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Abstract

TiO2 (anatase polymorph) is a wide band gap semiconductor, studied for its interesting

optoelectronic properties. Intrinsic (or native) defects and extrinsic defects (dopants) can alter

the band structure of TiO2 in interesting ways, which can render this material suitable for certain

optoelectronic applications like photocatalysts and transparent conducting oxides.

In this work, we perform a comprehensive ab initio electronic structure analysis of undoped

and doped anatase systems using density functional theory aided by the Hubbard correction

(DFT+U). Such an analysis could help in selecting better dopants for transparent conducting

oxide (TCO) and photocatalytic applications. To avoid fitting U parameter to properties like

band gap, we use the linear response ansatz to systematically compute U for the dopant atoms.

The dopants considered are Nb, Ta, Mo, V, W, Cr, Co, Cu, La and Ce. Electronic structures of

anatase with intrinsic defects are also reported. The intrinsic point defects considered are oxy-

gen vacancies (VO), oxygen interstitials (Oi), titanium vacancies (VTi) and titanium interstitials

(Tii).

Out of all the intrinsic defects considered, VTi and Tii were found to be the most stable

under equilibrium condition. VO and Tii were found to form localized states in the band gap. In

case of VO, the localized states were formed close to the conduction band. Tii also formed mid

gap defect states. Electron transition from the defect states to the conduction band could impart

intrinsic n-type conductivity to anatase.

In the case of the dopant atoms considered, dopants like Nb, Ta, V and Ce formed states

in the conduction band with no mid gap states. Dopants Nb, Ta and W were found to have

the Fermi levels positioned near the conduction band edge, indicating these systems to exhibit

n-type conductivity. Other dopants like Mo, W, Cr, Co, Cu formed states in the band-gap. Mid

gap states could be undesirable for TCO applications because the electron transitions to/from

the mid gap states would reduce the transparency. Dopants which form states close to the

conduction or the valence band affect the curvature of these bands. Effective masses of charge

carriers are defined by band curvatures and hence are altered when dopants peturb the band

structure. Effective mass of electrons at the conduction band edge was found to be higher

in doped systems than in pristine TiO2. Dopants also reduced the parabolicity of bands in

general which leads to differences in effective mass values computed using different algebraic

definitions.

This study provides an insight into how native defects and dopants affect the electronic

structure of the host anatase material by forming impurity states and/or altering the band cur-

vature, which in turn affects the optoelectronic properties of the material. Based on electronic

structure and effective mass analysis, Nb, Ta and W are identified to exhibit higher transparency

and conductivity as compared to the other dopants considered here. The theoretical results pre-

sented here, increase our understanding and show the potential of dopants to alter the properties

in anatase TiO2.

Keywords: VASP, ab initio, TiO2, transparent conducting oxide, effective mass, formation en-
ergy
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Chapter 1

Introduction

1.1 Background
Electronic structure calculations are essential tools for searching new materials with desired

properties, predicting properties of materials and better understanding of experimental results.

Due to the availability of both massively parallel computing facilities and highly parallelized

electronic structure codes, these are becoming a de facto standard to support experimental re-

sults and to understand the underlying chemistry. Material simulations are also being used for

high throughput screening of materials. This has led to the development of several electronic

structure codes using sophisticated techniques to take advantage of the fast hardware.

The primary objective of electronic structure codes is to compute the many-body wave func-

tion. However, a major problem arises for a system with large number of atoms. The many-

body wave function is a 3N dimensional quantity, which becomes very expensive to compute

as the system size increases. Density functional theory (DFT) tries to alleviate this problem

by computing electron density (3-dimensional) instead of directly calculating the many-body

wave function. DFT is widely used to predict material properties and efforts to make DFT cal-

culations faster and better at modelling the many-body effects are an area of active research.

Many new and advanced schemes (like DFT+U, meta-GGA and hybrid functionals) have been

devised to improve the predictions of DFT.

TiO2 (anatase) is a chemically stable, non-toxic, low cost, and wide band-gap semiconduc-

tor. TiO2 has two more polymorphs other than anatase: rutile and brookite. Anatase is more

stable at lower temperatures, rutile becomes more stable at elevated temperatures (650 K) and

brookite is the least stable phase [2]. Moreover, out of all the three thermodynamically stable

phases, anatase is favoured because of its relatively higher activity and lower electron effective

mass as compared to the others [3,4]. It is an attractive material for applications like transparent

conducting oxides [5–7] and photocatalysts [8, 9]. Transparent conducting oxides (TCOs) are

materials which are both transparent and conductive. TCOs have a wide range of applications

like touchscreens, solar cells, flat-panel displays, light emitting diodes, transparent thin film

transistors and semiconductor lasers [10]. The most widely used TCO is Sn-dopen In2O3 (ITO)

due to its superior optoelectronic properties [11]. However, low concentration of Indium in the

earth’s upper continental crust (≈50 ppb) [12] has pushed researchers for designing alternative

TCOs. TiO2 (anatase) has also been widely studied for its photocatalytic applications. A pho-

tocatalyst is a material which absorbs light to generate charge carriers. These energetic charge

carriers can then be used to carry out or catalyse various chemical reactions for various applica-

tion like obtaining useful materials (like hydrogen gas and hydrocarbons), removing pollutants
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and bacteria from surfaces [13–15].

TiO2 (anatase) has an experimental band gap of ≈3.2 eV [16] which makes it inherently

transparent to visible light, and it also makes it a poor electrical conductor. Pristine anatase

thus can’t be used as a TCO because of the poor conductivity. Native defects like vacancies

and interstitials, and impurities (dopants) can be used to tune the properties of this material.

This is called as band-gap or band-structure tuning. Point defects in anatase introduce impurity

states. Material scientists can then control the type, concentration and combination of defects

and/or impurities to tune the band structure of anatase to achieve desired properties (or appli-

cations). For example, anatase thin films when doped with Niobium are found to have good

conductivity, thus making this material suitable for TCO application [17]. Pristine anatase has

a band gap that is too large for it to absorb visible light. It only absorbs light in the UV re-

gion and above. Hence, it is essential to reduce the band gap of anatase (red shift), so that it

can absorb light of even lower frequencies and function as a photocatalyst. There have been

several experimental and computational studies to achieve this objective using doping [18–20].

Thus, “defect engineering” and band structure/gap tuning of anatase to make it suitable for op-

toelectronic applications is an active area of research. Experiments can provide macroscopic

information, but when information about what is happening at the atomic level is needed ab
initio calculations become extremely important. DFT calculations can help in determining how

intrinsic defects like vacancies and impurities (or dopants) affect the electronic structure (and

properties) of anatase. The objective of this work is to utilize DFT to compute the electronic

structure of doped and undoped TiO2 systems and to carry a comprehensive investigation of

how point defects affect electronic properties of anatase. This information can be very useful in

making anatase a better transparent conducting oxide (TCO).

1.2 Motivation
Both intrinsic (like vacancies) and extrinsic (dopants) can alter the electronic structure of anatase

in fundametal ways, which ultimately affects macroscopic optoelectronic properties.

Numerous first principle studies using density functional theory (DFT) have been carried

out in the literature for the undoped and doped anatase, the obtained results were found to vary,

which could be attributed to the use of computational methodology in DFT [21]. In this regard,

Phattalung et al. computed the native defects in anatase using Local Density Approximation

(LDA) exchange correlation functional and found none of these four defect states (i.e., oxygen

vacancy (VO), oxygen interstitial (Oi), titanium vacancy (VTi) and titanium interstitial (Tii))

being formed in the band gap [22]. However, experimental data had earlier revealed formation

of mid-gap states in these systems [23, 24], and therefore this discrepancy could be assigned to

the self-interaction error of the LDA functional. Note here that, the more advanced methods like

DFT+U and hybrid functionals could correctly predict the existence of mid-gap defect levels

due to native defects and could also predict the band gap accurately to a certain extent. Morgan

et al. used GGA+U in their calculations and found localized mid-gap states being formed due

to the neutral oxygen vacancies and titanium interstitials in anatase [25].

Most of the published works till date have investigated the effect of (neutral) native defects

on the electronic structure of anatase. In the current work, we used GGA+U approach in DFT

to calculate the position and formation energies of various intrinsic (neutral as well as charged)

defects for anatase. Apart from computing the electronic structure of these systems, in this

study formation energy of all these native defects was calculated to understand the stability of

these defects under different conditions.

2



For doped anatase systems, transition metals (Nb, Ta, V, Mo, W, Cr, Cu, Co) and two rare-

earth elements (La and Ce) were considered as dopants in this study. J. Osorio Guillen et
al. identified two types of behaviour for transition metal impurities in oxides; first in which

the delocalized states are formed inside the conduction band thereby making the transparent

material conductive and second in which a localized mid gap state could form which then could

transform the magnetic properties of the host material, indicating the energy of the outer d
electrons of the impurity atom playing a decisive role on the eventual position of this defect

state [26]. The various cases that are possible for the position of defect states are depicted in

Fig. 1.1

Figure 1.1: Possible cases of defect state position for doped anatase. a) The defect state acts as

a shallow donor, b) localized mid-gap state formed in the gap and c) acceptor-like state

Depending upon the energy of d electrons, transition metal dopants might act as shallow

donors, form a mid-gap state or form acceptor-like state. In the first case, the defect state is

formed very close to the conduction band edge, such that the band gap is not changed much

and electron transition from the defect state to conduction band can impart n-type conductivity

to the host material. Dopants states formed near the conduction band edge might also affect

the curvature of the bands, altering the effective mass of charge carriers. In the second case, a

deep mid-gap state is formed. Formation of such a mid-gap state might not be good for TCO

application because of the possible electron transition to and from the mid-gap state (hence

reducing the transparency). In the third case, dopant forms acceptor-like state close to the

valence band. This could lead to p-type conductivity in the host material. Again here, the

dopant state might modify the band curvature, thereby modifying the effective mass of charge

carriers. There are some other possibilities as well. For example, the dopant atom might form

delocalized states in the conduction band, donating excess electrons in the conduction band

and imparting a metallic nature to the system. Dopant atom might also form a combination of

localized mid-gap and delocalized states. Thus, knowing the location of defect states and how

they effect the curvature of the bands (effective mass) of the host material proves to be very

important in tuning the properties of anatase using doping.
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There have been several DFT studies for doped anatase systems. Earlier studies used LDA

and GGA to invesitgate doped anatase systems [22, 27, 28]. These have obvious disadvantages

of band gap underestimation and delocalization of excess electrons over the crystal due to the

self interaction error. More recent studies have used the Hubbard correction (GGA+U) [29,30].

In almost all the studies for doped anatase using DFT+U, U has been determined either em-

pirically (like fitting to properties like band gap) or taken from earlier literature. We used an

alternative way: computing the value of U for all the dopants consistently using the linear re-

sponse approach developed by Cococcioni et al. [31]. Effective mass of charge carriers plays

a crucial role in determining optoelectronic properties of materials. Effective mass analysis

has been done for Nb-doped anatase [32], but for the other dopants, reports are quite scarce.

Hence, we did a comprehensive effective mass analysis for charge carriers for the dopants con-

sidered here. We believe that this information would be crucial to both experimentalists and

computational material scientists alike.

1.3 Problem Statements
In this work, the following research questions have been addressed:

• How do native defects affect the electronic structure of anatase? Can native defects impart

intrinsic n-type conductivity?

• Which dopants might make anatase more suitable for TCO application?

• How do dopants affect the effective masses of charge carriers? Comparision of effective

masses in conduction band, valence band and mid-bands (or mid gap).

