60 a0 (00 900 1400 {600 1200 500 900 900 06 920 Step

Figure 3.5: Slot F1 scores comparison between JointBERT-CAE model using phrase
mechanism with baseline model on dev set of ATIS dataset.

Sequence Labeling task

Besides, we conducted extensive experiments in the NER task to inspect the generalize
of our proposed model. We show the results of BERT architecture using our proposed
mechanism, CAE, on dev set (Figure 3.6) and test set (Table 3.3) of CoNLL 2003 dataset.

In these experiments, we constructed BERT-CAE architecture by removing the compo-
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nents to learn Intent information in Joint BERT-CAE architecture (Equation 3.3), and the
loss of intent detection in Equation 3.8. The results on the dev set show that our CAE
mechanism clearly improves the original BERT in the same setting and works effectively
when incorporated with the CRF layer. The results on test set also show that our pro-
posed mechanism improves the performance of baseline system BERT with 0.6 F'1 scores,
and 0.8 F1 scores when incorporating with CRF layer. Compared with the public result
on this dataset, although we used the same setting described in [Devlin et al., 2019a],
our baseline is lower, we argue that the reason relates to the pre-processing data and
experimental libraries. Besides, we also conducted experiments using a pre-trained model
RoBERTa-Large [Liu et al., 2019] for this task (Table 3.3). By using this pre-trained
model, our proposed mechanism CAE increases 0.2 F1 scores when compared with the
baseline model using RoBERTa large and boosts 0.3 F1 scores when incorporating with
CRF layer. These results proved the solid improvement of our CAE mechanism on the

different pre-trained models.

F1 ~+ BERT-CAE + BERT-CAE +CRF
I BERT (ours)
96 | s S *
///.F’
/”/‘///
95 | ol
o4 1
5 9 3 AT av 95 29 3 30 &Y Siep(x100)

Figure 3.6: Performance comparison between our proposed mechanism (CAE) using
BERT-Base model and baseline models (ours re-implemented) on dev set of CoNLL 2003
data.

Oversampled data

To evaluate our proposed approach with the previous approach [Grancharova et al., 2020]
relating to the Imbalanced Entity Class problem, we re-implemented the method using

oversampling training data for comparison. Figure 3.7 shows the Sentence Frame Accu-
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Table 3.3: Performance comparison of the baseline models with our proposed model on
the CoNLL 2003 test set.

Model

BERT-Base [Devlin et al., 2019a]  92.4
BERT-Large [Devlin et al., 2019a]  92.8

BERT-Base (ours) 91.4
BERT-Base-CAE+4CRF 92.2
BERT-Base-CAE 92.0
" RoBERTa-Large (ours) 92.6
RoBERTa-Large-CAE4+CRF 92.9
RoBERTa-Large-CAE 92.8
Sent. Acc. (dev) - o- JointBERT-CAE
94 | . . . P . JointBERT-CAE +CRF

—— JointBERT +oversampled

93 | e A\‘\‘/A JointBERT (ours)

o O | 002 | R | Q.QA‘} P | r

89 +
- ————- *~------ - ————- - - )
88 | A\A—A/‘\A
Q.QX} Q.Q{L} Q.Q?’} ().QA‘} 0.06} Oversampling Ratio (r)

Figure 3.7: Performance comparison on the dev set (above) and test set (bellow) of ATIS
dataset, among our proposed models (BERT-CAE), baseline model (JointBERT), and
baseline model using Oversampling data with respect to oversampling ratio threshold.

racy of our proposed models compared with the baseline model (JointBERT) trained on
oversampling training data with different ratio thresholds (r) on both dev set and test
set of ATIS dataset. These results show that the re-sampling method can improve the
baseline model in the small margin, however, the improvement is not solid, especially on
the dev set. By using threshold » = 0.01, the rate of duplicated samples is 18.8%, and
increase to 54.3% with » = 0.02. Therefore, the distribution in original data is hugely
different when applying this approach, especially in strong imbalanced data like ATIS.
Meanwhile, our proposed models using the CAE mechanism do not increase the size of

the training dataset and still beat the re-sampling method.
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3.4.4 Analysis

We conducted statistical data analysis to inspect the F1 improvement among Slot classes
of our proposed model JointBERT-CAE compared with baseline model JointBERT, as
shown in Figure 3.8. We found that the advancement of the JointBERT-CAE model
is shown in both minority and majority classes. These results proved the generalize of
the CAE mechanism. Especially, on the Snips dataset, the baseline model is typically

inaccuracy in minority classes, therefore, the Joint BERT-CAE showed a strong advance

in these classes.

arrive_date.date_relative A I poi - ]
return_date.day_name - |
N iod o b ]
period_of day { — track
fromloc.airport_code 4 - album - |
darrivef(tjime-PZriodfolffday 1 - served_dish - [
epart_date.today_relative A 1 ]
flight_number - - cuisine —
arrive_date.day_name - ] restaurant_name - ]
fromloc.airport_name - 1 condition_description - NN
i 4 - )
fare_basis_code entity_name - —
fromloc.state_name - | -
depart_date.date_relative - [ ] country |
airport_name A - movie_name - ]
fromloc.state_code A |
- state A ]
flight_mod _— )
toloc.state_name A ] city - I
aircraft_code A L spatial_relation |
arriveft?me.time b 1 music_item - B
airline_code | .
city_name - [] artist 1 n
depart_time.time 1 1 timeRange - |
g airlir&e_rf]adme 1 | playlist - ™
epart_time.period_of_day - | ) |
depart_date.day_name - | object_name —
toloc.city_name - \ object_type L
-0.2 0.0 0.2 0.4 0.6 0.00 0.05 0.10

Figure 3.8: Distribution of Slot F1 improvement between JointBERT-CAE comparing
with JointBERT in the test set of ATIS (left) and Snips (right) datasets. The order of
Slot classes is sorted from minority to majority class. Green bars show the improvements
of the JointBERT-CAE model, and the decreases are shown in red bars.

3.5 Conclusion

In this paper, we introduced a novel architecture Joint BERT-CAE that work effectively on
SLU datasets having highly imbalanced Slot class problem. We conducted the experiments
and showed solid improvements on three SLU datasets Snips, ATIS, and Vietnamese ATIS
as well as on a NER dataset CoNLL 2003. Especially, the performance of our model leads

the SOTA result on ATIS Vietnamese dataset with a substantial margin compared with
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previous works. Besides, the analyses statistical the output data on two well-known
datasets Snips and ATIS confirmed the generalization of our model. These results also
proved that the CAE mechanism is the potential to apply to sequence labeling tasks in
NLP (e.g. POS task). In future works, we would like to incorporate the CAE mechanism
into various Neural Network architectures to increase the performance of the SLU model as
well as the models using the Sequence Labeling technique. We believe that our proposed

model can be widely applied in the NLP community and real-world applications.

59



Chapter 4

Semantic Parsing in the Legal

Domain

General Data Protection Regulation (GDPR) is an important framework for data protec-
tion that applies to all European Union countries. Recently, DAPRECO knowledge base
(KB) which is a repository of if-then rules written in LegalRuleML as a formal logic rep-
resentation of GDPR has been introduced to assist compliance checking. DAPRECO KB
is, however, constructed manually and the current version does not cover all the articles in
GDPR. Looking for an automated method, we present our machine translation approach
to obtain a semantic parser translating the regulations in GDPR to their logic represen-
tation on DAPRECO KB. We also propose a new version of GDPR Semantic Parsing
data by splitting each complex regulation into simple subparagraph-like units and re-
annotating them based on published data from DAPRECO project. Besides, to improve
the performance of our semantic parser, we propose two mechanisms: Sub-expression in-
tersection and PRESEG. The former deals with the problem of duplicate sub-expressions
while the latter distills knowledge from pre-trained language model BERT. Using these
mechanisms, our semantic parser obtained a performance of 60.49% F1 in sub-expression

level, which outperforms the baseline model by 5.68%.
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4.1 Introduction

General Data Protection Regulation® is the regulation on the protection of EU citizens
regarding the processing of personal data on the free flow within the European Union
and on the transfer to third countries and international organizations. GDPR introduces
a number of obligations that public administrations, enterprises and non-profit organiza-
tions need to observe when processing personal data. Because manual legal compliance
checking is a time-consuming task, there has been an increasing interest in research on
legal reasoning tools to automate the check.

