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Abstract

Speech is one of the natural ways human beings communicate; however, natural speech is
impossible for long-distance communication. Nowadays, global real-time communication
over the internet has become a vital part of modern civilization. The internet is not only a
telecommunication technology, it has become a world. Consequently, the risks related to
speech in the virtual world become more complicated than just wiring or eavesdropping
telephone lines. Actions should be taken to ensure that we do not become victims of
this world. We need to deal with security issues when speech is used as a tool to control
automated systems; spoofing and privacy when speech is used in communication; and
properties protection and management when speech is used as commercial products.

One way to deal with these issues is using speech fingerprint. Speech signals are
believed to convey unique features that can be used as a biometric security measure
along with iris, fingerprint, and facial recognitions. The purpose of a speech fingerprint
technique is extracting distinguishable features related to speaker individuality and lin-
guistic content from speech signals and combining the features to create unique speech
fingerprints. The speech fingerprints can then be used for speaker verification in security,
anti-spoofing in communication, and properties protection of commercial products.

Current speech fingerprint techniques produce speech fingerprints in three basic steps.
In step one, speech signals in time domain are projected into a time-frequency domain.
In step two, patterns analysis methods are used to obtain important spatiotemporal
features. In step three, hashing methods are used to combine the obtained features
to create speech fingerprints. Step one is a challenging issue in speech coding. Various
speech coding techniques and speech representation models have been proposed such
as spectrograms using Fourier and wavelet transforms, auditory spectrograms using au-
ditory filterbanks, spikegrams using matching pursuit algorithms, and auditory sparse
representations using perceptual matching pursuit algorithms. The purpose of step one
is emphasizing important acoustical features on a representation model. Step two is
another challenging issue in pattern recognition. Speech signals are the natural carrier of
information about speaker individuality, language, emotion, and so on. Obtaining unique
and distinguishable features for speech fingerprints is the purpose of step two. Step three
is also a challenging issue. Reducing the dimensions of features causes loss of information
and thus, speech fingerprints become less distinguishable. Keeping high dimensions of
features causes problems in storage, transferring, and searching. The purpose of step
three is producing speech fingerprints that are accurate in matching and convenient to
use.

Although the current speech fingerprint techniques in the literature can achieve high
performance in various application. However, there is critical drawback is that they are
driven by practical results; thus, actual speech fingerprints are either lesser important
or not the main focus in their applications. The present study assumes that speech
fingerprints are highly related to speaker individuality, and they are a part of the neural
activity patterns of the auditory nerves. Based on this assumption, the purpose of
the present study is extracting biologically accurate speech fingerprints. In pursuing
this purpose, the first task aims to mimic the neural activity patterns to obtain speech
fingerprints. Then in the second task, the uniqueness of the proposed speech fingerprints
is verified. Finally in the third task, a speech fingerprint identification method is used to
apply speech fingerprints in practical applications.
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Emphasizing significant features of a speech signal in a signal representation model,
e.g., spectrogram, spikegram, and auditory representation, is an essential task of a speech
fingerprint technique. Previous studies have revealed that by mimicking the neural
activity patterns (NAP) of the auditory periphery to obtain perceptual features of speech
signals, the resultant auditory representation is beneficial to speech-coding and pattern-
analysis applications in comparison with spectrogram and spikegram representations.
This study proposes to use auditory representations in the process of creating speech
fingerprints.

Many efforts have been spent on applying psychoacoustics to concentrate perceptual
features on auditory representations to mimic the neural activity patterns generated
by the auditory periphery to reproduce the amazing abilities of our hearing system.
However, several limitations—using the Bark scale and gammatone basis—remain in the
methods used for creating auditory representations. This study found that by mimicking:
(1) the sparseness of NAP with a sparse coding technique, i.e., a matching pursuit
algorithm, (2) the characteristic frequency of basilar membrane motion with an equivalent
rectangular bandwidth scale, (3) the impulse response measured at the basilar membrane
with a gammachirp function, and (4) auditory masking with a masking model, perceptual
features in auditory representations could achieve similar perceptual evaluation scores,
e.g., PEMP-Q and PESQ, while requiring the lowest number of non-zero elements in
comparison with features in spectrograms and spikegrams.

Our hearing system has the ability to identify who is speaking, understand spoken
language, recognize emotions, etc. simultaneously in very noisy conditions. This miracle
is still a mystery to science. Contemporary knowledge divides our hearing system into the
auditory periphery and the central auditory cortex. The auditory periphery is responsible
for converting speech as sound pressures into NAPs at the auditory nerve and the central
auditory cortex is responsible for cognitive functions. At the present time, due to the
lack of equipment to obtain the real NAPs at the auditory nerve. Therefore, current
speech analysis techniques can only be evaluated by using perceptual evaluation scores
and pattern analysis methods. Because of these reasons, in the second task, the present
study hypothesizes that there must be unique patterns that help the central auditory
cortex identify who is speaking. Therefore, a landmark-based pattern analysis technique
is used to combine the features on auditory representations. This technique is used to
create a graph-like structure of perceptual features to mimic the neural activity patterns.
Then, a uint32 function is used to convert the perceptual structures into hash sequences
for fast indexing. Experimental results show that the perceptual structures of auditory
representations are the most effective in identifying speakers.

In the last task, a deep hashing technique is used as a speech fingerprint identification
algorithm. At first, the proposed speech fingerprint method is used to extract speech
fingerprints from speech signals. Then, the extracted speech fingerprints are used as
input features of a supervised deep learning algorithm. Then, the deep learning algorithm
converted the speech fingerprints into binary hash sequences in the Hamming space.
Finally, speaker identification and retrieval experiments are conducted to evaluate the
effectiveness of the speech fingerprints and the identification algorithm. Experimental
results show that the proposed method can achieve very high identification performance
that is competitive to other contemporary state-of-the-art methods.

Keywords: auditory filterbank, gammatone/gammachirp, masking effect, perceptual
features, spikegram
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Chapter 1

Introduction

1.1 Speech Fingerprints

In the literature, speech fingerprints are generally regarded as binary sequences that can
be used to identify music or speech signals. Various techniques have been proposed and
they technically comprise of three parts: speech analysis, classifier, and hash function.
The speech analysis part includes but not limited to expanding a speech signal into
the time-frequency domain, obtaining cepstral coefficients, noise reduction, and feature
enhancement, etc. The classifier part includes statistical analysis such as landmark-based
pattern analysis and deep learning methods. The hash function part is used to produce
binary sequences that includes a sign function, thresholding, and max pooling, etc.

In the present study, there is a different oppinion about the concept of speech finger-
prints. There are many other types of features such as Mel-Frequency Cepstral Coefficients
(MFCCs) and Linear Prediction Cepstral Coefficients (LPCCs) that can be used for the
purpose of creating speech fingerprints and then for speaker verification. However, the
chain of analyses applied to speech signals to obtain speech fingerprints is not related to
human perception. As a result, the resultant speech fingerprints can only be regarded as
unique identifiers of the speech signals, not as distinctive identifiers of the persons who
produced the speech signals. If speech fingerprints are used as a bio security metric, they
should be based on our physical bodies. Figure 1.1 shows examples of several unique body
parts and their corresponding analysis techniques. It has been discovered that there are
unique patterns in our Deoxyribonucleic Acid (DNA), irises, and retinal blood vessels.
Measurements and algorithms have been design to target these unique patterns and use
them in the process of identity verification. Therefore, an identity verification process
based on speech should also take into account the biophysical properties of our bodies. A
speech fingerprint is expected (in this study) to be the unique identifier of a person that
is obtained from his/her speech. In security, a speech fingerprint can be used to identify
a person along with other unique identifier such as fingerprints and facial patterns. With
careful calculations, the unique body parts can be projected into distinctive mathematical
objects in the linear space; thus, each person can have a virtual self which is as unique as
the physical one.