1.4 Outline
This work is divided into 6 chapters.

• Chapter 1: Provides the background of this research. It also discusses the motivation,

importance and the scope of this research. Primary objectives and existing literature are

also discussed.

• Chapter 2: Methodology enumerates the existing literature concerning the methodologies

used in this work, mainly that of the DFT and effective mass methods. Core principles

are described, as well as unique considerations taken within this work (as well as the

reasoning involved).

• Chapter 3: Results and discussion for pritine anatase.

• Chapter 4: Results and discussion for anatase with intrinsic defects.

• Chapter 5: Results and discussion for doped anatase systems.

• Chapter 6: Conclusion serves as a brief summary of the chapters 2, 3, 4, and 5, concisely

expressing the main points, results, and conclusion of this work.
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Chapter 2

Methodology

Density functional theory (DFT) provides a mathematical framework to solve the fundamen-

tal equation of quantum physics called as“The many-body Schrödinger equation”. It is largely

an ab-initio (first principles) approach, the objective of which is to predict properties of ma-

terials without taking any empirical or experimental input. The information of the constituent

atoms alone is enough to compute and predict the properties of a material system quantum-

mechanically. DFT can be used to find the physical, electronic, optical and magnetic properties

of materials by modelling them as crystals, atomic clusters etc. It is also used to study chemical

reactions and surface properties. Although lately, several new approaches like the stochastic

quantum Monte Carlo methods and the wave function based methods in quantum chemistry

(like the coupled-cluster method (CCSD)) have become popular due to their higher accuracy.

DFT still has an upper hand, because it is quite computationally cheap and thus can be applied

to systems containing several hundreds (even more!) of atoms. Moreover, over the years sev-

eral excellent advancements have been made in making DFT more accurate and applicable to

previously challenging systems like highly correlated systems etc.

2.1 The many-body Schrödinger equation
The many-body Schrödinger equation is an extension of the fundamental Schrödinger equation

when applied to several particles. It describes many-electron systems like atoms, molecules

and solids. Just like the fundamental single particle Schrödinger equation can describe a single

particle like an electron in an arbitary potential field, many-Body Schrödinger equation can

describe the motion and the energies of a collection of particles like electrons and ions, in a

complex potential field of the particles. Schrödinger equation is a fundamental equation in

quantum mechanics, similar to Newton’s laws in classical mechanics. Newton’s laws can be

used to predict the position and motion of particles being acted upon by external forces. Quite

similarly, quantum mechanics (using Schrödinger equation) can be used to predict how the wave

function of a particle (or several particles) will evolve in time and space when acted upon by

an external potential field. The core difference between classical (Newton’s laws) and quantum

mechanics (Schrödinger) is the uncertainity build in the quantum world, captured succintly by

the Heisenberg uncertainity principle. The best we can do is to predict how the quantum wave

function of a system will evolve. The quantum wave function encodes information like the

position in a probablistic sense. The time dependent Schrödinger equation can be written as

follows:
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2m
∇2Ψ (r, t) + V(r)Ψ (r, t) = i�

∂Ψ(r, t)
∂t

, (2.1)

where the two terms on the left hand side of the equation represent kinetic energy and potential

energy respectively. ψ(r, t) is the wave function of the system. It is a function of both space (r)

and time (t). However, many times we are not interested in how the quantum wave function will

evolve in time. For example, in a steady-state system, we might be interested in the steady-state

quantum wave function, given an arbitrary potential field. Moreover, transitions in the quantum

world happen within fraction of seconds, and it is more important to obtain the steady-state

quantum wave function. This is where the time independent Schrödinger equation becomes

very important.

−�2

2m
∇2ψ(r) + V(r)ψ(r) = Eψ(r) (2.2)

The above equation can be rewritten as follows:

(−�2

2m
∇2 + V(r)

)
ψ(r) = Ĥψ(r) = Eψ(r) (2.3)

The time independent Schrödinger equation now essentialy becomes an eigenvalue problem. Ĥ
is called as the Hamiltonian. E represents the energy eigenvalues and ψ(r) represents the cor-

responding eigenvectors. The lowest energy eigenvalue is essentially the ground state energy

of the system and the corresponding eigenvector is the ground state quantum wave function.

Analytical solutions are possible only for very trivial systems like the Hydrogen atom and Hy-

drogen like atoms etc. Hence, solutions for practical systems are only possible numerically.

This is why ab initio methods were developed. Numerous advancements in the field have led to

calculations for systems containing several thousands of particles, which has advanced the field

of physics, chemistry, and even microbiology [33, 34].

Consider a well-defined collection of atoms (like molecules or atoms in crystals). A key

characteristic of this system of atoms is the energy of the electrons and ions, and how does it

change when the constituent atoms move around. Suppose there are total N particles. Now, each

particle has three spatial dimensions. This would make the wave function of this system as 3N

dimensional. Thus, we would have to solve the Schrödinger equation in 3N dimensions. Even

a small molecule like H2O has 18 electrons, which means that the electronic wave function for

this molecule would be 54 dimensional.

Atoms are composed of a heavier nucleus at the centre, surrounded by extremely light elec-

trons. This fact is essential to split the problem of calculating energy into two parts: firstly the

equation is solved for fixed nuclei, and the lowest energy configuration (ground state) for the

electrons is calculated, followed by how the energy changes when the atoms or the ions move

around. This approach of assuming the heavier nuclei to be fixed and thus splitting the original

problem into two parts is called as the Born Oppenheimer approximation [1].

⎛⎜⎜⎜⎜⎜⎜⎝−�
2

2m

N∑
i=1

∇2
i +

N∑
i=1

∑
j<i

V(ri, r j) +

N∑
i=1

U(ri : R1,R2, ..,RM))

⎞⎟⎟⎟⎟⎟⎟⎠ψ(r) = Eψ(r), (2.4)

where V(ri, r j) is the potential from interacting electrons i and j and U(ri : R1,R2, ..,RM) is the

electron-ion potential. Using the Born Oppenheimer approximation, ab initio approaches treat
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only electrons as quantum particles and the heavier ions (nuclei) are treated classically.

2.2 From wave functions to electron density
The wave function in itself is an abstract mathematical quantity. It is impossible to directly

measure the wave function of a particle or a system of particles by any experimental means.

The quantity that matters and can be measured is the electron density n(r) at a point in space. It

is defined as:

n(r) = 2
∑

i

ψi(r)ψ∗i (r), (2.5)

where ψi(r) represent the individual electron wave functions and ψ∗i (r) are the complex con-

jugate of ψi(r). The product of these two terms gives the probability of finding an individual

electron in the wave function ψi(r) at position r. The summation is multiplied by 2 to account

for the fact that electrons have spin and thus according to Pauli’s exclusion principle, each indi-

vidual wave function can have two electrons with opposite spin. It is important to note that the

electron density is a 3 dimensional quantity which is quite smaller than the 3N dimensions of

the many-body wave function.

2.3 The Hohenberg-Kohn theorems
DFT stands on two theorems proved by Kohn and Hohenberg. These theorems made solving the

many-body Schrödinger equation computationally feasible in a consistent way. The theorems

propose a departure from the wave function to electron density. In the book “Density Functional

Theory: A Practical Introduction” by Sholl and Steckel, the first theorem is described as follows:

“The ground state energy from Schrödinger equation is a unique functional of electron
density” [1]

In simple words, it means there is a one to one correspondence between the ground state

energy and the electron density (i.e. ground state energy E can be expressed as E[n(r)] ). If

the functional relationship is known, the electron density can be calculated and used to find the

ground state energy. Electron density is much easier to compute than the complete multi-particle

wave function. It reduces the complexity of computing the 3N dimensional wave function to a 3

dimensional electron density. Hence, the first theorem makes it possible to solve the many-body

Schrödinger equation (at least in principle), if the functional is known. The second theorem is

summarized by Sholl and Steckel as:

“The electron density that minimizes the overall functional is the true electron density cor-
responding to the full solution of Schrödinger equation”

This is known as the variational principle. If the exact form of the functional is known,

the true electron density can be easily calculated using this principle. However, the problem

is that we do not know the exact form of the density functional. In practice, approximate

functionals can be used to find out the electron density from which the ground state energy can

be calculated.
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2.4 Kohn-Sham equations
Kohn and Sham further showed that the task of calculating the true electron density using the

variational principle is equivalent to solving a set of single particle Schrödinger equations rep-

resenting the individual electrons of the system [35]. Single particle Kohn-Sham equation is

written as: (−�2

2m
∇2 + V(r) + VH(r) + VXC(r)

)
ψi(r) = εiψi(r), (2.6)

where the first term in the Hamiltonian represents the kinetic energy of an electron, V(r) is

the potential felt by an electron due to the collection of the atomic nuclei, and VH(r) (Hartree

potential) represents the Coulomb repulsion potential felt by an electron from the total electron

density. It can be expressed as:

VH(r) = e2

∫
n(r′)
|r − r′|d

3r′ (2.7)

Hartree potential also includes an unphysical interaction of an electron with itself. This is called

as the self-interaction error. The correction for this error is included in the final potential term

VXC(r) called as the exchange correlation term. The wave functions ψi(r) are called as the

Kohn-Sham eigenvectors and εi are the corresponding Kohn-Sham eigenvalues. If the Kohn-

Sham equations can be solved for single particle wave functions, those wave functions when

multiplied be their complex conjugates and added together will give the electron density. The

electron density can then be used to calculate the ground state energy and other interesting

properties. However, there is a small problem. To solve the Kohn-Sham equations, firstly the

potential terms in the Hamiltonian must be calculated. If we look at the second potential term

(Hartree potential VH(r), it depends upon the value of electron density. This means that to solve

the Kohn-Sham equations for single particle Kohn-Sham states (and hence the electron density)

we need the value of electron density beforehand. This problem can be solved if the Kohn-

Sham equations are solved in a self-consistent way. This approach is used by all the DFT codes

and is called as the Self Consistent Field (SCF) approach or calculation. Fig. 2.1 describes the

normal workflow of self-consistent DFT calculations. It starts with guessing an initial electron

density and then using it to calculate various potential terms in the Hamiltonian. We use the

superposition of atomic charges as an initial guess for the electron density. This is followed

by solving the Kohn-Sham equations for ψi(r). A new electron density is then calculated from

ψi(r), the consistency of which is then checked against the initial guessed electron density.

If self- consistency has been reached, the electron density can now be used to calculate other

important quantities like forces, otherwise a new, electron density is generated and next iteration

is started.

2.5 Basis set expansion and energy cutoffs
In quantum mechanics, wave functions are generally represented in terms of basis functions.

Basis functions are simpler functions like gaussian or sinusoidal plane waves and a linear com-

bination of basis functions can give the entire wave function. Larger basis set sizes generally

give higher accuracy but with increased computational cost. Hence, it is necessary to strike

a balance between computational cost and the accuracy for realistic production calculations.

Complete basis set (CBS) limit can be achieved in practice by the extrapolation from multi-

ple basis set sizes. However, generally in DFT calculations, a truncated basis set is used. In

8



Figure 2.1: Workflow for a self-consistent solution of Kohn-Sham equations

quantum chemistry calculations for molecules, gaussian basis sets are widely used and in DFT

calculations for periodic systems like crystals, slabs etc. plane wave basis sets are more com-

monly used.

For a periodic system, the solution of the Schrödinger equation satisfies a fundamental prop-

erty known as the Bloch theorem [36]. It states that the solution can be expressed as a sum of

the terms having the following form:

φk(r) = eikruk(r), (2.8)

where the exponential part represents plane waves with wave vector represented by k and uk(r)

is a periodic function with the periodicity of the unit cell or the supercell. Bloch’s theorem

essentially means that the Schrödinger equation can be solved for different k vectors indepen-

dently.