When GDPR was first issued, there is a lack of logic representation for this document
that can suffice to automate legal reasoning. Filling that lack, the DAPRECO knowledge
base [Robaldo et al., 2020] which is a repository of if-then rules representing the regula-
tions in GDPR has been introduced. DAPRECO KB uses the Privacy Ontology (PrOnto)
[Palmirani et al., 2018] which models legal concepts in GDPR and also provides additional
concepts which are needed to represent the semantics of the legal rules in GDPR. Fol-
lowing the Input/Output framework for legal reasoning [Sun and van der Torre, 2014],
an ordinary legal rule in DAPRECO KB is usually represented by one constitutive norm
(Entailment) and one regulative norm (Obligation or Permission) while a complex rule
may have more norms of one or both types. The current version of DAPRECO KB is
constructed manually and does not cover all articles in GDPR. This paper presents a
machine translation approach to build a semantic parser which can automatically convert
the regulations in GDPR to their corresponding logic representation on DAPRECO KB.

The challenge of constructing a semantic parser for logic representation on DAPRECO
KB comes from its constraints in the legal domain. For example, for reasoning, the explicit
representation of time in logic terms is a mandatory requirement in almost legal terms
[Robaldo et al., 2020]. Therefore, there are a majority of sub-expressions are duplicated
in DAPRECO KB logic for representing the conditions in GDPR statements.

It is difficult to map directly a complex GDPR rule into its original logic expression

thttps://gdpr-info.eu/
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GDPR Article 5, para1, | [OPligation: ( . .
point a ( prOnto:Controller :y :z ) & ( prOnto:DataSubject :w )& ( prOnto:fairness ' :ef :ep ) & (

el Dy ; prOnto:lawfulness ' :el :ep ) & ( prOnto:transparency ' :et :ep ) & ( rioOnto:and ' :a2 :ei :ec1
;;ggéggg’g;e:eﬁljggf;:ta :ec2 :ec3 :ed ) & ... & (rioOnto:cause ' :ec3 :em :et ) & ( rioOnto:RexistAtTime :a2 :2 )

Content: Personal data shall )

be - d lawfully - fairl Entailment: (
e processe awidlly , 1airty| ( prOnto:Controller :y :z ) & ( prOnto:DataSubject :w )& ( prOnto:fairness ' :ef :ep ) & (
and in a transparent manner

prOnto:lawfulness ' :el :ep ) & ( prOnto:transparency ' :et :ep ) & ( rioOnto:and ' :a2 :ei :ec1

in relation to the data subject | |.eco ec3 :ed ) & ... & ( rioOnto:cause ' :ec3 :em :et ) & ( rioOnto:Obliged :a2 :t2 1y )
( ‘lawfulness , fairness and )

transparency ’) ; full expression
& Logic reconstructing
Y Base: (( prOnto:Controller :y :z ) & ( prOnto:DataSubject :w )& ( prOnto:fairness ' :ef :ep ) & (
@—mromo:lawmlness ':el :ep ) & ( prOnto:transparency ' :et :ep ) & ( rioOnto:and ' :a2 :ei :ec1 :ec2
:ec3:ed ) &... & (rioOnto:cause ' :ec3 :em :et)) basic part
Basic model
Obligation: ( , ( rioOnto:RexistAtTime :a2 :t2))
i : i :Obli a2 2 ;

Detail model Entailment: (, ( rioOnto:Obliged :a2 :t2 1y ) ) detail part

Figure 4.1: Overview of Logic mapping GDPR on DAPRECO KB using sub-expression
intersection mechanism.

consisting of multiple logic formulae. To approach the challenging task, we split a com-
plex GDPR statement into simple legal rules and then build a model to generate logical
representation of these simpler rules, inspired by the research on Semantic Parsing and
Question Answering dealing with complex sentences [Min et al., 2019, Zhang et al., 2019].
As a result, we constructed two versions of the GDRP Semantic Parsing dataset. The
first version of the dataset (Original data) consisting of 275 samples is constructed from
the current version of the DAPRECO KB. One sample is a pair of a GDPR statement
and its logic expression. For example, the logic representation of Article 5, paragraph 1,
point a is a full expression (Figure 4.1) consisting of 2 logic formulae (Obligation and En-
tailment). Each logic formula is an if-then rule which is a combination of sub-expressions
(e.g., (prOnto:Controller :y :z) is a sub-expression). Similar to DAPRECO KB, a
complex GDPR statement in the Original data is represented by more than two logic
formulae and the number of these formulae can vary. To assist in solving the task of
mapping a complex GDPR rule into its logic expression, we constructed a second version
of dataset called Relaxation data. In this version, a complex sample is split into simple
subparagraph-like units.

Concerning our semantic parser, we use machine translation approach and propose two

mechanisms to improve the performance. Based on our observation on the GDPR expres-
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sions, for one GDPR statement there are a lot of duplicate sub-logic expressions in its logic
formulae. To avoid them, we propose Sub-expression intersection mechanism. We sepa-
rate shared sub-logic expressions (basic part) from the remaining (detail part) collected
from the logic formulae of GDPR statements and use them to build two Transformer-
based Neural Machine Translation (NMT) models [Vaswani et al., 2017a] to generate the
basic part and the detail part, respectively. For the basic part, we propose PRESEG
(i.e., Predicate REtrieval & Sub-Expression Generation) mechanism which consists of
two steps. First, we utilize the power of the pre-trained language model BERT [Devlin
et al., 2019a] to retrieve well-relevant predicates. After that, we apply a Transformer-
based NMT model to generate sub-expressions for each predicate instead of generating
the logic representation for the whole GDPR statement, which results in a more correct
syntax of logic representation.

We evaluate our model on two versions of the dataset as mentioned above. We per-
formed five experiment runs as the progress of developing our semantic parser. The
proposed model achieves a performance of 60.49% F1 in the sub-expression level, which

outperforms its baseline model.

4.2 Related Work

GDPR text extension (GDPRtEXT) [Pandit et al., 2018] provides a hierarchy of concepts
present in the GDPR. For example, identified data types such as personal data and
anonymous data are defined as sub-classes of the common term Data. However, the
GDPRtEXT does not really model the norms and legal axioms (e.g., the actions performed
by the processor, the obligations of the controller and the rights of the data subject).
Moreover, GDPRtEXT does not foster FRBR information for managing the versioning
of the legal text over time and consequently the changes of the legal concepts due to
modifications in the legal system.

GDPRov Pandit and Lewis [2017] is an OWL2 ontology for describing the provenance of

data and consent life-cycles in the light of the linked open data principles such as fairness
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and trust. It extends the existing linked open data provenance ontologies - PROV ontology
and ontology for Provenance and Plans. GDPRvo uses these provenance ontologies to
express a data-flow model that can trace how consent and data are used by using GDPR
terminology.

ODRL? provides predicates and classes for managing obligations, permissions, prohibi-
tions, but several parts of the deontic logic are missing (e.g., right and penalty classes).
ODRL is good for modeling simple policies, but it is quite limited to manage the complex
organization of the legal rules (e.g., exceptions in the constitutive rules or in prescriptive
rules).

Privacy Ontology (PrOnto) [Palmirani et al., 2018] is designed in such a way that it
models the essential legal concepts in the GDPR. PrOnto has been developed following
thorough ontology development methodology called MeLON. PrOnto reuses existing on-
tologies: ALLOT, FRBR, LKIF, the Publishing Workflow Ontology, Time-indexed Value
in Context and Time Interval. However, using the PrOnto alone only allows for basic
reasoning, it is not sufficient to assess compliance checking.

