JAIST Repository

https://dspace.jaist.ac.jp/

Title e AtEEY — L i 514k
Author(s) DO, MINH CANH
Citation

Issue Date 2022-09

Type Thesis or Dissertation

Text version

ETD

URL http://hdl.handle.net/10119/18129
Rights
Description Supervisor:#& /5 FI1H, Jelm B2 S i se R, fdt:

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

5§ £ DO, Minh Canh

¥ o4 oo o\ it (FERET)

oA w2 O&F 5 WEE4 5

PR EFE AR AM4FEIH2A

i 'O | H Parallelization of Formal Verification Tools

o H A ZE B EA MM bR E R R R At
ANNE Y [Hifz
AT [Hifz
EED INCVNES Hifz
TRl N TNES Atz

WMXONEDEE

Today, software systems are used in various applications where failure is unacceptable. Among them
are airplanes, utilities, telephones, banking & financial systems, commerce, logistics, appliances, houses,
and securities. Very important systems, such as operating systems and the Internet that have been used as
infrastructures, are typically in the form of concurrent/distributed programs. We are undeniable that the
quality of software systems will affect the quality of our life more and more considerably. Therefore, the
need for reliable software systems is critical. Model checking is one of the most successful achievements in
computer science for hardware and software verification. However, there are still some challenges to tackle.
One of them is the state space explosion problem, which can make it impossible to conduct model checking
experiments. Many techniques have been proposed to alleviate the problem to some extent, but the
problem still remains when dealing with large systems and often prevents model checking experiments
from being carried out. Another challenge is to increase the running performance of model checking. One
promising approach to this challenge is to parallelize model checking, which can make the best use of
multicore architectures. In this thesis, we propose some techniques to mitigate the state space explosion
problem (space challenge) and improve the running performance of model checking (time challenge) by
parallelization for some formal verification tools. In summary, the thesis describes three non-trivial cases
to demonstrate the proposed techniques: (1) parallelization of Java Pathfinder, a software model checker,
for testing concurrent programs, (2) parallelization of Maude LTL model checker for checking leads-to
properties, and (3) parallelization of Maude-NPA, a logical model checker, for cryptographic protocol
analysis. Besides, we describe some shared techniques used for parallelization in this thesis and a generic
approach to parallelizing tools used for formal methods.

Studies on testing concurrent programs have been conducted for nearly 40 years or even more.
Compared to testing techniques for sequential programs, however, any testing techniques for concurrent
programs do not seem mature enough. Moreover, many important software systems, such as operating
systems, are in the form of concurrent programs. Therefore, testing techniques for concurrent programs
must be worth studying so that they can be matured enough. We propose a specification-based testing
technique for concurrent programs. For a formal specification S and a concurrent program P, state
sequences are generated from P and checked to be accepted by S. We suppose that S is specified in
Maude and P is implemented in Java. Java Pathfinder (JPF) and Maude are then used to generate state
sequences from P and to check if such state sequences are accepted by S, respectively. Even without
checking any property violations with JPF, JPF often encounters the notorious state space explosion while
only generating state sequences. Thus, we propose a technique to generate state sequences from P and
check if such state sequences are accepted by S in a stratified way. A tool is developed to support the

proposed technique that can be processed naturally in parallel. Some experiments demonstrate that the
proposed technique mitigates the state space explosion and improves the verification time, which cannot
be achieved with the straightforward use of JPF.

Our research group has proposed the L + 1-layer divide & conquer approach to leads-to model
checking (L + 1-DCA2L2MC), which is a new technique to mitigate the state space explosion in model
checking. As shown by the name, L. + 1-DCA2L2MC is dedicated to leads-to properties. This thesis
describes a parallel version of L. + 1-DCA2L2MC and a tool that supports it. In a temporal logic called
UNITY designed by Chandy and Misra, the leads-to temporal connective plays an important role and many
case studies have been conducted in UNITY, demonstrating that many systems requirements can be
expressed as leads-to properties. Hence, it is worth dedicating to the properties. This thesis also reports on
some experiments that demonstrate that the tool can increase the running performance of model checking.
Counterexample generation is one of the main tasks in the tool that can be optimized to improve the
running performance of the tool to some extent. This thesis then proposes a technique to generate all
counterexamples at once that is based on the Tarjan algorithm, implemented in C++, and integrated into
Maude, a programming/specification language based on rewriting logic, so that users can use it easily.
Some experiments are conducted to demonstrate the power of the technique that can improve the running
performance of the tool. Furthermore, layer configuration selection affects the running performance of the
tool. Therefore, this thesis then proposes an approach to finding good layer configurations for the tool with
an analysis tool that supports the approach. Some experiments are conducted to demonstrate the
usefulness of the analysis tool as well as the approach for layer configuration selection.