During speech production process, speaker individualities are produced by our glottal
sources and vocal tracts; and because we believe that speaker individualities are unique
to each person, there exists a one-to-one mapping between the set of all people and
the set of their speaker individualities. During hearing process, speaker individualities
become an intrinsic part of the Neural Activity Patterns (NAPs) (see Appendix A.2 for

1



a brief description about NAPs); and it is assumed in the present study that there also
exists a one-to-one mapping between the set of all speaker individualities and the set
of all perceived speaker individualities. Thus, the unique NAPs associated with speaker
individualities are speech fingerprints. In other words, each data point in the distribution
of the perceived speaker individualities is a speech fingerprint. Based on this assumption
and the belief that speaker individuality is unique, speech fingerprints can be one of the
unique traits that can be used for identity verification.

In the present study, it is belived that a speech fingerprint is a tangible thing and
speaker verification is a task. And maybe the whole effort of calculating speech fingerprints
is for the sole purpose of speaker verification. However, assuming that we have a complete
proof about the uniqueness of a speech fingerprint, when we can confidently state that
there shall not be two humans possessing the same speech fingerprint; speech fingerprints
should be recommended over other features for speaker verification. If speech fingerprints
are used as a bio security metric, they should be based on our physical bodies.

2
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1.2 Significance

The application of speech fingerprints is speaker verification (identity verification using
human speech) and other closely related tasks such as speaker recognition, identification,
and retrieval. Comparing to many other methods used for speaker verification, the
advantage of speech fingerprint is faster indexing time because comparing two binary
strings should be faster than other real features such as i-/x-/d-vectors. The advantage of
speech fingerprint should be significant in the near future when we conquer large dataset
such as Voxceleb2 and start working with larger ones containing tens of thousands of
labels and billions of speech utterances. Furthermore, when we have to deploy speaker
verification system on small devices, speech fingerprint system should have an edge on
computational capabilities and power consumptions.

Identity verification can be accomplished by using one of the unique traits of humans
such as DNA, iris, retina, fingerprint, face, and speech. Although DNA analysis is
by far the most accurate verification technique, it requires a lot of time, specialized
equipment, expert knowledge, and a piece of us to perform an analysis. Thus, DNA
analysis is neither convenient nor suitable for flash checks or daily applications. Other
types of identity verification are iris, retina, and fingerprint analyses. These types of
verification are undoubtedly more convenient than DNA analysis. Although these analyses
are supported by complete proof of uniqueness, can be used for real time verification, and
do not require a piece of us; they still depend on specialized cameras or scanners to
perform the verification tasks and cannot be used for continuously verifying of identity.
Examples of these disadvantages are holding online examinations or important meetings,
in which, the claimed identities must be verified continuously from start to stop. In these
situations, one-time verification is insufficient to ensure the continuous participations of
the claimed identities. Perhaps face and speech analyses are competitively the most
convenient techniques used for continuous, real-time, and daily verification applications.
The advantages of these techniques have become more evident to-day due to the abundant
of cameras and microphones on mobile devices such as smart phones, webcams, and
headsets, etc. The ubiquity of human speech on the internet has made identity verification
using speech fingerprints a must for security.

Our bodies are composed of flesh and bone, and to overcome this weakness, we
build tools to enhance our abilities and enable new possibilities. At the present time,
technologies have reduced some limitation of physical distances, our activities have grown
from within local villages to global collaborations and soon will be multiplanetary colonies.
Therefore, communicating over the virtual world has become a more reasonable solution
than traversing long distances. Consequently, digital identity has become evidently nec-
essary. Our faces and fingerprints—two of the unique body parts—have been used in
identification documents such as passports, driving license, and identification cards, etc.
Subsequently, by projecting our unique body parts into digital identities and using them
in identity verification processes, we can increase the effectiveness of our global activities
and open new opportunities.

In cyber physical systems, speech is used as a tool to control other systems, as a way to
communicate with real and virtual people, and as properties. Therefore, security, content
management, and digital properties protection are important issues. Furthermore, speech
synthesis and voice conversion systems have been growing rapidly; thus, a counter measure
is necessary to ensure security for systems that are dependent on speech.

An example about using speech as a tool to control other automated systems is Amazon
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Alexa. Amazon Alexa is a speech analysis and synthesis system that allows users to
use natural speech to make purchases, play music, and check delivery status, etc. In
a recently published article [2], researchers reported that Alexa was available in more
than 100 million households worldwide and in both Amazon and third-party products.
Apart from the convenience brought to us by the speech system, the article reported
that there were various ways to attack the speech system on both front-end devices and
cloud-based back-end processing. Nevertheless, Alexa is just one speech system, there are
numerous other IoT devices in our smart environments and much more sensitive areas
such as banking, military, and politics, etc. Therefore, security is utmost important if we
are about to use speech to control our information systems.

Automatic speaker identification, verification, and retrieval applications are essential
parts of our information systems. However, active research in recording devices, speech
enhancement, text-to-speech, voice conversions, etc. is rapidly increasing the risks of using
such technologies to spoof human speech and to bypass security systems. Thus, speech
spoofing has become a complicated security issue. A recent community-led challenge—
ASVspoof—has been organized to promote the development of countermeasures to speech
spoofing [3]. The logical access dataset released by the challenge was created by using
17 types of text-to-speech engines and voice conversion techniques. Totally, the dataset
contains 19 types of spoofed speech. It means that the tools that can be used to fake
someone speech are easy and many. Therefore, spoofing countermeasures are needed;
otherwise, speech will become too dangerous to use.

1.3 Challenges

Researchers have believed that speaker individuality is unique to each person that is
produced by the glottal source and vocal tract, carried by a speech signal, and perceived by
the hearing system. However, most speech verification methods utilize traditional signal
processing techniques and optimization algorithms rather than incorporating knowledge
about biology and physiology into technologies. Very often, the attention of the proposed
methods is shifted to verification results rather than to the faith in speaker individuality.

Identity verification using fingerprints is good example to explain this problem. We
have complete proof to be confident that the minutiae of a fingerprint are what make
the fingerprint unique. Therefore, we design algorithms to target the uniqueness, the
minutiae, of the fingerprint instead of using Principal Component Analysis (PCA).

In the same manner, identity verification using speech fingerprints is a challenging
problem. We have complete faith to be confident that the speaker individuality of a
speaker is what make the speaker unique. Therefore, we should design algorithms to
target the uniqueness, the speaker individuality, of the speaker instead of using MFCCs.

One way to mitigate the issues is using speech fingerprints. Different researchers
have proposed different methods used for creating speech fingerprints. Regardless of the
intricacy of the fingerprinting systems, their designs appear to have three basic steps [4]. In
the first step, speech signals in time domain are usually transformed into time-frequencies
domain. The next step is designing a suitable feature extraction method so as to collect
unique features presented in the speech signals. The final step is compressing these unique
features to create the desired fingerprints.