Now since uk(r) has the same periodicity as the cell, it can be written as a sum of special

plane waves, which can be expressed as:

uk(r) =
∑

G

cGeiGr, (2.9)
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where the summation is over all the reciprocal lattice vectors in the reciprocal space. The

reciprocal lattice vectors are defined as:

G = m1b1 + m2b2 + m1b3, (2.10)

where b1, b2 and b3 are the reciprocal basis vectors and mi are integers. Combining equa-

tions 2.8 and 2.9 gives:

ψk(r) =
∑

G

ck+Gei(k+G)r (2.11)

The above equation means that, the solution for even a single k value requires a summation over

an infinite number of vectors (G) in the reciprocal space which seems impossible. The solutions

described by equation 2.11 are the solutions with kinetic energy:

E =
h2

2m
|k +G|2 (2.12)

An important point to consider here is that, the solutions with lower energy are more physi-

cally important than the solutions with high energies. This means that it is possible to truncate

the infinite sum in equation 2.12 and include G vectors of comparatively lower energies only. To

achieve this, a parameter called as the cut off energy for plane wave expansion (Ecut) is chosen

and then used to truncate the infinite sum by calculating the cut off value for G vectors (Gcut) as

follows:

Ecut =
h2

2m
G2

cut (2.13)

The choice of Ecut is made through convergence tests. Various values of Ecut are used and

the corresponding total energy of the system is computed. Generally, the total energy value

starts to converge after a certain value of Ecut. This value of Ecut is finally chosen for the main

production calculations. The convergence test done for anatase is shown in Fig. 2.2. Total

energy only changes on the order of 0.01 eV after a cutoff value of 500 eV. The value ≈0.01

eV has been chosen as the tolerance value because it is well below the well defined value of

chemical accuracy (1 kcal/mol or 0.043 eV). Similar convergence tests were also carried out for

dopant atoms. We finally arrived at a value of 500 eV which has been used for all calculations.

2.6 K points and Brillouin zone integrals
The real space coordinates can be converted into reciprocal space coordinates by using the

Fourier transformation. The resultant space is also called as the k-space. It is generally efficient

to perform certain calculations (specially intergrals) in the reciprocal space. The concept of

reciprocal lattice is also very useful in X-ray crystallography. Consider a crystal cell with lattice

vectors a1, a2 and a3. The reciprocal lattice vectors are then defined as:
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Figure 2.2: Convergence test for cutoff energy for anatase

b1 = 2π
a2 × a3

a1 · (a2 × a3)

b2 = 2π
a3 × a1

a2 · (a3 × a1)

b3 = 2π
a1 × a2

a3 · (a1 × a2)
(2.14)

The reciprocal lattice vectors are inversely proportional to the real space vectors. Thus,

larger the real space lattice, smaller is the reciprocal space. Just like there is a primitive cell

for every crystal in real space, the concept of primitive cell can also be extended to reciprocal

space. Such a cell is called as the Brillouin zone. It is the smallest volume in the reciprocal

space which can encode all the crystal information by utilizing crystal periodicity. Further, the

Brillouin zone can be truncated further to give the irreducible Brillouin zone (IBZ) by taking

advantage of the crystal symmetry. This further reduces the amount of computational resources

required.

K points represent the sampling points in the Brillouin zone. Technically speaking, k repre-

sents the wave vectors of wave functions in a periodic supercell. The Schrödinger equation can

be solved for each possible phase, k, however the most general solution is found by integrating

or summation over all values of k as described by Bloch’s theorem. Many observable quantities

like energy of a state (E) also require integration over k. In all practical DFT calculations, a

large portion of work is actually computing integrals of the form:

g =
Vcell

(2π)3

∫
BZ
g(k)dk (2.15)

where g is a generic quantity to be computed and Vcell is the volume of the unit cell.

This integral is defined in the reciprocal space and integrated over the possible k values in the

Brillouin zone. A Wigner-Seitz cell (primitive cell) in the reciprocal space defines the first

Brillouin zone.
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Figure 2.3: Convergence test for k spacing for anatase

To make the integral possible to compute, it is discretized by choosing a grid of k points.

The discretization is also helped by the fact that the solutions to Schrödinger equation change

slowly with respect to k, making the discretization possible. There are many ways of choosing

the k point grid, but the most widely used method is the Monkhorst-Pack method in which the

number of k points along each direction in the reciprocal space is specified, which are then

placed uniformly by the DFT code to form a grid of k points [37]. Another approach is to

specify k spacing, which is defined as the minimum allowed spacing between k points. If k
spacing is reduced, the number of k points increases and vice-versa. The number of k points

along the reciprocal lattice vectors are determined by the following:

N = max
(
1,

|bi|
kspacing

)
, (2.16)

where bi are the reciprocal vectors. N is rounded off to the next biggest integer. This approach

has a slight advantage that only one parameter k spacing determines the k point grid, hence

we only need to test this one parameter. Another inherent advantage is that the k points are

distributed uniformly across the reciprocal lattice vectors. This approach was used in the current

work. A k spacing value of 0.20 Å−1 was used. Reducing the k spacing value further, changed

the total energy only at the order of 10−5eV. Hence, the k points grid was well converged (see

Fig. 2.3).

2.7 Smearing
The smearing in DFT is necessary to avoid numerical instabilities during the self-consistent cy-

cle. It is quite essential in case of a metallic system. Smearing imposes an artificial occupation

of the Kohn-Sham states according to a smooth distribution, e.g. the Fermi distribution. Metal-

lic systems have flat bands crossing the Fermi energy. Such bands may be completely occupied

when below the Fermi energy and completely unoccupied when above it. During an SCF cycle,

such bands may be completely occupied in one iteration and unoccupied in the next iteration.
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This leads to large fluctuations in charge density and can stop us from achieving convergence.

Hence, the electron occupations are smeared slightly near the Fermi energy. When required (for

e.g. systems which showed metallic like nature), we used Gaussian smearing, with a small value

(0.01 eV) of the smearing parameter (or the width of smearing). The smearing value should be

taken as small as possible because it is an artificial imposition and can reduce the accuracy of

DFT calculations.

2.8 Pseudopotentials
DFT is rarely used to do an all-electron calculation. An all-electron calculation means that

the Kohn-Sham equations are solved for each and every electron in the system. This might

be computationally expensive depending upon the scale of the system. Doing an all-electron

calculation is not necessary most of the time because the electrons which are near the nuclei of

atoms (core electrons) hardly take part in chemical bonding and reactions. It is the outer less

tightly bound valence band electrons that play a major role in bonding and reactions. Pseudopo-

tentials provide a way to separate the core electrons from the valence electrons. The electron

density from the core electrons and the nuclear potential is replaced with a smoothed out po-

tential (hence the name pseudopotential). This is called as the frozen core approximation. The

Kohn-Sham equations are now solved for the valence electrons only and the effect of core elec-

trons is included from the pseudopotential. This reduces the computational power required by

a significant amount and the results are also quite close to an all electron calculation for most

cases.

Pseudopotentials provide one more advantage. The electrons near the nucleus have high

energies and rapidly oscillating wave functions. To represent these wave functions accurately

much larger basis sets are required. Thus, by using pseudopotentials, the core electrons are

excluded and the basis set convergence can be achieved at much lower energies. Numerous

types of pseudopotentials are available and the choice of the pseudopotential depends upon the

elements in the system and the properties of interest. The two most common types of pseudopo-

tentials are the norm-conserving (NC) [38] pseudopotentials and the projector augmented wave

(PAW) [39, 40]. The NC pseudopotentials generally have higher cutoffs than PAW types. In

this work, PAW type pseudopotentials have been used for all the elements. The valence config-

uration specified by the pseudopotentials used are listed in Table. 2.1. All other electrons were

considered as core electrons.

2.9 Exchange-correlation (XC) functionals
DFT is an exact theory in the sense that there exists an exchange-correlation functional that

minimizes the ground state energy and reproduces the true ground state charge density. Unfor-

tunately, however the true form of this functional is unknown. Some researchers in the field also

believe that the exact functional even if found might be too complicated to implement compu-

tationally. The Hamiltonian as described in eq. 2.6 has known terms like the kinetic energy of

electrons, electron-electron and electron-nucleus interaction terms. Exchange-correlation is the

unknown part of the Hamiltonian. It plays a major role in all DFT calculations, as it determines

the reliability of calculations, thus the choice of XC functional is very important.

Luckily, the XC functional can be computed for a homogeneous electron gas. However,

systems of interest like crystals and molecules have widely varying electron density simply be-
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Table 2.1: Valence configurations of various elements utilized in the current work

Element Valence configuration

Ti 3p6 3d3 4s0

O 2s2 2p4

Nb 4p6 5s1 4d4

Ta 5p6 6s1 5d4

V 3p6 3d4 4s1

Mo 4p6 5s1 4d5

W 5p6 6s1 5d5

Cr 3p6 3d5 4s1

La 5s2 5p6 5d1 6s2

Cu 3p6 3d10 4s1

Co 3d8 4s1

Ce 5s2 5p6 4 f 1 5d1 6s2

cause of the way charges are distributed within the materials. Even then, it provides a method to

practically solve the Kohn-Sham equations. In this approach, the exchange-correlation potential

(VXC(r)) at a point in the system (crystals and molecules) is taken to be the exchange-correlation

potential computed for a homogeneous electron gas with the electron density same as the elec-

tron density at the point of interest in the system.

VXC(r)) = Vegas
XC [n(r)], (2.17)

where Vegas
XC [n(r)] is the exchange-correlation potential calculated for a homogeneous electron

gas with electron density n(r). This approach or approximation uses only the local electron

density to compute the exchange-correlation potential. Hence it is called as the Local Density

Approximation (LDA) [41]. It should be kept in mind that LDA is an approximation and using

it does not truly solve the Schrödinger equation in an exact way. Still, LDA has proved to be

very useful in solving the Kohn-Sham equations for real systems.

Generalized Gradient Approximation (GGA) is another class of functionals which is widely

used [42]. It goes beyond LDA by using not only the local electron density but also its gradi-

ent to compute the exchange-correlation potential. It is generally more reliable than the LDA

and has been used in the current work. There are several types of GGA functionals like the

Perdew-Burke-Ernzerhof functional (PBE) [43] and the Perdew-Wang functional (PW91) [44]

depending upon the way they include the electron density gradient in the functional. GGA-PBE

XC functional has been used for the majority of calculations in the current work.

LDA and GGA are quite successful for predicting properties of a wide variety of systems,

but they still fail for certain quantum systems. There are certain cases like transition metal ox-

ides, graphene etc. where the failure of LDA and/or GGA is well documented [45, 46]. For

semiconductors, these functionals systematically underestimate band gaps by approximately

50-100%. This is known as the band-gap problem [47]. DFT with conventional XC func-

tionals also fails in systems with localized d(transition metal oxides) or f electrons (rare-earth

oxides) [47]. LDA and GGA tend to declocalize the electrons over the entire crystal in these

cases.
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Figure 2.4: Jacob’s ladder of DFT functionals (adapted from Sholl et al. [1])

To mitigate the shortcomings of LDA and GGA, several new approaches/functionals have

been devised. One such approach is using hybrid exchange-correlation functionals. Hybrid

functionals basically incorporate more accurate short range exact exchange (from Hartree-Fock

calculation) with the rest of the XC energy. They interpolate between band-gap underestimation

with GGA and its overestimation at the Hartree-Fock level [47]. They have been successfully

applied to many materials [48], where GGA and LDA give incorrect results. However, hybrid

functionals introduce additional empirical parameters (like the mixing parameter for mixing

short and long exchange) for which a choice has to be made. These parameters might be tuned

to give accurate properties for a certain material, but then the approach loses its prediction

ability. These functionals also increase the computational cost significantly.