In 2020, Robaldo et al. [2020] introduced the DAPRECO knowledge base, which is
a repository of rules codified in LegalRuleML [Palmirani et al., 2011]. The rules repre-
sent the provisions of the GDPR. The DAPRECO knowledge base was built upon the
PrOnto and added additional constraints in the form of if-then rules formalized in reified
Input/Output logic [Robaldo and Sun, 2017]. To date, the DAPRECO knowledge base
is the biggest knowledge base in LegalRuleMl, which allows complicated legal reasoning
and suffice to check compliance. The DAPRECO knowledge base is used in this work for

this particular reason.

4.3 Methodology

To deal with the task of mapping a GDPR statement into its logic representation on

DAPRECO KB, we apply the solution of the Semantic Parsing task in Natural Language

Zhttps://www.w3.org/ns/odrl/
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Processing (NLP) [Wang et al., 2015, Dong and Lapata, 2018, Jia and Liang, 2016, Wang
et al., 2020, Chen et al., 2019]. With the approach using Intent Classification and Slot
Filling [Wang et al., 2020, Chen et al., 2019], each logic representation is considered a
semantic frame with the defined set of intent and slot information. This method requires
annotated data to contain the label of slot information and intent type for each sample,
which is difficult to extract from the GDPR data. A more flexible approach is using
Neural Machine Translation (NMT) [Dong and Lapata, 2018, Jia and Liang, 2016]. By
considering source sentences and logic representations as source and target languages in
the machine translation system, the semantic parser can be adapted to any logic repre-
sentation syntax. Using this method, we build a semantic parser that can map GDPR
statements into their logic representations on DAPRECO KB. Besides, we propose PRE-
SEG mechanism which incorporates a pre-trained language model (e.g. BERT) and a
NMT model to utilize the advantages of both: knowledge distillation capacity and flexible

generation.

4.3.1 Baseline NMT Model

We use Transformer architecture [Vaswani et al., 2017a] as our strong baseline model
because this model is shown to be effective in learning long-range dependency, which is
appropriate for a long document. In this architecture, the input is a sequence of words
in a GDPR statement (x = [1, %, ..., 2|5|] where |S| is the sentence length). This input
is embedded by an Embedding Layer, and feed-forward via N x Transformer Encoder
stacked layers to get the final vector representation. After that, the Transformer decoder
based on the attention mechanism is used to decode each token in the expression (y =

(Y1, Y2, .-, yjg|] where |E| is the number of tokens in the expression).

4.3.2 Sub-expression Intersection mechanism

Based on our observation on the GDPR expressions, for one GDPR statement there

are a lot of duplicate sub-expressions in its logic formulae (sub-formulae). For example,
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the GDPR expression in Table 4.1, all sub-formulae f1 to f/ share the sub-expression
( prOnto:DataSubject :w ). To avoid them, we propose Sub-expression Intersection
mechanism to split a GPDR expression into 2 parts: the basic part contains common
sub-expressions among logic formulae and the detail part contains the remaining sub-
expressions. By using this mechanism, the GDPR expression is shortened but still pre-

serves all semantic information.

4.3.3 PRESEG mechanism

In this mechanism, we utilize the power of the pre-trained language model BERT [Devlin
et al., 2019a] to support the expression parsing process. The parsing process is split into

two steps (Figure 4.2):

e Predicate Retrieval. This step uses a BERT retrieval model to generate a set of
predicates related to an input GDPR statement (x). In detail, we construct a
vocabulary of predicates (VPredicate — fp.1) from the training data then fine-tune
the pre-trained BERT model to predict the relation between text input and each

predicate (x, p;).

o Sub-expression Generation. With each predicate generated from the previous step,
we concatenate it with the GDPR statement to generate corresponding sub-expressions
using the NMT model. After that, all generated sub-expressions are combined to

present the final expression.

Predicate Retrieval.

Inspired by Nguyen et al. [2022], given the predicate vocabulary (Vrredicate — fpn.1) e
retrieve all predicates that are relevant to an input GDPR statement (x). Following
the task next-sentence-prediction (NSP) [Devlin et al., 2019a], for each pair (x,p;), we
generate an input string by a template “/CLS] sentencel [SEP] sentence2 [SEP]” where

sentencel, sentence?2 are the predicate (p;) and the GDPR statement (), respectively. We
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x = "Principles relating to processing of personal data . y = ... ( prOnto:Controller :y :z ) & ( prOnto:DataSubject :w ) &

Personal data shall be: processed lawfully ..." ( prOnto:lawfulness ' :el :ep ) ...
erredicate ]
i 1 ( prOnto:Controller :y :z )
il(p1) prOnto:Controller <X, p1> % \
?E(Pz) prOnto:DataSubject @q, p2> | ——— |1+ (#gﬂ;g?rgzlr) ( prOnto:DataSubject :w)% com@
l(p3) pronto:isBasedOn ang ™ <x, p3> % BERT F’ 0 ————— 7
i|(p4) dapreco:Contain <xps> | |0
i ( prOnto:lawfulness ' :el :ep )
(p25) prOnto:lawfulness <X, P25 1
Predicate REtrieval Sub-Expression Generation
PRESEG mechanism

Figure 4.2: PRESEG mechanism on GDPR Article 5, para 1, point a.

use the pre-trained BERT embedding to obtain the representation for this input. Next,
we forward the hidden representation of [CLS] token (hl°“®l) to a Linear layer. Finally,
we use a softmax function to calculate the probability of how relevant the predicate is to

the GDPR statement. Mathematically, we use the formulae as follows:

h[CLS]’ hothers — BERT((p;, x)) 4.1
hout _ Wouth[CLS] + bout (42)
P((ps, x)) x softmax(h°*) 4

where W b are learnable parameters. The loss function is Cross-Entropy.

Sub-expression Generation.

In this step, we construct an NMT model to generate sub-expressions for each predicate
generated from the previous step based on the GDPR statement. For example (Fig-
ure 4.2), the text input (x - the GDPR Article 5, para 1, point a) and the generated
predicate (p; = prOnto:Controller) are concatenated by “/SEP]” token. The NMT
model generates the corresponding sub-expression (prOnto:Controller :y :z). The
architecture of the NMT model in this step is the same as the baseline NMT model based
on Transformer’s architecture. Compared with the baseline model, the NMT model in

this step is trained to generate sub-expression instead of the full expression. In this way,
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we got two advantages: the number of generated samples is 10 times larger than that of
the baseline model, and the syntax of output expression is more correct. Finally, we unite

all sub-expression to recover the full expression.

4.4 Experiments

In this section, we describe the detailed process to construct the GDPR Semantic Parsing

dataset on DAPRECO KB and the experiments conducted on this data.

4.4.1 Datasets

We created two versions of the GDPR Semantic Parsing dataset: Original data - this
version contains pairs of the GDPR statement and its expression (logic formulae) from
[Robaldo et al., 2020]; Relazation data - in this version, we split and re-annotate the
complex samples to improve the consistency in all samples. By using the Relaxation data,
although the semantic parser misses the target automatically mapping the whole GDPR
statement into its expression, it has a meaning in verifying the improvement capacity
of decomposing complex GDPR statement approach for the futures works or building a

suggestion system for logic annotators on DAPRECO KB with higher accuracy.

Original data.

To construct the dataset, we crawl the content of the articles (GDPR statements) from
General Data Protection Regulation homepage and the logic representations of the regula-
tion in GDPR from the DAPRECO repository® [Robaldo et al., 2020]. Then we map each
structural item in the GDPR article including the paragraph, the point in the paragraph
to the corresponding logic formulae in the DAPRECO knowledge base. The mapping pro-
cess is shown in Table 4.1. In detail, the mapping process between the GDPR statement

and its expression is based on metadata information. For example, the paragraph 3 of

3https://github.com/dapreco/daprecokb/blob/master/gdpr/rioKB_GDPR.xml
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article 37 is mapped to refID="GDPR:art_37__para 3" in published DAPRECO reposi-
tory. Although the logic representations in fact for DAPRECO KB are written in XML
syntax [Robaldo et al., 2020], we use the text version of these expressions because they
have exactly the same semantic meaning and can be trivially converted back and forth.