Three steps of a speech fingerprint technique do not seem to be many but each is
a challenging research field and they have to support each other to form a thorough
solution. Speech signal representation can be generalized into four categories that are
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spectrogram, auditory spectrogram, sparse representation, and auditory sparse represen-
tation. Each type of coding has its unique characteristics and provides specific features
on its representation model and the choices are left for the designers to decide depending
on their ideas. Extracting relevent features from the representation models is a matter of
pattern recognition problems. How feature extraction methods are designed relied heavily
on subjective intentions and the ultimate goal is to obtain distinctive information that
can help identify speech signals. The hashing techniques that are used to create speech
fingerprints can be as simple as applying a hash function to generate hash chunks or
complicated as converting the set of features from step two into another set of features. No
matter how sophisticated they are, the final fingerprints are bounded to some requirements
such as distance metrics, storage size, and indexing speed.

Ellis et al. [5] created an application used for audio fingerprints identification. Based
on his work, an experiment was conducted to verify the effectiveness of applying an audio
fingerprinting technique to speech. A data set consisting of eleven speech signals was
created by a speaker speaking /Hello/ eleven times. Ten speech signals were used to
create a database of speech fingerprints using this application. The other speech signal
was used for the identification task. Testing results showed that the performance of this
application was unreliable in speech although it worked very well in identifying music.
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Figure 1.2: Example of signal shifting and phoneme scaling problems. Panel (a) and (b)
are two speech signals produced by the same speaker speaking the same speech content
at different speed. Panel (c) and (d) are spectrogram representation of (a) and (b),
respectively.
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Working with speech signals, one may have to pay close attention to their instability.
Unlike music clips, which are controled by machines and copied from same sources,
acoustic events of speech signals vary significantly even if they have the same content
and are produced by the same speaker. Signal shifting is one of the challenging issues in
recognizing patterns of speech signals. It is difficult to align two signals perfectly therefore
the beginnings and the ends of speech signals are shifted. As a result, patterns on the
corresponding representation model are also unaligned. Consequently, it is difficult to
compare the similarities and differences among the features directly.

Another challenging issue is phoneme scaling. It is unlikely that a person can produce
exactly the same speech signals even with the same linguistic contents. Perceptually, they
may sound the same but technically, the durations of the phonemes are different. As a
result, local patterns on the representation models are difficult to be compared directly.

Figure 1.2 shows an example of the signal shifting and phoneme scaling problems.
Signals on panel (a) and (b) are produced by a same speaker speaking the same speech
content at different speed. It can be seen that the signals are shifted; also, the durations
of their compartments are uneven. When these signals are transform into time-frequency
domain, the amount of acoustical features and their localization are different. Thus, it is
difficult for speech fingerprint techniques to analyze the similarity and difference in speech
signals.

The problem becomes more serious with the block-based coding technique because
it is sensitive to signal shifting and phoneme scaling. This is the most common coding
technique that is used in speech analysis. An arbitrary speech signal is divided into
blocks by overlapping windows, and then, each block is transformed independently to
create a representation model for the signal, known as spectrogram. Considering the fact
that a speaker makes a different speech signal anytime he speaks something even when
the speech content is the same. Therefore, applying block-based coding techniques to
speech will result in having different spectrograms even when the speaker and the speech
content are the same. These problems can be seen clearly in panel (c) and (d) of fig. 1.2.
The durations of the prominent acoustical features and their localization are substantially
different. An adaptive coding method, which is able to cope with the variations of speech,
should be used in the process of creating speech fingerprints.

One theory of efficient auditory coding hypothesizes that the auditory periphery
produces an efficient spike code that conveys the maximum amount of information about
an input signal [6]. Also, according to current opinion on the sparse coding of sensory
inputs [7] and theories of hearing [8], the auditory periphery emphasizes acoustical cues
of a continuous speech waveform into neural activity patterns (NAPs) that are sent
to the central nervous system, at which point, we are able to understand the speech
waveform, e.g., linguistic and speaker individuality. Therefore, mimicking the ability of
the auditory periphery to obtain such auditory representations would be beneficial for
speech fingerprint techniques.

Previous studies revealed that sparse representation outperforms spectrogram in speech
signal representation because sparse coding is data-driven and able to capture the un-
derlying structures and adapt to the variations of speech. Subsequently, the underlying
structures can be emphasized by the non-zero elements and are said to be the “geometric”
information of the signals [9]. In addition, incorporating psychoacoustic principles into
sparse representations can make the underlying structures become perceptual structures.
Thus, the perceptual structures can be used to mimic the abilities of the auditory system
and improve the performance of speech fingerprint techniques, consequently.
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1.4 Motivation and Research Goals

The problem can be solved by using biologically accurate speech fingerprints because it
is the recommended way. Identity verification using fingerprint and facial verification
is based on biologically accurate features such as minutiae on a fingerprint and facial
landmarks on a face. In the same manner, identity verification using speech fingerprint
should also be based on biologically accurate features.

Speaker individualities are carried by speech signals, projected onto the auditory
nerves, and inherent in neural activity patterns (NAPs). Therefore, auditory sparse
representations are derived from speech signals to mimic the NAPs. In general, our
minutiae are on our fingers, our facial landmarks are on our face, and our speaker
individualities are on our auditory nerves.

To say that using biologically accurate speech fingerprint is the recommended way
for speaker verification could be a false claim, to argue, because there are many other
nonbiologically accurate ways to deal with the problem of speaker verification. A coun-
terargument is that we use MFCCs as a feature, and deep learning as a classifier for speaker
verification because we have insufficient knowledge about the uniqueness of speaker indi-
viduality. Perhaps it is this study which has insufficient knowledge about the uniqueness
of speaker individuality. Once, as loyal to our faith in speaker individuality, we discover
that there are unique minutiae on the NAPs, just like the unique minutiae on the fingers,
we should redesign our algorithms to focus on biologically accurate speech fingerprints.

As shown in Fig. 1.3 (b), humans possess many unique traits such as fingerprints,
irises, facial features, and speech fingerprints. Tremendous efforts spending on researching
speaker individuality, speaker verification, and speech recognition have formed the belief
that speech can also become a measurement in biometric security. Regardless of the wide
variations of speech, it is a matter of fact that we can recognize the spoken words and
distinguish the voice of a speaker from others. Therefore, it is believe that speech signals
must have contained information about linguistic content and speaker individuality as
depicted in Fig. 1.3 (a). These features are essential to the process of creating speech
fingerprints; by extracting and combining them, the accuracy and reliability of speech
fingerprint can be greatly improved.

In real life, speech is one of the natural communication tools of humans. The au-
ditory system transforms speech waveforms into neural activities, and information, such
as linguistic information, speaker individuality, and emotions, can be recognized. Our
hearing system can perform complicated listening tasks, such as speaker identification,
speech recognition, and sound localization, in extremely noisy environments, such as in
the case of the well-known cocktail party effect. Inspired by the amazing abilities of our
hearing system, researchers have been studying the characteristics of the auditory system
and utilizing the collected knowledge to improve the performance of various techniques
and applications, e.g., hearing aids in health care, speaker recognition in automation, and
anti-spoofing in security.