The GGA functional can be further improved upon by including the local gradient expansion

upto second derivates or even higher. This gives meta-GGA functionals. A popular meta-GGA

functional is the modified Becke-Johnson (MBJ) functional [49, 50]. It combines the exchange

part of the MBJ potential with LDA or GGA correlation potential. The exchange part consists

of terms whose weights are controlled by an empirical parameter c. MBJ can yield better

band gaps which is also evident from the current work, but the tuning of c parameter reduces

predictability.

Another approach is to include a simple correction term to the conventional XC functional.

It has successfully been applied to several strongly correlated materials [51,52]. This correction

term is referred to as the Hubbard correction and is described in the next section in detail.
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Fig. 2.4 shows the “Jacob’s ladder” of DFT functionals. As we go towards the top, it is expected

that we reach closer and closer to the “true functional”.

2.10 Hubbard U correction (DFT+U)
Hartree potential that describes Coulomb repulsion (eq. 2.7) between an electron and total elec-

tron density includes by definition an unphysical interaction between an electron and itself,

called as self-interaction. The associated energy is called as the self-interaction energy. Due

to incomplete cancellation of the self-interaction energy (due to approximate nature of DFT

functionals), error arises. Self-interaction error causes highly localized orbitals to be improp-

erly destabilized. Strongly correlated materials like the transition metal oxides are often poorly

described with local and semi-local functionals like LDA and GGA due to the self-interaction

error. Unpaired localized electrons tend to delocalize in order to minimize the self-interaction.

For example, a class of materials called as Mott insulators are predicted by LDA or GGA as

metals. One of the simplest solutions found by researchers to solve this problem is to used the

Hubbard correction term U [52]. This method introduces a single parameter Ue f f that corrects

the electron self-interaction.

2.10.1 Determining the Hubbard U parameter using the linear response
approach

In this section, the scheme to determine Ue f f for Ti is described. For a rigorous derivation, we

refer the reader to the original paper [31]. The basic idea is to compute the self-consistent and

the non self-consistent linear response functions. Non self-consistent response can be written

as:

χ0
IJ =

∂NNS CF
1

∂VJ
(2.18)

The above response function quantifies the change in the number of d orbital electrons on a site

I due to a spherical potential perturbation acting on d orbital at site J. The reponse is defined

only when I � J and is 0 otherwise. Similarly, the self-consistent response is defined as:

χ0
IJ =

∂NS CF
1

∂VJ
(2.19)

Now, the Hubbard parameter is given by:

Ue f f =

(
∂NS CF

1

∂VJ

)−1

−
(
∂NNS CF

1

∂VJ

)−1

(2.20)

Both the reponse functions are computed for a series of potential perturbations. Response func-

tions are then easily computed by linear fitting the number of d electrons as a function of per-

turbation potential V . The fitting process for Ti is shown in Fig. 2.5

Ue f f =
1

0.114
− 1

0.291
= 5.29eV (2.21)

Ue f f calculated for all the dopants is listed in Table. 2.2.
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Figure 2.5: Linear fitting of d orbital occupation for the Ti site in TiO2

Table 2.2: Ue f f values of various elements computed using Linear response method

Element Ue f f (eV)

Ti (d) 5.23

Ta (d) 3.5

Nb (d) 1.21

Mo (d) 2.9

W (d) 4.08

Cr (d) 5.78

V (d) 8.02

La (d) 2.19

Cu (d) 8.68

Co (d) 7.05

Ce (f) 6.62

2.11 Formation energy of point defects
Comparing the formation energy of defects can give useful information like which defects are

more likely to form, which defects can form spontaneously and which cannot. To compare and

understand the relative stabilities of various defects, formation energy (E f [Xq]) was calculated

using the following equation:

E f [Xq] = Etot[Xq] − Etot[bulk] −
∑

i

niμi + qEF , (2.22)

where Etot[Xq] is the total energy of the supercell with defect X, Etot[bulk] is the total energy of

an equivalent defect free supercell, ni represents the number of atoms of type i that have been

added to or removed from the supercell to create the defect, μi represents the chemical potential

of the defect forming species (Ti or O), q represents the charged state of the defect and EF is

the Fermi level referenced to the valence band maxima (VBM) in the bulk. To calculate the
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chemical potential of Ti and O in Ti or O rich conditions, the following boundary criteria were

considered:

μTi + 2μO = μTiO2,bulk,

μTi ≤ μTi,bulk,

μO ≤ μO2molecule

2
, (2.23)

where μTi and μO are the chemical potentials of the defect forming species of Ti and O re-

spectively. μTiO2,bulk, μTi,bulk and μO2molecule respectively. Note that, here the total energies were

calculated for each of these structures per formula unit, which were then used as their chem-

ical potential values. Moreover, μTi and μO should always be lower than their natural phases

of μTi,bulk and μO2molecule respectively, otherwise these natural phases of Ti and O2 would form

instead of TiO2. For O-rich conditions, μO =
μO2molecule

2
and for O-poor conditions, μTi = μTi,bulk.

2.12 Force calculation and geometry optimization
DFT calculations can be used to predict the lattice parameters and atomic positions of a system.

This is because DFT allows calculation of forces using the Hellman-Feynman theorem [53].

From self-consistent cycles of DFT, the eigenvalue E and the eigenfunctions φ(r) can be com-

puted. Then other observables like atomic forces can be computed.

δE
δx
=

〈
ψ(x)

∣∣∣∣∣∣
δĤ
δx

∣∣∣∣∣∣ψ(x)

〉
(2.24)

Atomic forces are given by the derivative of energy with respect to r. A standard geometry

optimization includes several SCF loops.

Forces and stresses are calculated at the end of each SCF loop and based on that the atomic

parameters are perturbed for the next SCF loop using an algorithm. Conjugate-gradient algo-

rithm was used to update the ionic positions during geometry optimization in this work.

2.13 Effective masses of charge carriers
Semiconductors show interesting behaviour when external perturbations like electric field, tem-

perature or stress are applied. In a crystal, electrons interact with a periodic potential and the

response of the electrons to a perturbation, depends upon how electrons interact with this peri-

odic potential. Electrons don’t act like classical particles inside atoms but as quantum particles.

However, they can be approximated as free electrons having a renormalised mass. This renor-

malised mass is called as the “effective mass”. It is important to note here that effective mass

of electron and its rest mass are not the same. Effective mass encodes the interaction of elec-

trons as quantum particles with the periodic potential of the crystal and its value is not constant.

Effective masses can also be computed for holes just like electrons. Accurate calculation of

effective masses from the band structure of materials helps in predicting and understanding the

electronic, optical and transport properties of semiconductors. Python package “effmass” was

used to compute effective masses of charge carriers [54].

Effective mass can be computed in several different ways from the band dispersion E(k), ob-
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tained from a DFT calculation. In ideal case, the bands are perfectly parabolic and the effective

mass values computed using different definitions are all equal. However, in real materials, the

bands are non-parabolic, and this leads to different values of effective masses of charge carriers

based on the algebraic definition used to compute them. Various definitions of effective mass

are shown in the schematic Fig. 2.6.

2.13.1 Curvature effective mass
This is the conventional definition of effective mass.

1

mc
=

1

�2

∂2E
∂k2

, (2.25)

where mc is the curvature effective mass. The term ∂2E
∂k2 indicates the curvature of the bands

and can be computed from the band dispersion or band structure from DFT calculation. Thus,

higher the curvature of bands, lower is the value of effective mass and vice-versa. This means

that flatter bands (low curvatures) have higher effective masses. The expression for curvature

effective mass (eq. 2.25) is derived using Newton’s second law [55, 56], hence it is also called

as the innertial effective mass. It is also sometimes called as the conductivity effective mass

because it effectively describes the “acceleration” of an electron in an applied electric field.

When we are interested in dispersion of eigenstates near the conduction and valence band edges,

the band dispersion can be approximated as parabolic.

E(k) =
�

2k2

2mc
(2.26)

The curvature effective mass can be calculated in several ways. All the definitions of curvature

effective mass will give the same value only if the bands are perfectly parabolic.

Finite difference effective mass

A three point finite difference equation was used to calculate the curvature of the band at point

i.

∂2E
∂k2
=

Ei+2 − 2Ei+1 + Ei

|ki+1 − ki| , (2.27)

where ki is a point in the reciprocal space and Ei is the energy eigenvalue at that point. Ei+1 is

the next eigenvalue and so on.

Unweighted least-squares fitting

The parabolic dispersion is given by the formula:

E = ck2 (2.28)

To obtain the coefficient c the dispersion was fitted using least-squares method by minimising

the residuals:
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5∑
i=1

(ck2
i − Ei)

2
(2.29)

Five points from the band dispersion were used for fitting.

Weighted least-squares fitting

The following sum of squared residuals can be minimized:

n∑
i=1

Wi(ck2
i − Ei)

2
(2.30)

The summation was done over an energy range of 0.25 eV. All the points in the band dispersion

within this energy range were considered. Their weights were calculated from the Fermi-Dirac

distribution:

Wi(Ei,T ) =
1

exp
(

Ei−EF
kBT

)
+ 1

, (2.31)

where EF is Fermi energy and kB is the Boltzmann’s constant and T is the temperature.

2.13.2 Transport effective mass
At high temperatures or at higher carrier concentrations, eigenstates far from the band extrema

(non-parabolic nature) are accessed. To account for non-parabolic nature of bands, wave-

particle duality for an electron wavepacket can be used to derive the following formula for

transport effective mass [56].

1

mt
=

1

�2k
∂E
∂k

(2.32)

2.13.3 Kane quasi-linear dispersion
To account for non-parabolic bands another approach is to include the non-linear terms and

expand eq. 2.26 as follows:

�
2k2

2mt,edge
= E + αE2 + βE3 + ..., (2.33)

where mt,edge is the transport effective mass at the band edge (or Kane mass). If degree 3 and

higher terms are neglected, Kane quasi-linear dispersion relation can be obtained [57].

�
2k2

2mt,edge
= E(1 + αE), (2.34)

where the α parameter specifies the non-parabolic nature of bands. If the bands are perfectly

parabolic, α = 0. For conduction bands in general α is positive, and it is negative for holes in

valence bands. Differentiating the kane dispersion w.r.t k gives the transport effective mass as:
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mt(E) = mt,edge(1 + 2αE) (2.35)

2.13.4 Optical effective mass
Optical effective mass is defined as:

1

mopt
=

2

ne

∑
l

occ.∑
k

1

ml
c(k)

, (2.36)

where mopt is the optical effective mass, ne is the charge carrier concentration and ml
c is the

curvature effective mass for a band l and an occupied eigenstate k. Optical effective mass

incorporates summation over all occupied eigenstates and each band l. This can account for

non-parabolicity in bands. According to a derivation by Huy et al. [58], the summation can be

replaced by an integration along one-dimensional paths in the k-space:

1

mopt
=

∑
l

∫
f (E,T )∂

2E
∂k2 dk∑

l

∫
f (E,T )dk

(2.37)

where f (E,T ) represents the Fermi-Dirac distribution.

