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Abstract 

We are motivated to discover and to know. And one thing that we always do consciously 

or unconsciously is to learn. Discovering knowledge is motivating. But it is even more 

desirable to know ourselves, our way of learning, and our learning habits with their 

strengths and weaknesses so that we can learn effectively, efficiently, patiently, and 

fruitfully. The modern world today enables us to approach knowledge so quickly that we 

might rarely think of any roadblock to the learning process. However, the last two years 

tells us otherwise. COVID-19 pandemic has prevented millions of learners worldwide 

from knowledge acquisition. Many learners have suffered anxiety and depression from 

disconnection from knowledge. In this challenging situation, we have realized a fortunate. 

It is online learning. One of the powerful impact channels for learning is online learning 

environments (OLEs) used by millions of learners and thousands of educational 

institutions worldwide. For learners to progress in learning, it is required to grow the 

mindset and skill set of an active way of learning. Learning in OLEs requires learners to 

be active and autonomous because of the lack of contact with advisors, teachers, or 

instructors. Such an active mindset and skill set for learners is named self-regulated 

learning (SRL).  

This research aims to support learners’ recognization of their SRL ability in OLEs. We 

think that adequate support can be done by assisting learners in seeing their online 

learning history and then helping them understand their learning patterns. To achieve this 

objective, we highlight two main subjects of this research: the method for modeling online 

learning behaviors and the framework for explaining the model. We pave the studies on 

these two subjects with the following research questions.  

• RQ1: What intrinsic and extrinsic factors construct and differentiate the SRL ability 

of a learner?  

• RQ2: How can these SRL factors be identified and measured from a learner’s 

learning history? 

• RQ3: Under what cognitive or metacognitive conditions are individuals 

intrinsically/extrinsically motivated to self-regulate their learning? 



 

• RQ4: By what signs can learners’ learning history data in OLEs manifest SRL 

patterns?  

• RQ5: How can learning history data from OLEs be synthesized for assessing the 

SRL ability of a learner? 

The research outcome will be twofold: 

• An SRL Recognition and Improvement framework (SRL framework for short) 

which is a source of reference for recognizing the SRL characteristics of a learner 

and measuring SRL ability; 

• A learner Markov model structure for modeling SRL characteristics of learners in 

OLEs. 

The SRL framework contains sound principles for describing SRL ability. The Learn 

Markov Model refers to both the model of a self-regulated learner and the method to 

generate the model from online learning data.  

To build the SRL framework, we dated back to the basic principle of the mind and 

then reviewed existing SRL models popular and widely used to analyze their common 

and unique attributes and root principles. The purpose of the SRL framework is to give a 

source of explanation for SRL related activities, SRL ability, and SRL modification for 

improvement. 

The learner Markov model is an application built from a reference to the SRL 

framework to support learners’ recognition of their SRL patterns in an online learning 

context. We demonstrated a procedure to generate resource use sequences from learners’ 

learning history data, suggested how to present SRL activities visually, introduced the 

SRL profile – a description of learners’ SRL characteristics - and especially proposed the 

quantitative measurement of SRL ability – the SRL index.    

The proposed method was applied to an open dataset from the Open University, one 

of the world’s largest universities of online learning, for evaluation. We built prediction 

models to predict learner performance and compare the prediction results with current 

approaches to demonstrate the potential of our method. We also discuss the combination 

of the SRL framework with the SRL profile to support the understanding of learners’ SRL. 



 

Since the SRL framework and the proposed method for learner Markov modeling are 

newly introduced, there are several limitations to the validation of the framework, the 

specific approaches for SRL improvement, and the application of learning Markov 

modeling on other learning history data besides OULAD needed to justify its 

generalization. Such limitations call for future works to test the proposed framework and 

modeling method on other cases. 

With the SRL framework as fundamental and the method for modeling SRL profile, 

we believe that the outcomes of our research help to ease the understanding of SRL and 

make the recognition of SRL concrete and the improvement of SRL approachable. 

Keywords: Self-regulated learning, SRL profile, SRL ability, Online learning, Learner 

model. 
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Definitions, acronyms, and abbreviations 

Clickstream A sequence of accesses to online learning resources 
done via mouse clicks 

Cognitive score A performance score that a learner earns from 

completing an assignment or an exam to indicate their 

learning performance 

Learner model A partial representation of a learner from a particular 

aspect 

Learning pattern A repetitive arrangement of learning activities or 

learning resource access 

Learner profile A visual or written description of characteristics of a 

learner 

Learning traces Learning activity data stored in an OLE 

LMM Learner Markov model 

LMS Learning management system 

Log SRL index Logarithm to the base 2 of the SRL index 

Markov chain A process of states satisfying the Markov property, 
which is that a state in a process only depends on a 
state right before it and ignores all the other previous 
states. 

Markov model A model for an activity sequence, developed by 
applying Markov chain 

Metacognitive score A score that indicates a learner’s awareness of his or 
her learning process. 

MM Markov model 



 

OLE Online learning environment 

Online learning The state of approaching and obtaining knowledge via 
the internet channel. 

Online learning context Online learning-related events, conditions, or 
environments  

Online learning resource Learning materials in multimedia forms   

SR Self-regulation 

SRL Self-regulated learning 

SRLer Self-regulated learners 

SRL ability A quality of execution of SRL capability 

SRL capability A learning skill or power that a self-regulated learner 
can perform 

SRL character A collection of characteristics or attributes that a self-
regulated learner has 

SRL characteristic Marks for recognizing a self-regulated learners 

SRL framework A set of principles for the existence and operation of 

SRL  

SRL index A measurement of SRL ability 

SRL profile A description of a learner’s SRL ability 
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Chapter 1.  Introduction 

 Background, challenges, and opportunities for research 

To know ourselves and seek knowledge are two everlasting desires of ours. That is why 

any brick walls on the road to knowledge cause us confusion and anxiety. During the last 

two years, COVID-19 has prevented millions of pupils and students worldwide from 

going to school, causing tremendous impacts on learning progress for individual learners. 

It might be the first time many learners feel depressed because of being blocked from 

learning. Fortunately, nowadays, paths to knowledge have been vastly and effectively 

supported by learning courses, materials, and visual and audio lectures delivered via the 

high-speed internet. That is online learning which is the state of approaching and gaining 

knowledge via the internet channel. Online learning supports our learning process beyond 

the time and space and learning material types constraints. Besides being an effective 

channel to transfer knowledge, online learning also poses the potential to assist learners 

in recognizing their way of learning.  

To widen and deepen knowledge, we need to be aware of and understand our learning 

habits with their strengths and weaknesses. To aid the process of recognizing personal 

self-regulated learning capability, in this study, we propose a method for modeling online 

learning behaviors and a framework for explaining the model. The proposals strive to 

assist learners in discovering knowledge about their online learning patterns and 

supporting their awareness of their online learning habits.   

Self-regulated learning (SRL) and online learning support are the two research areas 

that have recently attracted significant growth in research. SRL can be seen as both an 

active and proactive learning process or an active and proactive learning capability. 

Although SRL is innate, SRL ability varies from one learner to another. SRL ability refers 

to how effectively and efficiently learners regulate their learning journey toward a goal. 

Research in SRL has stretched from models for representing SRL processes to methods 

and tools for recording, measuring, and supporting SRL abilities [1]–[6]. One of our 

publications [7] empirically shows that SRL is a positive intertwinement of cognition and 

metacognition observable in online learning environments. 
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From the online learning perspective, learners get more engaged in online learning 

environments (OLEs), where there are conditions, multimedia materials, and services to 

support learning over the internet. Bernacki et al. [5] illustrated the compatibility of OLEs 

and SRL in which the organization of learning materials in OLEs helps learners to self-

regulate their learning, and learners with SRL ability can learn effectively in OLEs. OLEs 

preserve data of learners’ interaction with online learning resources - a valuable source 

of feedback about learners’ learning processes. Various studies have analyzed such a type 

of history data for indicators about how learners have used learning resources to predict 

future learning performance, potential dropouts, or learners at risk of failing so that 

educators and instructors can offer the learners with necessary support [8]–[11]. Although 

gaining high accuracy in such a prediction, current research encounters challenges in 

providing a rational explanation for the correlation between online learning traces and 

learning habits. Hence, it is not helpful to assist learners in building good learning habits 

to improve learning performance.  

Current researches also tend to support SRL rather than first helping learners 

understand their SRL characteristics and abilities. We believe that such an understanding 

is a prerequisite for adequate support that follows. Understanding one’s learning habits is 

a source of proper regulation to improve learning performance. In modern days, one’s 

learning process with the support of OLEs such as learning management systems (LMS) 

or massive online open courses (MOOCs) leaves various learning traces informative for 

analysis to gain knowledge about one’s learning habits. Such data open opportunities to 

know learners’ way of learning somehow and support their improvement.  

 Research objectives and research questions 

With the purpose of supporting learners’ recognition of their SRL from their learning 

behavior data, we have started this research. To understand SRL, it is necessary for us to 

describe and measure it. Thus, we focus this research on a single objective that is to 

describe and measure learners’ SRL ability in OLEs. 

To achieve this objective, we highlight two main subjects of this research: the method 

for modeling online learning behaviors and the framework for explaining the model. We 

pave the studies on these two subjects with the following research questions.  
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• RQ1: What intrinsic and extrinsic factors construct and differentiate the SRL 

ability of a learner?  

• RQ2: How can these SRL factors be identified and measured from a learner’s 

learning history? 

• RQ3: Under what cognitive and metacognitive conditions are individuals 

intrinsically/extrinsically motivated to self-regulate their learning? 

• RQ4: By what signs can learners’ learning history data in OLEs manifest SRL 

patterns?  

• RQ5: How can learning history data from OLEs be synthesized for assessing the 

SRL ability of a learner? 

The research outcome will be fourfold: 

• the SRL Recognition and Improvement framework, which is a source of reference 

for recognizing the SRL characteristics of a learner and measuring SRL ability, 

• the learner Markov model, which is generated by the application of the Markov 

chain to model learnerts’ online learning patterns, 

• the self-regulated learning (SRL) profile, which is the presentation of the model 

to support learners’ understanding of their learning patterns, 

• and the SRL index, which is a scalar measurement of the effectiveness of the 

learning patterns. 

The innovative points of this research are highlighted in the following two 

contributions. First is the structure used for modeling online learning behavior data. And 

second is the principles on which the modeled data are explained. Current research 

usually analyzes attributes of online learning behaviors separately or without academic 

principles to relate such attributes to one another; therefore, the analysis outcome does 

not reflect actual learning habits. Proposing a new modeling structure and principles for 

explaining observation data, this research strives to give online learning behaviors data a 

reliable description, which is helpful for learners to understand their learning habits.    
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 Dissertation structure 

Chapter 1. Introduction 

This chapter strives for readers’ interest in the research topic of SRL and appropriate 

support for self-regulated learners (SRLers) in online learning. In this chapter, the 

research background, motivation, challenges, and opportunities for the authors to carry 

out this research are explained. The research objectives, research questions to be 

addressed, and the expected outcome are stated in this chapter. This chapter also describes 

the structure of the dissertation and a guideline for reading the document.  

Chapter 2. Literature review 

This chapter reviews research on SRL and online learning. Firstly, it presents the idea 

of SRL and the outcomes of SRL research relating to traditional education and online 

learning. The review strives to justify the important role of SRL for self-study in online 

learning contexts, presents available SRL-related models that can be applied to supporting 

learners in online learning contexts, and points out the gaps and opportunities for 

improvement which this research would fill in.  

Then, the chapter describes the characteristics of self-study in online learning by 

demonstrating the correlation between SRL and online learning, analyzes data on online 

learning behaviors, and presents current supports for online learning and opportunities for 

developing ideas and methods to support learners further in online learning.   

The chapter also briefly reviews studies in learning analytics and educational data 

mining, learning tactics and strategies, and asynchronous and synchronous online 

learning to scope this research in an appropriate expertise and application”. 

Chapter 3. SRL Recognition and Improvement framework 

This chapter introduces and describes one of the outcomes of this research, the SRL 

recognition and improvement framework. The framework demonstrates how SRL in 

online learning contexts should be formed and measured, what SRL characteristics are, 

and how they can be improved. This chapter demonstrates the manifestation of SRL in 

online learning contexts, which is written in chapter 2, and then mentions a need for 
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modeling online learning-related data for further application, which will be discussed in 

Chapter 4.       

Chapter 4. Formulation of SRL related problems in online learning contexts 

This chapter formulates SRL-related problems and presents the use of techniques and 

theories in information science to model online learning data. Markov chain and related 

algorithms are the main approaches for analyzing and manipulating online learning data 

for modeling SRL and later supporting SRL in online learning contexts. In this chapter, 

the Markov chain is briefly reviewed and followed by the application of these techniques 

to this research.   

Specifically, this chapter formulates the problem of modeling a self-regulated learner 

in an online learning context, develops a Markov model (MM) for a learner, shows how 

the parameters of a learner Markov model (LMM) are estimated and how steady states of 

the LMM, representing online learning habits of learners, are calculated.  

From LMM, this chapter presents the SRL profile – a description of an SRLer in OLEs 

– and the SRL index – measurement of SRL ability. Together with the SRL recognition 

and improvement framework, the SRL profile and the SRL index are the primary 

outcomes of this research. They are used to describe and measure SRL ability.    

Chapter 5. Method evaluation and discussion   

This chapter presents the application of the proposed method to an open dataset named 

OULAD [12] in order to model SRLers and learners’ SRL ability and develop learning 

performance prediction models. The proposed method is compared with existing 

approaches to evaluate its effectiveness and rationale. 

Chapter 6. Conclusion, limitations, and future works 

Chapter 6 summarizes the dissertation contents, distills theories and fundamentals used 

to develop the research, highlights outcomes and achievements, points out limitations, 

and recommends future research and development.   
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Chapter 2.  Literature review 

We tend to begin changes after we have understood the reasons for change. In online 

learning contexts, learners leave behind redundancy of learning history data. There are 

studies and applications about using online learning history data to assist learners; 

however, it seems that the learners could not make proper changes for improvement. We 

think this is because current approaches might not have the data made sense to the learners. 

To understand their SRL from their learning history data, learners need to have their 

learning history data arranged and organized in a certain manner and an underlying set of 

principles to explain the data.  With such goals in mind, we would like to conduct a 

literature review on studies in SRL and studies and applications from the analysis of 

online learning data.  

We will journey into the formation of theory about self-regulation, self-regulated 

learning (SRL), and the development of SRL research, specifically SRL models, to 

illustrate the differences and similarities of the SRL models and the need for an SRL 

framework. After reviewing research in SRL, we would like to go into current research 

in online learning data analysis with existing results and outcomes for supporting learners.  

We also present recent research on SRL in online learning, challenges, and opportunities 

in assessing SRL ability and helping learners self-regulate their learning.    

 SRL models 

This section is a slightly modified version of the authors’ article [13] published in 2021 

and has been reproduced here with the copyright holder’s permission. 

2.1.1. Self-regulated learning 

We find it necessary to comprehend what SRL is, how it operates, and why it is worth 

studying; therefore, we would like to start the literature review by presenting the 

understanding of SRL from leading researchers in this field of research.  

Self-regulation (SR) has become an attractive research topic since the 1980s, and 

studies on self-regulation, specifically on SRL, have grown significantly since the 2000s. 

Despite its recent attraction for research, SR was thought about in ancient times and is 

known as the human’s ability of self-consciousness [14]. What is self-regulation? 
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According to the Oxford English Dictionary, to regulate is to control things so that they 

behave properly. The Latin origination of the verb regulate means to rule and direct. SR 

is a state of adjusting, ruling, and directing oneself in a certain activity or process, or 

procedure.  

Theories of SR have been developed, each of which observes SR from different 

perspectives. The theories are significantly applied to SRL. There are theories 

formulating SRL as a goal-directed process. Other theories view SRL as a series of 

reciprocal interactions between a person and his surroundings when performing a task. 

Still, other theories center SRL around personal self-awareness. Because of various 

aspects of SR, definitions of SRL also vary.  

According to professor Boekaerts [15], SRL is difficult to define. There are indeed 

more descriptions of SRL than definitions of it. She views self-regulated learners as ones 

“who have the capacity to exert control over different dimensions of the learning 

process… and to allocate resources to the different aspects of the learning process…” 

[15, p. 102]. From a goal-oriented perspective, professor Efklides describes SRL as a 

learning path in which learners set attainable goals corresponding to their “cognition, 

metacognition, motivation, affect and volition” [16, p. 1]. Professor Winne [17, p. 533] 

sees SRL as a metacognitively guided, intrinsically motivated, and strategic form of 

learning. The apparent definition of SRL so far is from Professor Zimmerman. Professor 

Zimmerman defines that “Self-regulated learning involves metacognitive, motivational, 

and behavioral processes that are personally initiated to acquire knowledge and skill, 

such as goal setting, planning, learning strategies, self-reinforcement, self-recording, and 

self-instruction” [18, p. 541]. 

SRL is like a way of learning comprised of components and processes in which the 

components interact under conscious supervision and regulation.    

2.1.2. SRL models 

The outstanding achievements of research on SRL are the SRL models, each of which 

describes the operation of SRL at individual learners from certain specific viewpoints. 

Panadero [19] described, analyzed, and compared several popular SRL models to the 

extent of their underlying theories, processes, and empirical evidence about the 
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application and associated measuring tools. In the following, six popular SRL models are 

reviewed to analyze the viewpoints from which the models are constructed. 

2.1.2.1. Winne’s model of SRL 

Professor Phillip H. Winne’s research on SRL provides a view of SRL from a 

metacognitive perspective demonstrated in his model [20]. Winne and Hadwin’s model 

[20], introduced in 1996, emphasized the role of metacognition in the self-regulation of 

cognitive tactics and strategies. As shown in Figure 2.1, this model demonstrates a 2-

phase SRL process to accomplish a learning task. The first phase is planning, and the 

second phase is executing the plan, monitoring the progress, and making the adaptation. 

Though sharing the same SRL patterns, individual learners’ SRL ability differs in five 

points; they are (i) domain knowledge that the individual has accumulated from their 

educational background and history, (ii) knowledge of tactics and strategies, which is a 

reservoir of learning methods and techniques, (iii) performance of tactics and strategies 

which are the proficiency of applying learning techniques, (iv) regulation of tactics and 

strategies that monitor how well ones learn and make appropriate adaptations, and (v) 

global dispositions which are pathways to learn. 

How do learners address a task according to the SRL model? The first phase starts 

with a learner receiving a task to be addressed. The learner uses cues for the task, recalls 

domain knowledge related to the task, assembles strategy knowledge required to perform 

the task, and motivates herself to address the task. The outcome of the first phase could 

be a set of goals with their profiles and standards, which clarify the results from doing the 

tasks and against which the learner judges the quality of the results. When the plan is 

ready, the second phase begins to operate. In this phase, the learner applies cognitive 

strategies and tactics to act on her plan. There would be several outcomes or products 

generated. There would also be indicators of the current state of the task in comparison 

to the plan. The learner monitors these pieces of information frequently and uses them as 

feedback on her plan and current goals and activities to make appropriate changes.  
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Figure 2.1. Winne's SRL model [20, Fig. 1]. The model contains 2 phases. The first phase is 
planning; it starts with a learner receiving a task, then using the task’s cues and reviewing her 
knowledge, learning strategies, motivation, and beliefs to form a plan and goals. The second phase 
is executing the plan, monitoring the progress, and making the adaptation by comparing the 
achieved products and the planned.  

2.1.2.2. Boekaerts’ dual-processing model and six-component model 

Professor Boekaerts’ research on SRL mainly investigates the role of goals of different 

types in SRL [21]. In 1996, Boekaerts introduced two SRL models, the six-component 

model of SRL and the dual processing model. 

In her dual-processing model (as shown in Figure 2.2), the SRL pattern is determined 

by a learner’s selection of goals; there are two main pathways of goals: the growth of 

knowledge, skills, and the well-being of self-esteem. Depending on the level between 

those pathways, learners will gather, align resources, and self-regulate their learning to 

balance learning performance and self-esteem [22]. 