The final dataset has 275 samples: 198 normal samples and 97 complex samples.

Table 4.1: GDPR Mapping Example. This table is split into 2 parts, the upper part
contains metadata information of each GDPR statement and its corresponding expression,
the lower part shows their contents.

GDPR statement

GDPR expression

Article: 37
Paragraph: 3
Sub-para: None

<lrml:LegalReference refersTo="gdprC454A37P3-
ref" refID="GDPR:art_37__para_3" />

Point: None

Title: Art. 37 GDPR Des-  (fI)  Permission: ( ... ( prOnto:DataSubject :w ) & (
ignation of the data protec- prOnto:Controller :y2 :z ) , ( rioOnto:RexistAtTime :a2
tion officer t2 ) ... )

Content: Where the con- (f2) Entailment: ( ... ( prOnto:DataSubject :w ) & (
troller or the processor is a ~ prOnto:Controller :y2 :z ) , ( rioOnto:Permitted :a2
public authority or body, a  :t2 w ) ...)

single data protection offi- o )
cer may be designated for (f3)  Permission: ( ... ( prOnto:DataSubject :w ) & (

several such authorities or  Pronto:Processor :x1 ) , ( rioOnto:RexistAtTime :a2 :t2
bodies, taking account of ) ) ' |

their organisational struc- (f4) Entailment: ( ... ( prOnto:DataSubject :w ) & (
ture and size prOnto:Processor :x1 ) , ( rioOnto:Permitted :a2 :t2 :w

) .. )

Relaxation data.

The original data contains 97 complex samples. A complex one is defined as having more
than two logic formulae in its logic expression. For example, the GDPR expression of
Article 37, paragraph 3 (Table 4.1), has 4 logic formulae (f7 - f4). Another example,
the GDPR expression of Article 35, paragraph 3, subparagraph 1, point b, has 20 logic
formulae. Because the number of logic formulae for each GDPR statement varies, it is
difficult for a semantic parser can generalize this inconsistency with limited samples like
the original data. To assist in solving the task of mapping a complex GDPR rule into its

logic expression, we constructed a Relaxation version of this data in which the complex
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Figure 4.3: Histogram comparison of number of sub-expressions on GDPR Semantic
Parsing dataset between two versions: Original (left) and Relaxation (right).

sample is split into simple subparagraph-like units and re-annotated. For example, the
complex sample in Table 4.1 is split into two new samples: the former refers to the
controller while the latter refers to the processor. Finally, the new dataset (relaxation
version) consists of 390 samples: 198 initial ordinary samples and 192 new samples by
splitting 97 complex ones. We split randomly 390 samples into training and testing
datasets (the split ratio is 80:20). In Figure 4.3, we show the histogram comparison of
the number of sub-expressions between Original and Relaxation versions. In the original
data, there are many complex samples having numbers of sub-expressions larger than 100,
while the number of sub-expressions in the relaxation version is focused in a range less
than 60. Table 4.2 shows the statistic of the two versions of the datasets. The statistic
shows that the GDPR semantic parsing version relaxation has 40% more samples than

the original version with the shorter target expression.

Table 4.2: GDPR Semantic Parsing Data Analysis

Original Relaxation

Number of samples 275 390
Average number of words 89 74

GDPR statement 1\ her of words [17-1130]  [17- 1130]
. Average number of tokens 401 275

GDPR expression 1 her of tokens 58 - 2023]  [18 - 1371]
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4.4.2 Experimental Settings

For all experiments below, we set hyperparameter values according to the best setting
of IWSLT 14 English-German NMT dataset [Vaswani et al., 2017a], with 3 Transformer
layers (because the size of this dataset is small), hidden size is 512, 4 heads, and 200

training epochs. We conduct five experiments as follows:

e Setting 1: (Baseline Model) We employed a single NMT model to map the GDPR
statement into its expression. In this setting, all logic formulae for each GDPR

statement are concatenated to present the target GDPR expression.

e Setting 2: In this setting, we aim to evaluate the effectiveness of Sub-expression
intersection mechanism. We applied this mechanism on GDPR expressions to get
the basic and the detailed parts. Then we employed a single NMT model for parsing.
For each GDPR statement, the target GDPR expression is the concatenation of its

basic part and detail part.

e Setting 3: In this experiment, we aim to evaluate the effectiveness of sub-expression
intersection by generating separately two logic parts. Instead of employing a single
NMT model as experiment 2, we employed two NMT models to learn the basic part

and detail part separately.

e Setting 4: In this experiment, we aim to evaluate the effectiveness of PRESEG
mechanism. We used Sub-expression intersection mechanism similar to experiment

3. Then we employed PRESEG mechanism for the basic part.

4.4.3 Experimental Results and Discussion

Main result. Table 4.3 shows the performance on the Original test set and the Relax-
ation test set for our experiments, respectively. On the Original data, the performance
of employing a single NMT model to learn full logic representation directly is average,
F1 = 37.16% (setting 1). When the complex data samples were split and re-annotated

(relaxation version), the performance increased by 17.39% (F1 = 54.55% in setting 1).
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Similar to experiment 1, the performance of remaining experiments when learning logic
representation on Relaxation data also increased compared to on Original data. These
improvements show that the GDPR expressions in Relaxation data are more consistent
than the original version, which makes the model more generalizable. These results show
the effectiveness of decomposing the complex GDPR statement into simple ones.

Using the Sub-expression intersection mechanism, on the full expression of Original
data, the performance in experiments 2 and 3 increased respectively by 14.25% and 3.27%
compared to the baseline model (setting 1). Similar to the setting on the original ver-
sion, the Fl-score on Relaxation data increased by at least 3% compared to the baseline
model. We argue that this mechanism filters the duplicate sub-expressions in the GDPR
sub-formulae; using this mechanism can reduce the complexity of the GDPR logic repre-
sentation but still preserve the original semantic information. Besides, the performance
in setting 2 when using this mechanism with a single NMT model (end-to-end model)
is better than using separately two NMT models for the basic and detail parts because
the end-to-end model utilizes the relation between these parts to improve parsing logic

representation.

Table 4.3: Result of our experiments on GDPR Semantic Parsing data. The notation
“n/a” indicates that the measurement method is not applicable.

Setting 1 Setting 2 Setting 3 Setting 4

Single NMT model v v
Multi NMT models v v
+ Sub-expression Intersection v v v
+ PRESEG v

. Full Expression 37.16 51.41 40.43 38.59
Original Basic Part n/a 68.41 A7.20 44.73
data Detail Part n/a 14.69 1.82 1.82

. Full Expression 54.55 57.76 57.30 60.23

Relaxation Basic Part n/a 62.30 61.32 64.22
data Detail Part n/a 32.27 31.21 31.21

Using the PRESEG mechanism on Relaxation data (setting 4 Table 4.3), our proposed
model outperforms all previous experiments with F'1 = 64.22% in the basic part (increased
by 1.92% compared to experiment 2 and increased by 2.9% when compared to setting 3).

It boosts the performance on full logic representation to 60.23%, F1 increased by 2.47%
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compared to experiment 2 and increased by 2.93% compared to setting 3. However, this
mechanism did not show improvement on the original version. The reason is that the

GDPR expressions in the Original data are inconsistent.

Local context integration. In this experiment, we aim to apply the PharseTrans-
former architecture (PhraseTrans.c,ssp) to improve the performance of Semantic Parser.
Based on the results of previous experiments, we used setting 2 which uses a Sub-
expression intersection mechanism to learn the whole logic representation by one NMT
model. The experimental results (Table 4.4) show that the PhraseTransformer beat the
original Transformer model on both two versions GDPR semantic parsing dataset. Be-
sides, the PhraseTransformer shows the advantage more clearly in the basic part than the
detail part of logic representation, with a 1.08 F'1 score in Original data and a 2.62 F1 score
in Relaxation data. The basic part is commonly contain base sub-expressions that refer to
general conditions in GDPR points (e.g. prOnto:DataSubject condition). We argue that
the reason comes from the frequent phrases of base condition, which PhraseTransformer
supports to represent meaning better than the vanilla Transformer.