Since band dispersions are rarely parabolic for real materials, Kane dispersion is more ac-

curate. The computed transport and optical effective masses depend upon the charge carrier

energy. When through doping, or increasing temperature etc. the bands are progressively filled

the effective mass also changes (generally increases [59]). This also changes properties like

charge carrier mobility. The amount of change in optical and transport effective masses with

respect to carrier concentration depends upon the non-parabolicity of bands. It should be noted

here that, the curvature effective mass does not depend upon carrier concentration and is defined

by band curvatures alone. Since optical effective mass incorporates band non-parabolicity it has

been used as an important parameter for design of transparent conducting oxides [60].

Figure 2.6: Curvature, transport and optical effective mass
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Chapter 3

Pristine Anatase

Figure 3.1: Schematic of (a) anatase supercell, (b) the first brillouin zone of anatase lattice with

high symmetry k points and (c) distorted TiO6 octahedron of anatase. The two vertical Ti-O

(apical) bonds are slightly longer than the other four equatorial Ti-O bonds.

Ab initio calculations for pristine anatase, anatase with intrinsic defects and doped anatase

were performed using Quantum ESPRESSO [61] and VASP [62–65] software packages. Con-

vergence tests and parameter calculations were first carried out as discussed in Chapter 2. This

was followed by geometry optimization for all the structures (including both cell parameters and

atomic positions optimization) using the conjugate gradient algorithm. This relaxed (optimized)

structure was then used for self-consistent field (scf) and band structure (non-scf) calculations.

The curvature of the band structure was then used to calculate the effective masses of charge

carriers.
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3.1 Lattice and electronic structure
Pristine anatase has a tetragonal structure. It consists of distorted TiO6 octahedron as its

building block. The computed lattice parameters, bond lengths, band gap and bader atomic

charges [66, 67] are shown in Table 3.1. Computations were performed for two values of U
parameter, 4.2 eV and 5.29 eV. The former value has been used in literature to calculate the

lattice parameter, bulk modulus and defect states of surface oxygen vacancies in anatase using

DFT (GGA)+U approach, and the calculated data were found to be in agreement with those

of the experimental results and/or those calculated using the hybrid DFT route [68, 69]. The

latter value was determined using linear response ansatz as discussed in 2. The computed val-

ues are compared with both theoretical and experimental values available in the literature. The

lattice parameters a and b and the Ti-O bond lengths are in excellent agreement with previous

experimental and computational estimates. However, there is a small discrepancy in case of

the lattice parameter c. The computed lattice parameters depend slightly on the pseudopoten-

tial and the exchange-correlation functional used for the computation. Labat et al. performed

a thorough investigation of the dependence of lattice parameters of anatase on the computa-

tional methodology (pseudopotential + xc). They discovered that the lattice parameters a and b
were largely independent of the computational methodology used, and the associated error was

within ±1%. However for c, the dependence on computational methodology was noticeable. It

was found to be systematically overestimated by about 4% with respect to experimental data

[70]. The current results are consistent with their findings. The overall agreement of structural

parameters with the existing computational and experimental reports indicates the reliability of

the methodology used in this work in predicting electronic defect states for anatase. The aver-

age bader charges [66, 67] on Ti and O atoms also agree with previous literature reports. The

charges computed using U = 5.29 eV are more accurate.

The band structure and the DOS plots for anatase are shown in the Fig. 3.2. The band

structure shows an indirect band gap of 2.44 eV (U = 4.2 eV) and 2.72 eV (U = 5.29 eV)

which is an underestimation even after Hubbard U correction. Clearly, the larger U value

opens up the gap more and the band gap value is closer to those obtained using mBJ-GGA and

mBJ-LDA [77]. It should be noted here that, mBJ is a potential-only functional. It takes the

exchange-correlation term from GGA or LDA. This in turn means that mBJ calculations are not

self-consistent with respect to energy. Thus, it is not possible to compute ionic forces (ionic

relaxation not possible). Even though mBJ for some systems gives better prediction of band

gaps, the relative positions of defect states remains unchanged. These are the reasons GGA+U
has been chosen for the current study.
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Table 3.1: Lattice parameters, bond lengths (in Å), band gap (in eV) and Bader charges for

anatase.

Methodology
Lattice

parameters

Ti-O bond

lengths
Band gap

Bader

charges

a=b c Apical Equatorial Ti O

Current work GGA+U (4.2 eV) 3.84 9.84 1.99 1.95 2.44 +2.25 -1.15

GGA+U (5.29 eV) 3.87 9.77 2.02 1.98 2.72 +2.41 -1.21

2.6

(mBJ-GGA)

2.8

(mBJ-LDA)

Other

computational

work

GGA a 3.81 9.63 — — 2.14 — —

GGA+U b 3.83 9.63 2.00 1.96 2.00 — —

GGA+U c 3.82 9.55 — 1.95 2.61 — —

Full-potential

all-electron

calculation (PBE) d
3.81 9.72 2.01 1.95 — +2.50 -1.30

Experimental

value e, f 3.78 9.50 1.98 1.93 3.21 — —

a Reference 71; b Reference 72; c Reference 73; d Reference 74; e Reference 75; f Reference 76;
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Figure 3.2: Band structure (a) and PDOS (b) of anatase. Points P1 and P2 correspond to the

CBM and VBM respectively and Eg is the indirect band gap (2.44 eV). Fermi energy (EF) has

been shifted to 0 eV.
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Chapter 4

Intrinsic Defects

The intrinsic (or native) defects considered were oxygen vacancies (VO), oxygen interstitials

(Oi), titanium vacancies (VTi) and titanium interstitials (Tii). The reported U value of 4.2

eV [68, 69] for Ti d electrons was used.

4.1 Geometrical distortion due to native defects
The bond lengths of the anatase crystal were found to be altered because of the creation of native

defects, thus creating a geometrical distortion in the vicinity of the defect sites (see Table. 4.1).

The directions of forces acting on the atoms near the defect site are shown in Fig. 4.1.

VO formed three dangling Ti-O bonds (see Fig. 4.1(a)). The three Ti atoms in the neighbour-

hood moved outwards from the defect site due to their mutual strong repulsion, which could be

attributed to the positive charge (or oxidation state) on Ti atoms. The two nearby O atoms

moved towards the defect site, possibly to minimize the total energy of the system.

Figure 4.1: A conventional cell of anatase showing the direction of forces acting on the neigh-

bouring atoms to the defect site (called as the defect associated atoms). The defect site has been

marked as X. The figures depict anatase with (a)VO, (b)Tii, (c)VTi and (d)Oi respectively.

Usually in previous literature reports, Tii has been placed at the centre of the distorted

octahedron formed by the oxygen atoms in the anatase lattice [25]. However, we used two
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Table 4.1: Distances (Å) of the defect associated atoms from the defect site

Atomic distances from defect site X

X = VO X = Tii X = VTi X = Oi

X-Ti1,2 X-Ti3 X-O X-O1,4 X-O2,3,5,6 X-Ti1−4 X-O1,4 X-O2,3,5,6 X-Ti X-Ti1 X-Ti2 X-Ti3

Undistorted lattice 1.95 1.99 2.48 1.84 2.25 2.42 1.99 1.95 3.06 1.95 1.99 1.95

Distorted lattice 1.97 2.10 2.41 2.02 2.10 2.65 2.47 2.02 2.95 1.97 2.05 2.12

initial structures in our calculations, to find the more stable anatase structure with Tii. In the

former, the interstitial atom was placed at a random location inside the crystal (position X in

Fig. 4.1(b)) and allowed to reach its lowest energy configuration by using atomic relaxation.

In the latter approach, the total energy calculation for anatase with Tii at the centre of the

distorted octahedron was performed. The total energy of the first configuration was found to be

slightly lower (by 0.23 eV) than that of the second one, suggesting higher stability of the first

configuration over the second one. Hence, only the first configuration was used for all further

calculations. The Ti atoms near the interstitial Tii atom (Ti1, Ti2, Ti3 and Ti4) were found to

move away from the defect site due to the mutual repulsion among Ti atoms (see Table 4.1).

The two O atoms present at the apical positions (i.e., O1 and O4 in Fig. 4.1(b)) were found to

move outwards from the interstitial site. However, the other four oxygen atoms surrounding the

defect site (i.e., O1, O3, O5 and O6) were found to be attracted and move towards this interstitial

site (see Table 4.1).

VTi resulted in the six oxygen atoms in the neighbourhood (i.e., O1-O6), which were found

to relax outwards due to their strong mutual repulsion (see Fig. 4.1(c) and Table 4.1). Here,

the oxygen atoms present at the apical positions (i.e., O1 and O4) were found to relax outwards

farther (≈0.5Å away from VTi; see Table 4.1) than those present at non-apical positions. Ti

atoms surrounding the defect site were found to be displaced inwards only slightly, probably

because of the missing repulsive force from the removed Ti atom.

Introducing Oi in anatase led to the formation of a dimer configuration with that of the lattice

oxygen atom (see Fig. 4.1(d)). Note that, relaxation of atomic positions automatically resulted

into this configuration even when we did not assume Oi to form a dimer with a lattice oxygen

atom. The O-O bond length of the dimer was found to be 1.47Å, which is close to the O-O

bond length in [O2]2− as calculated for BaO2 (1.49Å), indicating the existence of the dimer in

the form of [O2]2− [78]. The geometry around the defect site was only found to be slightly

affected, with the neighbouring Ti atoms (Ti1, Ti2, Ti3) found to move slightly outwards (see

Table 4.1).

4.2 Neutral and charged oxygen vacancies (VO, V+1
O , V+2

O )
VO in anatase would create dangling bonds and two unpaired electrons in its vicinity due to the

valence state of two on an O atom. The DOS plots of anatase with various charged states of O

vacancy clearly showed the formation of a mid-gap defect state (see Fig. 4.2). This gap state

was found to spread over a narrow energy range, indicating it to be highly localized (flat bands).

Moreover, DOS plot of anatase with VO clearly showed the defect state being associated to Ti 3d
orbitals, suggesting the states being localized on a few Ti atoms surrounding the defect site (see

Fig. 4.2(b)). In this case, Fermi energy was found to lie at the edge of the gap state on the side of

the conduction band, indicating this mid-gap state being occupied. Whereas, for VO the defect

states were found to form 0.56 eV below the conduction band edge, the gap states were found to
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move closer to the conduction band edge with increasing positive charge on the vacancy from 0

to +2 (see Fig. 4.2(b)-(d)) The gap state became very close to the conduction band edge ( 0.07

eV) for anatase with V+1
O . Additionally, EF in this case was found to be positioned around the

middle of the defect state (see Fig. 4.2(c)). Thus, electrons in the gap state could excite to the

conduction band and thereby providing n-type conductivity to anatase. For anatase with V+2
O ,

the defect state was found to form inside the conduction band near the CBE (seen as a distinct

peak at CBE in Fig. 4.2(d)) with EF being located at the VBM. The band gap values for anatase

with VO, V+1
O and V+2

O were found to be 2.55 eV, 2.48 eV and 2.35 eV respectively. The reduced

band gap of anatase with V+2
O could be attributed to the formation of the defect states close to

the conduction band edge (see Fig. 4.2(d))
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Figure 4.2: DOS of pure anatase (a) and anatase with VO, V+1
O and V+2

O (b)-(d) respectively with

Ti 3d states also shown. Black dotted line represents the EF and VBM of pure anatase has been

chosen as the reference for all the plots.
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4.3 Neutral and charged titanium interstitials (Tii, Ti+1
i , Ti+2

i ,
Ti+3

i , Ti+4
i )

A Ti atom has a valence state of four, hence introducing Tii in anatase leads to four unpaired

electrons. DOS plot of anatase with Tii clearly showed the formation of mid-gap defect states.