How does a learner self-regulate according to the dual-processing model described in 

Figure 2.2? Having a learning task in front of her, a learner has a mix of two types of 

goals: gaining knowledge and skills, and protection of ego. The former goal strives to 

increase understanding; the latter goal preserves self-esteem. The learner tends to apply 
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learning strategies to master the learning task when aiming to the goal of knowledge gain 

while she might use coping strategies to learn or deal with the task so that it could not 

harm her self-esteem, e.g., not to have low grades compared to peers. Depending on the 

balance between two types of goals, learners express different SRL patterns.   

 

Figure 2.2. Boekaerts’ dual processing model [21, Fig. 1]. The model demonstrates 2 types of 
goals from which a learner will choose when learning a task. The knowledge & skills goal is to 
gain knowledge, which activates the mastery mode of learning. The “self” goal is to protect self-
esteem, which activates the coping mode of learning. 
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Boekaerts’ six-component model of SRL views SRL as the interoperation of cognition 

and motivation throughout the aspects of goal setting, strategy use, and domain 

knowledge [15]. In this model, cognition and motivation function simultaneously when 

self-regulated learners set goals, prepare cognitive and motivational strategies, and recall 

prior knowledge to learn new knowledge effectively.  

How does a learner self-regulate her learning according to the six-component model 

shown in Figure 2.3? A learner regulates her cognition and motivation in learning, and 

these two faculties manifest in three areas in learning: (accumulating) domain-specific 

knowledge, (applying) strategies, and (setting) goals. The combination of the two 

faculties and the three areas reveals in the six components, as demonstrated in Figure 2.3. 

According to the model, learners possess 2 types of knowledge: domain knowledge about 

their expertise (block 1, 2, and 3 accordingly in the model) and metacognitive knowledge 

about their beliefs and motivation (block 4, 5, and 6 accordingly in the model). Besides 

the knowledge, learners have abilities and skills to apply it to tasks to a certain extent and 

regulate the level of application of cognitive strategies according to goals, the learners’ 

intention, and obstacles they face. Overall, the level of regulation corresponds to the 

balance of two types of goals presented in the dual processing model above.  
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Figure 2.3. Redrawn from Boekaerts' six-component model of SRL [15, Fig. 1]. A learner 
regulates her cognition and motivation in learning, and these two faculties manifest in three areas 
in learning: (accumulating) domain-specific knowledge, (applying) strategies, and (setting) goals. 
The six components reveal the combination of the two faculties and the three areas. 

2.1.2.3. Pintrich’s framework of phases and areas for SRL 

Professor Pintrich’s research concerns the role of goal and its effects on motivation 

which then choreographs cognitive processes. His research also focuses on metacognitive 

awareness as the principle for motivation. These main points are described in his 

framework of phases and areas for SRL in 2000 [23]. The framework presents the 

common attributes shared by all existing SRL models, which are the following: 
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• Self-regulated learners are active in terms of setting learning goals, reviewing prior 

knowledge, preparing cognitive strategies and learning environment for their 

learning process, 

• Self-regulated learners have the potential to monitor, control, and regulate internal 

and external factors of the learning process, 

• All SRL models have criteria against which self-regulated learners reflect their 

progress in order to adjust their learning progress, 

• Self-regulatory activities are the means that self-regulated learners apply to reach 

their learning goals [23]. 

The framework shown in Figure 2.4 comprises two dimensions. First is a system of 

four SRL phases: forethought planning and activation, monitoring, control, reaction, and 

reflection. And second is regulation activities in each phase in the areas of learners’ 

cognition, motivation, behavior, and context. Running throughout the framework and 

joining self-regulatory activities are learning goals and motivations [23]. According to 

the framework, when learners self-regulatedly learn or perform a task, they generally 

follow a 4-phase SRL process chronologically though it is not strictly so. In the 

Forethought planning and activation phase, the learners apply Ease of Learning 

Judgments (EOLs) to evaluate the difficulty of the task to be learned, prepare a context, 

prior knowledge, motivation for learning, target goals, and an activation plan. Then in the 

monitoring and controlling phases, the learners act the plan, aware of knowledge 

absorption via Feeling of Knowings (FOKs), monitor the learning progress via Judgments 

of Learnings (JOLs), and make appropriate adaptions or changes to learning methods, 

e.g., adjusting time, seeking help, alternating techniques. Finally, in the Reaction and 

reflection phase, the learners judge their performance, review the effectiveness of their 

cognitive work, identify attributions to the achievements, and evaluate the process.  

As mentioned above, Pintrich’s research focuses on metacognitive awareness. It is 

illustrated in the Feelings of Knowings (FOKs), Judgments of Learnings (JOLs), and Ease 

of Learning Judgments (EOLs). FOKs refer to learners’ confidence in recalling 

knowledge, although they do not remember it at the moment [23, p. 459]. JOLs are 

activities the learners do to help them understand what they do not understand at the 

moment [23, p. 459]. EOLs are activities the learners perform to clear tasks before they 
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learn [23, p.462]. The better the learners can do FOKs, JOLs, and EOLs, the higher they 

are motivated to learn. 

Phases 

Areas for regulation 

Cognition Motivation/affect Behavior Context 

1. 
Forethought, 
planning, and 
activation 

Target goal setting 

Prior content 
knowledge activation 

Metacognitive 
knowledge activation 

Goal orientation 
adoption 

Efficacy judgments 

Ease of learning 
judgments (EOLs); 
perceptions of task 
difficulty 

Task value activation 

Interest activation 

[Time and effort 
planning] 

[Planning for 
self-
observations of 
behavior] 

[Perceptions of 
task] 

[Perceptions of 
context] 

2. Monitoring Metacognitive 
awareness and 
monitoring of 
cognition (FOKs, 
JOLs) 

Awareness and 
monitoring of 
motivation and affect 

Awareness and 
monitoring of 
effort, time use, 
and need for 
help 

Monitoring 
changing task 
and context 
conditions 

3. Control Selection and 
adaptation of 
cognitive strategies 
for learning, thinking 

Selection and 
adaptation of 
strategies for 
managing motivation 
and affect 

Self-observation 
of behavior 

Increase / 
decrease effort 

Persist, give up 

Help-seeking 
behavior 

Change or 
renegotiate task 

Change or leave 
the context 

4. Reaction 
and reflection 

Cognitive judgments 

Attributions 

Affective reactions 

Attributions 

Choice behavior Evaluation of 
task 

Evaluation of 
context 

Figure 2.4. Redrawn from Pintrich’s Phases and Areas of SRL [23, Table 1]. Two dimensions of 
the framework are the SRL phases and the areas for regulation. First is a system of four SRL 
phases: forethought planning and activation, monitoring, control, reaction, and reflection. And 
second is regulation activities in each phase in the areas of learners’ cognition, motivation, 
behavior, and context. Running throughout the framework and joining self-regulatory activities 
are learning goals and motivations. 

2.1.2.4. Zimmerman’s cyclical phase model 

Professor Zimmerman is one of the pioneer SRL researchers and mainly bases his SRL 

models on professor Albert Bandura’s well-known socio-cognitive theory [24]. 

Viewing self-regulation as a result of the intertwinement of an individual’s 

consciousness, behaviors, and the environment where they are working on a particular 
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task, The cyclical phase model emphasizes the process aspect of SRL. It illustrates the 

interaction paths between learners, learning tasks, and the learning environment in a 

specific context defined by learning contents and environment settings.  

Among Zimmerman’s SRL models, the most popular is the cyclical phase model, first 

introduced in 1998 and then added with detailed subprocesses for each phase in 2000, as 

shown in Figure 2.5. The model demonstrates that individuals self-regulate their learning 

via a 3-phase process [25]. Detailed descriptions of the subprocesses of each phase are 

found in [26]. The process starts with the forethought phase, in which learners begin their 

learning journey by analyzing learning tasks, setting learning goals, planning cognitive 

strategies, and motivating themselves to learn. Then, the learners proceed to the 

performance phase, where they put their learning plan into action with conscious self-

control over how they learn and a self-observation of how well they have been learning. 

Finally, the learners wrap up their learning with the self-reflection phase, in which they 

judge the learning journey by comparing the learning performance against the goals set 

in the first phase, analyzing factors that contribute to learning achievements, and in which 

they seek adjustments and alternative approaches to help them learn more effectively and 

productively. 
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Figure 2.5. Redrawn from Zimmerman's SRL cyclical model with phases and subprocesses [26, 
Fig. 1]. The cycle arrows indicate the process does not run one time only but repeats as learners 
progress their learning. 

2.1.2.5. Efklides’ Metacognitive and Affective model of SRL 

One of the latest SRL models is professor Efklides’ Metacognitive and Affective 

model SRL (MASRL), introduced in 2011. Professor Efklides views SRL as a 

composition of 3 main components: metacognition, motivation, and affect [16], and this 

viewpoint is illustrated in the MASRL model. The model presents the interaction of 

metacognition, motivation, and affect in the SRL process when an individual learns 

specific tasks. The interaction operates within a learner and between the learner and the 

tasks. 

Figure 2.6 demonstrates the MASRL model. Efklides [16] demonstrates that an 

individual’s SRL manifests at two levels. One is the Person level, which is a general SRL 

level or about SRL characteristics of an individual regardless of learning contents or 

context. And the other is Task x Person level, which is about the ability of an individual 

to apply specific SRL behaviors within a particular learning task. When individuals 
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following the MASRL model engage in a learning task, their Person level sets learning 

goals and establishes top-down self-regulation based on their metacognitive knowledge, 

metacognitive experiences, and metacognitive skills. Those metacognitive strategies have 

been accumulated and built into the learners’ SRL traits. In the Task x Person level, their 

cognitive strategies are regulated in a bottom-up self-regulation manner to meet the task 

requirements and reorganize the Person level. 

 
Figure 2.6. Redrawn from Efklides' MASRL model [16, Fig. 1]. When addressing a task, a learner 
starts a cognitive and metacognitive preparation at the Person level, which represents her general 
characteristics and ability of SRL independent of the task. Then, she regulates her SRL in response 
to the specific requirements of the task in the Task x Person level.  

How does a learner self-regulate her learning according to MASRL? When addressing 

a task, a learner prepares herself at the Person level first. At this level, the learner 

leverages her metacognitive knowledge (MK) and metacognitive experiences (ME) to 

establish the ability and beliefs to work on the task. She also leverages motivation and 

affect and the ability to establish a self-concept, which is a ‘representation of one’s 

competence in various domains’ [16, p. 6] so that she is motivated and feels confident in 

doing the task. Then, the learner starts working on the task, transitting SRL to Task x 

Person level. At this level, the learner’s cognition processes the tasks while her 

metacognition and affect monitor the progress of the cognition so that she can self-
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regulate her effort on the task and her affect to stay motivated. At this level, task, activity, 

and outcome-related events are considered by metacognition and affect so that proper 

self-regulation of affect or effect can be made. Task level and Task x Person level also 

interact to produce appropriate adjustments according to the task progress. For instance, 

a task more difficult than expected might make the learner cease doing to prepare extra 

cognitive strategies needed for fulfilling the task. Or, if the work progresses more than 

expected, the learner would feel more motivated and confident. 

2.1.3.  Models comparison 

2.1.3.1. SRL Phases 

From the phase division perspective, despite containing different processes, the 

models mentioned above share three common phases: planning, performance, and 

reflection. Standing in front of knowledge, we go through these phases naturally to obtain 

knowledge. The more sophisticated the knowledge we are approaching, the more 

conscious we are of our application of these phases. We simply cannot grasp sophisticated 

knowledge all at once because of limitations of our time, prior knowledge, ability, 

maturity, etc.  

To embrace new subject-matter of sophisticated knowledge, firstly, we usually observe 

it from different perspectives, wonder about the breadth and depth of each perspective of 

the subject-matter we desire to explore and relate it to our prior knowledge to make a 

connection by distinguishing and similarizing it to what we have known, determine in 

mind or clearly on paper a certain degree of outcomes, objectives about the subject-matter 

to strive for and sketch in mind or clearly on paper a course of activities to review, study, 

experiment the subject-matter. In other words, firstly we plan.  

Next comes the performance phase, where we review, study, experiment, and analyze 

the subject-matter to grasp its knowledge and accomplish the outcomes and objectives 

that we have established for the subject-matter. It is in the performance phase that we 

actually discover the breadth and depth of the subject-matter, that we contact the real 

condition of the subject-matter as it is rather than as we think it is. For example, we might 

have experienced that we think we can write a good paragraph about a certain idea, but it 

turns out that the paragraph we write is not as cohesive as an outline of a paragraph that 
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we have in mind. When we produce outcomes in the performance phase, the reflection 

phase begins. 

The reflection phase compares the performed outcomes and the planned ones in order 

that modifications and adjustments might be made. The items to be compared are various 

such as objectives, goals, learning tactics and strategies, and levels of growth of 

knowledge to be digested. 

Although described separately and successively in order, the three SRL phases 

interweave in operation. We rarely delay the performance phase until we finish the 

planning phase, and we usually reflect as soon as we have the outcomes from the 

performance phase and the planned outcomes from the planning phase. It seems that there 

are multiple planning-performance-reflection cycles running when a self-regulated 

learner learns a subject-matter from the starting point until the finishing point; therefore, 

we argue that the three SRL phases interoperate throughout a learning process with each 

SRL phase presenting a dominant density in a particular period. Hence, a timeframe in 

the learning history of a learner is probable to tell his or her SRL characteristics and ability.     

2.1.3.2. SRL elements 

From the models mentioned earlier, each of them, on the one hand, describes common 

overall phases and, on the other hand, presses SRL on specific angles from process 

orientation to components orientation, from cognition to metacognition, from goal to 

motivation, affect, emotion, or ego.  

Knowing the meanings of these main components is necessary to understand SRL. 

Table 2.1 summarizes the main components and their associations that each of the six 

models above focuses on. We extract six main components that repeatedly occur in the 

six models above. The components are cognition, metacognition, goal, ego, motivation, 

and affect.   



20 

  

Table 2.1.  Remarked associations between components in current SRL models. 

Association Cognition Meta-
cognition Goal Ego Motivation Affect 

Cognition  1, 2 2, 3, 4 2 3, 4, 5 4, 5 

Meta-
cognition   2, 3, 4 2, 3 6 6 

Goal    2 3  

Ego     2  

Motivation      4, 6 

Affect       

1: Winne’s SRL model [20]; 2: Boekaerts’ dual-processing model [21];  

3: Boekaerts’ six-component model [15]; 4: Pintrich’s framework of phases and areas for SRL [23];  

5: Zimmerman’s cyclical phase model [26]; 6: Efklides’s MASRL [16]. 

 

Cognition 

Winne presented cognition in terms of cognitive strategies and tactics. They are a set 

of how-to-do and a course of action in certain contexts [20, p. 328]. Winne modeled 

cognition in a compact, elegant manner as IF contexts THEN how-to-do. Boekaerts 

referred to cognition as ‘cognitive processes and behavior that students use during actual 

learning experiences to accomplish a goal implied by the academic task’ [15, p. 105]. 

Pintrich described cognition as the use of content knowledge and strategic knowledge for 

learning or working on a task [23, p. 455]. Zimmerman expresses cognition in the 

performance phase of his SRL cyclical model as methods of visual description, attention, 

self-instruction, and task strategies to gain knowledge [26, p. 68]. According to Efklides, 

cognition manifests as “capabilities (ability, knowledge, skills) or competencies” of 

learners [16, p. 6]. 

Metacognition  

Winne followed the 2-level model of metacognition, describing metacognition as 

monitoring and controlling cognitive behaviors [20, p. 329]. A learning process involves 

two levels: meta-level and object-level. The object-level relates to information about the 
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status, learning progress, the effectiveness of learning strategies applied, and so forth. The 

meta-level involves the observation on the object-level so that proper adjustments can be 

made. Researchers have also shared a similar understanding and definition of 

metacognition, namely, metacognition as one’s awareness of and knowledge about one’s 

cognitive thought, strategies, behaviors, and so forth [16, p. 6], [23, p. 462], [26, p. 65]. 

Motivation 

Elfklides views motivation as an orientation toward the achievement of goals [16, p. 

6]. Boekaerts expresses a holistic view of motivation. According to Boekaerts, motivation 

comprises “beliefs, judgments, and values related to one’s capacity” in response to a 

learning task and “strategies to do what is necessary to achieve mastery, complete a 

learning task, or accomplish a learning goal” [15, p. 108].  

Affect 

Elfkides views affect as a combination of attitudes and emotions [16, p. 6], while 

Zimmerman relates positive affect with self-satisfaction corresponding to learning 

performance. Pintrich views affect and motivation going together, generated by self-

efficacy [23]. 

Goal and Ego 

Besides the general meanings of goals we accept in common sense, according to 

Pintrich [23], goals are criteria and standards against which performance on a task is 

compared. Boekearts [22] categorizes goals into two types: growth of knowledge and 

skills and preservation of ego. Choosing the goal of knowledge growth leads learners to 

mastery learning mode while choosing the other type of goals makes the learners cope 

with learning tasks to defend their self-esteem.  

Let us review all of the models above. All the models share a pattern that SRLers 

perform learning activities with a certain level of awareness over the learning process and 

with a vague to concrete target, and the learning process does not end without thought or 

desire of improvement or learning better in the future. The models demonstrate how 

individual learners self-regulate their learning but have not fundamentally explained why 

such an SRL process can lead to learning efficiency. Furthermore, starting from a specific 

perspective, the models might not provide a comprehensive ground on which SRL ability 
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is evaluated. It requires a recognition of the principles on which SRL stands and operates. 

Such principles would be a fundamental reference point for learners to understand their 

SRL, recognize the strengths and weaknesses of the SRL characteristics, and improve 

their SRL ability. The quest for the SRL principles and the development of the SRL 

recognition and improvement framework will be presented in chapter three. 

Having reviewed current research on SRL, we would like to shift your attention to the 

research on online learning area. Online learning are diverse to the extent of content 

delivery modes, resource variety, data history, data analysis approaches, etc. Our research 

objective concerns the expression of SRL via learning activity data in OLEs; therefore, 

we intent to scope our research through the lens of three aspects: content delivery mode, 

data analysis approach, and data history. Online learning is currently delivered in two 

primary modes, asynchronous and synchronous. Online learning data that are generated 

by learners are tremendous and enable productive analysis. Among various types of data 

history, the most popular is clickstream. Recently, online learning data analysis has 

advanced so rapidly that it has formed research fields, namely, learning analytics and 

educational data mining. Let us view each of the three aspects in the following sections. 

 Asynchronous mode and synchronous mode of online learning 

Nowadays, OLEs are capable of both the synchronous mode of learning, in which 

teaching, learning, and communication activities are carried out in real-time and the 

asynchronous mode, in which learners use learning materials at their preferrable time. In 

her Ph.D. dissertation, Rockinson-Szaphiw [27] suggests the effectiveness of these online 

learning modes be estimated in the light of three types of presence: social presence, and 

cognitive presence, teaching presence. Social presence concerns the degree of the 

existence of community and communication that an online learning mode can give the 

participants. Cognitive presence concerns the degree of the existence of knowledge 

obtainment that an online learning mode supports learners. Teaching presence concerns 

the degree of existence of facilitation, instruction, and guidance enabled by an online 

learning mode [27, pp. 5–6].  

In current OLEs, these three types of presence are offered in both asynchronous and 

synchronous modes varying from one OLE to the others in favor of one mode to the other. 
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Examples of online learning resources used in both synchronous and asynchronous modes 

would be forums and messages to support social presence. Resources mainly offered in 

the asynchronous mode would be online learning materials such as ebooks and videos to 

support cognitive presence. For the synchronous mode, livestream lectures are offered to 

support teaching presence. And for the asynchronous mode, feedback is usually offered 

to support teaching presence. Though having impacts on all three types of presence, the 

synchronous and asynchronous modes of online learning tend to favor social presence 

and cognitive presence, respectively. The synchronous mode enables real-time 

communication; thus, it supports learning contexts that encourage group work, teamwork, 

and peer interactions [28]. The asynchronous mode does not constrain learners to a fixed 

time but gives them autonomy on resource usage; thus, it enables them to self-regulate 

learning according to their learning conditions. We think asynchronous learning history 

data reflect self-regulated learning; hence, an online resource use model generated from 

such data can help learners recall their learning patterns profoundly. Therefore, in this 

research, we will focus on developing learner models out of learning history data of 

asynchronous type. 