There are numerous direct and indirect studies about speech fingerprints. However,
the direction of existing studies is influenced by practical purposes such as speaker iden-
tification, verification, and retrieval. As the result, the actual speech fingerprints are
often neglected. Perhaps this is because of the lack of a clear definition of what speech
fingerprint is. Defining speech fingerprint is not the ambition of the present study;
however, curiosity often causes obsessions with answers. A long time ago, when we looked
at our fingerprints, those lines on the surface of the fingertips combining with sweat to
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increase friction strength when grabbing objects, we did not know that they were one of
the most reliable identification systems. Today, we have found that each person possesses
unique fingerprints that can be used as a biometric security measure.

The word fingerprint may cause some misunderstandings. When we apply ink on our
fingers and stamp on a piece of paper or when we press our fingers on an electrical scanner,
we obtain physical or digital images or “prints” of our fingers. Meanwhile, the actual
fingerprints are always present on our fingers. Unlike fingerprints, speech fingerprints
are not always present and which part of our body accommodates speech fingerprints is
unclear. Based on the fact that we can identify different speakers, it is reasonable to
believe that there exist speech fingerprints somewhere in the auditory pathway. At this
point, the present study assumes that the auditory nerves are where speech fingerprints
reside and speech fingerprints are only appeared at the present of human speech. The
auditory nerves cary NAPs to the auditory cortex; apperantly, the NAPs contain many
information including speech fingerprints as well as linguistic, emotion, age, etc. Some of
the natural responses to the assumption are:

• How to extract speech fingerprints from the auditory nerves? This question is
important because we cannot pull out the auditory nerves and stamp them on a
piece of paper to get speech fingerprints.

• Are the speech fingerprints unique to each person? This question is important
because the uniqueness of speech fingerprints is essential if they were to be used as
a biometric security measure.

• How to compare two speech fingerprints? This question is important because it is
related to the applications of speech fingerprints.

The first goal of the present study is constructing an algorithm to approximate the NAPs
of the auditory nerves. Speech fingerprints are assumed to be contained in the NAPs
of the auditory nerves; therefore, the present study aims to mimic the NAPs by using
psychoacoustic principles, auditory filterbank, and sparse coding. The second goal is
verifying the uniqueness of the speech fingerprints. This step is important because the
calculated speech fingerprints are approximations of the real ones. This is a challenging
task because equipment is unavailable for obtaining the real NAPs of the human ears
so that we can compare the real NAPs with the computed speech fingerprints. Thus,
we conduct a speech analysis/synthesis experiment and a pattern matching experiment
to evaluate the important information encoded by speech fingerprints. The third goal is
constructing a suitable identification system to evaluate the uniqueness and usefulness
of speech fingerprints. At this point when the first and second goals are achieved,
uniqueness of the calculated speech fingerprints are proved, the next step is constructing
an effective identification algorithm. One of the main applications of speech fingerprints
is identifying speakers in a large dataset. Therefore, speech fingerprints are used in a
speaker identification and retrieval experiment.

1.5 Contributions

Biologically accurate features are proposed to use for the process of extracting speech
fingerprints. More specifically, Equivalent Rectangular Bandwidth (ERB) scale, Gam-
machirp (GC) kernel, and masking effect are used in the speech analysis process towards
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speech fingerprints extraction. Three experiments were conducted to evaluate the pro-
posed method.

The first experiment is an analysis/synthesis experiment. The proposed method is
used to derive auditory sparse representation from speech signals to mimic the NAPs. So,
the question is: how close is the calculated NAPs―the auditory sparse representation―to
the real NAPs of the auditory nerves? We do not have the real NAPs to compare with yet;
therefore, we can only do the analysis/synthesis experiment to evaluate the perceptual
qualities—Perceptual Model Quality (PEMO-Q) and Perceptual Evaluation of Speech
Quality (PESQ) scores—of the proposed auditory sparse representation. Experimental
results show that the proposed method is the most effective to mimic the NAPs in
comparison with other types of features.

The second experiment is a pattern analysis experiment. Speaker individuality is
believed to be unique to each person and the purpose of the proposed method is obtaining
speaker individuality. So, the question is: Do the proposed Auditory Sparse Representa-
tion (ASR) contain unique patterns? Landmark-based pattern analysis is used for this
purpose. Experimental results provide strong evidence that the proposed ASR contain
unique patterns in comparison with other types of features.

The third experiment is about finding an effective speech fingerprint identification
system for speaker verification/identification/retrieval. Assuming that the proposed ASR
is very similar to the NAPs, it contains unique speaker individuality, and there are
currently seven billion speaker individualities of living people and more to come, not
to mention those of deceased people and artificial intelligence. So, the question is: What
could be an effective speech fingerprint identification system to do speaker verification
in this gigantic dataset? Globally and in real-time? A deep hashing—Central Similarity
Quantization (CSQ)—is used for this purpose. Identification results show that CSQ is
highly effective in Voxceleb2 dataset. The identification results can also be strong evidence
about the unique patterns conveyed by the proposed ASR.

1.6 Organization of thesis

The remainder of this dissertation is organized as follows. Chapter 2 describes the related
work to creating speech fingeprints including audio fingerprints and various kinds of
representations of speech signals. Chapter 3 goes into detail on how our proposed method
calculates speech fingerprints from speech signals. Chapter 4 elaborates our experiments
to evaluate important information encoded by speech fingerprints. Chapter 5 describes an
experiment used for verifying the uniqueness of speech fingerprints by using a landmark-
based pattern analysis application. Chapter 6 describes another experiment used for
verifying the uniqueness and usefulness of speech fingerprints by using a deep hashing
method. Finally, Chapter 7 states our conclusions.
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Chapter 2

Literature Review

2.1 Summary

In this chapter, a survey about audio/speech fingerprint methods is presented. The
purpose is to learn about what audio/speech fingerprint is, its importance, how they
are created, the related issues, and its applications, etc. Furthermore, an experiment is
conducted to evaluate the performance of one of the most popular audio fingerprint tech-
niques with speech signals. Experimental results and analysis are presented. Furthermore,
a study about current techniques used for decomposing speech signals is presented.

2.2 Audio/Speech Fingerprint Methods

2.2.1 Audio fingerprints

Audio fingerprinting is the process of analyzing audio signals to obtain their unique
features, then combining these unique features to create compact representatives for the
audio signals [10]. Unlike audio watermarking, which is the process of embeding metadata
into audio signals, audio fingerprinting processes the waveforms of audio signals directly
to capture their inherent characteristics so as to produce distinguishable information.

In the digital era, when music, speech, and videos are digitalized, uploaded, and
transferred in the Internet, audio fingerprints play a significant role in the content identi-
fication tasks as media can be quickly identified. According to a report [11], illegal usage
of digitalized media have dealt serious damages to our economy; content creators can use
audio fingerprints to prevent unauthorized broadcasting of their assets. Applications can
be developed to help people identify music quickly using audio fingerprinting techniques;
this efficiency can boost productivities and convenience in our lives.

Audio fingerprinting is a very complicated technique. To achieve the effectiveness and
efficiency that fit for the demands of content-identification applications, the technique
must be accurate and reliable enough to distinguish one audio signal from others. It has
to be fast in response to timing requirements. In reality, we do not usually compare two
original audio signals together; therefore, the fingerprints must be durable against attacks
such as distortions and signals shifting. In addition, audio fingerprints have to be small
in size storage requirements and searching performance [4].