The gap states were found to be spread over a narrow energy range, indicating that the gap

states were localized (see Fig. 4.3(b)). However, EF was found to lie in the conduction band,

suggesting that some of the excess charge carriers (or unpaired electrons of Tii) got delocalized,

while the rest could be localized and present in the gap state.

DOS plots of anatase with different charge states of Ti interstitial clearly showed that the

mid-gap defect states were associated with Ti 3d orbitals (see Fig. 4.3(a)-(f)). For Ti+1
i , EF

was still found to be positioned in the conduction band, however, the distance between it and

the CBE decreased as compared to that of Tii (i.e., 0.34 eV for Tii and 0.21 eV for Ti+1
i ; see

Fig. 4.3(b) and 4.3(c)). Further, in the case of Ti+2
i , EF was found to be located at the edge of

the mid gap state (see Fig. 4.3(d)), indicating the two electrons which were removed from Tii

to create Ti+1
i and Ti+2

i successively being present in the conduction band, hence suggesting the

presence of the two defect states in the conduction band because of Tii. Moreover, when one

more electron was removed to create Ti+3
i , EF shifted to the middle of the mid gap defect state

and finally for Ti+4
i it was found to coincide with the VBM (see Fig. 4.3(e)-(f)). These observa-

tions indicate that the two electrons which were removed to create Ti+3
i and Ti+4

i successively

from Ti+2
i , occupied the localized mid gap defect states. Thus, Tii was found to create two local-

ized defect states in the band gap of anatase, whereas two delocalized states were formed in the

conduction band. The presence of delocalized states in the conduction band and the possibility

of excitation of electrons from the gap state to the conduction band, could introduce intrinsic

n-type conductivity in anatase with Tii.
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Figure 4.3: DOS of pure anatase (a) and anatase with Tii, Ti+1
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i , Ti+3
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respectively with Ti 3d states also shown. Black dotted line represents the EF and VBM of pure

anatase has been chosen as the reference for all the plots.
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4.4 Titanium vacancies (VTi) and oxygen interstitials (Oi)
For these systems, no mid-gap defect states were found to form (see Fig. 4.4(a)-(d)). DOS plot

for the defect associated O atoms (O atoms surrounding the defect sites) showed O 2p states

being formed inside the valence band. These states were found to be spread over a wide energy

range, indicating these as delocalized states (Fig. 4.4(c)-(d)).
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Figure 4.4: Total DOS (a) and PDOS (b) of anatase. DOS of anatase with VTi(c) and Oi(d). Red

dotted line in (c) and (d) represents O 2p states (scaled by 5 times) due to the defect associated

atoms. Black dotted line represents the EF and VBM of pure anatase has been chosen as the

reference for all the plots.
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4.5 Stability of native defects: Formation energy analysis
The stability of various defect types under various conditions were compared using the forma-

tion energy analysis. Fig. 4.5(a) and (b) show the formation energies of native defects under

O-poor and O-rich conditions respectively, obtained as a function of EF . EF here signifies the

electron richness of the system. For example, if the system is doped n-type, the charge carrier

(electron) concentration would increase. This would make the system more electron rich and

EF would move towards the CBM. The upper and lower limits of EF here correspond to the

CBM and VBM respectively. The charge transition levels (denoted by ε) of various native de-

fects are shown in Table 4.2. Note that, these transition levels are EF values at which a defect

could be stable in multiple charged states.
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Figure 4.5: Defect formation energies of native defects as a function of Fermi level (EF) in

O-poor (a) and O-rich (b) conditions. The lower and upper limits of fermi level correspond to

VBM and CBM respectively.

For a wide range of EF (from 0 to ≈2.2 eV), the most stable charged states of Ti vacancies,

O vacancies and Ti interstitial were found to be -4, +2 and +4 respectively (see Fig. 4.5(a) and

(b)), suggesting these native defects as quadruple acceptor, double donor, and quadruple donor

respectively. The most stable charge state for O interstitials was found to be 0. In O-poor and

in O-rich conditions, the most stable defect states (lowest formation energies) were found to be

Ti+4
i and V−4

Ti respectively. Moreover, in O-poor condition, Ti+4
i was found to be the most stable
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Table 4.2: Charge transition levels (in eV) of various native defects with respect to the VBM

Defect Charge states (q, q’) Transition level ε(q, q’)

VO
+2/+1 2.27

+1/0 2.28

Tii

+4/+3 2.33

+3/+2 2.34

+2/+1 2.73

+1/0 2.74

VTi 0/-1 0.01

-1/-2 0.02

-2/-3 0.03

-3/-4 0.04

Oi
0/-1 2.42

-1/-2 2.43

defect state for the entire range of EF . O interstitials were found to have a positive formation

energy for both the conditions considered and thus were unlikely to form spontaneously under

equilibrium conditions. The stability of neutral state for O interstitial could also explain the

binding of the intersitial O atom with a lattice oxygen atom and forming a dimer configuration

(discussed in Section 4.1). Oxygen vacancies in the form of V+2
O were found to have a negative

formation energy (and hence stable) for EF ranging between 0 and 2.2 eV in O-poor conditions

and hence are likely to form.

The charge transition levels for O vacancies ( ε(+2, +1) and ε(+1, 0)) were found to lie

only slightly below the CBM ( 0.16 eV; see Table 4.2) indicating these as shallow donor type

defects. As a result, neutral O vacancy could ionize easily, and thereby lead to intrinsic n-type

conductivity in anatase. Similarly, out of the four transition levels of Tii, two (i.e., ε(+4, +3) and

ε(+3, +2)) were found to locate close to the CBM, whereas the other two (i.e., ε(+2, +1) and

ε(+1, 0)) were positioned in the conduction band, thereby clearly indicating that Ti interstitial

could also provide n-type conductivity to anatase. Note that, the transition levels of Ti vacancies

(from ε(0, -1) to ε(-3, -4)) were found to lie close to the valence band edge, indicating these as

shallow acceptor type defects. Finally, the transition levels of O interstitials (ε(0, -1)) and ε(-1,

-2) were found to lie ≈0.02 eV below the CBM, but these would be very unlikely to form due

to their high formation energy under both O-rich and O-poor conditions.

It is interesting to note that, in O-poor condition, donor type defects (O vacancy and Ti

interstitial) were found to be more stable (lower formation energy) than the acceptor type de-

fects (Ti vacancy and O interstitial). This could then lead to an incomplete compensation of

the electrons (induced by the donor-type defects) by the holes (induced by the acceptor-type

defects), thereby making anatase intrinsically n-type, reason behind the growth of intrinsically

n-type anatase for oxygen deficient samples. However, in O-rich conditions, the acceptor-type

defect states (mainly Ti vacancy) were found to have a lower formation energy, which could

make anatase p-type under these conditions.
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Chapter 5

Dopants

To simulate doped anatase, a single Ti atom in the 96 atoms TiO2 supercell was substituted with

the dopant atom. This leads to a dopant concentration of 3.125 at%. Since all the Ti atoms in

the supercell are equivalent, any atom can be substituted.

5.1 Niobium (NbTi)
The lattice parameters and bond lengths of Nb-doped anatase are shown in Table 5.1. There

was a larger increase in parameters a and b than in the lattice parameter c. Moreover, for the

Nb-O bond, there was an increment along the apical direction, and a slight decrease along the

equatorial direction. The increase in lattice parameters a, b and c could be due to the larger

atomic size of the Nb+5 ion than the Ti+4 ion that it substitutes. To accomodate the larger dopant

atom, the supercell relaxes outward.
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Figure 5.1: PDOS of Nb-doped anatase. EF has been shifted to 0 eV

The PDOS plot for Nb-doped anatase is shown in Fig. 5.1 and the band structure is shown

in Fig. 5.2. Ti d states dominate the conduction band and O p states dominate the valence

band. The dopant states (Nb d) were spread in the conduction band forming resonant states.

Nb dopant did not form any mid gap states. A previous GGA+U study also concluded that Nb

dopant does not form any mid gap states [29]. The Fermi level was positioned at the conduction
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Table 5.1: Change in lattice parameters and bond lengths of Nb-doped anatase with respect to

pristine anatase. Δbond is the change in Nb-O bond length w.r.t. Ti-O bond length.

Δa = Δb Δc Δbond

Apical Equatorial

+0.17% +0.07% +1.73% -0.74%

band edge. This means that the dopant Nb atom, donates extra electrons in the conduction band,

imparting n-type conductivity. This could improve the conductivity of anatase. There was also

a reduction in the band gap by 0.78 eV. This is slightly disadvantageous for TCO applications

because a reduced band gap would mean reduced transparency. Improved conductivity in Nb

doped anatase thin films has also been observed experimentally [17, 79].
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Figure 5.2: Band structure of Nb-doped anatase. EF has been shifted to 0 eV

Bader charge analysis showed the charge on Nb atom to be +2.81. This positive charge is

more than the charge on the Ti atom (+2.41) that it substitutes. This means that when an Nb

atom displaces a Ti atom from the supercell, there is a negative charge transfer from this atomic

site. Bader analysis further showed that this negative charge is distributed over the Ti atoms

because the effective positive charge on Ti atoms reduced in the doped system.

5.2 Tantalum (TaTi)
The lattice parameters and bond lengths of Ta-doped anatase are shown in Table 5.2. There was

an increase in parameters a and b but the supercell shrunk slightly along c. Moreover, for the

Ta-O bond, there was an increment along both the apical and equatorial directions. The increase
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in Ta-O bond lengths could be due to the larger atomic size of the Ta+5 ion than the Ti+4 ion that

it substitutes. To accomodate the larger dopant atom, the supercell relaxes outward.
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Figure 5.3: PDOS of Ta-doped anatase. EF has been shifted to 0 eV

Table 5.2: Change in lattice parameters and bond lengths of Ta-doped anatase with respect to

pristine anatase. Δbond is the change in Ta-O bond length w.r.t. Ti-O bond length.

Δa = Δb Δc Δbond

Apical Equatorial

+0.24% -0.08% +0.92% 0.29%

The PDOS plot for Ta-doped anatase is shown in Fig. 5.3 and the band structure is shown in

Fig. 5.4.

The dopant states (Ta d) formed deep in the conduction band as resonant states. Ta dopant

did not form any mid gap states. The Fermi level was positioned in the conduction band near

the conduction band edge. This means that the dopant Ta atom, donates extra electrons in

the conduction band, imparting n-type conductivity. This could improve the conductivity of

anatase, giving it a metallic like nature. There band gap was unchanged unlike Nb. These

results are in agreement with a previous GGA+U study [80]. Improved conductivity in Ta-

doped anatase thin films has also been observed experimentally [79, 81].

Bader charge analysis showed the charge on Ta atom to be +3.08. This positive charge is

more than the charge on the Ti atom (+2.41) that it substitutes. This means that when a Ta

atom displaces a Ti atom from the supercell, there is a negative charge transfer from this atomic

site. Ta-doped anatase would exhibit good optoelectronic properties because of the Fermi level

crossing the conduction band (hence, improved conductivity) and transparency originating from

the band gap of the host anatase material.
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Figure 5.4: Band structure of Ta-doped anatase. EF has been shifted to 0 eV

5.3 Vanadium (VTi)
The lattice parameters and bond lengths of V-doped anatase are shown in Table 5.3. There was

a slight increase in parameters a and b but the supercell shrunk along c. The shrinkage along c
direction could be attributed to the significant decrease in the apical V-O bond length, so much

so that it became smaller than the equatorial V-O bond.