 Learning analytics and Educational data mining 

Online learning, with its massive amount of learning data generated, calls for not 

merely activities or techniques to process it but dedicated fields of learning analytics (LA) 

or educational data mining (EDM) to make learning data informative, useful, and 

beneficial for learning processes. LA and EDM are often used interchangeably in terms 

of methods and techniques for exploring data from such data sources as OLEs or LMS, 

or MOOCs for insights into learning, teaching, and educational environments and then 

using such insights for making adjustments or augmentations, or enhancements of 

learning and teaching. There is no clear distinction between LA and EDM; if the boundary 

between the two is considered, it is considered differently from study to study [29].  

LA is defined as “the measurement, collection, analysis and reporting of data about 

learners and their contexts, for purposes of understanding and optimising learning and 

the environments in which it occurs” [30, p. 3]. These activities on data have been and 

still are focal research subjects for LA. Romeo and Ventura [31] describe EDM as 

processing available educational data to discover patterns, rules, and knowledge hidden 
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in the data in order to develop applications. The borderlines between LA and EDM are 

often drawn from these perspectives.  

By their very names, LA analyzes learning-related data to investigate learning-related 

matters while EDM analyzes education-related data to investigate education-related 

matters such as teaching, learning, programs, policies, etc. In LA, the learning-related 

data might include learners’ learning history and demographics, course content and 

materials. The learning-related matters might be learning progress, assessment scores, 

material usage, learners’ interactions with peers and teachers and OLEs. In EDM, the 

education-related data might include a wide range of data about students, academic 

programs and curriculum, assessment rubrics, examinations and quizzes, and so on [32].  

By their definitions mentioned above, EDM studies methods for seeking patterns, 

knowledge and rules underneath data and while LA develops methods, techniques, and 

models to synthesize, describe, measure, and present insight from data. Regardless of 

different definitions, according to the latest survey by Romero and Ventura [32], there 

are overlaps between EDM and LA in their objectives, methods, and data. 

To draw a distinct border between EDM and LA, we refer to their definitions. LA 

focuses on supporting the learning process of learners while EDM has the purpose of 

exploring education-wide data to support various parties in the education system. Because 

this research aims to assist learners in understanding their learning strengths and 

weaknesses to make adjustments for improvement, we scope this research into the 

learning analytics field. 

 Analysis of online learning data 

2.4.1. Clickstream data 

Clickstreams are probably the most popular data type that users of online services 

leave behind as online traces when using online services. The analysis of clickstream data 

has been performed in various areas [33]–[35]. Online learning clickstream data mainly 

contain mouse clicks on learning resources, who click the resources and timestamps when 

they happen. In online learning, clickstream data have attracted tremendous studies and 

presented interesting insights into online learning behaviors.  
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A large number of current research focus on clickstream data to predict students’ 

performance in online learning contexts. The research [36]–[38] applies different 

approaches to the same open dataset [12] to predict students at risk of dropping out of 

online courses. To predict whether a student faces a dropout risk, research [36] uses a 

series of a student’s daily number of clicks on resources in a course as a feature list to 

train machine learning prediction models; research [38] uses an accumulative sum of 

clicks per quarter for similar objectives while research [37] develops and uses an activity-

time-assessment graph describing a student performing certain activities on certain dates 

given certain assessments ahead. Analyses of clickstream data to describe self-regulated 

learning are on a growing path. Through a review of four recent studies about clickstream 

and SRL, Baker et al. [10] illustrate what information from clickstream data helps unravel 

how students manage time or procrastinate in order to predict their performance. Li et al 

[8] describe how timestamp differences among clickstream data can measure a student’s 

regulation and time management effectiveness. 

2.4.2. Currents applications from clickstream data analysis   

Clickstream data analysis for learning performance prediction has gained the most 

attention and earned significant outcomes. Being abundant and varied, learning 

clickstream data enables the generation of learning-related attributes and features to 

develop learning performance prediction models with high accuracy. Table 2.2 

summarizes recent research in clickstream data analysis methods for learning 

performance prediction and their corresponding results measured in prediction accuracy.  
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Table 2.2. Feature selection methods and prediction performance from clickstream data of dataset 
OULAD.  

Authors Feature selection methods Prediction 
targets 

Performance 
(Accuracy) 

Haiyang et 
al. in 2018 
[36] 

Series of total daily clicks of each 
resource type done by each student in a 
course.  

Dropout 0.950 

Qiu et al. in 
2022 [39] 

Classification of resource types used by 
each student in a course into groups. 

Pass / Fail 0.974 

Jha et al. in 
2019 [40] 

Demographics, assessment scores, and 
interactions with OLEs.  

Dropout / 
No dropout 

Pass / Fail 

0.930 

He et al. in 
2020 [41] 

Demographics, assessment scores, and 
click data. 

Pass / Fail 0.80 

Alshabandar 
et al. in 
2020 [42] 

Number of resource types and number of 
interactions with resources a student uses 
during a course. 

Pass / Fail / 
Withdrawn 

0.86 

Hao et al. in 
2022 [43] 

Sum of clicks on resources and average 
assessment scores. 

Pass / Fail 0.93 

Drousiotis 
et al. in 
2021 [44] 

Demographics, clickstream on resources 
before courses start, first assignment 
score, and previous attempts. 

Distinction / 
Pass / Fail / 
Withdrawn 

0.80 

 

2.4.3. Learning behavior patterns 

Bringing semantics into online learning activities has been a concern. Not to stop at 

striving for high accuracy prediction of learning results, current research aims to establish 

learning behavior models from clickstream data. Such models help to unravel learners’ 

original learning activities, therefore, somehow tell how the learners have used resources 

for learning and corresponding results. Table 2.3 summarizes several recent studies on 

learning behavior modeling methods from clickstream data and their research outcomes. 
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Table 2.3. Learning behavior modeling methods from clickstream data and achievements. 
Authors Modeling methods Achievements 

Nitta et al. 

in 2021 

[37] 

Relationships between a student’s 

access to resources before 

assessments or repeatedly in use in 

a course. 

Accesses to certain resources 

make patterns indicating 

completion and dropout cases. 

Park et al. 

in 2017 

[45] 

Observation of daily access to 

resources and detection of changes 

in resource access. 

Categorizing students into three 

groups of increased, decreased, 

and no change of activities 

access. 

Yu et al. 

in 2018 

[46] 

Representation of student’s 

resource navigation pathways. 

Predicting the next resources to 

be used. 

Li et al. in 

2020 [47] 

Model of time management and 

effort regulation using average 

access to resources at different 

time steps before deadlines. 

Trying to establish a correlation 

between clickstream data and 

SRL self-report. 

Kizilcec et 

al. in 2017 

[48] 

Model of time allocation for 

resources of each type  and 

resource revisitation. 

Trying to link resource use 

patterns with SRL 

characteristics in self-reports 

survey provided to students. 

Cicchinelli 

et al. in 

2018 [49] 

Use of course organization and 

resource type to identify SRL 

phased related activities and The 

correlation between students’ 

performance and resource use 

density on OLEs.  

Categorizing students into 4 

groups: the inactive, the 

continuously active, the 

procrastinator, and the prober. 
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Authors Modeling methods Achievements 

Wong et 

al. in 2019 

[50] 

Analysis of the correlation 

between  frequency of students’ 

clickstream data and the support of 

SRL prompting videos.  

Identifying resource use 

sequences. 

Geigle et 

al. in 2017 

[51] 

Applying a two-layer hidden 

Markov model on resource access 

sequences  of student groups of  

different performances to obtain 

hidden states and the transitions 

from one hidden state to another 

hidden state. 

Capturing learning behavior 

patterns of general, high-

performance, and low-

performance students. 

Qiao et al. 

in 2021 

[52] 

Applying a hidden Markov model 

with a predefined set of SRL stages 

and observable access to learning 

resources to identify the SRL 

learning process of mastery 

learners or performance learners. 

Capturing different resource 

use models of mastery learners, 

goal-oriented learners, and 

general learners. 

 

2.4.4. Limitations 

Clickstream data are evidence and traces of learning behaviors, but they are not equal 

to students’ cognitive and metacognitive activities. Students’ thoughts drive certain 

clickstream patterns; however, it is uncertain to tell what the original thoughts are by only 

looking at clickstream data in the first place. Therefore clickstream data analysis is 

challenging. Two main difficulties in making clickstream data understandable are noises 

or data redundancy generated by unintentional actions and lack of context in which data 

are generated [8], [10], [53]. Predictions produced from clickstream data are signs of 

supporting students; however, to give helpful support, it is necessary to know the causes 
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of such clickstream data. That is to know students’ intentions and patterns of using 

learning resources to some extent.  

 Learning tactics and learning strategies 

“A learning tactic is a simple or a very short sequence of operations a learner applies 

to information” [54, p. 698], and “learning tactics serve as building blocks for multitactic 

learning strategies” [54, p. 700]. Learners apply learning tactics to learning materials to 

achieve particular outcomes. Examples of learning tactics are skimming a research article 

to judge its appropriateness for a research topic, scanning a book chapter for writing a 

summary, and pronouncing aloud a list of vocabulary repeatedly for memorizing. In 

OLEs, where learning activities have simple appearances, learners’ learning tactics are 

expressed in such traces as accessing a page of course content for grasping the course 

schedule and requirements, opening an ebook concerning a particular lecture for 

reinforcing knowledge learned in class, mouse-clicking on quiz questions for assessment 

or retaining knowledge. The goals of learning tactics done in OLEs might not be clearly 

understood by the others but learners who have performed the learning tactics. Therefore, 

presenting traces of learning tactics to learners helps to remind them of the effectiveness 

of the learning tactics in correspondence to their learning intentions. Such a reminder 

encourages learners to reflect on strengths and weaknesses in their learning tactics, which 

opens doors for adjustments and improvements.    

As mentioned above that learning tactics are elements of a learning strategy, it is not 

that learning strategies only contain a group of learning tactics and nothing more. 

McKeachie described learning strategies as “alternative mode of learning, which can be 

chosen when appropriate for a task” [55, p. 8]. A learning strategy comprises a repertoire 

of learning tactics and judgments on conditions to select suitable learning tactics to apply. 

A learner might have learning tactics but no learning strategies unless he is capable of 

considering, estimating, and judging the conditions of a task in order to choose 

appropriate learning tactics to apply. In OLEs, it is very difficult for the outsider to 

recognize the learning strategies of a learner by analyzing his or her learning history data. 

But the learners themselves might be able to recognize their learning strategies by looking 

at their learning history data in a particular organization and presentation. They can even 

begin building new learning strategies by reflecting on their learning history. Such an 
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organization and presentation of learning history data is one of the outcomes that we aim 

at in this research.  

 Conclusion  

The studies and research reviewed above express a desire to understand learners’ 

minds when they learn and have achieved significant research outcomes. The 

achievements have revealed and categorized learning behavior patterns, leading 

clickstream data closer to learners’ original learning activities.  

Reviewing the current outcomes, we find the approaches to modeling learning 

behaviors and the achievement promising and practical to press further. And the further 

milestone is to enable individual learners to know somehow their particular learning 

behavior patterns rather than those of a group, a class, or a category. A class of learning 

behavior patterns is an informative reference. Still, individual learners would know their 

way of learning or SRL and be compelled to make changes if they can see their own 

learning behavior patterns.  

In the next two chapters, we will describe the method to model learning patterns and a 

framework to explain the model so that learners can make sense of their learning history 

data and recognize the strengths and weaknesses of their SRL capacities.  
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Chapter 3.  SRL Recognition and Improvement Framework 

Various discoveries and production of SRL models, ways of measurement and 

intervention call for the fundamentals of SRL operations. It is natural to seek answers to 

why SRL operates in such a way. No matter how many aspects and components SRL 

expresses, there are two subjects involved when a learner is self-regulated learning. First 

is the subject matter the learner is learning. The second is the learning process that the 

learner is performing. The former concerns cognition, and the latter involves 

metacognition. Our publication demonstrates observable interoperation between 

cognition and metacognition of a learner when studying in a certain online learning 

environment [7]. We believe that such a relationship, though apparent, is fundamental to 

awareness, recognition, and assessment of one’s SRL ability not only in online learning 

contexts but also in one’s learning process in general. In this section, we will present and 

justify these fundamentals of SRL and introduce the SRL recognition and improvement 

framework, the SRL framework for short.  

This section is a slightly modified version of the authors’ article [13] published in 2021 

and has been reproduced here with the copyright holder’s permission. 

 Principles of the mind 

To be generic, reliable, and time-withstanding, the SRL framework must be laid on 

principles of the mind. The mind has two faculties (see Figure 3.1): the intellect, whose 

functionality is to understand knowledge, and the will, whose functionality is to drive the 

intellect and to choose to achieve knowledge [56]. The intellect operates as we cognize 

the world and its knowledge via what we usually call cognition. The activities that signify 

the operation of the intellect are analyzing, judging, and abstracting certain target 

knowledge. Specific behaviors of the intellect can be recognized via Bloom’s taxonomies 

[57]. The will operates as we are aware of our learning process. 
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Figure 3.1. Two faculties of the mind. When we learn new knowledge, it is not difficult to notice 
that we not only try to understand the knowledge but also are excited by the challenges and 
elegance of the knowledge. The intellect enables us to understand, and the will excites us.  

This statement gets clear when comparing the unconscious way a child learns with the 

conscious way a graduate learns. Both absorb knowledge; however, a child does not 

recognize their in-progress growth of knowledge while an adult does recognize it. A sign 

of recognizing the learning process is that adults doubt, reason over the new knowledge, 

and adjust their learning approach, while children tend to assent to new knowledge and 

follow instructions. To obtain intricate knowledge, one needs to be aware of one’s 

learning process in order to control cognitive activities. In order words, the stronger one 

is aware of one’s will and uses it, the more fulfillment one has towards knowledge. The 

will manifests itself via metacognition.  

 The philosophical habit of the mind 

Whether we have noticed, our mind has a habit of desiring to know. The more we 

know the world, the more we realize that the extension of knowledge is beyond our 

current understanding and the more we desire to know. This routine is, as Saint John 

Henry Neuman [58] puts it, the philosophical habit of the mind (see Figure 3.2). Thanks 

to this habit, we know more about the world, assimilate knowledge, and apply it for 

evaluation and creation of various fields of science, art, literature, and so forth. The 

philosophical habit of the mind manifests in our learning process, and most clearly when 

we are the regulator of our own learning process, which is self-regulated learning. 

SRL is a conscious learning approach by which one plan, manage, and reflect on their 

learning process. Looking at its characteristics, we can see that SRL operates on the inter-

operation of cognition and metacognition, which follows the principles of the mind. 
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Figure 3.2. The philosophical habit of the mind. The mind with its two faculties - cognition and 
metacognition - tries to understand knowledge (represented as the globe) and, in the meantime,  
perceive the learning process. These two activities repeat and form the habit of the mind. This 
habit makes us know more about knowledge and ourselves.  

 Causes of SRL 

SRL is a learning pattern that operates on the principles of the mind. Why does it exist? 

Everything must have reasons for its existence; otherwise, it has no use and cannot be 

recognized or improved. How can we recognize and evaluate our SRL? What causes SRL 

to exist? It is recognized based on two types of causes (see Figure 3.3): intrinsic causes, 

which construct the essence of SRL, and extrinsic causes, which explain the sources of 

SRL and the end goals where SRL leads us [59]. The intrinsic causes contain the formal 

cause that defines SRL structure and the material cause that personalizes the individual's 

SRL quality. The extrinsic causes comprise the efficient cause that explains where SRL 

comes from and the final cause that shows the goals of SRL and how SRL grows to its 

end goals.  
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Figure 3.3. The four causes of SRL. Intrinsic causes explain what SRL is made up of and 
personalized from the inside, and extrinsic causes explain how SRL is modified and shaped by 
the outside.    

When one determines and realizes these four causes of SRL, one knows how to 

improve SRL ability and fully benefits from SRL. 

 Principles of SRL 

Starting from 2 faculties of the mind, their inter-operation, which molds into SRL 

learning pattern, we can form the principles of SRL (see Figure 3.4). As stated in a 

sentence, SRL is grounded in the operation of the mind, grows with the development of 

the mind, has a nature designed to reach the goal of understanding, and personalizes to 

each learner. 

 

Figure 3.4. Principles of SRL. The principles enable answers to the questions of what SRL is 
made up of, how it operates, where it starts, and what its goals are. Such questions enhance the 
reasons for the existence of SRL. 
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 SRL recognition and improvement process 

Over the last two decades, there has been a wide range of research on SRL 

measurement and intervention for improving SRL. There are two SRL measurement 

approaches: SRL trait and SRL context-based skills. SRL trait describes the SRL 

character of a learner in general. SRL context-based skills illustrate a learner’s ability to 

apply specific SRL skills in particular learning tasks. 

SRL has been measured traditionally by data from self-reports, interviews, and 

questionnaires, which are usually known as the offline form of measure, and in recent 

years by data from learning behavior observation, which is known as the online form of 

measure. S. F. E. Rovers et al., in their review of SRL measurement methods, show that 

the offline form tends to give insight into the learner’s overall level of SRL while the 

online form evaluates specific SRL strategies [60]. Though often analyzed separately, 

these two forms of SRL measure are related to each other. The offline form describes a 

learner’s SRL character, while the online form illustrates the learner’s ability to apply 

specific SRL skills in particular learning tasks. For the SRL measurement to provide 

accurate and meaningful data for SRL intervention and improvement purposes, there is a 

need for a firm theoretical model, grounding, or framework of SRL strategies so that the 

nature of SRL can be understood at the principle level and the SRL intervention can be 

offered to learners to support them from that fundamental basis [60], [61]. 

Interventing learners’ learning process to improve their SRL ability is the purpose of 

all the SRL measurement activities. SRL intervention has been conducted via two 

approaches. One is that teachers help learners with specific learning tasks, and the other 

is that teachers provide learners with metacognitive feedback, and then the learners use 

the feedback for reflection and make adaptations to their learning process [61]. In the 

former, the assistance the learners receive is personal and related to concrete learning 

tasks. In the latter, the assistance is a kind of reminder and tips about learning methods. 

Relating to the SRL measurement approaches mentioned in the previous section, the 

former intervention is performed after the data collected from the online form of 

intervention, while the latter intervention uses the data from the offline form of 

intervention. The former approach is usually applied in traditional school settings. In 
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OLEs, the latter approach is provided with the support of educational data mining and 

learning analytics tools [61]. 

One’s SRL ability is recognized by one’s SRL character, which comprises one’s SRL 

characteristics and habits of regulating his or her learning. Derived from the principles of 

SRL, the SRL character is fivefold: (i) wisdom, which is the ability to see the start and 

the end, (ii) knowledge, which is the ability to use prerequisite knowledge to acquire new 

knowledge, (iii) understanding which is the ability to apply cognitive strategies, (iv) 

counsel which is the ability to seek helps and reflect, and (v) fortitude, which is the ability 

to persevere during hard times. The more consistency the SRL character demonstrates, 

the more maturity the SRL ability is. The development of SRL character is constructed 

via SRL habits, which are the habits of applying cognitive and metacognitive strategies, 

tactics, and skills to the learning process. For that reason, the improvement of the SRL 

ability begins with habituating learning strategies, both cognitively and metacognitively 

(see Figure 3.5).  

 

Figure 3.5. SRL Recognition and Improvement Process. The process begins with a learner 
recognizing and measuring SRL habits and character using appropriate measuring tools and units. 
With recognition, the learner refers to SRL principles to understand the strengths and weaknesses 
of his or her SRL habits and character to make proper adjustments according to the end goals of 
his or her learning.   