Figure 2.1 illustrates a simple application of audio fingerprinting technique that can
be used for identifying unknown audio signals. The application can be divided into
two processes. The main objective of the first process is creating a database of audio
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fingerprints. In this process, a fingerprints extraction unit analyzes audio signals to create
their audio fingerprints and these fingerprints are kept in a database for future references.
The main purpose of the second process is identifying unknown audio signals. In this
process, the fingerprints extraction unit analyzes the unknown audio signals to determine
their fingerprints, then these unknown fingerprints are looked up in the database of audio
fingerprints by a search algorithm. Once their matches are found, the unknown audio
signals can be identified and their additional information can be retrieved. Among the
various stages, the fingerprints extraction unit is the heart of this application and will be
discussed carefully in the following sections.
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2.2.2 Typical method used for creating audio fingerprints

In the attempts to derive the fingerprints of audio signals, many researches and different
approaches have been conducted and proposed by researchers [12–14]. In spite of their
ingenious ideas, their methods appear to consist of three stages as depicted in Fig. 2.2.
In the first stage, an encoding technique is applied to transform raw audio waveforms
into their representation models. In the second stage, a feature extraction module is used
to analyze and extract unique features of the audio waveforms from their representation
models. In the last stage, a hashing technique is used to pack the extracted features to
create fingerprints for the input audio signals.

The main idea of stage one is converting a raw input waveform into a set of features
that represents acoustic events and block-based coding is commonly used for this purpose.
This method assumes that for a period of a few milliseconds, the audio signal is unchanged.
For this reason, a windowing technique is usually applied to divide the signal into frames.
Then linear transformation techniques, namely Fast Fourier Transform (FFT), Discrete
Cosine Transform (DCT), and wavelet transformation, converts the frames into a set
of acoustic features. The output of this stage is a representation model of the input
signal, commonly known as a spectrogram. One important concern when using windowing
technique is that there is a trade of between loss of information and computational
complexity.

The main purpose of stage two is extracting features of the representation model
that convey inherent information of the input audio signal. The extracted features
of one signal should be distinguishable with features of other signals and resilient to
attacks such as distortions and signal shiftings. For this purpose, a handful of techniques
have been proposed for different rationales. Some researches utilized Linear Prediction
Coefficients (LPCs), linear prediction cepstral coefficients (LPCCs), or Mel-frequency
cepstral coefficients (MFCCs) to represent the spectral envelope. Some were inspired
by the vibrations of the basilar membrane and used signs of energy to simulate its
fluctuations. Other researchers used only maximum energies or peaks of the spectrograms
with the justification that lower energies are unlikely to survive noise.

Creating fingerprints for audio signals from the extracted features is the main focus of
stage three. The features obtained from stage two, which contain unique characteristics
of the audio signals, can be regarded as fundamental fingerprints and the hash function of
stage thee continues to increase the discrimination power of the fingerprints and to reduce
the dimension of the fingerprints for searching efficiency. Templates of audio fingerprints
vary depending on the hash function. They can be vectors or matrices of binary or
decimal numbers. Some researchers compared values of the extracted features to create
binary encoded fingerprints, others created their final fingerprints by applying pattern
recognition methods to capture the relationships of the features [14–20].

2.2.3 Problems of audio fingerprints in speech

In case of music, the methods mentioned above achieved admirable results but the charac-
teristics of speech have exposed their weaknesses. Block-based coding technique divides
a speech signal into blocks having similar arbitrary widths and processes these blocks
separately using Discrete Fourier Transform (DFT) or Discrete Cosine Transform (DCT).
This technique is substantially sensitive to signal shifting and phoneme scaling; randomly
blocking speech signals does not take into account the alignment of acoustic cues. Given a
speech content, it is unlikely for a speaker to produce signals having the same length and
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phonemes having the same duration. Figure 1.2 shows two speech signals that have the
same content and are produced by the same speaker and their corresponding spectrograms.
Perceptually, these two speech signals may sound the same but techniquely, the alignments
and durations of their acoustic features are considerably different. Therefore, block-based
coding will create different spectrograms for speech signals that have the same content and
same speaker. One way to overcome the drawback of block-based coding is using filterbank
based shift invariant coding but this technique greatly increase the dimension of speech
signals because of its convolutional calculations. Data redundancy on the representation
models makes it difficult to recognize the underlying structures of speech signals [9, 21].

The sources of problems do not confine only in the signal representation process, they
also appear in the features extraction methods. To gather features for the production
of speech fingerprints, several methods have been proposed; one used the signs of en-
ergies, another used the peaks of spectrogram. Although their methods achieved great
experimental results, none of them take into account patterns of the features on the
representation model. Given a pair speech signals that has the same content but different
speakers and another pair that has the same speaker but different contents, a feature
extraction method should realize the similarities and differences of the features on the
representation model to improve the quality of speech fingerprints.

An experiment was carried out to evaluate the ability of block-based coding in repre-
senting speech signals. A Gammatone (GT) filterbank [22] was used in this experiment
to process ten speech signals with the same content produced by two speakers. Although
this is one of the most well-known techniques used in speech processing, testing the
distortion between the original signals and the resynthesized signals could only achieve
mean µ = 18.9 dB and standard deviation σ = 1.2 dB in the Signal to Noise Ratio (SNR)
(ranges of SNR are: below 25 dB is low, from 25 dB to 40 dB is high, and above 40 dB is
excellent), and mean µ = 3.9 and standard deviation σ = 0.1 in the perceptual evaluation
of speech quality (PESQ)(PESQ scores are: 1 is bad, 2 is poor, 3 is fair, 4 is good, and 5
is excellent).

Based on the work by Ellis [5], another experiment was also conducted to investigate
the effectiveness of spectrograms in the process of producing speech fingerprints. The
results obtained from this experiment by using the previously described data proved that
different fingerprints were generated for speech signals that had the same content and the
same speaker despite the fact that this method worked very well with audio fingerprints.
Section 2.3 goes into detail about advantages and disadvantages of various kinds of speech
coding strategies.

2.3 Speech coding methods

2.3.1 Uniform filterbank

The time-frequency resolution of a signal representation is an important aspect in filter-
bank design. The shape of the filter, duration of translation, and filter function should be
chosen adaptively to the input sounds (i.e., noises, transients, tones, and complex sounds)
to increase the fidelity of acoustical cues as well as the signal structure of the resultant
representation.

At the early stage of hearing research, it was believed that the cochlea was a fre-
quency analyzer; therefore, orthonormal bases such as the well-known Fourier series and
Krawtchouk-Tchebichef polynomials [23] were commonly used to expand audio signals
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into a linear combination of pure tones as a way to mimic the cochlear [8]. Fourier
Transform (FT) is sufficient to obtain the frequency components of a signal. It provides
an insight into the prominent frequencies of a signal. It is calculated as follows:

f̂(ω) =

∫ +∞

−∞
f(t)e−iωtdt, (2.1)

where f(t) and ω are a signal and frequency, respectively. With regard to periodic
signals, FT is sufficient to obtain frequency components of a signal. However, it becomes
troublesome with aperiodic signals. It provides only a frequency spectrum of the input
signal; time localization of acoustical cues is unavailable. A wide variety of natural sounds
such as speech is aperiodic and consists of different frequency components appearing at
different time onsets. Therefore, using FT is not suitable for obtaining the complex
structures of these signals. In the auditory system, sounds are converted by the auditory
periphery into NAP. In NAP, not only are the places where neurons are fired important,
the precise timings of the firing are also essential cues for the brain to understand the
input waveforms [8]. Therefore, estimating the time and frequency localization of the
acoustical cues of input signals is an important task to be considered.