Table 5.3: Change in lattice parameters and bond lengths of V-doped anatase with respect to

pristine anatase. Δbond is the change in V-O bond length w.r.t. Ti-O bond length.

Δa = Δb Δc Δbond

Apical Equatorial

+0.11% -0.32% -3.40% +0.65%

The PDOS plot for V-doped anatase is shown in Fig. 5.5 and the band structure is shown in

Fig. 5.6. The dopant states (V d) were formed both as localized states near the conduction band

edge and as delocalized states deep in the conduction band. V dopant did not form any mid

gap states. The Fermi level was positioned at the valence band edge. There was no significant

change in the band gap.

Bader charge analysis showed the charge on V atom to be +2.32. This positive charge is

slightly smaller than the charge on the Ti atom (+2.41) that it substitutes. This means that when

a V atom displaces a Ti atom from the supercell, there is a negative charge transfer towards this

atomic V site. With Fermi level lying at the valence band edge, V doped anatase does not attain

improved n-type conductivity like Nb and Ta.
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Figure 5.5: PDOS of V-doped anatase. EF has been shifted to 0 eV

Γ X M Γ Z R A Z ∣  X R ∣  M A

Wavevector k

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

E
−
E
F
 /

 e
V

spin up

spin down

Figure 5.6: Band structure of V-doped anatase. EF has been shifted to 0 eV
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5.4 Molybdenum (MoTi)
The lattice parameters and bond lengths of Mo-doped anatase are shown in Table 5.4. There

was a slight increase in parameters a and b but the supercell shrunk along c. Both the apical and

equatorial Mo-O bond lengths got increased.
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Figure 5.7: PDOS of Mo-doped anatase. EF has been shifted to 0 eV

Table 5.4: Change in lattice parameters and bond lengths of Mo-doped anatase with respect to

pristine anatase

Δa = Δb Δc Δbond

Apical Equatorial

+0.18% -0.09% 1.14% 2.00%

The PDOS plot for Mo-doped anatase is shown in Fig. 5.7 and the band structure is shown

in Fig. 5.8. The dopant states (Mo d) were formed both as localized mid-gap states and as

delocalized states deep in the conduction band. Khan et al. also observed localized Mo d states,

however the states in their calculations were more closer to the conduction band than in the

current work [82]. This could probably be due to the different U values used in the two studies.

The Fermi level was positioned inside mid-gap states, which means that some of the mid-gap

states are occupied. The charge density plot (Fig. 5.9) for the mid-gap state further shows that,

the mid-gap state arises mainly from localized electrons on the dopant Mo atom and nearby O

atoms.

Bader charge analysis showed the charge on Mo atom to be +2.4. This positive charge is

equal to the charge on the Ti atom (+2.41) that it substitutes. Due to electron transitions from

valence band to mid-gap states and from mid-gap states to conduction band, Mo-doped anatase

can absorb additional wavelengths of light, hence transparency could get reduced.
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Figure 5.8: Band structure of Mo-doped anatase. EF has been shifted to 0 eV

Figure 5.9: Charge density isosurface for Mo-doped anatase plotted in the region of mid-gap

state
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5.5 Tungsten (WTi)
The lattice parameters and bond lengths of W-doped anatase are shown in Table 5.5. There

was an increase in parameters a and b but the supercell shrunk along c. Both the apical and

equatorial W-O bond lengths increased.
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Figure 5.10: PDOS of W-doped anatase. EF has been shifted to 0 eV

Table 5.5: Change in lattice parameters and bond lengths of W-doped anatase with respect to

pristine anatase

Δa = Δb Δc Δbond

Apical Equatorial

+0.21% -0.10% 0.39% 2.32%

The PDOS plot for W-doped anatase is shown in Fig. 5.10 and the band structure is shown

in Fig. 5.11. The dopant states (W d) were formed both as localized mid-gap states and as states

deep in the conduction band.

The Fermi level was positioned near the conduction band edge, which could mean W-doped

anatase system to show increased n-type conductivity. The charge density plot (Fig. 5.12) for

the mid-gap state further showed that, the mid-gap state arises mainly from localized electrons

on the dopant W atom (dxy), four nearby O (p) and Ti atoms. All these atoms lie in or close to

the horizontal plane containing the dopant W atom.

Bader charge analysis showed the charge on W atom to be +2.73. This positive charge is

higher than the charge on the Ti atom (+2.41) that it substitutes. This means that there is a net

negative charge transfer from the dopant atom. This charge is then localized on the nearby Ti

and O atoms in the horizontal plane of dopant atom. Due to electron transitions from valence

band to mid-gap states and from mid-gap states to conduction band, W-doped anatase can ab-

sorb additional wavelengths of light, hence transparency is reduced. A previous experimental

and computational (based on GGA) study, investigated W-doped anatase for optoelectronic ap-

plications [7]. The authors found W to form states in the conduction band with the Fermi level
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Figure 5.11: Band structure of W-doped anatase. EF has been shifted to 0 eV

Figure 5.12: Charge density isosurface for W-doped anatase plotted on a 2d surface (containing

W dopant atom) in the region of mid-gap state

lying in the conduction band. This is consistent with the current work. However, unlike in the

current work, they did not find any mid gap state. This discrepancy could be due to GGA trying

to delocalize the electrons in the previous study.
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5.6 Chromium (CrTi)
The lattice parameters and bond lengths of Cr-doped anatase are shown in Table 5.6. The entire

supercell shrunk and the amount of shrinkage was higher along c. Both the apical and equatorial

Cr-O bond lengths were reduced. The lattice shrinkage could be due to the smaller atomic size

of Cr than Ti.
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Figure 5.13: PDOS of Cr-doped anatase. EF has been shifted to 0 eV

Table 5.6: Change in lattice parameters and bond lengths of Cr-doped anatase with respect to

pristine anatase

Δa = Δb Δc Δbond

Apical Equatorial

-0.07% -0.26% -1.57% -2.63%

The PDOS plot for Cr-doped anatase is shown in Fig. 5.13 and the band structure is shown

in Fig. 5.14. The dopant states (Cr d) were prominently formed as localized mid-gap states.

The Fermi level was positioned at the valence band edge. The charge density plot (Fig. 5.12)

for the mid-gap state further showed that, the mid-gap state arises mainly from localized elec-

trons on the dopant Cr atom (dxy orbital) and four nearby O (p) atoms. All these atoms lie in or

close to the horizontal plane containing the dopant Cr atom.

Bader charge analysis showed the charge on Cr atom to be +2.13. This positive charge is

lower than the charge on the Ti atom (+2.41) that it substitutes. This means that there is a

net negative charge transfer towards the dopant atom site from the neighbouring atoms. Due

to electron transitions from valence band to mid-gap states and from mid-gap states to con-

duction band, Cr-doped anatase can absorb additional wavelengths of light, hence transparency

could become reduced. It would not show increased n-type conductivity like Nb- and Ta-doped

systems, because the Fermi level is still pinned at the valence band edge.
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Figure 5.14: Band structure of Cr-doped anatase. EF has been shifted to 0 eV

Figure 5.15: Charge density isosurface for Cr-doped anatase plotted on a horizontal layer (con-

taining Cr dopant atom) in the region of mid-gap state
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5.7 Lanthanum (LaTi)
The lattice parameters and bond lengths of La-doped anatase are shown in Table 5.7. The entire

supercell expanded and the amount of expansion was significant along c direction. Both the

apical and equatorial La-O bond lengths increased significantly. The large atomic radius of La

atom could be the reason for the observed lattice expansion.
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Figure 5.16: PDOS of La-doped anatase. EF has been shifted to 0 eV

Table 5.7: Change in lattice parameters and bond lengths of La-doped anatase with respect to

pristine anatase

Δa = Δb Δc Δbond

Apical Equatorial

+0.10% +2.25% +17.58% +19.00%

The PDOS plot for La-doped anatase is shown in Fig. 5.16 and the band structure is shown

in Fig. 5.17. The dopant states (La d) did not form any mid-gap states. However, states were

formed near the valence band edge. These states were associated with electrons in O p orbitals,

as shown in Fig. 5.18. Due to states forming at the valence band edge, the band gap got reduced

by 0.38 eV. The Fermi level was positioned near the valence band edge. These results agree

with previous computational reports using DFT+U [83].

Bader charge analysis showed the charge on La atom to be +2.24. This positive charge

is lower than the charge on the Ti atom (+2.41) that it substitutes. This means that there is a

net negative charge transfer towards the dopant atom site from the neighbouring atoms. Due

reduction of the band gap, La-doped anatase can absorb higher wavelengths of light (red shift),

hence transparency is reduced. It would not show increased n-type conductivity like Nb- and

Ta-doped systems, because the Fermi level is still pinned near the valence band edge.
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Figure 5.17: Band structure of La-doped anatase. EF has been shifted to 0 eV

Figure 5.18: Charge density isosurface for La-doped anatase plotted in the region of localized

states formed near the valence band edge
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5.8 Copper (CuTi)
The lattice parameters and bond lengths of Cu-doped anatase are shown in Table 5.8. The

supercell expanded slightly along a and b directions. There was a shrinkage along c direction.

Both the apical and equatorial Cu-O bond lengths were found to increase.
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Figure 5.19: PDOS of Cu-doped anatase. EF has been shifted to 0 eV

Table 5.8: Change in lattice parameters and bond lengths of Cu-doped anatase with respect to

pristine anatase

Δa = Δb Δc Δbond

Apical Equatorial

+0.09% -0.41% +0.58% +0.26%

The PDOS plot for Cu-doped anatase is shown in Fig. 5.19 and the band structure is shown

in Fig. 5.20.

The mid-gap states were formed at two locations in the band gap: one closer to the VBM

and the other closer to the CBM. The ones closer to the valence band edge were associated with

Cu dz2 and O p states (on O atoms bonded to the Cu atom) (see Fig. 5.21(a)). The mid-gap state

closer to the conduction band edge was composed of Cu dx2−y2 and O p orbitals on O atoms

near the Cu atom (see Fig. 5.21(b)). The Fermi level was positioned in the valence band near

the valence band edge.

Bader charge analysis showed the charge on Cu atom to be +1.45. This positive charge is

lower than the charge on the Ti atom (+2.41) that it substitutes. This means that there is a net

negative charge transfer towards the dopant atom site from the neighbouring atoms. Due to

electron transitions from valence band to mid-gap states and from mid-gap states to conduction

band, Cu-doped anatase can absorb additional wavelengths of light, hence transparency would

be reduced. It would not show increased n-type conductivity, because the Fermi level is still

pinned near the valence band edge.
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Figure 5.20: Band structure of Cu-doped anatase. EF has been shifted to 0 eV

Figure 5.21: Charge density isosurface for Cu-doped anatase plotted in the region of localized

states formed near the valence band edge (a) and near the conduction band edge (b)

5.9 Cobalt (CoTi)
The lattice parameters and bond lengths of Co-doped anatase are shown in Table 5.9. The

supercell got shrunk along all the lattice directions. The maximum shrinkage was along c
direction. Both the apical and equatorial Co-O bond lengths got reduced.

The PDOS plot for Co-doped anatase is shown in Fig. 5.22 and the band structure is shown

in Fig. 5.23. The mid-gap states were formed at two locations in the band gap: one closer to the

VBM and the other closer to the CBM. The ones closer to the valence band edge were found to

be associated with Co dxy and O p states (on O atoms bonded to the Co atom) (see Fig. 5.24(a)).