Table 4.4: Performance comparison (F1 score) between the original Transformer and
PhraseTransformer on GDPR Semantic Parsing data using single NMT model.

Setting 2 (Transformer) PhraseTransformer
o Full Expression 51.41 51.48
Original Basic Part 68.41 69.49
data Detail Part 14.69 15.48
. Full Expression 57.76 58.72
Relaxation Basic Part 62.30 64.92
data Detail Part 32.27 24.61

Error Analysis. An analysis of mispredicted logic representation in the test set showed
three main causes of generating errors relating to variables in sub-expressions. The vari-
able names, which are named by human annotators, are usually not meaningful names.
For example, in the GDPR expression of Article 5, paragraph 1, point a, x, ep are vari-
able names for the controller, and the predicate PersonalDataProcessing, respectively.

With limited data, that is not easy for a model to learn the way of naming variables if
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the annotators do not annotate variable names consistently. In addition, errors also occur
in predicting the position of predicates. Instead of correctly predicting that a predicate
belongs to the if statement, the model sometimes predicted that the predicate belongs in
the then statement, and vice versa. Moreover, the model could not identify the predicates

which rarely appear in logic representations.

The Need for Correct Variables in Sub-expression Component. One natural
question is how often our semantic parser fail to generate the correct variable. To answer
this, we conducted evaluation experiments with oracle variable information (Table 4.5).
For setting using oracle variable name, for matching sub-logic expression in the evaluation
process, the different variable is ignored. In other words, these results show the accuracy

of predicate (function name) in output logic representation.

Table 4.5: F1 on the test set given an oracle providing correct number of variables and
variable names in each sub-logic expression

Basic Part Detail Part | Full Expression
Setting 4 64.22 31.21 60.23
+Oracle variable | 69.05 (+4.83) | 69.82 (+38.61) 67.72 (+7.49)

With oracle “variable”, we observed a F1 of 69.05% for the basic part, 69.82% for the
detail part, and 67.72% for full expression. This verifies that if the model can learn well
the constraints between variables in each sub-logic expression according to each predicate,
the performance of model can increase a lot. Therefore the problem of generating correct

constraint between variable and predicate requires important future work.

4.5 Conclusion

In this paper, we propose an effective semantic parser for mapping GDPR to correspond-
ing logic representation on DAPRECO KB. Firstly, we create Relaxation data for this
task by splitting and re-annotating the complex regulation. Secondly, we introduce Sub-

expression intersection mechanism to solve the problem of generation of duplicate sub-logic
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expressions. Last but not least, we demonstrate how PRESEG mechanism utilized the
power of the pre-trained language model BERT and the Transformer-based NMT model
to generate the basic part in the logic representations. Empirically, our proposed model
allows us to gain significant improvement on mapping the GDPR statement to its logic
representation when compared to baseline model. Our semantic parser will be beneficial
in tasks such as mapping other legal rules to logic representations.

In the future, we look forward to improving the architecture design by considering the

constraint between the variable and predicate in each sub-expression.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

In this thesis, we study the task of Semantic Parsing in NLP, which plays a key role
in building human language interfaces, or human-machine communication. The main

findings and our contributions are discussed and discuss and summarized as follows:

e Local context integration (Chapter 2): We expose the important role of local
context information by modeling phrases in a semantic parsing task. We proposed
a deep learning model for the sequence generation task, the PhraseTransformer,
that works effectively in capturing relations between phrases in the sentence en-
coding process. The experimental results show that our proposed model improved
the performance of semantic parsing task on two well-known benmark datasets
Geo, Atis, and achieved competitive results on MSParS. Besides, we also show the
generalize of our proposed model by adapting to Machine Translation task. The
PhraseTransformer model showed the solid improvement on three Machine Transla-
tion datasets (IWLST14 German-English, IWSLT15 Vietnamese-English, WMT14

English-German).

e Class Imbalance in SLU (Chapter 3): We reveal the strong effect of class imbal-

ance among slots in the Spoken Language Understanding system which is a seman-

76



tic parser in a task-oriented dialog system. We propose the Classify Anonymous
Entities mechanism by solving the Slot Filling task with two sub-tasks, detecting
anonymous entities, and classifying recognized anonymous entities. The experimen-
tal results show that the proposed model promotes the performance of the semantic
parsing model, principally in the minority class of Slot recognition. Besides, we
also present the effective way of integrating local context into the pre-trained lan-
guage model and its contribution to this task. In addition, our experiments on the
NER task also show the improvement that is proof of the applicability of our CAE

mechanism to other tasks using the sequence labeling approach.

e Semantic Parsing in the Legal Domain (Chapter 4): We aim to apply the state-
of-the-art methods of semantic parsing tasks in the legal domain and show effective
ways to deal with the complex constraints in this domain. We firstly re-construct
the Semantic Parsing GDPR dataset based on DAPRECO KB and formulate the
semantic analysis problem in this dataset. We proposed two mechanisms to build
a Semantic Parser on this data, Sub-expression intersection and PRESEG to
deal with the complex constraints problem. The experimental results show the
strong improvement of our proposed mechanisms. Furthermore, we also conducted
experiments integrating local context into the semantic analysis model and show

improved results in this domain.

5.2 Future work

Based on the current results, there are some potential directions that can be further

studied in the future work:

e In this study, our PhraseTransformer only focuses on modeling phrases to reinforce
sentence vector representation. However, the approach of PhraseTransformer can
be adapted to paragraph or document representation. Furthermore, the sentence,

paragraph hidden representation can be injected into the self-attention mechanism
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that complements the dependencies among sentences or paragraphs in a hierarchical
way. The improvement of paragraph or document vector representation can be

applied for Retrieval documents, or Document summarization tasks.

Based on the detailed analysis in PhraseTransformer architecture experiments about
hidden phrases, not only sentence vector representations are improved, but also the
phrase representations are enhanced. The meaning of phrases is synthesized by
constituent words (captured by LSTM) and the context of that phrase belongs
(captured by the Self-attention mechanism). Therefore, it can be applied to key-

words/keyphrases extraction tasks.

Related to the CAE mechanism in the SLU task, our extensive experiments on the
NER dataset ConLL 2003 show the effectiveness of this mechanism. The idea of the
CAE mechanism can be considered a coarse-to-fine labeling process. Therefore, it

is the potential to apply to nested entity recognization tasks.

In the legal domain, although two proposed mechanisms Sub-ezxpression intersection
and PRESEG can improve the performance, the current performance is quite low
for use on the real application. The problem of variable names is largely influential
in the current system error. To solve this problem, the graph transducer approach

with edge prediction is one of the promising ways of studying.

78



Bibliography

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. Jan. 2015. 3rd International Conference on Learning Representa-

tions, ICLR 2015 ; Conference date: 07-05-2015 Through 09-05-2015.

J. Berant and P. Liang. Semantic parsing via paraphrasing. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1415-1425, Baltimore, Maryland, June 2014. Association for Computa-

tional Linguistics.

B. Bogin, M. Gardner, and J. Berant. Global reasoning over database structures for
text-to-SQL parsing. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 3659-3664, Hong Kong, China, Nov.

2019. Association for Computational Linguistics.

R. Cao, S. Zhu, C. Liu, J. Li, and K. Yu. Semantic parsing with dual learning. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics,

pages 51-64, Florence, Italy, July 2019. Association for Computational Linguistics.

R. Cao, S. Zhu, C. Yang, C. Liu, R. Ma, Y. Zhao, L. Chen, and K. Yu. Unsupervised dual
paraphrasing for two-stage semantic parsing. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 6806—6817, Online, July 2020.