 SRL recognition and improvement framework 

To establish a stable foundation for the SRL framework, we have traced the existence 

of SRL from the basic principle of the mind and its operation. We have walked through 

the reasons for the existence and development of SRL. And we have demonstrated the 
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process by which an individual’s SRL can be qualitatively and quantitively recognized 

and improved. Setting the SRL recognition and improvement process on the principles of 

SRL, we introduce the SRL Recognition and Improvement Framework (or SRL 

framework for short), as shown in Figure 3.6. 

 
Figure 3.6. SRL Recognition and Improvement Framework.    

As we stated, the purpose of this SRL framework is not to replace the existing SRL 

models, which play a crucial role in guiding and shaping SRL from an idea into concrete 

components and processes. This SRL framework provides a reference point to argue the 

appropriate scope where the SRL models can apply.  

To demonstrate this purpose, let us briefly review the above SRL models from this 

SRL framework viewpoint. Reflecting on the principles of the mind, all SRL models 

above shows the interoperation of cognitive and metacognitive activities though some 

SRL models pay more attention to metacognition or motivation while the others focus on 

cognition. Checked against causes of SRL, some SRL models illustrate the SRL as 

processes and components; the other shows SRL elements to personalize SRL toward 

individual learners. All SRL models somehow describe the intrinsic causes of SRL, but 

they have not discussed extrinsic causes of SRL, which play a directive role in the SRL 

improvement approaches. Viewed from different perspectives and unified within this 

SRL framework viewpoint, applying these SRL models following a particular 

arrangement will help learners comprehend their SRL ability cognitively and 
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metacognitively and show them the quality of their SRL character and the frequency of 

their SRL habits.  

Figure 3.7 illustrates how four causes of SRL manifest in each of the SRL models 

above. Though the current SRL models comprise various components, as summarized in 

Figure 3.7 and described in the models, these components can be grouped to the causes 

of SRL in our proposed SRL framework. Cognition and metacognition are common 

components sharing similar descriptions among the current SRL models. Other 

components, though repetitively appearing in SRL models, are described in different 

perspectives with different meanings from model to model, as we mentioned in section 

2.1.3 Models comparison. 

Association Cognition Meta-
cognition Goal Ego Motivation Affect 

Cognition  1, 2 2, 3, 4 2 3, 4, 5 4, 5 

Meta-
cognition   2, 3, 4 2, 3 6 6 

Goal    2 3  

Ego     2  

Motivation      4, 6 

Affect       

1: Winne’s SRL model [20]; 2: Boekaerts’ dual-processing model [21];  

3: Boekaerts’ six-component model [15]; 4: Pintrich’s framework of phases and areas for SRL [23];  

5: Zimmerman’s cyclical phase model [26]; 6: Efklides’s MASRL [16] 

Formal cause Material cause Efficient cause Final cause 

Figure 3.7. SRL Models in reference to the SRL framework. The current SRL models partially 
illustrate the principles of SRL from the SRL framework. When using the existing SRL models, 
learners can refer to this figure to identify which aspect of SRL the current SRL models address 
so that they can combine the SRL models to understand their SRL.   

The SRL framework is beneficial for use as a reference point to assess the validation 

of SRL models and design procedures, methods, and exercises for supporting individuals 

to evaluate their SRL ability and improve it. Since this framework is developed via 
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arguments, future work must involve applying the framework to design empirical SRL 

recognition and improvement tools, programs, and exercises. Such empirical evidence 

will demonstrate the validity of the framework.  

 An empirical study on the relationship between cognition and 

metacognition of learners in OLEs 

Because of being built on the principle of the mind of human nature, the SRL 

framework is applicable to SRL in various learning contexts. To demonstrate the 

framework's validity, we conducted an experiment as a pilot study. The full paper on this 

experiment is published in the article [7]. In this section, we would like to present a brief 

description of the experiment and the result to illustrate the explainability of the SRL 

framework for SRL in online learning contexts.  

Let us start with the experiment background. As we recall, the SRL framework states 

that the SRL works according to the principle of the mind. It is the interoperation of the 

two faculties of the mind: intellect and will – cognition and metacognition. Therefore, a 

relationship between cognition and metacognition is revealed when one regulates one’s 

learning process. We hypothesized that such a relationship between cognition and 

metacognition is a positive correlation. To test the hypothesis, we developed a 

hypothetical model about the relationship [62] and then conducted an experiment [7] in 

which 20 postgraduate students worked on a complex task delivered via an instance of 

OLEs – the learning management system Moodle [63] – and their cognitive and 

metacognitive scored are computed to measure the relationship. The hypothetical model 

demonstrates that learners’ cognition and metacognition are positively correlated when 

the learners self-regulatedly learn complex tasks. The complexity of the tasks follows 

revised Bloom’s taxonomy [64]. After the learners have finished the task, their cognition 

can be measured by accumulative scores, which we call cognitive scores, which they earn 

by passing assessments and exams provided by the tasks. And their metacognition can be 

measured by indicators of preparation, planning and reflection activities that the learners 

perform to accomplish the learning tasks. We called accumulative indicators the 

metacognition scores.      
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Let us describe the structure of the complex task. The complex task was a machine 

learning problem that required students to modify pre-defined source code to produce a 

high-accuracy prediction model on the MNIST dataset [65]. There were quizzes related 

to knowledge and techniques during the task to assist students in working on the task. The 

students are free to choose to do quizzes. After completing the task, students were 

prompted to answer a Likert-scale metacognitive questionnaire. The scores students 

earned by their accomplishments on the task and the quizzes would be cognitive scores, 

and the scores on the metacognitive questionnaire would be metacognitive scores. 

The study showed a moderate positive correlation between cognitive scores and 

metacognitive scores, as shown in the following graph (see Figure 3.8) from [7]. 

 

Figure 3.8. Positive correlation between cognitive scores and metacognitive scores [7, Fig. 6]. 
This positive correlation indicates SRL ability. The high the correlation is, the higher the SRL 
ability. 

Further, such correlation helps categorize students into groups of SRL ability, as 

shown in the following graph (see Figure 3.9) from [7]. Each of these groups 

demonstrated a distinctive SRL profile. Following a Barnard-Brak et al.’s research about 

measuring SRL [66], we assigned the groups to the following 5 SRL profiles: 

• Super self-regulators = active SRLers (group (a) in Figure 3.9) 

• Competent self-regulators = active and adaptive SRLers (group (a) in Figure 3.9) 
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• Performance / reflection-endorsing self-regulator = performance-favored SRLers 

(group (b) in Figure 3.9) 

• Forethought -endorsing self-regulators = planning-favored SRLers (group (c) in 

Figure 3.9) 

• Non-self-regulators = non-SRLers (group (d) in Figure 3.9).  

 

Figure 3.9. Groups of students according to the correlation between cognitive and metacognitive 
scores [7, Fig. 7]. Groups (a) and (b) have cognitive and metacognitive scores corresponding to 
one another; group (c) has slightly high metacognitive scores corresponding to cognitive scores, 
while group (d) has high metacognitive scores contrasting with low cognitive scores. The 
correspondence between the cognitive and metacognitive scores indicates learners’ maturity of 
SRL recognition. The closer the similarity between the cognitive and metacognitive scores is, the 
better the learners recognize their SRL ability. 

 Conclusion 

The result from the empirical study followed the SRL framework to a certain degree. 

The principle from the SRL framework explains the SRL ability, and the measurement 

approach from the framework provides classifiable results to some extent. There remain 

issues that need solutions. One issue is the separation between cognitive scores and 

metacognitive scores. SRL concerns a union of cognition and metacognition; therefore, 

there is a need for a measurement representing such a union from a learner’s learning 

history. Another issue is the description of the SRL profile. It would be informative for 
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learners to see their SRL profile so that they know the effectiveness of their SRL patterns 

in terms of activities they have performed and resources they have used for learning to 

make proper modifications. In the next chapter, we propose a method to address those 

two challenges. 
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Chapter 4.  Formulation of SRL related problems in online 

learning environments 

 Problem formulation 

Learning in an OLE manifests as a sequence of access to resources provided by the 

environment. Learners access resources by viewing, reading, and keyboard typing, but 

the most recognizable type of access is mouse clicking on the resources and the inner 

content. By this most popular means of resource access, learning can be represented as 

an observable process of clicking from one resource to another driven by a learner’s 

invisible states of mind. OLEs usually present several resources at once, and a learner can 

freely access the resources in various orders. When learning the same courses, learners 

also differ from their peers in accessing resources. From these observations, a learning 

process in OLEs can be seen as a stochastic process with resources as its states; as the 

process runs through time, it changes its states randomly. Although there are various 

sequences of using resources, learners tend to access a certain resource with the intention 

to approach what they are learning. Therefore, the states of the learning process are 

dependent. Specifically, in a learning process, a state is dependent on the previous ones, 

or a state in the next step of the process somehow depends on the current state. Based on 

this attribute, we consider using the Markov chain to model the learning process in online 

learning. 

Next, we briefly describe Markov chain principles and formulate the learning process 

as a Markov chain.  

 Review on Markov chains (MC)  

A Markov chain [67] is a sequence of states appearing through time with a special 

property in which the values of a state only depend on a state right before it and are 

independent of other previous states. This property is called the Markov property [67]. 

The time in which states appear can be discrete-time whose values are in the range of 

natural numbers or continuous-time whose values are in the range of real numbers. In 

OLE problems, both types of Markov chains are applicable. In this research, we analyze 

daily access to resources; hence, we apply the discrete-time Markov chain [67]. 
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A Markov chain is usually illustrated as the following graph shown in Figure 4.1. 

To represent processes with Markov property, we generally use Markov models. A 

Markov model is formulated as the following.  

A Markov model for a process running through time Xt consists of  

• A set S = {s1,…,sn} of n states 

• An n × n transition probability matrix A = {aij} in which  

o element aij is the probability of state i at time Xt transitioning to state j at time 

Xt+1,  

o aij is nonnegative, and  ∑ 𝑎!"#
"$% 	= 	1,  

o aij = P(Xt+1 = j | Xt = i) = P(Xt+1 = j | Xt = i, Xt-1 = k,…, X0 = m) (the Markov 

property or Markov assumption), 

• A set π = <π1,…,πn> of initial probability distribution over S to show how 

probable a state would start the process, and ∑ 𝜋!#
!$% = 1. 

Markov chains are used to model sequences of weather change from one day to another 

in which tomorrow’s weather can be predicted by looking at the weather condition of 

today, or model the sequence of web page visitation in which the probability of a user 

visiting the next page is computed by the current page he is staying [68][69]. 

Next, let us think about how parameters of a Markov chain are calculated. 

For a Markov chain, two parameters needed for calculation are the initial probability 

distribution π and the transition probability matrix A. One of the approaches is to count 

and divide [68]. As π is about the frequency of a state starting a process, π is computed 

by first counting the number of each state starting a process out of processes and then 

dividing those numbers by the number of processes. And since A is about the frequency 

 

St: the state value at time t 

Figure 4.1. An illustration of a Markov chain.  
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of changing from one state to another state in the very next step, A is computed by first 

counting the number of occurrences of a transition between these two states in the same 

order, then counting the number of occurrences of the former state, and finally divided 

the former calculation by the latter. The parameter estimation [68] is generalized as the 

following. 

Given a phenomenon whose states transition in N observable processes;  

aoi the number times state i starts a process;  

pi the number of times state i occurs in a process (*);  

pij the number of times state i transition to state j in a process; 

aij the probability of a transition from state i to state j; 

πi the probability of state i starting a process 

𝜋! =
𝑎&!

𝑁)  (4.1) 

 

𝑎!" =
𝑝!"

𝑝!)  (4.2) 

(*) If state i is the end of a process, this occurrence of the state i will not be counted 

for the calculation of aij because there is no transition from state i in this condition.  

 Markov model of a learning process 

A learner joins an online course for a period of time and studies by accessing resources 

of various kinds provided by the course. The time step for marking resource use is one 

day. The learner uses several resources for study in a time step. From this description, the 

learner’s learning process can be seen as a Markov chain for one or many observable 

sequences of transition from one resource use to another with certain relations between 

resource choice between 2 time steps.  

A learning process is illustrated as the following Markov chain in Figure 4.2. 

 
𝑅'!  : Resource i is being used at time step t 

Figure 4.2. A learning process illustrated as a Markov chain. 
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Suppose a learner has a record of resource use as following 

homepage, content, resource, content, resource, content 

content, quiz, content, resource, quiz, content 

homepage, resource, homepage, content, homepage 

The learner’s learning record expresses itself in 3 Markov chains, as shown in Figure 

4.3 below.  

 

All resources, which are identified in the sequences, form a set of possible states, which 

is   

S = {homepage, content, resource, quiz}  

Let us calculate the parameters for the Markov model 

The number of states is the number of resources having been used. 

N = | { homepage, content, resource,quiz } | = 4 

The number of times each resource starts a process 

a0homepage = 2, a0content = 1, a0resource = 0, a0quiz = 0 

The number of times each resource occurs in the processes when there is a transition 

from the resource to another resource.  

phomepage = 3, pcontent = 5, presource = 4, pquiz = 2 

Figure 4.3. Learning records expressed as Markov chains. There are 3 sequences of resource use 
in this figure, in which 𝑅!"  indicate resource named i is used in time step t.  
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Table 4.1 shows the computation of the number of times there is a transition between 

2 resources. Table 4.2 demonstrates the computation of the transition probability matrix. 

Table 4.1. Computing numbers of transitions between two learning resources 

pij homepage content resource quiz 

homepage 0 2 1 0 

content 1 0 3 1 

resource 1 2 0 1 

quiz 0 2 0 0 

 

Table 4.2. Computing a transition probability matrix 

aij homepage content resource quiz 

homepage phomepage hompage / 
phomepage = 0/3 = 0 

phomepage content / 
phomepage = 2/3 

phomepage resource / 
phomepage = 1/3 

phomepage quiz / 
phomepage = 0/3 = 0 

content 1/5 0 3/5 1/5 

resource 1/4 2/4 0 1/4 

quiz 0 1 0 0 

 Insights from Markov chains 

In a Markov model, the probability distribution over states approaches stability as state 

transition happens a large number of times. This condition is known as steady-state or a 

steady-state behavior of a Markov model [68], [70]. In a steady state, the probability 

distribution over states is independent of the initial probability distribution of the states; 

therefore, a steady state is like a pattern, routine, or habit that a Markov model represents 

[71]. 
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 Online learning habits as Markov Models  

4.5.1. Problem statement 

From a learner’s record of resource use in a course in an OLE, what are the learner’s 

habits of using resources?  

Putting the problem in specific phases of a learning process, we restate the problem 

this way. What are a learner's planning habits and reflection habits from his or her record 

of resource use?  

In the learning context that we have been talking about so far, habits are routines and 

patterns of learners accessing resources. So planning habits and reflection habits are 

resource access patterns that learners apply in the planning and reflection phases of a 

learning process. To identify such habits, next, we present how the Markov model helps 

analyze records of learning resources and develop models to represent habits.    

4.5.2. Arrangement of resource use history 

To build Markov models out of learning history, let us first look at what kinds of data are 

contained in them. There are several OLEs being used, different from each other in the 

kind of data they are storing, but they share similar semantic structure and information 

about resource use records, namely, what resources learners access or click in a certain 

time unit. Following the shared structure, we can read from a resource use history of 

learners about their learning pattern comprising of what resources have been used, 

sequences of resource access, and resource use before and after a certain milestone such 

as an exam or a lecture. 

Let us look at the problem above about recognizing a learner’s planning and reflecting 

habits. The next step is to organize resource use history data by using the shared structure 

so that the data, when being turned into Markov models, will reveal patterns for further 

analysis and help us recognize the learner’s habits. 

Planning is about preparation activities that learners often do before an event, and 

when the event has finished, some learners review their performance on the event by 

reflecting. In an online course, milestone information is often available or easily 

obtainable, so it is possible to divide data of resource use into those before a certain event 
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and the other after the event, the data related to the planning phase and the other of the 

reflecting phase. Figure 4.4 below demonstrates such organization of a history of resource 

use in the form of a resource clickstream through a period of time into sequences of 

resource use for a particular objective, namely, planning, performance, and reflection.  

 

Figure 4.4. Arrangement of resource use into planning, performance, and reflection phases. Using 
timestamp information as a milestone for a particular learning event, we can divide resource click stream 
into activities of different SRL phases. For example, planning phase contains activities that learners often 
do before a milestone, performance phase contains activities happening during from one milestone to 
another, and reflection phase contains activities done after a milestone. 

 Open university learning analysis dataset 

The previous section describes a possibility for building Markov models out of records 

of resource use to represent learning habits, specifically habits of planning and reflection.  

Let us go a step further to actually build such Markov models. As we have mentioned 

that resource records from different OLEs share a similar structure, thanks to this fact, a 

procedure for building Markov models out of data from one system is possibly applicable 

to data of other systems. Thus, we think of developing Markov models from a dataset that 

is open and large so as to justify the procedure. And we start with the Online University 

Learning Analytics Dataset, which is also known as OULAD [12]. 

OULAD is provided by the Open University (the university’s website is 

https://www.open.ac.uk) – one of the largest universities for distance learning worldwide. 

OULAD contains 10,655,280 data rows about online resource use from 32,593 students 

in 7 courses with 22 course offerings in 2013 and 2014. The dataset also includes specific 

resource types used in each course offering and students’ performance to the extent of 

exam scores and final results. Courses at Open University are offered via the Moodle 
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learning management system (LMS). Working on the OULAD, we will use the terms 

learners and students interchangeably because the academic degree seeking is not 

required for analysis in this research context. 

OULAD contains seven .csv files, each containing the following information (shown 

in Figure 4.5). The structures of each .csv are displayed in Appendix 1. 

 

Figure 4.5. Redrawn OULAD structure [12, Fig. 4]. These are the OULAD files with a brief description. 

4.6.1. Data pre-processing 

We temporarily ignore the demographic information and only focus on academic 

information.  

Applying the shared structure for record of resource use, the following is the 

information necessitating recognition of a learner’s resource use habits and the effects of 

the habits: 

• Resources and dates when the learner use the resources n a course; 

• The number of times that learners access a resource. Resource access is about 

whether a learner uses a resource in a certain. It is not about how many clicks the 

learner performs on a resource; 

• When are exam dates;  

• How much score the learner earns in the exams. 
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Joining appropriate OULAD files, we generate the following simple files for building 

the Markov model. 

The first file (see Figure 4.6) is about students’ interaction with OLEs, each row 

presenting which resource a student uses on which date in a course. The second file (see 

Figure 4.7) is about examinations of the course, each row presents which exam 

contributes how much weight to the overall score and is due at which date in the course. 

The third file (see Figure 4.8) is about students’ exam scores. 

 

 

Figure 4.6. Sample of synthesized data about students' interaction with OLEs. The data include 
who (learners) use which resources at which date in a course. 

Figure 4.7. A sample of an assessment data. The data include assessments with types, dates, 
weights which are the percentage of contribution to overall assessment, and the week when the 
assessment is due. 
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4.6.2. Parameter calculation 

4.6.2.1. Resource use sequences 

In OULAD, all available resources, which are called activity types, are considered as 

the states in a Markov model; and the time step unit is a day or date (see Figure 4.9). A 

learner often accesses plenty of resources in a day in an unknown order. So, we do not 

know resource use sequences in a day; however, it is possible to obtain sequences of 

resources a learner accesses from day to day successively (as shown in Figure 4.10). A 

resource use record of a learner, when being observed in this manner, generates a large 

number of sequences (as shown in Figure 4.11), which is effective in producing a Markov 

model relevant to the learners’ patterns of resource use. 

 
Figure 4.9. Resource use history. 

 

Figure 4.8. A sample of students’ scores data. The data include assessments with partial scores 
and weights that students have earned.   
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Figure 4.10. Viewing resource use in a successive order. The resource use history data (left) 
shows the resources or activity types that a learner accesses on a certain day. The sequences of 
resource use (right) become clearer when we rearrange the data in an ascending order of day or 
date and group resources used by day. 