One possible way to obtain the time localization of frequency components is using
Short-time Fourier Transform (STFT). A short segment of a signal is taken, and it is
assumed that this short-segmented signal is periodic, and FT can be applied to this
signal. STFT can be represented as a windowed Fourier transform in L2(R) as:

Sf(τ, ω) = ⟨f, gτ,ω⟩ =
∫ +∞

−∞
f(t)g(t− τ)e−iωtdt, (2.2)

where g(t − τ) is a window function translated by τ . If the duration of the window
function equals the duration of the input signal, Eq. (2.2) becomes Eq. (2.1), and signal
decomposition is applied to the entire length of the signal. Thus, information about
what frequencies appear at what time onset cannot be obtained. With STFT, however,
the signal is segmented into short fragments, and spectrum analysis is applied to each
segment. The frequency spectra of the segments are then concatenated. This way, the
result of the STFT is a three-dimensional spectrogram of the signal. On the horizontal
axis, a sequence of fragments can be seen as the time, on the vertical axis, the frequency,
and on the other axis, the magnitudes of Fourier coefficients.

The practice of segmenting a signal into short fragments is called the windowing
technique. Each window has its shape, such as a length and height. It is translated by
a certain amount along a signal during the analysis process. The choice of the window
shape and translation duration is related to the time-frequency resolution and the amount
of data in the resulting spectrogram. The important point is to learn the time localization
of the prominent frequency components composing a signal so that the structures of the
signal can be emphasized in the corresponding spectrograms. For example, it is better
to use a longer window to capture the oscillations in a lower frequency range and a
shorter window to obtain transients in a higher frequency region. If the analysis window
is translated with no-overlap, there might be a loss of information in the spectrogram, and
if the window is translated with a high amount of overlap, important cues of the signal
will be smeared in the spectrogram. As a result, the perceptual structures of speech
signals are difficult to obtain. Although STFT provides a time-frequency representation
of a signal, there is a shortcoming with it; STFT uses uniform window shapes. Therefore,
if a complex signal contains both oscillations at low frequencies and transients at high
frequencies, a fixed window can only be suitable for one of these cases.
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2.3.2 Non-uniform filterbank

Finding suitable shapes of analysis windows to obtain a good time-frequency resolution
is a challenging task in signal processing. A preferable choice is to use wide windows at
low frequencies and narrow windows at high frequencies. This can be done by utilizing a
scaling factor.

Wf(τ, s) = ⟨f, ψτ,s⟩ =
∫ +∞

−∞
f(t)

1√
s
ψ∗

(
t− τ
s

)
dt. (2.3)

Equation (2.3) shows the calculation of a continuous wavelet transformation. In the
equation, there is a basis function, ψ, and this function is also called the mother wavelet.
The shape of the analysis windows can be dilated by the scale factor s. By adjusting the
scale factor, a family of wavelets with different shapes can be created. In addition, by
applying this wavelet technique, a short window height can be used for a good frequency
resolution at low frequencies and a short window length for a good time resolution at high
frequencies.

On the basis of spectrograms, feature-emphasis techniques such as mel-frequency
cepstral coefficients (MFCCs) [24–26] and linear prediction cepstral coefficients (LPCCs)
[27, 28] can be applied to obtain significant acoustical feature vectors. Pattern-analysis
techniques (e.g., support vector machine [29] for voice pathology detection, Gaussian
mixture model [30] for speaker recognition, and deep neural networks [31] for emotion
recognition) are then applied to the feature vectors.

Although a non-uniform filterbank (e.g., wavelet transform) provides a better time-
frequency resolution in comparison with a uniform filterbank (e.g., STFT) and current
speech-analysis techniques provide perfect signal reconstruction [32, 33]. The output
provided by filterbank analysis in general contains highly redundant coding data. Thus,
speech-signal patterns are smeared over spectrograms [9].

2.3.3 Auditory filterbank

Traditional wavelet filterbanks utilize a scale factor s = 2j, where 0 ≤ j ≤ log2(N), and N
is the number of samples of an input signal [34]. The scaling factor used for controlling the
time-frequency localization of wavelets is calculated without considering psychoacoustic
findings. Thus, the center frequencies and the corresponding bandwidths of wavelet filters
are not similar to those of auditory filters. Hence, the outputs of traditional wavelet
filterbanks cannot be regarded as auditory representations.

Incorporating scientific discoveries into designing filters would provide a filterbank
that is close to that of the auditory system. Psychoacoustic studies have calculated the
ERB scale by estimating the ERB and the center frequency of an auditory filter by using
human masking data [35]. Therefore, controlling the time and frequency localization of
wavelets on the basis of the ERB scale would provide a representation that is more closely
related to how sounds are represented in the auditory system.

Gammatone and gammachirp filterbanks are two variations of wavelet filterbanks.
The center frequencies of these filterbanks are divided on the basis of the ERB scale, and
the filter functions are gammatone and gammachirp functions that were designed on the
basis of the characteristics of the basilar membrane. The outputs of these filterbanks
are most similar to auditory representations in comparison with STFT and Gabor (GB)
filterbanks.

Another commonly used approach in emphasizing significant features is auditory-
inspired representations which focuses on important perceptual features. Inspired by the
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amazing abilities of the human auditory system, different methods have been proposed
to mimic the cochlear. For instance, neurograms [36–38] and cochleagrams [39–42] have
been successfully applied to improve performance of various applications such as speech-
emotion recognition, phoneme classification, and speech-intelligibility prediction. The
advantage of these auditory spectrograms over conventional spectrograms is that psy-
choacoustic principles (e.g., using equivalent rectangular bandwidth scale and gammatone
impulse response) are used to derive perceptual features from speech signals. Nevertheless,
auditory spectrograms possess a similar drawback of conventional spectrograms, i.e.,
the abundant coding data obscures the perceptual structures of input signals in the
representation [9].

2.3.4 Sparse representation

Although the wavelet transform provides a better time-frequency resolution in comparison
with STFT, frame-based processing with overlapping windows generates high redundancy
in coding data, causing the structures of input signals to be difficult to obtain. It is
desirable to have an adaptive technique that provides a good time-frequency resolution
for wavelet transforms, discards redundancy, and emphasizes the unique features of speech
signals. The structures of speech signals can be emphasized by using sparse nonlinear rep-
resentation because this kind of representation focuses on the highest energy of the signals
with few coefficients. These few coefficients are said to be the “geometric” information
of the signals [9]. Furthermore, research in the literature also provides evidence that,
although with fewer coefficients, the number of approximation errors is lower than in the
case of linear approximation.