Association for Computational Linguistics.

79



G. Castellucci, V. Bellomaria, A. Favalli, and R. Romagnoli. Multi-lingual intent detection
and slot filling in a joint bert-based model. ArXiv, abs/1907.02884, 2019a.

G. Castellucci, V. Bellomaria, A. Favalli, and R. Romagnoli. Multi-lingual intent detection
and slot filling in a joint bert-based model. CoRR, abs/1907.02884, 2019b.

Q. Chen, Z. Zhuo, and W. Wang. Bert for joint intent classification and slot filling. arXiv
preprint arXiw:1902.10909, 2019.

A. Church. The Calculi of Lambda Conversion. (AM-6). Princeton University Press,
1941. ISBN 9780691083940.

A. Coucke, A. Saade, A. Ball, T. Bluche, A. Caulier, D. Leroy, C. Doumouro, T. Gissel-
brecht, F. Caltagirone, T. Lavril, M. Primet, and J. Dureau. Snips voice platform: an

embedded spoken language understanding system for private-by-design voice interfaces.

CoRR, abs/1805.10190, 2018.

D. A. Dahl, M. Bates, M. Brown, W. Fisher, K. Hunicke-Smith, D. Pallett, C. Pao,
A. Rudnicky, and E. Shriberg. Expanding the scope of the atis task: The atis-3 corpus.
In Proceedings of the Workshop on Human Language Technology, HLT ’94, page 43-48,
USA, 1994. Association for Computational Linguistics. ISBN 1558603573.

M. H. Dao, T. H. Truong, and D. Q. Nguyen. Intent Detection and Slot Filling for
Vietnamese. In Proceedings of the 22nd Annual Conference of the International Speech

Communication Association (INTERSPEECH), 2021.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186,

Minneapolis, Minnesota, June 2019a. Association for Computational Linguistics.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirec-

tional transformers for language understanding. In Proceedings of the 2019 Conference

80



of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186,

Minneapolis, Minnesota, June 2019b. Association for Computational Linguistics.

L. Dong and M. Lapata. Language to logical form with neural attention. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 33-43, Berlin, Germany, Aug. 2016. Association for Computational

Linguistics.

L. Dong and M. Lapata. Coarse-to-fine decoding for neural semantic parsing. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 731-742, Melbourne, Australia, July 2018. Association

for Computational Linguistics.

N. Duan. Overview of the nlpcc 2019 shared task: Open domain semantic parsing. In
J. Tang, M.-Y. Kan, D. Zhao, S. Li, and H. Zan, editors, Natural Language Processing
and Chinese Computing, pages 811-817, Cham, 2019. Springer International Publishing.
ISBN 978-3-030-32236-6.

M. Ellsworth, C. Baker, and M. R. L. Petruck. FrameNet and typology. In Proceedings
of the Third Workshop on Computational Typology and Multilingual NLP, pages 61-66,

Online, June 2021. Association for Computational Linguistics.

C. J. Fillmore and C. F. Baker. Frame semantics for text understanding. In Proceedings

of WordNet and Other Lezical Resources Workshop, NAACL, volume 6, 2001.

D. Ge, J. Li, and M. Zhu. A transformer-based semantic parser for nlpcc-2019 shared
task 2. In CCF International Conference on Natural Language Processing and Chinese

Computing, pages 772-781. Springer, 2019.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Y. W. Teh and M. Titterington, editors, Proceedings of the Thirteenth In-

ternational Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings

81



of Machine Learning Research, pages 249-256, Chia Laguna Resort, Sardinia, Italy,
13-15 May 2010. PMLR.

O. Goldman, V. Latcinnik, E. Nave, A. Globerson, and J. Berant. Weakly supervised
semantic parsing with abstract examples. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1809

1819, Melbourne, Australia, July 2018. Association for Computational Linguistics.

C.-W. Goo, G. Gao, Y.-K. Hsu, C.-L. Huo, T.-C. Chen, K.-W. Hsu, and Y.-N. Chen.
Slot-gated modeling for joint slot filling and intent prediction. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 753-757,

New Orleans, Louisiana, June 2018. Association for Computational Linguistics.

M. Grancharova, H. Berg, and H. Dalianis. Improving named entity recognition and clas-
sification in class imbalanced swedish electronic patient records through resampling.
In Eighth Swedish Language Technology Conference (SLTC). Forlag Goéteborgs Univer-
sitet, 2020.

J. Hao, X. Wang, S. Shi, J. Zhang, and Z. Tu. Multi-granularity self-attention for neu-
ral machine translation. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages 887-897, Hong Kong, China, Nov.

2019. Association for Computational Linguistics.

K. He, Y. Yan, and W. Xu. From context-aware to knowledge-aware: Boosting oov tokens
recognition in slot tagging with background knowledge. Neurocomputing, 445:267-275,
2021. ISSN 0925-2312.

C. T. Hemphill, J. J. Godfrey, and G. R. Doddington. The ATIS spoken language systems
pilot corpus. In Speech and Natural Language: Proceedings of a Workshop Held at
Hidden Valley, Pennsylvania, June 24-27,1990, 1990.

82



G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum. Developing a natural
language interface to complex data. ACM Trans. Database Syst., 3(2):105-147, June
1978. ISSN 0362-5915.

J. Herzig and J. Berant. Don’t paraphrase, detect! rapid and effective data collection
for semantic parsing. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 3810-3820, Hong Kong, China, Nov.

2019. Association for Computational Linguistics.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735-1780, Nov. 1997. ISSN 0899-7667.

R. Jia and P. Liang. Data recombination for neural semantic parsing. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 12-22, Berlin, Germany, Aug. 2016. Association for Computational

Linguistics.

T. Kocisky, G. Melis, E. Grefenstette, C. Dyer, W. Ling, P. Blunsom, and K. M. Hermann.
Semantic parsing with semi-supervised sequential autoencoders. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages 1078~

1087, Austin, Texas, Nov. 2016. Association for Computational Linguistics.

P. Koehn. Statistical significance tests for machine translation evaluation. In Proceedings
of the 2004 Conference on Empirical Methods in Natural Language Processing, pages

388-395, Barcelona, Spain, July 2004. Association for Computational Linguistics.

T. Kwiatkowski, L. Zettlemoyer, S. Goldwater, and M. Steedman. Lexical generalization
in CCG grammar induction for semantic parsing. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing, pages 1512-1523, Edinburgh,

Scotland, UK., July 2011. Association for Computational Linguistics.

83



J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data. In Proceedings of the Eighteenth

International Conference on Machine Learning, ICML ’01, page 282-289, San Fran-
cisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558607781.

C. Li, L. Li, and J. Qi. A self-attentive model with gate mechanism for spoken language
understanding. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 3824-3833, Brussels, Belgium, Oct.-Nov. 2018. Association

for Computational Linguistics.

X. Li, J. Feng, Y. Meng, Q. Han, F. Wu, and J. Li. A unified MRC framework for
named entity recognition. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5849-5859, Online, July 2020a. Association for

Computational Linguistics.

X. Li, X. Sun, Y. Meng, J. Liang, F. Wu, and J. Li. Dice loss for data-imbalanced NLP
tasks. In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 465-476, Online, July 2020b. Association for Computational

Linguistics.

Z. Li, Y. Lai, Y. Xie, Y. Feng, and D. Zhao. A sketch-based system for semantic pars-
ing. In CCF International Conference on Natural Language Processing and Chinese

Computing, pages 748-759. Springer, 2019.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiw:1907.11692, 2019.

T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1412-1421, Lisbon, Portugal, Sept. 2015. Associa-

tion for Computational Linguistics.

84



X. Ma and E. Hovy. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1064-1074, Berlin, Germany, Aug. 2016. As-

sociation for Computational Linguistics.

S. Min, V. Zhong, L. Zettlemoyer, and H. Hajishirzi. Multi-hop reading comprehension
through question decomposition and rescoring. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pages 60976109, Florence, Italy,

July 2019. Association for Computational Linguistics.