Figure 4.11. Forming resource use sequences. A resource use sequence is formed when we 
traverse from a resource used on a certain day to other resources used on the next day (as the 
arrows indicate) and continue this routine to the resources used on the end day in the resource use 
history. Followed this approach, the learning history of a learner (left) can generate a large 
number of resource use sequences needed for the learner Markov model to reach its steady state. 



54 

  

4.6.2.2. Transition probability matrix 

The calculation follows the formula (4.2) above. Following the sequence formation 

above, we develop an algorithm to compute a transition matrix from a student’s resource 

use history, described in Table 4.3. 

Table 4.3. Algorithm to compute a transition probability matrix. 
function transProbMatrix(resource use history of a student R) returns a transition probability matrix 

 states  ß extract activity_type of the resources from R 

 A    ß initialize a square matrix A, size n = | states |,  

     value of each element = 0, A = { aij = 0 }, 

     each row and column is named after each activity_type from states 

 For each row i in R 

  next  ß query a list of records j of next date of i so that j$date = i$date + 1 

  For each row j in next 

   A[i$activity_type, j$activity_type] ß A[i$activity_type, j$activity_type] + 1 

     End For 

 End For 

 For each row i in A 

  sum ß add all element values of row i 

  For each element j in row i 

   A[i$activity_type, j$activity_type] ß  A[i$activity_type, j$activity_type] / sum 

  End For 

 End For 

 Return A 

End function 

 

4.6.2.3. Initial probability distribution 

Before we think of how to compute the initial probability distribution, let us recall that 

a Markov process goes into a steady state in which the probability distribution over states 

after a large number of time steps will converge to a stable number and be independent 

of the initial probability. In the case of the learning process extracted from OULAD, the 

number of learning sequences for each learner in one course is approximately more than 

a hundred. This number is large enough for the steady state condition to occur. So, the 
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initial probability distribution does not need an exact calculation. In a general sense, we 

may not know exactly starting points of a person’s habits when seeing he or she is 

performing his or her habits. But we can guess that one’s habits come from the repetition 

of an activity. Applying this approximate calculation, we compute the initial probability 

distribution as the frequency of use of each resource in a course. The calculation is 

expressed in formula (4.3) above. We develop an algorithm to compute the initial 

probability distribution, described in Table 4.4 

𝜋! =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑠𝑒	𝑜𝑓	𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒	𝑖

𝑠𝑢𝑚	𝑜𝑓	𝑎𝑙𝑙	𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒	𝑢𝑠𝑒)  (4.3) 

 
Table 4.4. Algorithm to compute the initial probability distribution over resource use of a learner. 
function InitProbDistribution(resource use history of a learner R) returns a probability distribution vector 

 states ß extract activity_type of the resources from R 

 π   ß initialize a vector π, size n = |states|, πk is the initial probability of resource k 

    value of each element of π is 0 

 sum ß count number of use of all resources in R 

 For each row i in R 

  increment πk of resource k which appears in row i by 1 

 End For 

 For each element k in π 

  πk = πk / sum 

 End For 

 Return π 

End function 

 

4.6.2.4. Learner Markov model 

We used the markovchain package [72] for R to build learner Markov models from 

OULAD data. The package provides functions to build a Markov chain from a transition 

probability matrix and states. Figure 4.12 is a sample learner Markov model.  
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Transition probability matrix 

 

Steady states 

 

Figure 4.12. A sample learner Markov model. The transition probability matrix is computed from 
resource use sequences of a learner. Each row demonstrates the likelihood of transition in the 
learner’s resource use from a resource indicated in the row header to the following resource 
indicated in the column header. The higher the cell value, the higher the transition likelihood. The 
steady state shows the likelihood of each resource starting a resource use sequence. For example, 
this steady state shows that the learner is likely to start learning with access to the homepage. 

 Self-regulated learner profile (SRL profile)  

Let us be reminded that the objective of this research is to support learners’ recognition 

of their SRL capability and ability via their learning history data. In the sections above, 

we see that clickstream data contain learning behaviors and performance and SRL 

patterns. Applying existing libraries, we have generated learner Markov models from 

learners’ clickstream data.  

In this section, we present how learners can recognize their SRL capability and ability. 

It is achievable in an SRL profile. 

SRL profile shows the frequency and density of resource use in a course, before or 

after an examination or a lecture, and the effectiveness of resource use in such a pattern. 

Frequency refers to a probability distribution over resource use and probability transition 

from one resource to another. Density refers to the number of access to resources. 
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Looking at an SRL profile, one sees the relationship between one’s resource use 

indicators and one’s performance in a course. We propose a measurement for scoring this 

relationship. The measurement is named the SRL index.      

4.7.1. Self-regulated learning index (SRL index) 

The SRL index indicates how effective a resource use pattern is in corresponding to 

its learning performance and is expressed in the form 

𝑆𝑅𝐿 𝑖𝑛𝑑𝑒𝑥 =  𝑐_𝑠𝑐𝑜𝑟𝑒∑𝑟𝑖
𝑠𝑠𝑖

𝑛

𝑖=1
 (4.4) 

where 

SRL index : an index representing how well a learner self-regulates his or her learning 

process in a course. The higher the SRL index is, the higher a learner performs in SRL; 

c_score : accumulative performance score a learner has earned in the course; 

ri : density of resource i in the course; density refers to the number of resource access 

or number of clicks;  

ssi : the steady state probability of resource ri; 

n : the number of resources available in the course. 

SRL index tells the effectiveness a resource use pattern of a learner has on their 

learning performance. The score demonstrates a correlation between a resource use 

pattern of a learner and their performance result. The term 𝑟!
((! illustrates a steady pattern 

of use of the resource i. ∑ 𝑟𝑖
𝑠𝑠𝑖𝑛

𝑖=0  is a summary of the resource use pattern of a learner in 

a course. An effective SRL pattern earns high cognitive performance. That expresses in 

the term 𝑐_𝑠𝑐𝑜𝑟𝑒∑ 𝑟𝑖
𝑠𝑠𝑖𝑛

𝑖=0 .  

To retain data normality, log transformation is applied to the SRL index. 

Log SRL index = 𝑙𝑜𝑔2(𝑐_𝑠𝑐𝑜𝑟𝑒∑ 𝑟𝑖
𝑠𝑠𝑖𝑛

𝑖=1 ) (4.5) 

The formation of the SRL index not only demonstrates the relationship between 

cognition and metacognition of a learner when they perform SRL in OLEs but also 

measures such relationship quantitatively and expresses it semantically.  
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4.7.2. Explaining the SRL profile of a learner by SRL Framework 

According to the SRL framework, the formal cause bases SRL on two faculties of the 

mind of a learner: cognition and metacognition. These two faculties interoperate and have 

a positive correlation with the learning performance of the learner [7]. Depending on 

current SRL models by which SRL is analyzed, the correlation between cognition and 

metacognition manifests differently. For instance, Zimmerman’s cyclical phase model 

[26] presents the cognition and metacognition relationship in SRL as a three-phase 

process, while Boekaert’s dual-processing model views that relationship balancing 

process between learners’ goals and resources. 

The form of SRL is then personalized to individual learners in the quality of the 

relationship between cognition and metacognition. The quality is about, but not limited 

to, the pattern of resource use and its effectiveness, the steady state distribution over 

resource use. Such quality is quantitatively measurable via the SRL index. 

Recognizing SRL status might enable changes to improve ways of learning and 

improvement learning performance. Such changes are of the efficient cause. Learners can 

refer to their peers to adjust learning styles, or seek counsel with instructors or supervisors 

to quit bad learning habits (such as being absorbed by certain resources), adopt good 

learning habits (viewing course contents to outline the learning process, posting explicit 

opinions on forums), or begin to use learning resources they have not used before to 

strengthen knowledge retainment. Such activities, in return, perfect their SRL ability 

gradually.  

The final cause of SRL is the most difficult cause to identify. A learner wants to perfect 

his or her SRL ability to seek knowledge to a greater extent. Since SRL comprises 

cognition and metacognition, perfecting SRL is to perfect cognition and metacognition. 

Manifestation of perfecting self-regulated learners is that they find learning resources 

provided in a course useful for learning; therefore, they use the provided resources 

diligently, and their use of resources demonstrates accumulative contributions to their 

achievement in learning. Learners with such perfecting SRL ability are reaching the 

perfection of the mind. The fruit of such a mind is the joy of learning, discovering, and 

knowing.  
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 Conclusion 

The procedure for data transformation and modeling brings out meanings from 

learners’ learning history data and presents sequences of resource use in such a manner 

that learners can see their learning patterns. The application of the SRL framework to 

explaining SRL profiles sheds light on the learners’ understanding of their SRL habits. In 

the next chapter, we present the application of the procedure on the OULAD dataset and 

evaluate the performance of our proposed methods with that of existing approaches.  
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Chapter 5.  Method evaluation and Discussions 

Chapter 4 has elaborated the process of building a learner Markov model from online 

learning behaviors in the appearance of clickstream data and introduced the SRL profile 

for illustrating SRL capability and ability. The steady states attribute of the learner 

Markov model demonstrates learning patterns, which can be seen as learners’ resource 

use habits to achieve certain learning goals. The proposed SRL index in the SRL profile 

is a single number unifying a learner’s resource use pattern and learning performance; 

therefore, it helps give a valid rank of learners’ SRL ability. 

In this chapter, we present the generation of the learner Markov model, the SRL index, 

and the SRL profiles for learners from OULAD (refer to section 0for a description of this 

open dataset). We show what an SRL profile looks like, how accurately the SRL index 

classifies learning performances and also evaluate the proposed method by comparing its 

effectiveness with existing approaches. 

 Visualization of a self-regulated learner profile 

An SRL profile of a learner represents his or her SRL capacity and ability. Looking at 

one’s SRL profile, one should be able to tell one’s SRL level and pattern of learning 

activities. From the understanding of the SRL profile, a learner should see their SRL 

strengths and weaknesses to make proper changes.  

An SRL profile shows the SRL index in the performance group to which the SRL 

profile belongs, and in comparison with other SRL indices in a course, the density of 

resource use, which is measured in the number of accesses to the resource, and the steady 

states or a steady probability distribution of resource use over resources in a course. 

By visualization, an SRL profile is presented in a combination of 4 graphs in Figure 5.1:  

• (a) a boxplot of SRL indices separated by learning performance groups (for example, 

in OULAD, learning performance groups are the distinction, the pass, the fail, and 

the withdrawn); 

• (b) a scatterplot of correlation between SRL indices and cognitive (or performance) 

scores of learners; 

• (c) a scatterplot of the number of accesses to each resource in a course; 
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• (d) a scatterplot of steady states of resource use. 

 
Figure 5.1. Visualization of an SRL Profile in a course that contains 4 learning performance 
groups indicated by final results. The groups are the Distinction, the Fail, the Pass, and the 
Withdrawn. The big red circle shows the learning patterns of a learner in comparison with other 
learners in the course. (a) shows the learner’s log SRL index. (b) shows the correlation between 
the learner’s log SRL index and her cognitive score. (c) shows the learner’s resource use density. 
(d) shows resource steady state to indicate learning habits. 

Let us look at an example of an SRL profile of a learner in Figure 5.1. In this SRL 

profile, all four graphs comprise a big picture of learning patterns and SRL abilities of 

all learners grouped by their learning performance in a course. And the big red circles 

indicate the current state of the learner who owns this SRL profile. The upper-left boxplot 

tells that the learner is in the distinction group with an SRL index of about 11 points. The 

upper-right scatterplot shows that the learner has earned a high cognitive score of more 

than 90 points in relation to the SRL index of about 11 points. The lower-left and lower-

right scatterplots demonstrate that learners might often refer to the course outline 

provided in the resources named homepage and outline, and use learning materials 

provided by the resources named resource, subpage, and url in a reasonable density and 

frequency.  
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 Section 4.5.2 above describes how resource use history can be divided into the SRL 

planning phase and reflection phase using assessment milestones. Applying this approach, 

we can produce SRL profiles for different SRL phases, such as an SRL profile for the 

planning phase, another SRL profile for the reflection phase, and another SRL Profile for 

the overall course.  

 SRL Profiles of each learning performance group 

There are significant differences in SRL profiles of different performance groups. The 

first apparent difference is the SRL index or log SRL index. Figure 5.2 shows SRL indices 

of the distinction, the fail, the pass, and the withdrawn groups. The distinction and the 

pass are clearly separated from the fail and the withdrawn. Between the fail and the 

withdrawn, the mean log SRL index can also be used for classifying these two groups.  

 

The second difference between the groups is the correlation between the log SRL index 

and cognitive score. As reported in Figure 5.3, the relationship between the log SRL index 

and cognitive score helps recognize learners’ performance. Visually speaking, from the 

graph, the boundaries among the performance groups are clearly defined.  

Figure 5.2. Comparison of SRL Indices among performance groups. Except the outliers data, the 
pass students (of Distinction and Pass groups) are well-separated from the fail students (of Fail and 
Withdrawn groups). 
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Figure 5.3. Comparison of correlation between Log SRL index and cognitive score among 
performance groups. Except for the outliers data, the pass learners (of Distinction and Pass groups) 
have higher log srl indices and cognitive scores than the fail learners (of Fail and Withdrawn 
groups). 

There are also differences in density and probability of resource use among the 

performance groups. Figure 5.4 compares the density of resource use among the 

performance groups. The distinction and the pass tend to use learning resources more 

frequently than the fail and the withdrawn. Other research has also mentioned so. It is 

subtle to notice that the distinction and the pass access to resources that help them plan 

their learning journey, e.g., homepage or content, more frequently than their peers of the 

fail or the withdrawn. Combined with resource use density, steady states of resource use 

represent habits. Generally, the steady states of resource use do not vary greatly among 

the performance groups. However, there is a sign in the steady states to distinguish 

performance groups. In Figure 5.5, the distinction and the pass look like having a habit 

of using the forum and quiz resources. It can be implied that the pass and the distinction 

tend to be active and self-regulating.    
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Figure 5.4. Comparison of the number of accesses to resources among performance groups. The 
pass learners (of Distinction and Pass groups) have higher resource use density than the fail 
learners (of Fail and Withdrawn groups). It is noticeable that the pass learners access the 
homepage more than the fail learners. The homepage usually contains a course outline, 
description, learning materials, and assignments. It can be implied from the density of access to 
the homepage that the pass learners are more active, better managed, and better prepared than the 
fail learners.  
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 Prediction 

We come to a point to test the performance of prediction models built out of SRL 

profiles on OULAD data. We choose the overall SRL profile, computed from resource 

access throughout a whole course, to build the prediction model. The prediction model is 

trained on only one course presentation and then predicts learners’ learning performance 

in other courses. 

5.3.1. Datasets 

Let’s briefly review the OULAD courses, which are going through the training and 

prediction evaluation. OULAD contains 7 courses named AAA, BBB, CCC, DDD, EEE, 

FFF, and GGG; and was offered multiple times as a course offering. A course offering is 

denoted with a year the course was offered and a letter J or B representing whether the 

course offering is in the autumn or spring. The author of OULAD [12] recommends 

analyzing course offerings of J type separately from B type due to their structure 

difference; however, we opt to consider all of the course offerings equally. The reason for 

Figure 5.5. Comparison of steady states of resource use among the performance groups. There is 
not much difference in the steady state among the student groups.  
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such consideration is this. Regardless of resource content, the resource types are similar 

from one course offering to another. And the resource uses are measured by resource 

access only, and such access is synthesized and abstracted into the SRL index, which, as 

described above, can represent SRL ability in only learning given resource use and its 

effectiveness. 

Among the courses, the course GGG was not used due to its lack of score information; 

therefore, the SRL index could not be synthesized. Table 5.1 shows the course offerings 

for training and testing the prediction models. 

Table 5.1. Course offerings in OULAD 
No Course module Code presentation Length (days) Number of learners 

1 AAA 2013J 268 383 

2 AAA 2014J 269 365 

 3* BBB 2013J 268 2237 

4 BBB 2014J 262 2292 

5 BBB 2013B 240 1767 

6 BBB 2014B 234 1613 

7 CCC 2014J 269 2498 

8 CCC 2014B 241 1936 

9 DDD 2013J 261 1938 

10 DDD 2014J 262 1803 

11 DDD 2013B 240 1303 

12 DDD 2014B 241 1228 

13 EEE 2013J 268 1052 

14 EEE 2014J 269 1188 

15 EEE 2014B 241 694 

16 FFF 2013J 268 2283 

17 FFF 2014J 269 2365 

18 FFF 2013B 240 1614 

19 FFF 2014B 241 1500 
*Course offering BBB 2013J is used for training the prediction model 
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Among the course offerings, the BBB 2013J was used for training prediction models. 

BBB 2013J was selected for training because it has an adequate sample size and balances 

the number of learners of final result types. The trained models were then applied to the 

other course offerings to predict the final results. The predicted final results were then 

compared with the ground truth final results for the model evaluation.  

5.3.2. Generation of datasets for model training and testing 

Datasets used for model training and testing should contain data points in a context of 

a course, comprising 2 features and 1 target label. The features are the log SRL index 

representing a learner’s SRL ability and the sum of cognitive scores the learner earns. 

The target label is one of the final results, such as pass, fail, withdrawn, or dropout.  

To generate such datasets, we propose the following procedure: 

1. Produce a data table of resource use in which the columns are the resources, the 

rows are the resource use history of a learner, and the cells contain the number of 

accesses to each resource. The resource use data table can contain resource use for 

a whole course or parts of a course, such as a period before or after exams. The 

structure of a resource use data table is shown in Table 5.2. 

2. Produce a data table of cognitive scores in which the columns are the assessments, 

each row is about a learner’s learning performance, and the cells contain the scores 

the learner earns in corresponding assessments. The cognitive score data table 

contains an extra column about a learner’s final result, e.g., pass, fail, withdrawn. 

The structure of a cognitive score data table is shown in Table 5.3, and a sample 

table is shown in Figure 5.7. 

3. For each learner, compute a transition probability matrix (a sample matrix is shown 

in Figure 5.8). 

4. Use the transition probability matrices to make a Markov chain for each matrix. 

5. Generate vectors of steady states (a sample table of steady states is shown in Figure 

5.9) from each Markov chain. 
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6. Compute the SRL index table (a sample table is shown in Figure 5.10) by using 

the resource use data table, cognitive score data table, and vectors of steady states. 

The structure of an SRL index data table is shown in Table 5.4. 

Table 5.2. The structure of resource use data table. 
Learner  Resource  

1 
Resource  

2 
 … Resource  

n-1 
Resource  

n 
ID Number of 

access 
Number of 

access 
… Number of 

access 
Number of 

access 

 

Table 5.3. The structure of cognitive scores data table. 
Learner Assessment  

1 
Assessment  

2 
… Assessment  

k-1 
Assessment  

k 
ID Number of 

access 
Number of 

access 
… Number of 

access 
Number of 

access 

 

Table 5.4. The structure of the SRL index data table. 
Learner SRL index  

 
Log SRL index  

 
Cognitive Score Final results 

ID Number Number Number Pass / Fail / 
Withdrawn 

 

In this research, we implemented the procedure above using the R language on 

OULAD. The structure of each OULAD file is provided in Appendix 1. Structures of 

OULAD file. The implemented source code is provided in Appendix 2. Source code in R 

for Dataset generation. 

From OULAD, these data tables are generated by applying the procedure and 

synthesizing the following data. 

To generate the resource use data table (a sample table is shown in Figure 5.6), data 

from the studentVle.csv, vle.csv, and assesments.csv are synthesized. To generate the 

cognitive score data table (a sample table is shown in Figure 5.7), data from 

studentInfo.csv, assessments.csv, studentAssessment.csv. To generate the transition 

probability matrices (a sample table is shown in Figure 5.8), data from the 

studentInfo.csv, studentVle.csv, vle.csv, and assessments.csv are synthesized and 

computed using the algorithm in Table 4.3. The transition probability matrix is the input 

for producing Markov models. And the steady states data table is generated from the 
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Markov models, as shown in Figure 5.9. The SRL index data table is computed using 

equations (4.4) and (4.5) above. 