The mid-gap state closer to the conduction band edge got localized on the dopant Co atom and

nearby O atoms(see Fig. 5.24(b)). The Fermi level was at the valence band edge. The supercell

was found to have a total magnetic moment of 5 Bohr magneton, majority of which came from

the dopant Co atom.
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Figure 5.22: PDOS of Co-doped anatase. EF has been shifted to 0 eV

Table 5.9: Change in lattice parameters and bond lengths of Co-doped anatase with respect to

pristine anatase. Δbond is the change in Co-O bond length w.r.t. Ti-O bond length.

Δa = Δb Δc Δbond

Apical Equatorial

-0.05% -0.33% -3.73% -1.84%

Bader charge analysis showed the charge on Co atom to be +1.88. This positive charge is

lower than the charge on the Ti atom (+2.41) that it substitutes. This means that there is a net

negative charge transfer towards the dopant atom site from the neighbouring atoms. Due to

electron transitions to/from mid-gap states, transparency would be reduced.
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Figure 5.23: Band structure of Co-doped anatase. EF has been shifted to 0 eV

Figure 5.24: Charge density isosurface for a horizontal layer containing Co atom plotted in the

region of localized states formed near the valence band edge (a) and near the conduction band

edge (b)
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5.10 Cerium (CeTi)
The lattice parameters and bond lengths of Ce-doped anatase are shown in Table 5.10. The en-

tire supercell expanded to accomodate the large Ce dopant atom. The maximum expansion was

found to be along c direction. Both the apical and equatorial Ce-O bond increased significantly.
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Figure 5.25: PDOS of Ce-doped anatase. EF has been shifted to 0 eV

Table 5.10: Change in lattice parameters and bond lengths of Ce-doped anatase with respect to

pristine anatase. Δbond is the relative change in the Ce-O bond length w.r.t Ti-O bond length

Δa = Δb Δc Δbond

Apical Equatorial

+0.40% +0.71% +13.56% +9.27%

The PDOS plot for Ce-doped anatase is shown in Fig. 5.25 and the band structure is shown

in Fig. 5.26. The states due to the dopant Ce atom formed close to the conduction band edge

inside the conduction band. These states were found to be localized on the f orbitals of Ce

atom. The Fermi level was located at the valence band edge. These finding are consistent with

other DFT+U reports [30].

Bader charge analysis showed the charge on Ce atom to be +2.55. This positive charge is

lower than the charge on the Ti atom (+2.41) that it substitutes. This means that there is a net

negative charge transfer towards the dopant atom site from the neighbouring atoms. There was

a slight decrease (≈0.04 eV) in the band gap.
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Figure 5.26: Band structure of Ce-doped anatase. EF has been shifted to 0 eV

5.11 Effective mass analysis
Effective masses of charge carriers were calculated according to the schemes outlined in Chap-

ter 2.

5.11.1 Pristine anatase
The finite difference effective masses of electrons at the conduction band edge along the Γ − X
and the Γ − Z directions in the reciprocal space were found to be 0.54 and 5.10 respectively.

Thus, there is a large anisotropy in the effective masses (and perhaps the mobility) of electrons.

This is consistent with previous experimental and computational results [32, 58, 84]. Electrons

were found to have an almost 10 times higher effective mass along Γ − Z direction as compared

to Γ − X direction. The means that the bands are much flatter along Γ − Z direction than the

Γ − X direction. The anisotropy becomes quite important, when anatase films are fabricated

for optoelectronic applications, because the anisotropy could manifest as different electronic

conductivities along different directions in anatase films. The finite difference effective mass

of holes at the valence band edge along Γ − X direction was calculated to be 1.74 which is

more than 3 times higher than that of electrons at the conduction band edge. This could mean

that holes along valence band edge are less mobile than electrons at the conduction band edge.

This also shows that doping anatase p-type with acceptor defects might not be very beneficial

in increasing conductivity because of the higher effective mass (and low mobility) of holes in

the valence band. Effective masses for electrons and holes in pristine anatase along the Γ − X
direction are listed in Table. 5.11.

Fig. 5.27(a) and 5.27(b) show the fitting of DFT band dispersion for the conduction and

valence band respectively. α quantifies the non-parabolicity of the bands. All the computed

values for electron effective mass yield almost equal values and the absolute value of α is quite
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Table 5.11: Charge carrier effective masses (along Γ − X direction) in pristine anatase

Effective masses (in terms of me) α
Finite diff. Least sq. Kane mass

Electron 0.54 0.54 0.54 0.44

Hole 1.74 1.64 1.79 -2.21

low. The optical effective mass for electron was computed to be 0.55, which is again almost

equal to the finite difference effective mass. This means that the conduction band considered

here is highly parabolic. For hole electron masses, however the values vary and the absolute

value of α is higher. Hence, non-parabolic nature is more in the case of conduction band edge

than the valence band edge.

Figure 5.27: Band dispersion fitting at the conduction band edge (a) and valence band edge (b),

along Γ − X direction

5.11.2 Dopants
Fig. 5.28(a) depicts the computed effective mass values for various doped systems and Fig. 5.28(b)

shows the corresponding non-parabolicity parameter α. The band dispersion was found to be-

come more non-parabolic when dopants were introduced (α for all the doped systems was

found to be higher than pristine TiO2). The computed effective mass values (using various def-

initions) for Nb-, Ta-, W-, and Cr-doped anatase were more separated from each other than

the other dopants. The disagreement was maximum in the case of Nb dopant. Interestingly,

the non-parabolicity (α) parameter for these dopants was also higher as compared to the other

dopants. Nb had the maximum value of α. This shows that, these four systems have more non-
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parabolicity in bands (at conduction band edge) than the other systems. The non-parabolicity of

Nb- and Ta-doped anatase can also be seen when fitting of the band dispersion is attempted (see

Fig. 5.29. The various fitting polynomials clearly deviate from each other (more in the case of

Nb dopant). For non-parabolic bands, optical effective mass gives a better description because

it takes into account the non-parabolicity (as discussed in section 2.13.4). If optical effective

masses are compared, we can see that the effective masses of all the doped systems increased

with respect to pristine anatase. This increment was more in the case of dopants Nb, Ta and W

meaning that these dopant atoms perturb the conduction band edge more than the other dopants.

The values of effective masses for Nb-doped anatase computed in this work agreed with previ-

ous literature reports [58]. Literature reports discussing effective masses of other doped systems

are rare.
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Figure 5.28: (a) Computed effective masses (as multiples of electron rest mass) of electrons for

various doped systems and (b) corresponding α values

Effective mass for the mid-gap states was also computed for a few cases (see Fig. 5.30).

All mid-gap states had significantly higher effective masses than the effective mass of pristine

anatase at the conduction band edge. This means that the bands are quite flat in nature and flatter

bands mean more non-parabolic nature. That’s why α for all the mid-gap states is significantly

higher than pristine anatase. If optical effective masses are compared for the mid-gap states, Cu-

doped anatase has the highest effective mass. The flat nature of these bands and higher effective

masses means that electrons in mid-gap states have quite low mobility and are localized (or

trapped).

Effective masses were also computed for holes at the valence band edge (see Fig. 5.31 (a)).

The effective mass for doped cases were slightly higher than that of pristine anatase with the ex-

ception on La, where the effective mass slightly decreased. The maximum increase in effective

mass was seen in the case of Co-doped anatase, thus Co dopant causes the maximum perturba-

tion of the valence band among all the dopants considered. It also had the most non-parabolic

bands and highest value of α among all the dopants. The non-parabolic nature of bands led

53



Figure 5.29: Band dispersion fitting at the conduction band edge along Γ − X direction for (a)

Nb-doped anatase and (b) Ta-doped anatase

to the disagremments in effective masses computed using different algebraic definitions (see

Fig. 5.31 (b)).
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Figure 5.30: (a) Effective masses computed for electrons in the mid-gap states and (b) corre-

sponding α values
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various doped systems, (b) Band dispersion fitting at the valence band edge along Γ−X direction

for Co-doped anatase
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Chapter 6

Conclusion

In this work electronic structure calculations for anatase with native defects and doped anatase

have been done using ab initio DFT. Formation stability and band structure for native defects

have been computed. To understand how dopants effect the band curvature of host anatase, a

detailed effective mass analysis has been done. To deal with the self-interaction error in DFT,

the effective Hubbard U correction was employed for valence electrons in localized outer d and

f orbitals. The effective parameter for this correction was determined self-consistently from

first-principles using the linear response method [31]. Using a Ue f f value of 5.26 eV for Ti,

a band gap of 2.72 eV for pristine anatase was obtained. This is still an underestimation with

respect to the experimental value, but much better than the values obtained using GGA alone.

Calculations for the native defects showed that O vacancies (for charged states 0, +1) and Ti

interstitials (for all the charged states) were associated with localized Ti 3d defect states in the

band gap, whereas Ti vacancies and O interstitials formed delocalized O 2p states in the valence

band. The gap state was quite close to the conduction band edge in case of V+1
O . In addition to

the localized states, Ti interstitials also formed delocalized states in the conduction band (with

Fermi level located inside the conduction band for Tii and Ti+1
i ). These factors explained the

intrinsic conductivity in anatase. The most stable charged states for Ti and O vacancies, Ti

interstitials were found to be -4, +2 and +4 respectively, indicating these as quadruple acceptor,

double donor and quadruple donor respectively. Moreover, oxygen deficient anatase was pre-

dicted here to be intrinsically n-type. To sum up, native defects have the capability to impart

improved conductivity to anatase.

Calculations for doped systems showed that while some dopants like Mo, W, Cr, Cu and Co

formed mid-gap states, others like Nb, Ta, V, La and Ce did not form any mid gap states. Among

the dopant forming mid-gap states, Mo, Cr, Cu and Co formed multiple mid gap states. Such

states could reduce the transparency of the host anatase material, because of the possible elec-

tron transitions to mid gap states from the valence band (absorbing light of certain wavelengths

in the process). However, in the case of W, a single unoccupied mid gap state was formed,

which could reduce the transparency but not as much as in the other dopants forming multiple

mid gap states. The Fermi level was positioned near the conduction band edge in case of Nb,

Ta and W, which would mean that these doped systems would show improved conductivity.

Moreover, Nb and Ta dopants did not form any mid gap states.

In the effective mass analysis for pristine anatase, we were able to reproduce the observed

anisotropy in the effective masses of electrons along perpendicular directions. Effective mass

for electrons along the Γ−Z direction was found to be almost 10 times higher than that along the

Γ−X direction. Dopants increased the effective masses for electrons at the CBM. The increment
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in optical effective mass was higher for the dopants Ta, Nb and W than the other dopants. It

was also observed that dopants increased the non-parabolicity of bands and a parameter α was

used to quantify this non-parabolicity. Nb-doped system showed a significantly high value of

α, which indicates high non-parabolicity at the conduction band edge for this system. Due to

this non-parabolicity, the effective mass values (computed using various definitions) for this

system differed significantly from each other. Effective masses calculated for electrons in the

mid gap states were found to be quite higher (≈10 times more than electrons at CBM) indicating

the flat nature of mid gap states. This could mean that the electrons in these states would be

highly localized. Among all the dopants considered, Nb, Ta and W doped anatase systems

were identified as being better for optoelectronic (TCO) applications. For W-doped anatase,

the experimental reports investigating optoelectronic applications are quite rare and hence more

experimental investigation could possibly confirm the theoretical predictions from this study.
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J. M. Nedeljković, “Photoluminescence of Anatase and Rutile TiO2 Particles,” J. Phys.
Chem. B, vol. 110, no. 50, pp. 25366–25370, 2006.
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