The Nyquist sampling theorem specifies that to avoid losing information when cap-
turing a signal, one must sample at least two times faster than the signal bandwidth.
This is the most common method used to digitize sounds such as speech and music.
Recent studies have discovered that a digitized signal can be further converted into and
reconstructed from its sparse representation. The number of non-zero elements in this
sparse representation is much less than the number of samples of the digitized signal
itself. Thus, this sparse representation provides great benefits in signal compression,
noise reduction, and pattern recognition. The literature has proof showing that the sparse
representation is beneficial and favorable in a wide range of applications such as speech
processing and computer vision.

Recent studies have emphasized the advantages of sparse representation over spec-
trogram representation as it increases the signal to noise ratio, it is shift invariant [43],
and more importantly, the geometrical information of the speech signals is emphasized
with the non-zero elements of the representation [9]. Given a discrete signal f and an
orthonormal basis D = {gm}m∈Γ, an approximation of f is

f =
∑
m∈Γ

⟨f, gm⟩ gm. (2.4)

A sparse representation of f can be obtain by projecting the signal onto an orthonormal
basis Λ = {gm}m∈Λ, where Λ ⊂ D. The orthogonal projection of f on the space VΛ

generated by the vectors in Λ is

fΛ =
∑
m∈Λ

⟨f, gm⟩ gm. (2.5)
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Thus, the resulting error is as follows:

∥f − fΛ∥2 =
∑
m/∈Λ

|⟨f, gm⟩|2 . (2.6)

The approximation error is dependent upon the number of vectors in Λ; therefore, a
threshold T can be used to control the trade-off between the sparseness of the sparse
representation and the approximation error.

A current trend in audio and speech coding proposes using auditory sparse representa-
tion to focus on the perceptual structure of a signal [43]. One theory of efficient auditory
coding hypothesizes that the auditory periphery produces an efficient spike code that
conveys the maximum amount of information about an input signal [6]. According to
current opinion on the sparse coding of sensory inputs [7] and theories of hearing [8], the
auditory periphery emphasizes acoustical cues of a continuous speech waveform into neural
activity patterns (NAPs) that are sent to the central nervous system, at which point, we
are able to understand the speech waveform, e.g., linguistic and speaker individuality.
Thus, mimicking a NAP would be beneficial for various speech-analysis techniques and
applications, e.g., hearing aids in health care, speaker recognition in automation, and
anti-spoofing in security.

Sparse representation, which has been becoming preferred over spectrogram represen-
tations, can be used to overcome the disadvantage of the redundancy of coding data. The
orthogonal matching-pursuit (OMP) algorithm is commonly used for obtaining sparse
representation of speech signals [34]. An advantage of sparse representation is that it
provides high signal reconstruction quality using a low number of non-zero elements.
A previous study [44] reported that the sparse representation provided good signal-
reconstruction quality using only 5 to 10% of the dimension of the original signal under
clean and noisy conditions. Subsequently, the underlying structures of speech signals can
be emphasized by the non-zero elements and are said to be the “geometric” information
of the signals [9].

Although the original OMP algorithm can be used to discard the redundancy of coding
data, the obtained underlying structures cannot be regarded as perceptual structures
because psychoacoustic principles are not incorporated into the algorithm. Previous stud-
ies [45,46] used perceptual MP (PMP) algorithms to improve sinusoidal audio modeling.
Although these algorithms provide a perceptual sparse representation, which increases
the perceptual quality of the resynthesized signals, their drawback is that they operate
on the Bark scale. Psychoacoustic research derived the equivalent rectangular bandwidth
(ERB) scale as a function that relates the number of ERBs to the center frequencies
of auditory filters by using a notched-noise method to better explain psychoacoustical
data [35]. Therefore, using the ERB scale is more suitable than using the Bark scale in
creating auditory sparse representation.

2.3.5 Optimal kernel

Determining optimal kernels, gm, to project audio signals onto the space VΛ such that the
resultant representation is similar to that of the auditory system is an important issue. A
theoretical study suggested that, given a mixture of sounds, a suitable shape and length
of a kernel could improve the fidelity of a representation [6]. This study also reported
that the optimal kernel for representing a combination of mammalian vocalizations and
environmental sounds has a rapid rise and slow decay that are similar to the characteristics
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of the envelopes of auditory revcor filters and gammatone/gammachirp filters. Research
reported in [47] evaluated three kinds of kernels (i.e., Damped Sinusoid (DS), Gabor,
and gammatone) with some speech signals from the TIMIT dataset and suggested that
the gammatone kernel was the best choice in terms of signal reconstruction quality and
atom rate. An extended version of the gammatone filter, known as the gammachirp,
is described as an optimal auditory filter in comparison with the Gabor and gammatone
filter [48]. The gammachirp can provide an excellent fit to 12 sets of notched-noise masking
data [49]. Therefore, the gammachirp kernel is a good candidate to be considered for
auditory representation. This paper aims to evaluate the gammachirp kernel along with
damped sinusoid, Gabor, and gammatone kernels in the process of creating auditory
representations.

Another drawback of the original OMP algorithm is that it uses Gabor basis to
decompose speech signals. A previous study [47] evaluated three types of kernels—damped
sinusoid (DS), Gabor (GB), and gammatone (GT)—with some speech signals from the
TIMIT dataset and suggested that gammatone kernels were the best choice in terms
of signal-reconstruction quality and atom rate. Psychoacoustic research has found that
another important characteristic of the auditory periphery is that the impulse responses
measured at the basilar membrane have a gamma-like temporal envelope and non-linear
up-chirp frequency modulation [50]. The gammachirp (GC) provided an excellent fit to
12 sets of notched-noise masking data [49] and was described in a previous study [48]
as an optimal auditory filter in comparison with the GB and GT filters. By using the
GC kernel, the auditory representations would be more similar to that of the auditory
periphery.

2.3.6 Auditory masking

Incorporating psychoacoustic principles into auditory representations is mostly about
masking effects, i.e., frequency and temporal masking. The underlying idea is to obtain
only audible kernels, and thus, the perceptual structures of the speech signals are more
refined, and the auditory representation is more similar to that of the auditory periphery.
Research reported in [21,45,46,51] proposed temporal masking models to remove inaudi-
ble elements to refine perceptual patterns on sparse representations of speech signals.
However, the drawback of this research is that the frequencies of the kernels and the
masking surface are calculated on the basis of the Bark scale. Moore and Glasberg
described in their work that the ERB scale is more closely related to how sounds are
represented in the auditory system [35]. Research reported in [52] used the Gabor function
to develop a time-frequency masking kernel. The underlying idea is to calculate a joint
time-frequency masking surface instead of considering frequency masking and temporal
masking separately. However, the drawback of this research is its use of the Gabor kernel,
which is a symmetrical kernel and in contrast with the optimal kernel found in [6,48,49].
This paper aims to calculate the frequencies of the kernels and the masking surface on
the basis of the ERB scale instead of the Bark scale.