 

Figure 5.6. Resource use data table. Column names are the resources available in a course; each 
row contains the number of access for each resource performed by individual learners.   

 

 

Figure 5.7. Cognitive score data table. Column names are the assessments, total scores, and final 
results; each row contains individual learners’ partial scores, total scores, and final results. 
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Figure 5.8. A transition probability matrix and Markov model. 

 

Figure 5.9. Steady states data table. Column names are resources available in a course; each row 
contains the probability values about a resource used by a learner to start a learning sequence. 
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Figure 5.10. SRL index data table 

5.3.3. Pass and Fail prediction 

Prepared the datasets for the pass-fail prediction, the final result attribute of data points 

were relabeled. The pass and the distinction were relabeled as ‘pass’. The fail and the 

withdrawn were relabeled as ‘fail’. 

As demonstrated in Table 5.5, the SRL index distinguishes the pass learners from the 

fail learners clearly. Pass learners have a high SRL index than fail learners. And learners 

with a higher SRL index tend to achieve higher cognitive scores than learners with a lower 

SRL index, as illustrated by the correlation between SRL indices and cognitive scores in 

Table 5.6.   
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Table 5.5. Boxplot of log SRL indices of Pass and Fail learners of each course offering. 

  Fail  Pass    

AAA 2013J 

 

AAA 2014J 

 

BBB 2014J 

 

BBB 2013B 

 

BBB 2014B 

 

CCC 2014J 

 

CCC 2014B 

 

DDD 2013J 

 

DDD 2014J 

 

DDD 2013B 

 

DDD 2014B 

 

EEE 2013J 

 

EEE 2014J 

 

EEE 2014B 

 

FFF 2013J 

 

FFF 2014J 

 

FFF 2013B 

 

FFF 2014B 
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Table 5.6. Scatterplot of correlation between log SRL indices and cognitive scores of learners in 
several course offerings. 

  Fail  Pass    

AAA 2013J 

 

BBB 2014J 

 

CCC 2014B 

 

DDD 2014B 

 

EEE 2014J 

 

FFF 2014B 
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For the prediction performance, the models trained by Support vector classification 

(SVC) and Support vector machine with the linear kernel (SVM) [73], [74] yielded the 

highest accuracies from 87% to 93% on each course offering. Using only one course 

offering for training, the models with such accuracies have stability and generalization 

for applying to other datasets. Table 5.7 presents the accuracies of the models on each 

course offerings. 

Table 5.7. Accuracy of the pass and fail prediction models on each course offering. 

No  Course Overall accuracy Labels Precision Recall F1-score Support 

1 AAA 
2013J 

0.93 (SVC) Pass 0.92 0.99 0.95 278 

Fail 0.96 0.76 0.85 100 

2 AAA 
2014J 

0.92 (SVC) Pass 0.91 0.99 0.95 253 

Fail 0.98 0.76 0.85 104 

3 BBB 
2014J 

0.93 (SVC) Pass 0.91 0.99 0.95 1150 

Fail 0.98 0.85 0.91 771 

4 BBB 
2013B 

0.91 (SVC) Pass 0.86 0.99 0.92 803 

Fail 0.99 0.83 0.90 734 

5 BBB 
2014B 

0.91 (SVC) Pass 0.86 0.99 0.92 727 

Fail 0.98 0.80 0.88 567 

6 CCC 
2014J 

0.93 (SVM) Pass 0.86 1.00 0.93 1014 

Fail 1.00 0.87 0.93 1288 

7 CCC 
2014B 

0.94 (SVM) Pass 0.87 1.00 0.93 663 

Fail 1.00 0.91 0.95 1018 

8 DDD 
2013J 

0.89 (SVM) Pass 0.81 1.00 0.90 829 

Fail 1.00 0.80 0.89 939 

9 DDD 
2014J 

0.87 (SVM) Pass 0.79 1.00 0.88 792 

Fail 1.00 0.76 0.86 855 

10 DDD 
2013B 

0.90 (SVM) Pass 0.81 1.00 0.90 510 

Fail 1.00 0.83 0.91 704 

11 DDD 
2014B 

0.93 (SVM) Pass 0.86 1.00 0.93 479 

Fail 1.00 0.88 0.94 637 
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No  Course Overall accuracy Labels Precision Recall F1-score Support 

12 EEE 
2013J 

0.93 (SVM) Pass 0.91 0.99 0.94 609 

Fail 0.97 0.83 0.89 355 

13 EEE 
2014J 

0.92 (SVM) Pass 0.90 0.98 0.94 684 

Fail 0.96 0.82 0.89 413 

14 EEE 
2014B 

0.91 (SVM) Pass 0.88 0.97 0.92 357 

Fail 0.96 0.82 0.88 267 

15 FFF 
2013J 

0.93 (SVM) Pass 0.89 0.98 0.93 1095 

Fail 0.98 0.87 0.92 1003 

16 FFF 
2014J 

0.92 (SVM) Pass 0.89 0.98 0.93 1117 

Fail 0.98 0.86 0.91 1004 

17 FFF 
2013B 

0.89 (SVM) Pass 0.83 0.98 0.90 782 

 Fail 0.97 0.79 0.87 728 

18 FFF 
2014B 

0.91 (SVM) Pass 0.86 0.98 0.92 654 

Fail 0.98 0.85 0.91 709 

 

5.3.4. Dropout prediction 

Prepared the datasets for dropout prediction, the final result attribute of data points 

were relabeled. The pass, the distinction, and the fail were relabeled as ‘no dropout’ (ND). 

The withdrawn were relabeled as ‘dropout’ (D). 

As Table 5.8 shows SRL indices of the dropout and the not dropouts in each course 

offering, it is apparent that the SRL index helps distinguish the dropouts and the not-

dropouts effectively.  

K Nearest Neighbors (Knn) [75] and Gaussian Naïve Bayes (GNB) [76] produced 

predictions with accuracies from 77% up to 90%, as presented in Table 5.9.  

Table 5.8. Boxplot of log SRL indices of Dropout and No dropout learners of each course offering. 

          Dropout    No dropout 

AAA 2013J AAA 2014J BBB 2014J BBB 2013B BBB 2014B CCC 2014J 
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CCC 2014B 

 

DDD 2013J 

 

DDD 2014J 

 

DDD 2013B 

 

DDD 2014B 

 

EEE 2013J 

 

EEE 2014J 

 

EEE 2014B 

 

FFF 2013J 

 

FFF 2014J 

 

FFF 2013B 

 

FFF 2014B 

 

 

Table 5.9. Accuracy of the dropout prediction models on each course offering. 
No  Course Overall accuracy Labels Precision Recall F1-score Support 

1 AAA 
2013J 

0.90 (KNN) D 0.65 0.64 0.64 55 

 ND 0.94 0.94 0.94 323 

2 AAA 
2014J 

0.87 (GNB) D 0.62 0.45 0.52 58 

ND 0.90 0.95 0.92 299 

3 BBB 
2014J 

0.87 (GNB) D 0.66 0.77 0.71 403 

ND 0.94 0.89 0.91 1518 

4 BBB 
2013B 

0.82 (GNB) D 0.55 0.59 0.57 320 

ND 0.89 0.87 0.88 1217 

5 BBB 
2014B 

0.85 (GNB) N 0.51 0.58 0.54 206 

ND 0.92 0.90 0.91 1888 

6 CCC 
2014J 

0.86 (GNB) N 0.83 0.81 0.82 890 

ND 0.88 0.89 0.89 1412 
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No  Course Overall accuracy Labels Precision Recall F1-score Support 

7 CCC 
2014B 

0.82 (GNB) N 0.73 0.85 0.79 663 
 ND 0.89 0.80 0.84 1018 

8 DDD 
2013J 

0.81 (GNB) N 0.69 0.64 0.67 525 
 ND 0.85 0.88 0.87 1243 

9 DDD 
2014J 

0.85 (GNB) N 0.79 0.67 0.72 497 
 ND 0.87 0.93 0.89 1150 

10 DDD 
2013B 

0.79 (GNB) D 0.64 0.65 0.65 357 
 ND 0.85 0.85 0.85 857 

11 DDD 
2014B 

0.77 (GNB) D 0.69 0.64 0.66 388 
 ND 0.82 0.84 0.83 728 

12 EEE 
2013J 

0.86 (GNB) D 0.59 0.66 0.63 168 
ND 0.93 0.90 0.92 796 

13 EEE 
2014J 

0.88 (GNB) D 0.71 0.70 0.70 228 
 ND 0.92 0.93 0.92 869 

14 EEE 
2014B 

0.83 (GNB) D 0.53 0.62 0.57 112 
ND 0.91 0.88 0.90 512 

15 FFF 
2013J 

0.81 (GNB) D 0.61 0.53 0.57 497 
ND 0.86 0.90 0.88 1601 

16 FFF 
2014J 

0.86 (GNB) D 0.81 0.67 0.73 618 

ND 0.87 0.93 0.90 1503 

17 FFF 
2013B 

0.83 (GNB) D 0.60 0.52 0.56 316 

ND 0.88 0.91 0.89 1194 

18 FFF 
2014B 

0.79 (GNB) D 0.57 0.53 0.55 337 

ND 0.85 0.87 0.86 1026 

D: Dropout  ND: No dropout 

5.3.5. Pass / Fail / Withdrawn prediction 

Prepared the datasets for pass/fail/withdrawn prediction, the final result attribute of 

data points was relabeled. Pass and distinction were relabeled as ‘pass’ (P). The fail were 

relabeled as ‘fail’ F. And the withdrawn were relabeled as ‘withdrawn’ (W). 

For pass / fail / withdrawn prediction, the SRL index also clearly separates the pass 

from the fail and the withdrawn, as shown in Table 5.10. The SRL indices of the fail and 
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the withdrawn mingle. That causes the accuracy of the prediction models of this 

prediction type to be not as high as the two types above. The accuracies gain from 67% 

to 83% with training algorithms KNN, GNB, SVC, and SVM. It can be seen in Table 

5.11 that the cause of not high accuracy is the misclassification between the fail and the 

withdrawn. 

Table 5.10. Boxplot of log SRL indices of Pass / Fail /Withdrawn learners of each course offering. 

         Fail     Pass    Withdrawn 

AAA 2013J 

 

AAA 2014J 

 

BBB 2014J 

 

BBB 2013B 

 

BBB 2014B 

 

CCC 2014J 

 

CCC 2014B 

 

DDD 2013J 

 

DDD 2014J 

 

DDD 2013B 

 

DDD 2014B 

 

EEE 2013J 

 

EEE 2014J 

 

EEE 2014B 

 

FFF 2013J 

 

FFF 2014J 

 

FFF 2013B 

 

FFF 2014B 
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Table 5.11. Accuracy of the pass/fail/withdrawn prediction models on each course offering. 

No  Course Overall accuracy Labels Precision Recall F1-score Support 
1 AAA 

2013J 
0.83 (GNB) P 0.92 0.99 0.95 278 

F 0.35 0.36 0.35 45 
W 0.74 0.42 0.53 55 

2 AAA 
2014J 

0.83 (GNB) P 0.91 1.00 0.95 253 
F 0.45 0.41 0.43 46 
W 0.63 0.41 0.50 58 

3 BBB 
2014J 

0.81 (GNB) P 0.91 0.99 0.95 1150 
F 0.52 0.31 0.39 368 
W 0.66 0.74 0.70 403 

4 BBB 
2013B 

0.74 (GNB) P 0.86 0.98 0.92 803 
F 0.55 0.40 0.46 414 
W 0.55 0.56 0.56 320 

5 BBB 
2014B 

0.76 (GNB) P 0.87 0.98 0.92 727 
F 0.61 0.44 0.51 361 
W 0.52 0.53 0.53 206 

6 CCC 
2014J 

0.74 (SVC) P 0.85 1.00 0.92 1014 
F 0.33 0.42 0.37 398 
W 0.88 0.59 0.71 890 

7 CCC 
2014B 

0.72 (SVC) P 0.87 1.00 0.93 663 
F 0.36 0.37 0.37 355 
W 0.76 0.63 0.69 663 

8 DDD 
2013J 

0.68 (SVM) P 0.80 1.00 0.89 829 
F 0.37 0.42 0.40 414 
W 0.75 0.38 0.51 525 

9 DDD 
2014J 

0.72 (KNN) P 0.79 1.00 0.88 792 
F 0.38 0.32 0.35 358 
W 0.82 0.57 0.67 497 

10 DDD 
2013B 

0.67(SVM) P 0.80 1.00 0.89 510 
F 0.46 0.51 0.48 347 

  W 0.71 0.36 0.48 357 
11 DDD 

2014B 
0.71 (KNN) P 0.87 1.00 0.93 479 

F 0.40 0.46 0.43 249 
W 0.72 0.52 0.60 388 

12 EEE 
2013J 

0.81(SVC) P 0.89 0.99 0.94 609 
F 0.58 0.46 0.51 187 
W 0.67 0.55 0.61 168 

13 EEE 
2014J 

0.81 (KNN) P 0.91 0.97 0.94 684 
F 0.48 0.39 0.43 185 
W 0.72 0.68 0.70 228 
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No  Course Overall accuracy Labels Precision Recall F1-score Support 
14 EEE 

2014B 
0.75 (KNN) P 0.88 0.96 0.92 357 

F 0.52 0.37 0.44 155 
W 0.52 0.58 0.55 112 

15 FFF 
2013J 

0.72 (KNN) P 0.88 0.95 0.91 1095 
F 0.45 0.37 0.40 506 
W 0.57 0.58 0.58 497 

16 FFF 
2014J 

0.77 (KNN) P 0.89 0.96 0.93 1117 
F 0.42 0.39 0.41 386 
W 0.74 0.67 0.70 618 

17 FFF 
2013B 

0.73 (KNN) P 0.84 0.96 0.89 782 
F 0.55 0.37 0.44 412 
W 0.61 0.65 0.63 316 

18 FFF 
2014B 

0.72 (KNN) P 0.86 0.96 0.91 654 
F 0.51 0.37 0.43 372 
W 0.59 0.64 0.61 337 

 Method evaluation 

We justified our proposed learner model by developing learning performance 

prediction models from the SRL index and assessment scores, then compared the 

prediction accuracies with current prediction models. Two state-of-the-art works with 

which we compare the accuracy of our proposed method are these.  

• Hao et al. [37] analyzed the sum of clicks on resources and average assessments 

scores to predict pass/fail final results on OULAD, with 0.8 training : 0.2 testing data 

ratio on the whole dataset, and gained 93% accuracy;  

• and Qiu et al. [33] classified and grouped resource types used by each learner in a 

course to predict pass/fail final results on OULAD, with 0.7 training : 0.3 testing data 

ratio on the whole dataset, and gained 97% accuracy. 

Applying the method to OULAD, we generated SRL profiles for individual learners 

from their resource access throughout a whole course, computed the SRL indices, and 

used the SRL indices and accumulative assessment scores as features to build the machine 

learning models to predict the final results of pass or fail. Two approaches for splitting 

training and testing datasets were carried out. The first approach is that the prediction 

model is trained on only one course presentation and then predicts learners’ learning 
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performance in other courses. The second approach is to split each course offering into a 

0.5 training : 0.5 testing data ratio. 

Table 5.12 presents the statistical values of the accuracy of our prediction models. For 

the prediction performance, the model was trained by the Support vector classification 

(SVC) and the Support vector machine with the linear kernel (SVM) (Pedregosa et al., 

2011). The first approach yielded accuracy from 87% to 93% on each course offering, 

with the maximum accuracy of 93%, equivalent to the state-of-the-art work of Hao et 

al. [37]. Using only one course offering for training, the models with such accuracies have 

stability and generalization for applying to other datasets. Following the second approach,  

the prediction model gained very high accuracy from 91% to 97% on each course 

offering with the maximum accuracy of 97%, equivalent to the state-of-the-art work of 

Qiu et al. [33]. Detailed accuracies that our prediction models yielded on the whole 

OULAD are presented in Table 5.13 for the first approach and Table 5.14 for the second 

approach. 

Table 5.12. Mean, maximum, and minimum values with standard deviation (SD) of the accuracy 
and F1-score of the prediction models developed in two approaches. 

Approach Accuracy F1-Score 

Mean± SD Max Min Mean ± SD Max Min 

First approach: prediction 
model trained by using linear 
SVM on one course offering and 
tested on the others 

0.92 ± 0.02 0.94 0.87 0.90 ± 0.03 0.96 0.87 

Second approach: prediction 
model trained by SVC on 0.5 
training : 0.5 testing data ratio 
for each course offering 

0.93 ± 0.02 0.97 0.91 0.93 ± 0.03 0.97 0.89 

State-of-the-art   

Hao et al. [37] 

Qiu et al. [33] 

      0.93 

      0.97 

     0.88 

     0.98 
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Table 5.13. Accuracies from Pass/Fail prediction models using the first approach 

No  Course Overall 
accuracy 

Precision 

(Pass / Fail) 

Recall 

(Pass / Fail) 

F1-score 

(Pass / Fail) 

Support 

(Pass / Fail) 

1 AAA 2013J 0.93 0.92 / 0.96 0.99 / 0.76 0.95 / 0.85 278 / 100 

2 AAA 2014J 0.92 0.91 / 0.98 0.99 / 0.76 0.95 / 0.85 253 / 104 

3 BBB 2014J 0.93 0.91 / 0.98 0.99 / 0.85 0.95 / 0.91 1150 / 771 

4 BBB 2013B 0.91 0.86 / 0.99 0.99 / 0.83 0.92 / 0.90 803 / 734 

5 BBB 2014B 0.91 0.86 / 0.98 0.99 / 0.80 0.92 / 0.88 727 / 567 

6 CCC 2014J 0.93 0.86 / 1.00 1.00 / 0.87 0.93 / 0.93 1014 / 1288 

7 CCC 2014B 0.94 0.87 / 1.00 1.00 / 0.91 0.93 / 0.95 663 / 1018 

8 DDD 2013J 0.89 0.81 / 1.00 1.00 / 0.80 0.90 / 0.89 829 / 939 

9 DDD 2014J 0.87 0.79 / 1.00 1.00 / 0.76 0.88 / 0.86 792 / 855 

10 DDD 2013B 0.90 0.81 / 1.00 1.00 / 0.83 0.90 / 0.91 510 / 704 

11 DDD 2014B 0.93 0.86 / 1.00 1.00 / 0.88 0.93 / 0.93 479 / 637 

12 EEE 2013J 0.93 0.91 / 0.97 0.99 / 0.83 0.94 / 0.89 609 / 355 

13 EEE 2014J 0.92 0.90 / 0.96 0.98 / 0.82 0.94 / 0.89 684 / 413 

14 EEE 2014B 0.91 0.88 / 0.96 0.97 / 0.82 0.92 / 0.88 357 / 267 

15 FFF 2013J 0.93 0.89 / 0.98 0.98 / 0.87 0.93 / 0.92 1095 / 1003 

16 FFF 2014J 0.92 0.89 / 0.98 0.98 / 0.86 0.93 / 0.91 1117 / 1004 

17 FFF 2013B 0.89 0.83 / 0.97 0.98 / 0.79 0.90 / 0.87 782 / 728 

18 FFF 2014B 0.91 0.86 / 0.98 0.98 / 0.85 0.92 / 0.91 654 / 709 

 

Table 5.14. Accuracies of the Pass/Fail prediction models using the second approach 

No  Course Overall 
accuracy 

Precision 

(Pass / Fail) 

Recall 

(Pass / Fail) 

F1-score 

(Pass / Fail) 

Support 

(Pass / Fail) 

1 AAA 2013J 0.94 0.94 / 0.95 0.99 / 0.82 0.96 / 0.88 139 / 50 

2 AAA 2014J 0.93 0.92 / 0.95 0.98 / 0.78 0.95 / 0.86 127 / 52 

3 BBB 2013J 0.91 0.89 / 0.95 0.96 / 0.85 0.93 / 0.89 536 / 399 

4 BBB 2014J 0.93 0.90 / 0.99 0.99 / 0.84 0.95 / 0.91 575 / 386 

5 BBB 2013B 0.92 0.89 / 0.96 0.97 / 0.86 0.93 / 0.91 402 / 367 
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No  Course Overall 
accuracy 

Precision 

(Pass / Fail) 

Recall 

(Pass / Fail) 

F1-score 

(Pass / Fail) 

Support 

(Pass / Fail) 

6 BBB 2014B 0.91 0.88 / 0.97 0.98 / 0.82 0.93 / 0.89 364 / 283 

7 CCC 2014J 0.93 0.89 / 0.96 0.95 / 0.91 0.92 / 0.93 507 / 644 

8 CCC 2014B 0.96 0.93 / 0.97 0.96 / 0.95 0.95 / 0.96 332 / 509 

9 DDD 2013J 0.95 0.92 / 0.99 0.99 / 0.92 0.95 / 0.95 415 / 469 

10 DDD 2014J 0.96 0.94 / 0.98 0.98 / 0.94 0.96 / 0.96 396 / 428 

11 DDD 2013B 0.95 0.92 / 0.97 0.96 / 0.94 0.94 / 0.96 255 / 352 

12 DDD 2014B 0.97 0.95 / 0.99 0.98 / 0.96 0.97 / 0.97 240 / 318 

13 EEE 2013J 0.93 0.92 / 0.96 0.98 / 0.85 0.95 / 0.90 304 / 178 

14 EEE 2014J 0.92 0.91 / 0.95 0.97 / 0.84 0.94 / 0.89 342 / 207 

15 EEE 2014B 0.91 0.90 / 0.94 0.96 / 0.85 0.93 / 0.89 179 / 133 

16 FFF 2013J 0.93 0.90 / 0.97 0.98 / 0.88 0.93 / 0.92 547 / 502 

17 FFF 2014J 0.93 0.92 / 0.95 0.95 / 0.91 0.94 / 0.93 559 / 502 

18 FFF 2013B 0.91 0.89 / 0.94 0.95 / 0.87 0.91 / 0.90 391 / 364 

19 FFF 2014B 0.93  0.89 / 0.97 0.97 / 0.89 0.93 / 0.93 327 / 355 

 

5.4.1. Prediction accuracy 

Our proposed method achieves accuracy from 87% to 97% for pass-fail prediction, 77% 

to 90% for dropout prediction, and 67% to 80% for pass-fail-withdrawn prediction. All 

accuracies are measured on an analysis unit of a course offering. In pass-fail prediction, 

our proposed method has researched the accuracy of 97%, equivalent to that of the state-

of-the-arts. 