D. Q. Nguyen and A. T. Nguyen. PhoBERT": Pre-trained language models for Vietnamese.
In Findings of the Association for Computational Linguistics: EMNLP 2020, pages
1037-1042, 2020.

H.-T. Nguyen, M.-P. Nguyen, T.-H.-Y. Vuong, M.-Q. Bui, M.-C. Nguyen, T.-B. Dang,
V. Tran, L.-M. Nguyen, and K. Satoh. Transformer-based approaches for legal text
processing. The Review of Socionetwork Strategies, 16(1):135-155, Apr 2022. ISSN
1867-3236.

P. M. Nguyen, K. Than, and M. Le Nguyen. Marking mechanism in sequence-to-sequence
model for mapping language to logical form. In 2019 11th International Conference on

Knowledge and Systems Engineering (KSE) (KSE’19), Da Nang, Vietnam, Oct. 2019.

X.-P. Nguyen, S. Joty, S. Hoi, and R. Socher. Tree-structured attention with hierarchical

accumulation. In International Conference on Learning Representations, 2020.

M. Palmer, D. Gildea, and P. Kingsbury. The proposition bank: An annotated corpus of
semantic roles. Comput. Linguist., 31(1):71-106, mar 2005. ISSN 0891-2017.

M. Palmirani, G. Governatori, A. Rotolo, S. Tabet, H. Boley, and A. Paschke. Legal-
RuleML: XML-Based Rules and Norms, volume 7018 of Lecture Notes in Computer

Science, pages 298-312. Springer, 2011.

85



M. Palmirani, M. Martoni, A. Rossi, C. Bartolini, and L. Robaldo. -pronto: Privacy

ontology for legal reasoning, 2018.

H. J. Pandit and D. Lewis. Modelling provenance for gdpr compliance using linked open

data vocabularies. In PrivOn@ISWC' 2017.

H. J. Pandit, K. Fatema, D. O’Sullivan, and D. Lewis. Gdprtext - gdpr as a linked data
resource. In ESWC, 2018.

M. Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Con-
ference on Machine Translation: Research Papers, pages 186-191, Belgium, Brussels,

Oct. 2018. Association for Computational Linguistics.

I[. Provilkov, D. Emelianenko, and E. Voita. BPE-dropout: Simple and effective sub-
word regularization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1882-1892, Online, July 2020. Association for Com-

putational Linguistics.

L. Qin, W. Che, Y. Li, H. Wen, and T. Liu. A stack-propagation framework with token-
level intent detection for spoken language understanding. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages

2078-2087, Hong Kong, China, Nov. 2019. Association for Computational Linguistics.

L. Qin, X. Xu, W. Che, and T. Liu. AGIF: An adaptive graph-interactive framework for
joint multiple intent detection and slot filling. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 1807-1816, Online, Nov. 2020. Association

for Computational Linguistics.

L. Qin, T. Liu, W. Che, B. Kang, S. Zhao, and T. Liu. A co-interactive transformer
for joint slot filling and intent detection. ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8193-8197,
2021a.

86



L. Qin, T. Xie, W. Che, and T. Liu. A survey on spoken language understanding: Re-
cent advances and new frontiers. In Z.-H. Zhou, editor, Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21, pages 4577-4584.
International Joint Conferences on Artificial Intelligence Organization, 8 2021b. Survey

Track.

S. Ravuri and A. Stolcke. Recurrent neural network and Istm models for lexical utter-
ance classification. In Proc. Interspeech, pages 135-139. ISCA - International Speech

Communication Association, September 2015.

L. Robaldo and X. Sun. Reified input/output logic: Combining input/output logic and
reification to represent norms coming from existing legislation. J. Log. Comput., 27(8):

2471-2503, 2017.

L. Robaldo, C. Bartolini, M. Palmirani, A. Rossi, M. Martoni, and G. Lenzini. Formalizing
GDPR provisions in reified I/O logic: The DAPRECO knowledge base. J. Log. Lang.
Inf., 29(4):401-449, 2020.

R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 17151725, Berlin, Germany,

Aug. 2016. Association for Computational Linguistics.

C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE mobile

computing and communications review, 5(1):3-55, 2001.

X. Sun and L. W. N. van der Torre. Combining constitutive and regulative norms in
input/output logic. In Deontic Logic and Normative Systems - 12th International Con-
ference, DEON 2014, Ghent, Belgium, July 12-15, 2014. Proceedings, volume 8554 of

Lecture Notes in Computer Science, pages 241-257. Springer, 2014.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural net-

works. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-

87



berger, editors, Advances in Neural Information Processing Systems 27, pages 3104—

3112. Curran Associates, Inc., 2014.

H. Tang, D. Ji, and Q. Zhou. End-to-end masked graph-based crf for joint slot filling and
intent detection. Neurocomputing, 413:348-359, 2020. ISSN 0925-2312.

E. F. Tjong Kim Sang and F. De Meulder. Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. In Proceedings of the Seventh

Conference on Natural Language Learning at HLT-NAACL 2003, pages 142-147, 2003.

G. Tur and R. De Mori. Spoken language understanding: Systems for extracting semantic
information from speech. Spoken Language Understanding: Systems for Extracting

Semantic Information from Speech, 03 2011. doi: 10.1002/9781119992691.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 30. Curran Associates, Inc., 2017a.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems 30, pages 5998-6008. Curran Associates, Inc., 2017b.

D. Waltz and B. Goodman. Planes: A data base question-answering system. SIGART
Bull., (61):24, Feb. 1977. ISSN 0163-5719.

B. Wang, R. Shin, X. Liu, O. Polozov, and M. Richardson. RAT-SQL: Relation-aware
schema encoding and linking for text-to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 75677578, Online,

July 2020. Association for Computational Linguistics.

X. Wang, Z. Tu, D. Xiong, and M. Zhang. Translating phrases in neural machine transla-

tion. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language

88



Processing, pages 1421-1431, Copenhagen, Denmark, Sept. 2017. Association for Com-

putational Linguistics.

Y. Wang, J. Berant, and P. Liang. Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 1332-1342, Beijing, China, July 2015. Association for Computational

Linguistics.

Y. Wang, Y. Shen, and H. Jin. A bi-model based RNN semantic frame parsing model
for intent detection and slot filling. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 309-314, New Orleans, Louisiana, June

2018. Association for Computational Linguistics.

Y. Wang, H.-Y. Lee, and Y.-N. Chen. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 1061-1070, Hong Kong, China, Nov.

2019. Association for Computational Linguistics.

Y. Wang, H. Chu, C. Zhang, and J. Gao. Learning from language description: Low-shot
named entity recognition via decomposed framework. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages 1618-1630, Punta Cana, Dominican

Republic, Nov. 2021. Association for Computational Linguistics.

Y. W. Wong and R. Mooney. Learning for semantic parsing with statistical machine trans-
lation. In Proceedings of the Human Language Technology Conference of the NAACL,
Main Conference, pages 439-446, New York City, USA, June 2006. Association for

Computational Linguistics.

Y. W. Wong and R. Mooney. Learning synchronous grammars for semantic parsing with

89



lambda calculus. In Proceedings of the 45th Annual Meeting of the Association of Com-
putational Linguistics, pages 960-967, Prague, Czech Republic, June 2007. Association

for Computational Linguistics.

W. A. Woods. Progress in natural language understanding: An application to lunar geol-
ogy. In Proceedings of the June 4-8, 1973, National Computer Conference and Exposi-
tion, AFIPS ’73, page 441-450, New York, NY, USA, 1973. Association for Computing
Machinery. ISBN 9781450379168.

W. Wu, H. Wang, T. Liu, and S. Ma. Phrase-level self-attention networks for univer-
sal sentence encoding. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3729-3738, Brussels, Belgium, Oct.-Nov. 2018.

Association for Computational Linguistics.