With the emergence of the Internet and network-based services, many cryptographic protocols, also
called security protocols, have been developed over decades to provide information security in an insecure
network, such as confidentiality and authentication. The design of cryptographic protocols, such as
authentication protocols, is difficult, error-prone, and hard to detect bugs. Therefore, it is important to have
automated tools to verify some desired properties of cryptographic protocols. Maude-NPA is a formal
verification tool for analyzing cryptographic protocols in the Dolev-Yao strand space model modulo an
equational theory defining the cryptographic primitives. It starts from an attack state to find
counterexamples or conclude that the attack concerned cannot be conducted by performing a backward
narrowing reachability analysis. Although Maude-NPA is a powerful analyzer, its running performance can
be improved by taking advantage of parallel and/or distributed computing when dealing with non-trivial
protocols whose state space is huge. This thesis describes a parallel version of Maude-NPA in which the
backward narrowing and the transition subsumption are parallelized at each layer. The tool supporting the
parallel version has been implemented in Maude with a master-worker model. We report on some
experiments of various kinds of protocols that demonstrate that the tool can increase the running
performance of Maude-NPA by 44% on average for all non-trivial case studies experimented in which the
number of states located at each layer is considerably large.

Keywords: testing concurrent programs, LTL model checking, cryptographic protocol analysis, state space
explosion, parallelization.

REEORROER

(1) Java i Y 7 b v =7 £F Lkt §% Java Pathfinder (JPF), (2) Maude #EHRHHFHELE 7L
A, KON(3) B2 VT 7' b 2V - BEEA O ELE 7L iR 4 Maude-NPA 236514k L
2 827 « 1L5TB A% U ZH#T 57 » 7 /Wi MacPro ECORERIC L 0+ 7S RO s & i
FRCETZZ EEfERE LT D, (1) & (3) THX DMWEIIARZEM, (2) THZ 2MEIL leads-to 7
Th D, FNEMLE leadsto ETEL DU AT ABRAZRB TE 5 2 &1F, Fpfim# UNITY OgitH <

& % Chandy & Misra FIZ XV EFESNTEY , WA LHDMEIZIRY b o72L LTH (1) — (3) 1
FRENTHDLZ L DRELE LR >T WD, (1) & (2) OWMRDHVAT LET/MTARKETH D |
(3) IXERIRREE W2 D, NF v~y TFORbYIC2=T 4 r—varzAng, flifz Lz
Fr—A U7 EREREREE LTHW, REBAERTR () [TEBEEL I L2 mRE T2 2 & THERR
AW H> ZEaAREE LTS, (1) — (3) IZ#HmTHHDE L, Google MapReduce (2 T4
BHINTWDLYRAY - U—ETI)V ONF), BlERRIREBA IO/ S 7255 22 I /35 LEEL
DERDZEZWINAIEST DL, VT R T H % v v OFRIC L MERR B 2145 Z &
VAL T—=HWD A a=r— g ra A MEOWTIUITEE 5 A — "=~y FIZRA 5 HER 215
DT —HZEHNYBTHY a TOARMEHMIRELSTHZ Rl REEHL, EikLz32DY—
JVPISM R LTI ATRE 2R WAMEEE AR L TV D, (2) 1L TR, (2 - 1) —EDOET LK
ECTTRCOXBIZEFRAARERTT VREME., 77 702 R—3x 2 "B LT en
A[fE7¢ Tarjan 7 /L2 Y AL ZEA L, Maude #ARHHGREEE T MR AREZ WA T HZ L THRET L Z
& CHRDFEITHEROUEHEZER L TS, (2) L TTEIC, BEMRREEHOREOKE &E
DIWESDZ LAY —ar T 4FXalb—a EEATHDN, FITHEN LS Y—ar 7 1 Fa L
=Y aVIRELKGET D720, (2 2) BbAY—ar 74X ab—a 2T 2D0HER
EENEZET DY =B BRIN TS, FERIZL Y | Bl L7z MacPro ECTHEBRA{TH> Z & T, (2 -
1) & (2-2) OFIEEZMEL TV D,

LLE, RSk, FERBRGEY — L O FUIC OV CIEA AR 3 SO EFIMFIEE Fhi L, FEBric X v E1T
PERED M EE MR L, IWRRGEY — /v (FIZET VRER) OWFHCEIEZREL-HLOTHY . Fif
HICEBRT 2 & 2ARKEN, Ko THE (FHREY) OFEaXE LTHMEDH L b0 LRDT,