In dropout and pass-fail-withdrawn prediction, most of the miss classified cases come 

from distinguishing between withdrawn and fail due to their similar patterns of resource 

use. 

The better of our proposed method is that it only needs a small proportion of data for 

training as long as the dataset used for training comprises sufficient classification targets 

or labels. Trained on only one course offering, the prediction model can be applied to 

other course offerings with reasonable accuracy, as presented in Table 5.7, Table 5.9, and 
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Table 5.11 above. These results justify the features used for training, which are the log 

SRL index (or SRL index) and the cognitive score, which are likely to represent SRL 

ability. For these features reflect SRL ability, they can be generalized to apply to other 

course offerings.   

5.4.2. SRL ability 

The learning performance of learners corresponds very well with the correlation 

between cognitive score and SRL index as the results described in section 5.3. The 

correlation justifies the relationship between cognition and metacognition in OLE [7], 

[62], and provides a measurable indicator of SRL ability. 

5.4.3. Generalization 

 As we have mentioned, the structure of the dataset and cognitive score and SRL index 

are not constrained by the structure of OULAD. Our proposed method can be generalized 

to apply to data of any OLEs, provided that the data are synthesized into the proposed 

structure to compute the SRL index.  

 Discussion 

The objective of this research is to support learners’ understanding of their SRL ability 

in OLEs. There are two questions we might ask further. How do the SRL framework and 

the Markov chain relate to one another? How is the objective achievement via the SRL 

framework and the SRL profile provided?  

5.5.1. The relationship between the SRL framework and the Markov chain 

 The SRL framework and the Markov chain harmonize to describe a learner’s SRL 

pattern from a principle perspective and mathematical perspective. In other words, the 

SRL pattern is generated by the nature of the mind, and it can be represented by the 

Markov chain with its characteristics. Markov chains from a learner’s sequences of 

resource use generate a transition probability matrix with its eigenvector and eigenvalue 

to illustrate the learner’s long-term behaviors or learning habits. The eigenvector is the 

steady state of the transition probability matrix, and the corresponding eigenvalue is 1. 

The eigenvector describes habit directions, and the eigenvalue describes habit strength. 

Such habit attributes are a manifestation of the principles of the mind. These attributes 
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demonstrate the density, effectiveness, and appearance of one’s use of cognition and 

metacognition when learning in OLEs.   

5.5.2. The relationship between the SRL framework and the SRL profile    

According to the SRL framework, cognition and metacognition enable us to self-

regulatedly learn; and we learn in order to perfect these two faculties. And we perfect 

these by firstly recognizing their status, next determining target goals, and next changing 

properly for improvement. In OLEs, there are available supports for these steps.  

In OLEs, our cognition and metacognition leave their traces in learning history data. 

When the data are arranged in a certain manner, they assist us in recalling our SRL 

patterns. The SRL profile proposed in Chapter 5 is for the SRL recognition purpose. 

Looking at our SRL profile might help us recall resources attributing learning 

effectiveness, resources consuming time but not beneficial, and resources that we miss. 

The SRL profile also helps us recall the motive by which we access certain resources at 

a certain time. Such reflection triggers self-modification and adaption to the SRL pattern.  

Further, the SRL pattern is a representation of SRL habits. Individual learners have 

their own habits of learning cognitively and metacognitively (recall the philosophical 

habit of the mind in the SRL framework). Some SRL habits are effective for learning, and 

some are not. For instance, learners with a habit of knowing a task requirement before 

working on a task might access the course outline at first, then access the task and use 

resources related to the task for preparation; finally, they do the task and earn high scores. 

Learners without such a habit might access resources without a proper order; hence, they 

might miss fulfilling the task requirements, which affects scores. When learners need an 

indicator of SRL ability, the SRL index is such an indicator of a union between their 

cognition and metacognition - a union between their SRL patterns and the corresponding 

performance.  

5.5.3. Use of the SRL framework to explain SRL ability 

Recognizing current SRL ability, we step into improvement. In this research, we did 

not address the improvement part because of a lack of expertise. However, the SRL 

framework provides paths for improvement. The paths are derived from the causes of 

SRL. Except for the formal cause defining what SRL is made up of, the other three causes 
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suggest directions for improvement. The material cause suggests improvement in density 

and frequency of cognitive and metacognitive activities. For instance, a learner might 

access resources in proper order but still has not achieved high performance. It might be 

because he has not read an article diligently enough or practiced with online quizzes well 

enough. The material cause suggests that the SRL pattern is in good shape but needs 

strengthening. The next cause that suggests improvement is the efficient cause. It tells the 

learner where his or her SRL habits come from. If they are good habits, learners need to 

strengthen them by practice. If they are not, the learners need to omit these and replace 

them with new ones. For instance, learners might spend much time reading forum 

messages without posting opinions or sharing ideas. Such patterns of resource use might 

waste their time, reduce their strength of thought, and weaken their SRL ability. The 

improve SRL, the learners need to omit the habit of reading posts only and then replace 

it with reading-and-sharing ideas on discussion forums. The last cause that encourages 

improvement is the final cause. It is the most challenging yet most effective for perfecting 

SRL. The final cause tells how ones want one’s SRL to become. Do we want SRL to be 

strong so that we have good SRL habits to study complicated knowledge? Do we want 

SRL to be perfect so that our minds reach perfection because SRL represents a 

combination of cognition and metacognition, the intellect and the will?  

  Conclusion 

In summary, the SRL framework comprises the simple yet stable principles of SRL 

and a process for recognizing and improving SRL ability. Our proposed method was built 

on the SRL framework and designed for recognizing SRL in OLEs. The proposed method 

is not restricted to applying to a specific case; however, the evaluation and discussion 

above show that our proposed method is the potential for generalizing.  
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Chapter 6.  Conclusion, limitations, and future works 

 Conclusion 

Learning is a lifelong journey of seeking to know: knowledge, the world, and ourselves. 

Any of us has once experienced the joy of discovering and understanding certain pieces 

of knowledge. When we are aware of our learning with its capacity, characteristics and 

ability, is it not that we are pleased and confident to pursue our learning path? The further 

we learn, the more we need to understand our own learning habits and the more we need 

to master our SRL. And we can only understand our habits when we can explain them on 

sound principles. Those are the SRL framework as the principles and the learner Markov 

model as a means to understand SRL.  

In this thesis, we have presented the topic of self-regulated learning in online learning 

environments and exhibited the idea of realizing SRL ability from the support provided 

by such environments. We would like to leave a note that the idea of learning and realizing 

one’s learning ability is not constrained within online learning environments only. While 

traditional face-to-face classrooms enable instructors and supervisors to interact with 

learners to support them with SRL skills, online learning environments lack such in-

person interaction but have a learning history to open changes for SRL support. 

 Through this thesis, we have tried to show that SRL is a manifestation of the intellect 

and the will, the cognition and metacognition; learning activities can be utilized to 

improve the way of learning. The relationship between cognition and metacognition is 

laid on the apparent yet stable foundation that is the operation of the mind. SRL has its 

causes; therefore, SRL has reasons for its existence, and we can understand our SRL 

capability and improve SRL ability through concrete activities. The SRL framework 

provides a foundation for a learner or a learner to describe SRL capability, explain SRL 

ability, and refer to adjusting and improving SRL. 

We have also proposed the learner Markov model to turn learning history data into an 

SRL description and a measurement – SRL index – to unify learning activities, learning 

patterns, and their effectiveness. The learner Markov model and SRL index are the 

implementation of the SRL framework for online learning environments. 
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Our proposed method is not limited to a specific case like the OULAD in this thesis. 

The simplicity of the method and the straightforward procedure can be generalized and 

applicable to almost any OLEs.   

 Answers to the research questions 

Let us return to the research questions. The SRL framework provides the following 

answers to research questions RQ1, RQ2, and RQ3. The SRL profile provides the 

following answers to research questions RQ4 and RQ5. 

RQ1: What intrinsic and extrinsic factors construct and differentiate the SRL ability of 

a learner?  

SRL is an entity that actually exists and operates on the basic functionalities of the 

mind; therefore, its ability can be explained by specifying the causes of SRL for each 

learner. In general, the factors constructing SRL ability are the source, form, goal, and 

pattern of SRL. Each learner has his or her educational background, learning experiences, 

and personality, therefore, has his or her path or source of SRL development. SRL 

operates to enable individuals to approach knowledge effectively and efficiently; hence, 

it possesses a form for achieving that aim. Since SRL does not end for itself but supports 

the learner to a goal in knowledge achievement, the goals to which SRL is directed also 

shape the SRL ability. Finally, individuals develop their cognitive and metacognitive 

strategies differently and shape their SRL habits and character on different paths; thus, 

the SRL pattern is then personalized to each individual. Thus, SRL converges in its form 

but varies according to individuals’ backgrounds, learning goals, and cognitive and 

metacognitive habits. 

RQ2: How can these SRL factors be identified and measured from a learner’s learning 

history? 

SRL ability reveals via a learner’s SRL habits and character, which are currently 

evaluated by learning behavior observation and different types of self-reports. The 

frequency of behavior application should be the measurement unit for learning behaviors, 

and for measuring the quality of self-reports, such measurement scales as the Likert scale 

is reasonable.  
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RQ3: Under what cognitive or metacognitive conditions are individuals 

intrinsically/extrinsically motivated to self-regulate their learning? 

Although motivation is one of SRL's critical components, a learner may find it 

unintriguing or unnecessary to develop the SRL ability since the benefits that SRL 

delivers are vaguely visible. However, by understanding SRL from the principles of the 

mind, a learner can be motivated to self-regulate his or her learning extrinsically by 

progress to knowledge and intrinsically by the perfection of the intellect and will, 

cognition and metacognition. 

RQ4: By what signs can learners’ learning history data in OLEs manifest SRL patterns?   

Learners manifest their SRL patterns in the way they use learning resources in different 

timestamps in a course. Resource access before assessment milestones might demonstrate 

the planning phase in SRL. Resource access right after assessment days might signify the 

reflection phase in SRL. A combination of resource access throughout a course might 

indicate a complication of SRL activities of learners. 

RQ5: How can learning history data from OLEs be synthesized for assessing the SRL 

ability of a learner? 

A learner’s SRL ability should be measured by the combination of SRL activities and 

their effectiveness on learning performance. And SRL index is a reasonable unit for 

measurement. 

 Contributions 

The contributions of this research are two. First is the SRL recognition and 

improvement framework. Second is the learner Markov modeling method to transform 

learning history data into the SRL profile and SRL index. This combination of these 

components transforms online learning history data into a meaningful description of SRL 

for individual learners; thus, our proposed solution can support learners’ understanding 

of their SRL ability in OLEs. 
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 Limitations and future works 

6.4.1. Limitations 

The first limitation relates to the justification of the SRL framework. Since this 

framework is developed via arguments, future work must involve applying the framework 

to design empirical SRL recognition and improvement tools, programs, and exercises. 

Such empirical evidence will demonstrate the validity of the framework.  

The second limitation involves the application of the SRL framework. Although saying 

that the SRL framework provides a foundation to describe existing SRL models, we have 

not used the SRL framework to describe the existing SRL models in detail. Such 

description is not for critiquing the SRL models but for showing the causes from which 

the SRL models are designed; thus, an appropriate understanding of SRL is provided. For 

instance, Zimmerman’s cyclical phase model reflects the material cause of SRL, while 

Pintrich’s model describes the characteristics of SRL, which is about the formal cause. 

Boekaerts’ dual-processing model implies the efficient cause of SRL via the description 

of a learner’s self-esteem. And almost all existing models do not clearly indicate the final 

cause of SRL. Different causes encourage different paths for improvement. 

Although we have introduced the SRL recognition and improvement framework, the 

thesis does not mention concrete approaches, recommendations, or methods for 

improving SRL. Such contents are difficult to articulate in a general case. We, with a 

constraint of our research domain, think that our proposed method and framework 

contribute a way of recognizing SRL. And when one recognizes one’s SRL ability, one 

can figure out how to modify it best for one’s specific circumstances. 

The third limitation relates to the verification of the learner Markov model. Although 

we have mentioned and subjectively believed the generalization of the proposed learner 

Markov model and SRL index, we have only applied the method on OULAD so far. It is 

important to apply the method to other open datasets and specific learning history data at 

educational institutions to validate the method. 

Fourth is the limitation of the SRL profile. By introducing the SRL profile, we intend 

to give learners and learners a detailed illustration of their SRL pattern. By saying a 

detailed illustration of the SRL pattern, it means that learners can see their repetitive 
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resource use, density and frequency of resource access, and effectiveness of resource use 

on learning performance. Looking at their SRL profile, learners and learners are expected 

to recognize their SRL habits and be able to make suitable modifications. The current 

SRL profile somehow shows those kinds of SRL pattern information; however, the 

current information about resource use patterns does not provide learners and learners 

with insight or guidelines to make an adjustment because the resources lack semantic 

contexts. In other words, all resources are currently just names or activity types with very 

little meaning implied in their names and without concrete purpose or intent implanted 

by instructors or course designers. When understanding the purpose of the resources 

provided, learners and learners will use them efficiently and reflect on their resource 

usage consciously, therefore, be able to make proper changes. 

6.4.2. Future works 

We have built and tested the learner Markov model from the OULAD dataset, whose 

learning resources do not provide much meaning except for resource types. Instructors 

and course designers always have an intention for every resource provided. We encourage 

to attach online learning resources with the intentions, such as the purpose of use, 

timeframe, and lecture content that instructors and course designers implant in the 

resources. 

The learner Markov model represents the SRL capability and ability of a learner. To 

validate the model, learners should see the model to give justification. We encourage 

future work to model learners’ learning history, then present the model to the learners for 

their feedback and evaluation of the correctness of the model. 

SRL models are valuable outcomes from research in SRL. They bring SRL illustrative 

observable structures so that SRL can be analyzed and understood concretely from 

various aspects. We encourage further study to reshape the SRL profile from the 

viewpoint of different SRL models to assist learners and learners in seeing their SRL from 

various angles. With such concrete observations, students and learners can avoid the 

overwhelmingness of a vague SRL idea and have specific aspects of SRL to focus their 

modification and improvement. 
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Overall, we hope that the proposed SRL framework and the proposed method for 

modeling and measuring SRL contribute to the body of knowledge of SR, and the 

application of these propositions will be able to support SRL recognition and 

improvement; thus, lifelong learning becomes enjoyable and fruitful for each of us.
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Appendix 1. Structures of OULAD file  

StudentInfo.csv contains 32,593 rows with the columns as shown in the following 

snapshot.  

 

 

Courses.csv contains 22 rows with the columns as shown in the following snapshot. 
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studentRegistration.csv contains 32,593 rows with the columns as shown in the 

following snapshot 

 

Assessments.csv contains 206 rows with the columns as shown in the following 

snapshot 
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studentAssessment.csv contains 173,912 rows with the columns as shown in the 

following snapshot 

 

studentVle.csv contains 10,655,280 rows with the columns as shown in the following 

snapshot 
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vle.csv contains 6,364 rows with the columns as shown in the following snapshot. 
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Appendix 2. Source code in R for Dataset generation 

This function runs the 6 steps to generate a dataset containing the SRL index, the log 

SRL index, and the cognitive score of each student in a course offering from OULAD. 

The parameter studentInfoData gets data from the studentInfo.csv file 

The parameter studentVleData gets data from the studentVle.csv file 

The parameter vleData gets data from the vle.csv file 

The parameter assessmentData gets data from the assessments.csv 

The parameter studentAssessmentData gets data from the studentAssessment.csv 

The parameter codeModule is the values from the code_module column 

The parameter codePresentation is the values from the code_presentation column 

The parameter phase gets the following values: ‘planning’ to represent the SRL 

plannning phase, ‘reflection’ to represent the SRL reflection phase, and ‘all’ to represent 

SRL activities in general throughout a course. 

The parameter days is used when the parameter phase is assigned as ‘plannning’ or 

‘reflection’. When phase is assigned as ‘planning’, days is the number of days before the 

assessment days in a course. When phase is assigned as ‘reflection’, days is the number 

of days after the assessment days in a course.  

 

RunSRLScorePipeline <- function(studentInfoData, studentVleData, vleData, 
assessmentData, studentAssessmentData, codeModule, codePresentation, phase, 
days) { 

  print("Step 1. Get VLE use history") 

  vleDf <- CreateVleAccessByStudentinCourse(studentVleData = 
studentVleData, vleData = vleData, assessmentData = assessmentData, 
codeModule = codeModule, codePresentation = codePresentation) 

  print("----- Step 1 completed.") 

 

  print("Step 2. Synthesize scores") 
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  scoreDf <- GetStudentsTotalScoreInCourse(studentInfoData = 
studentInfoData, studentAssessmentData = studentAssessmentData, 
assessmentData = assessmentData, codeModule = codeModule, codePresentation = 
codePresentation) 

  print("----- Step 2 completed.") 

 

  print("Step 3. Compute vle transition matrices") 

  transitionMatrices <- BuildTransitionMatrices(studentInfoData = 
studentInfoData, studentVleData = studentVleData, vleData = vleData, 
assessmentData = assessmentData, codeModule = codeModule, codePresentation = 
codePresentation, phase = phase, days = days) 

  print("----- Step 3 completed.") 

 

  print("Step 4. Build Markov chains") 

  markovChainModels <- BuildMarkovChainModels(transitionMatrices) 

  print("----- Step 4 completed.") 