D. Xie, D. Ji, H. Tang, and Q. Zhou. Match matrix aggregation enhanced transition-based

neural network for sql parsing. Neurocomputing, 445:167-179, 2021. ISSN 0925-2312.

C. Xu, Q. Li, D. Zhang, J. Cui, Z. Sun, and H. Zhou. A model with length-variable
attention for spoken language understanding. Neurocomputing, 379:197-202, 2020a.
ISSN 0925-2312.

H. Xu, J. van Genabith, D. Xiong, Q. Liu, and J. Zhang. Learning source phrase repre-
sentations for neural machine translation. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 386-396, Online, July 2020b.

Association for Computational Linguistics.

P. Xu and R. Sarikaya. Convolutional neural network based triangular crf for joint intent
detection and slot filling. In 2013 IEEE Workshop on Automatic Speech Recognition
and Understanding, pages 78-83, 2013. doi: 10.1109/ASRU.2013.6707709.

X. Xu, C. Liu, and D. Song. Sqlnet: Generating structured queries from natural language

without reinforcement learning. CoRR, abs/1711.04436, 2017.

90



B. Yang, Z. Tu, D. F. Wong, F. Meng, L. S. Chao, and T. Zhang. Modeling localness for
self-attention networks. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4449-4458, Brussels, Belgium, Oct.-Nov. 2018.

Association for Computational Linguistics.

P. Yin, C. Zhou, J. He, and G. Neubig. StructVAE: Tree-structured latent variable models
for semi-supervised semantic parsing. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 754-765,

Melbourne, Australia, July 2018. Association for Computational Linguistics.

T. Yu, C.-S. Wu, X. V. Lin, bailin wang, Y. C. Tan, X. Yang, D. Radev, richard socher,
and C. Xiong. Gra{pp}a: Grammar-augmented pre-training for table semantic parsing.

In International Conference on Learning Representations, 2021.

J. M. Zelle and R. J. Mooney. Learning to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth National Conference on Artificial Intel-

ligence - Volume 2, AAAT’96, page 1050-1055. AAAI Press, 1996. ISBN 026251091X.

L. Zettlemoyer and M. Collins. Online learning of relaxed CCG grammars for parsing
to logical form. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL), pages 678687, Prague, Czech Republic, June 2007. Association for Compu-

tational Linguistics.

L. S. Zettlemoyer and M. Collins. Learning to map sentences to logical form: Structured
classification with probabilistic categorial grammars. In Proceedings of the Twenty-First
Conference on Uncertainty in Artificial Intelligence, UAT’05, pages 658666, Arlington,
Virginia, United States, 2005. AUAI Press. ISBN 0-9749039-1-4.

H. Zhang, J. Cai, J. Xu, and J. Wang. Complex question decomposition for semantic
parsing. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 4477-4486, Florence, Italy, July 2019. Association for Computational

Linguistics.

91



K. Zhao and L. Huang. Type-driven incremental semantic parsing with polymorphism.
In Proceedings of the 2015 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pages 1416-1421,

Denver, Colorado, May—June 2015. Association for Computational Linguistics.

A. Ziai. Compositional pre-training for neural semantic parsing. In Proceedings of the 3rd
International Conference on Natural Language and Speech Processing, pages 135-141,

Trento, Italy, Sept. 2019. Association for Computational Linguistics.

92



Publications and Awards

1]

Submitted Journals

P. M. Nguyen, Tung Le, V. Tran, and M. L. Nguyen. PhraseTransformer: An

Incorporation of Local Context Information into Sequence-to-Sequence Semantic
Parsing, Applied Intelligence, (revision in June 2022).
Journals

H.-T. Nguyen, M.-P. Nguyen, T.-H.-Y. Vuong, M.-Q. Bui, M.-C. Nguyen, T.-B.
Dang, V. Tran, L.-M. Nguyen, and K. Satoh. Transformer-based approaches for

legal text processing. The Review of Socionetwork Strategies, 16(1):135-155, Apr
2022. ISSN 1867-3236.

Conference papers

Phuong Nguyen, Thi-Thu-Trang Nguyen, Vu Tran, Ha-Thanh Nguyen, Le-Minh

Nguyen and Ken Satoh. Learning to map the GDPR to Logic Representation on
DAPRECO-KB. In 14th Asian Conference on Intelligent Information and Database

Systems (Accepted).

P. M. Nguyen, Tung Le, and M. L. Nguyen. CAE: Mechanism to Diminish the

Class Imbalanced in SLU Slot Filling Task. In 14th International Conference on

93



Computational Collective Intelligence, (Accepted).

P. M. Nguyen, K. Than and M. Le Nguyen. Marking mechanism in sequence-to-
sequence model for mapping language to logical form. In 2019 11th International
Conference on Knowlerdge and System Engineering (KSE) (KSE’19), Da Nang,

Vietnam, Oct.2019.

N. Phuong, L. Tung, H. Thanh-Le, D. Thai, T. Khanh, N. Kim-Anh, and N. Le-
Minh. Improving neural machine translation by efficiently incorporating syntactic
templates. In Advances and Trends in Artificial Intelligence. Artificial Intelligence

Practices. Springer International Publishing, 2022.

N. H. Thanh, B. M. Quan, C. Nguyen, T. Le, N. M. Phuong, D. T. Binh, V. T. H.

Yen, T. Racharak, N. Le Minh, T. D. Vu, P. V. Anh, N. T. Son, H. T. Nguyen, B.
Butr-indr, P. Vateekul, and P. Boonkwan. A summary of the alqac 2021 competi-

tion. In 2021 13th International Conference on Knowledge and Systems Engineering

(KSE), pages 1-5, 2021. doi: 10.1109/KSE53942.2021.9648724.

V. Tran, V.-H. Tran, P. Nguyen, C. Nguyen, K. Satoh, Y. Matsumoto, and M.
Nguyen. CovRelex: A COVID-19 retrieval system with relation extraction. In Pro-
ceedings of the 16th Conference of the Furopean Chapter of the Association for Com-
putational Linguistics: System Demonstrations, pages 24-31, Online, Apr. 2021.

Association for Computational Linguistics.

K. Yuntao., N. Phuong., T. Racharak., T. Le., and N. Minh. An effective method to
answer multi-hop questions by single-hop qa system. In Proceedings of the 14th In-
ternational Conference on Agents and Artificial Intelligence - Volume 2: ICAART,,

pages 244-253. INSTICC, SciTePress, 2022. ISBN 978-989-758-547-0.

94



Awards

e Ranked second place among all Task 3 (Legal Information Retrieval) competi-

tors of legal competition COLIEE in two years 2020 and 2021.
e Runner up prize in Legal Text Retrieval task Zalo Al competition in 2021.

e Organizing committee of the legal Workshop of KSE 2021: Automated Legal
Question Answering Competition (ALQAC 2021).

95



	Abstract
	Acknowledgments
	Introduction 
	Introduction
	Background
	Semantic schema
	Methods

	Research Direction and Contribution
	Dissertation Outline

	Local Context Integration 
	Introduction
	Related Work 
	Model Architecture 
	Background
	Proposed Architecture

	Experiments
	Datatsets
	Evaluation Metric 
	Settings 
	Main Results
	Model Variations 

	Result Analysis
	Examples of Improvement 
	Length Analysis 
	Self-Awareness
	Encoder Self Attention

	Conclusion

	Class Imbalance in Spoken Language Understanding
	Introduction
	Related Work
	SLU task
	Class Imbalance in Sequence Labeling

	Methodology
	Baseline Model
	Oversampled data
	Proposed model

	Experiments and Analysis
	Datasets
	Experimental Settings
	Experimental Results
	Analysis

	Conclusion

	Semantic Parsing in the Legal Domain
	Introduction
	Related Work
	Methodology
	Baseline NMT Model
	Sub-expression Intersection mechanism
	PRESEG mechanism

	Experiments
	Datasets
	Experimental Settings
	Experimental Results and Discussion

	Conclusion 

	Conclusion and Future Work
	Conclusions
	Future work

	Publications and Awards