 

  print("Step 5. Generate a steady states dataset") 

  steadyStatesDf<-GenerateSteadyStatesDataset(studentInfoData = 
studentInfoData, codeModule=codeModule, codePresentation=codePresentation, 
markovChainModels=markovChainModels) 

  print("----- Step 5 completed.") 

   

  print("Step 6. Compute SRL indices") 

  srlScoreDf<-ComputeSRLIndex(steadyStatesData=steadyStatesDf, 
vleUseData=vleDf, totalScoreData=scoreDf) 

  print("----- Step 6 completed.") 

  srlScoreDf 

} 
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Function CreateVleAccessByStudentinCourse for step 1 of the procedure 

 

CreateVleAccessByStudentinCourse <- function(studentVleData, vleData, 
assessmentData, codeModule, codePresentation, forExamDays, days) { 

   

  # step 1. getVleUseInCourse  

  vleUseDf <- GetVleUseInCourse(studentVleData = studentVleData, vleData = 
vleData, codeModule = codeModule, codePresentation = codePresentation) 

   

  if(forExamDays != "") { 

    assessmentDates <- GetAssessmentDate(assessmentData = assessmentData, 
codeModule = codeModule, codePresentation = codePresentation) 

    df <- vleUseDf[0,] 

    if(forExamDays == "before") { 

      for(i in assessmentDates) { 

        temp <- vleUseDf %>% filter((date<i) & (date >= i - days)) 

        df <- rbind(df, temp) 

      } 

    } 

    else if (forExamDays == "after") { 

      for(i in assessmentDates) { 

        temp <- vleUseDf %>% filter((date>i) & (date <= i + days)) 

        df <- rbind(df, temp) 

      } 

    } 

    vleUseDf <- df 

  } 

   

  # step 2. Count vle use by type for each student 

  vleUseByTypePerStudent <- vleUseDf %>%  

           group_by(id_student, activity_type) %>%  

           summarize(num_use = n()) 

   

  # Step 3. Add missing vle type with num_use for each student 
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  vleUseByTypePerStudent <- vleUseByTypePerStudent %>%  

                              ungroup() %>%  

                     complete(id_student, activity_type,  

             fill = list(num_use = 0))  

   

  # Step 4. Do pivot_wider the dataset into dataframe with activity_types as 
columns and students as row 

  vleUseByTypePerStudent <- vleUseByTypePerStudent %>%       

            pivot_wider(names_from = activity_type,  

                 values_from = num_use) 

  vleUseByTypePerStudent 

} 

 

 

Sub functions GetVleUseInCourse, GetAssessmentDate in step 1 of the procedure 

GetVleUseInCourse <- function(studentVleData, vleData,  

             codeModule, codePresentation) { 

   

  temp1 <- studentVleData 

  temp2 <- vleData 

   

  if (codeModule != "ALL") { # step 1. filter data to rows of code_module and 
code_presentation 

    temp1 <- temp1 %>% filter(code_module == codeModule) 

    temp2 <- vleData %>% filter(code_module == codeModule) 

  } 

   

  if (codePresentation != "ALL") { # step 1. filter data to rows of code_module 
and code_presentation 

    temp1 <- filter(temp1, code_presentation == codePresentation) 

    temp2 <- filter(temp2, code_presentation == codePresentation) 

  } 

   

  # step 2. inner join vle and student vle on id_site to get activity_type name 
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  df <- inner_join(temp1, temp2, by = "id_site") 

   

  # step 3. remove redundant columns and rename code_module and code_presentation 
columns 

  df <- df %>%  

    select(-code_module.y, -code_presentation.y) %>% 

    rename(code_module = code_module.x, code_presentation = 
code_presentation.x) 

} 

 

 

GetAssessmentDate <- function(assessmentData, codeModule, codePresentation) { 

   

  df <- assessmentData %>% filter(code_module == codeModule,  

              code_presentation == codePresentation) 

  dates <- df %>%  

     select(date) %>%  

     arrange(date) %>%  

     distinct() 

  dates <- unlist(dates, use.names = FALSE) 

  dates <- dates[!is.na(dates)] 

  dates 

} 

 

 

Function GetStudentsTotalScoreInCourse for step 2 of the procedure 

 

GetStudentsTotalScoreInCourse <- function(studentInfoData, 
studentAssessmentData, assessmentData, codeModule, codePresentation) { 

   

  assessDf <- assessmentData %>%  

      filter(code_module == codeModule,  

         code_presentation == codePresentation) 
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  studentDf <- studentInfoData %>%  

      filter(code_module == codeModule,  

         code_presentation == codePresentation) %>%  

         select(id_student, final_result) 

   

  # step 1. Join assessment with studentAssessment to compute total 
scores earned by each student 

  df <- studentAssessmentData %>%  

      inner_join(assessDf, by = "id_assessment") 

   

  # step 2. Compute partial score by multiply the score by its weight 
and fill NA score with 0 

  df$partial_score <- df$score * df$weight / 100 

  df$partial_score[is.na(df$partial_score)] <- 0 

   

  # step 3. Apply pivot_wider on df with columns as partial score for 
each test, fill NA score wit 0 

  widerpivotScore <- df %>%  

   pivot_wider(names_from = id_assessment,  

        values_from = partial_score, id_cols = id_student) 

  widerpivotScore[is.na(widerpivotScore)] <- 0  

   

  # Step 4. Compute total score of each student 

  widerpivotScore$total_score <-  

        
 rowSums(widerpivotScore[,2:ncol(widerpivotScore)]) 

  widerpivotScore 

   

  # Step 5. Join score and final results 

  df <- widerpivotScore %>%  

         right_join(studentDf, by = "id_student") 

  df 

} 
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Function BuildTransitionMatrices for step 3 of the procedure 

BuildTransitionMatrices <- function(studentInfoData, studentVleData,vleData, 
assessmentData, codeModule, codePresentation, phase, days) { 

  # step 1. filter data to rows having codemodule and codepresentation 

  df <- studentInfoData %>%  

    filter(code_module==codeModule, 
code_presentation==codePresentation) 

  vleUseDf <- GetVleUseInCourse(studentVleData = studentVleData, 

               vleData = vleData,  

              codeModule = codeModule,  

              codePresentation = codePresentation) 

  assessDates <- GetAssessmentDate(assessmentData = assessmentData, 

                codeModule = codeModule,  

              codePresentation = codePresentation) 

  # step 2. iterate the filtered dataset, run compute_transition_matrix on each 
student id and assign a new transition matrix of each run into a shared list 

  list <- list() 

  print(paste("Number of students to whom transition matrices will be built:", 
nrow(df), sep="")) 

  # make sure nrow(df > 0) 

  for(i in 1:nrow(df)) { 

      sdata <- vleUseDf %>% filter(id_student == df$id_student[i]) 

      transition_matrix <- "" 

      if(nrow(sdata) > 0) { 

        if (phase == "planning") { 

          transition_matrix <-  

     compute_plan_transition_matrix(student_vle_data = sdata,  

                  assessDates, days) 

        } 

        else if (phase == "reflection") { 

          transition_matrix <-  

       compute_reflect_transition_matrix(sdata,  

                     assessDates, days) 

        } 

        else { 
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          transition_matrix <- compute_transition_matrix(sdata) 

        } 

        comment(transition_matrix) <- paste(df$id_student[i], 

                 df$final_result[i], sep="-" )  

        list[[length(list)+1]] <- transition_matrix 

        print(paste(i, "matrix made", sep=" - ")) 

      } 

      else { 

        comment(transition_matrix) <- paste(df$id_student[i], 

                 df$final_result[i], sep="-" ) 

        list[[length(list)+1]] <- transition_matrix 

        print(paste(i, "Failed to build a matrix", sep=" - ")) 

      } 

  } 

  list 

} 

 

Subfunctions compute_transition_matrix, compute_plan_transition_matrix, 

compute_reflect_transition_matrix for step 3 of the procedure 

compute_transition_matrix <- function(student_vle_data) { 

   

  # Count the number of use of each activity_type 

  act <- student_vle_data %>% group_by(activity_type) %>%  

                 summarize(num_use = n()) 

   

  # sort data in ascending order of date 

  df <- student_vle_data %>% arrange(date) 

   

  # Build a matrix for storing transition probability 

  matrix <- matrix(data = 0, nrow = length(act$activity_type),  

            ncol = length(act$activity_type),  

       dimnames = list(act$activity_type, act$activity_type)) 

   

  # count the time an act in one date is followed by another act in the next date 
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  if(nrow(df) > 0) { 

    for (i in 1:nrow(df)) { 

      # Consider activities in a day take turn to follow one another, extract 
other rows of the same day as i  

      same_date <- df %>% filter(date == df$date[i]) 

      if(nrow(same_date) > 0) { 

        for (j in 1:nrow(same_date)) { 

          matrix[df$activity_type[i], same_date$activity_type[j]] <-  

    matrix[df$activity_type[i], same_date$activity_type[j]] + 1 

        } 

      } 

      # extract rows whose date is the next of i 

      next_date <- df %>% filter(date == df$date[i] + 1) 

      # add 1 when there is a transition from activity in date i to activity in 
date j 

      if(nrow(next_date) > 0) { 

        for (j in 1:nrow(next_date)) { 

          matrix[df$activity_type[i], next_date$activity_type[j]] <-  

       matrix[df$activity_type[i], next_date$activity_type[j]] + 1 

        } 

      } 

    } 

  } 

   

  # divide each row of the matrix by the number of use of respective activity_type 

  if(nrow(act)>0) { 

    for(i in 1:nrow(act)) { 

      # count the total number of sequences started with act$activity_type[i] 

      total <- sum(matrix[act$activity_type[i], ]) 

      for( j in 1:ncol(matrix)) { 

        matrix[act$activity_type[i],j] <- matrix[act$activity_type[i],j] / total 

      } 

      # if a row of the matrix is NA, assign matrix[row, row] = 1 

      if(is.na(matrix[act$activity_type[i],1])) { 

        matrix[act$activity_type[i],] <- 0 

        matrix[act$activity_type[i], act$activity_type[i]] <- 1 

      } 

    } 
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  } 

  matrix 

} 

 

 

compute_plan_transition_matrix <- function(student_vle_data,  

                  assess_date, days) { 

 

  print("Computing planning transition matrix") 

  # sort data in ascending order of date 

  df <- student_vle_data %>% arrange(date) 

   

  # Count vle sequences one week before assess 

  current_date <- df[0,] # prepare a dataset for the extraction  

  # extract rows within num_week before each assess date 

  for(i in assess_date) {  

    temp <- df %>% filter((date <= i) & (date >= i - days)) 

    current_date <- rbind(current_date, temp) 

  } 

   

  df <- current_date 

   

  # Count the number of use of each activity_type 

  act <- df %>% group_by(activity_type) %>% summarize(num_use = n()) 

   

  # Build a matrix for storing transition probability 

  matrix <- matrix(data = 0, nrow = length(act$activity_type),  

        ncol = length(act$activity_type),  

        dimnames = list(act$activity_type, act$activity_type)) 

   

  #... Now, we have the dataset current_date of rows about vle use num_week 
before assess dates  

  # Let's compute transition matrix 

  # count the time an act in one date is followed by another act in the next 
date 

  if(nrow(df) > 0) { 

    for (i in 1:nrow(df)) { 
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      # Consider activities in a day take turn to follow one another, extract 
other rows of the same day as i  

      same_date <- df %>% filter(date == df$date[i]) 

      if(nrow(same_date) > 0) { 

        for (j in 1:nrow(same_date)) { 

          matrix[df$activity_type[i], same_date$activity_type[j]] <-  

     matrix[df$activity_type[i], same_date$activity_type[j]] + 1 

        } 

      } 

      # extract rows whose date is the next of i 

      next_date <- df %>% filter(date == df$date[i] + 1) 

      # add 1 when there is a transition from activity in date i to activity 
in date j 

      if(nrow(next_date) > 0) { 

        for (j in 1:nrow(next_date)) { 

          matrix[df$activity_type[i], next_date$activity_type[j]] <-  

     matrix[df$activity_type[i], next_date$activity_type[j]] + 1 

        } 

      } 

    } 

  } 

   

  # divide each row of the matrix by the number of use of respective 
activity_type 

  if(nrow(act) > 0) { 

    for(i in 1:nrow(act)) { 

      # count the total number of sequences started with act$activity_type[i] 

      total <- sum(matrix[act$activity_type[i], ]) 

      for( j in 1:ncol(matrice)) { 

        matrix[act$activity_type[i],j] <-  

        matrix[act$activity_type[i],j] / total 

      } 

      # if a row of the matrix is NA, assign matrice[row, row] = 1 

      if(is.na(matrix[act$activity_type[i],1])) { 

        matrix[act$activity_type[i],] <- 0 

        matrix[act$activity_type[i], act$activity_type[i]] <- 1 

      } 

    } 
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  } 

  matrice 

} 

 

 

compute_reflect_transition_matrix <- function(student_vle_data,  

                assess_date, days) { 

   

  print("Computing reflection transition matrix") 

  # Count the number of use of each activity_type 

  act <- student_vle_data %>%  

       group_by(activity_type) %>% summarize(num_use = n()) 

   

  # sort data in ascending order of date 

  df <- student_vle_data %>% arrange(date) 

   

  # Build a matrix for storing transition probability 

  matrice <- matrix(data = 0, nrow = length(act$activity_type),  

        ncol = length(act$activity_type),  

        dimnames = list(act$activity_type, act$activity_type)) 

   

  # Count vle sequences one week before assess 

  # prepare a dataset for the extraction  

 current_date <- df[0,]  

  # extract rows within num_week after each assess date 

  for(i in assess_date) {  

    temp <- df %>% filter((date >= i) & (date <= i + days)) 

    current_date <- rbind(current_date, temp) 

  } 

   

  df <- current_date 

  #... Now, we have the dataset current_date of rows about vle use num_week 
before assess dates  

  # Let's compute transition matrix 

  # count the time an act in one date is followed by another act in the next 
date 
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  # count the time an act in one date is followed by another act in the next 
date 

  if(nrow(df) > 0) { 

    for (i in 1:nrow(df)) { 

      # Consider activities in a day take turn to follow one another, extract 
other rows of the same day as i  

      same_date <- df %>% filter(date == df$date[i]) 

      if(nrow(same_date) > 0) { 

        for (j in 1:nrow(same_date)) { 

          matrix[df$activity_type[i], same_date$activity_type[j]] <-  

      matrix[df$activity_type[i], same_date$activity_type[j]] + 1 

        } 

      } 

      # extract rows whose date is the next of i 

      next_date <- df %>% filter(date == df$date[i] + 1) 

      # add 1 when there is a transition from activity in date i to activity 
in date j 

      if(nrow(next_date) > 0) { 

        for (j in 1:nrow(next_date)) { 

          matrix[df$activity_type[i], next_date$activity_type[j]] <-  

      matrix[df$activity_type[i], next_date$activity_type[j]] + 1 

        } 

      } 

    } 

  } 

   

  # divide each row of the matrix by the number of use of respective 
activity_type 

  if(nrow(act) > 0) { 

    for(i in 1:nrow(act)) { 

      # count the total number of sequences started with act$activity_type[i] 

      total <- sum(matrix[act$activity_type[i], ]) 

      for( j in 1:ncol(matrice)) { 

        matrix[act$activity_type[i],j] <-  

          matrix[act$activity_type[i],j] / total 

      } 

      # if a row of the matrix is NA, assign matrice[row, row] = 1 

      if(is.na(matrix[act$activity_type[i],1])) { 
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        matrix[act$activity_type[i],] <- 0 

        matrix[act$activity_type[i], act$activity_type[i]] <- 1 

      } 

    } 

  } 

  matrix 

} 
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Function BuildMarkovChainModels for step 4 of the procedure 

 

BuildMarkovChainModels <- function(transitionMatrices) { 

   

  list <- list() 

  for(i in transitionMatrices) { 

    print(paste("Building markov chain for ", comment(i), sep="-")) 

    mc <- generate_markovchain(i) 

    if(is.null(mc)) { 

      print(paste("Failed to build markov chain for",  

        comment(i), sep = "-")) 

      list[[length(list) + 1]] <-  

          (paste("Failed to build markov chain for",  

             comment(i), sep = " - ")) 

    } 

    else { 

      print(paste("Succeeded at building markov chain for",  

               comment(i), sep = " - ")) 

      list[[length(list) + 1]] <- mc 

    } 

  } 

  list 

}  
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Function GenerateSteadyStatesDataset for step 5 of the procedure 

GenerateSteadyStatesDataset <- function(studentInfoData, codeModule, 
codePresentation, markovChainModels) { 

   

  studentInfo <- studentInfoData %>%  

    filter(code_module == codeModule,  

       code_presentation == codePresentation) %>%  

    select(id_student) 

  df <- matrix(nrow = 0, ncol = 3)  

  df <- data.frame(df) 

  colnames(df) <- c("id_student", "activity_type", "probability") 

  for(i in 1:length(markovChainModels)) { 

    if(!is.null(dim(markovChainModels[[i]]))) { 

   # id[[1]][1] == id_student, id[[1]][2] == final_result 

      id <- strsplit(name(markovChainModels[[i]]), "-")  

      ss <- steadyStates(markovChainModels[[i]]) 

      print(paste("Generating steady states for student ",  

                    id, sep=" ")) 

      for(j in 1:length(ss)) { 

        ssrow <- data.frame(as.double(id[[1]][1]),  

             dimnames(ss)[[2]][j], ss[[j]]) 

        names(ssrow) <- colnames(df) 

        df <- rbind(df, ssrow) 

      } 

    } 

  } 

  # fill  dataframe with students unabled to generate ss 

  df <- studentInfo %>% left_join(df, by = "id_student") 

   

  # remove rows with NA 

  df <- na.omit(df) 

   

  # fill missing activity type for each student 
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  df <- df %>% complete(id_student, activity_type, fill = list(probability 
= 0)) 

   

  # pivot wider the dataset to have activity_type as columns 

  df <- df %>%  

   pivot_wider(names_from = activity_type, values_from = probability) 

  df 

} 
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Function ComputeSRLIndex for step 6 of the procedure 

 

ComputeSRLIndex <- function(steadyStatesData, vleUseData,  

                    totalScoreData) { 

   

  ssDf <- steadyStatesData 

  scoreDf <- totalScoreData 

  vleDf <- vleUseData 

   

  srlScoreDf <- ssDf 

  srlScoreDf$srl_index <- 0 

  srlScoreDf$cognitive_score <- 0 

  srlScoreDf$log_srl_index <- 0 

  srlScoreDf$final_result <- "NA" 

  for(i in 1:nrow(srlScoreDf)) { 

    # step 1. Get the student id 

    studentId <-  

 as.character(srlScoreDf[srlScoreDf$id_student==srlScoreDf$id_student[i], 
1]) 

    print(paste("Computing the SRL index for Student ", studentId, sep= " ")) 

    # Step 2. Get the steady state vector of the student 

    ss <- ssDf[ssDf$id_student == studentId, 2:ncol(ssDf)] 

    # Step 3. Get the vle use vector of the student 

    vle <- vleDf[vleDf$id_student == studentId, 2:ncol(vleDf)] 

    # Step 4. Get student's total score 

    score <- scoreDf[scoreDf$id_student == studentId,] 

    # Step 5. Compute the SRL score 

    if(length(score$total_score)>0) { 

      srlScoreDf$srl_index[i] <- rowSums(vle^ss) * score$total_score 

      srlScoreDf$cognitive_score[i] <- score$total_score 

    } 

    if(length(score$final_result)>0) {  
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     srlScoreDf$final_result[i] <- score$final_result 

    } 

  } 

  print("omputing the log SRL index for Students") 

  srlScoreDf$cognitive_score[is.na(srlScoreDf$cognitive_score)] <- 0 

  srlScoreDf$srl_index[is.na(srlScoreDf$srl_index)] <- 0 

  srlScoreDf$log_srl_index <- log2(srlScoreDf$srl_index) 

  srlScoreDf[is.infinite(srlScoreDf$log_srl_index), "log_srl_index"] <- 0 

  srlScoreDf 

} 

 

 

 