The masking effect is another important phenomenon of the auditory periphery that
is incorporated with the MP algorithm. The underlying idea is to obtain only audible
kernels; thus, the perceptual structures of the speech signals are more refined, and the
auditory representation is more similar to that of the auditory periphery. Previous
studies [21,51] proposed temporal masking models to remove inaudible elements to refine
perceptual patterns on sparse representations of speech signals. However, the drawback
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of these studies is that the frequencies of the kernels and masking surface are calculated
on the basis of the Bark scale. Moore and Glasberg described that the ERB scale is
more closely related to how sounds are represented in the auditory system [35]. A
previous study [52] used the GB function to develop a time-frequency masking kernel.
The underlying idea is to calculate a joint time-frequency masking surface instead of
considering frequency masking and temporal masking separately. However, the drawback
of this research is its use of the GB kernel, which is a symmetrical kernel and in contrast
with the optimal kernel found in previous studies [6, 48,49].
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Chapter 3

Auditory Sparse Representation

3.1 Summary

In this chapter, an algorithm is constructed to reproduce the output of the auditory
periphery that is the NAPs of the auditory nerves. The purpose of the algorithm is
deriving auditory sparse representations of speech signals as a way to mimic the NAPs.
Because speech fingerprints cannot simply be extracted as the case of fingerprints or facial
patterns by using electrical scanners, they can only be calculated. To do so, a gammachirp
auditory filterbank and psychoacoustic principles are employed to ensure the perceptual
features on the representations are as similar to the NAPs as possible. Furthermore, an
orthogonal matching pursuit algorithm is used to produce sparse representations because
NAPs are sparse signals.

3.2 Proposed method

Sparse representations of speech signals can be calculated by using a Matching Pursuit
(MP) algorithm. Figures 3.2 and 3.3 show block diagrams of Orthogonal Matching Pursuit
(OMP) and Perceptual Matching Pursuit (PMP) algorithms, respectively. Generally, the
algorithms calculate a sparse representation of an input signal in four steps. First, the
algorithms project an input speech signal onto an overcomplete time-frequency dictionary.
Then, in step two, the highest values of the orthogonal projection of the input signal
on a kernel of the time-frequency dictionary are selected. In step three, the time-
frequency localization and magnitude of the selected kernel are used to update the sparse
representation, resynthesize the signal, and remove the selected kernel from the projection.
In step four, a threshold is chosen as a stopping rule. Matching pursuit is an analysis
by synthesis technique, meaning that the resynthesized signal and the input signal are
compared at each iteration using a metric such as PEMO-Q, PESQ, SNR, or LSD. If the
threshold or the maximum number of iterations is reached, the algorithms halt; otherwise,
they loop back to step one.

The MP and PMP algorithms reported in this text use the ERB scale to calculate the
time-frequency dictionary to account for the characteristics of the auditory system. Four
kinds of kernels are evaluated to find the optimal kernel for decomposing speech signals.
In addition, a masking model, which is calculated from the selected kernels, is utilized
to remove masked elements in an orthogonal projection to account for masking effects of
the auditory system. Thus, the output sparse representation can convey the perceptual
structures of the input speech signals.
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The calculation of the time-frequency dictionaries using the four kinds of kernel
functions based on the ERB scale is described in section 3.3. The MP, PMP, and a
masking model evaluated in this study are explained in section 3.4.

3.3 Time-frequency dictionary

A matching pursuit algorithm requires a time-frequency dictionary, which is an overcom-
plete set of kernels, to decompose input signals. The work reported in this paper utilized
the ERB scale to calculate the center frequencies and bandwidths of kernels to account
for the characteristics of the auditory system. While revising the Zwicker loudness model,
Moore et al. [53] provided a formula that related the number of ERBs to the frequency
as follows:

Number of ERBs, E = 21.4 log10(4.37fc + 1)

⇒ fc =
1

4.37

(
10

E
21.4 − 1

)
,

(3.1)

where fc(kHz) is the center frequency of an auditory filter, and ERBs is the number of
the equivalent rectangular bandwidth. Furthermore, the bandwidth of an auditory filter
can be calculated as follows:

ERB(fc) = 24.7(4.37fc + 1), (3.2)

where ERB is the equivalent rectangular bandwidth of an auditory filter at the center
frequency fc. Equations (6.1) and (6.2) are utilized to calculate the center frequencies
and bandwidths of four kinds of time-frequency kernels, i.e., Gabor, damped sinusoid,
gammatone, and gammachirp kernels. Figure 3.1 shows the kernel models that are eval-
uated in this work.

3.3.1 Gabor kernel

Among the four kinds of kernels evaluated in this experiment, Gabor is the only sym-
metrical one. It is also a popular spectrum used in the sparse coding techniques. For
instance, Gabor dictionaries were developed in two independent studies to decompose
input signals [34,54]. A Gabor kernel can be generated by multiplying a Gaussian function
and a sinusoidal wave. The real part of a Gabor filter can be obtained by using the
following equation:

gGB(t) = Ke−π(ERB(fc)t)
2

cos(2πfct+ ϕ), (3.3)

where K is a normalizing factor so that the kernels have unit norm, fc is the center
frequency of a kernel, and ϕ is the phase of the carrier. Figure 3.1(a) shows 3 of the 64
Gabor kernels that were evaluated in this work.

3.3.2 Damped sinusoid kernel

One of the kernel models evaluated in this experiment was damped sinusoid (DS) kernels.
The symmetrical Gabor kernels and asymmetrical DS kernels were compared in a study
reported in [55]. This study provides proof that DS kernels are more suitable than the
symmetrical Gabor kernels in representing transients in music signals. DS kernels can be
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Figure 3.1: Four kinds of time-frequency dictionaries used in matching pursuit algorithm:
(a) Gabor kernels, (b) damped sinusoid kernels, (c) gammatone kernels, and (d)
gammachirp kernels.
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generated by utilizing one-sided exponential windows. The real part of a DS kernel can
be obtained by multiplying a cosine wave with an exponential decay function:

gDS(t) = Ke−π(ERB(fc)t)
2

cos(2πfct+ ϕ), (3.4)

where K is a normalizing factor so that the kernels have unit norm, fc is the center
frequency of a kernel, and ϕ is the phase of the carrier. Figure 3.1(b) illustrates 3 of the
64 DS kernels that were evaluated in this work.

3.3.3 Gammatone kernel

One of the base spectra used in this experiment was gammatone kernels. Unlike Gabor and
DS kernels, the shape of gammatone/gammachirp kernels is derived from physiological
experiments. The fourth order of the gammatone function provides a temporal envelope
that has a shape similar to that of the impulse response measured at the basilar membrane
[50]. A gammatone kernel can be created by multiplying a gamma distribution and a
sinusoidal carrier. The impulse response of the gammatone filter is given by:

gGT (t) = atn−1e−2πbERB(fc)t cos(2πfct+ ϕ), (3.5)

where a, n = 4, b = 1.019ERB(fc), fc, and ϕ correspond to the amplitude, order of the
filter, bandwidth of the filter, center frequency, and phase, respectively [56]. Figure 3.1(c)
illustrates an example of three gammatone kernels.

3.3.4 Gammachirp kernel

The shape of the impulse response of the gammachirp kernel also has a gamma distribu-
tion; however, the gammachirp function was derived to be an optimum auditory filter.
Research reported in [49] demonstrates that the gammachirp auditory filterbank has an
excellent fit to human masking data. Therefore, the effectiveness of the gammachirp
kernel in decomposing speech signals is evaluated in this work. The impulse response of
the gammachirp filter is given by:

gGC(t) = atn−1e−2πbERB(fc)t cos(2πfct+ c ln t+ ϕ). (3.6)

The gammachirp function is an extended version of the gammatone function in that it
has an additional chirp factor, c ln t, used for controlling the asymmetry of its amplitude
spectrum. Other parameters such as a, t, n, b, f , and ϕ are similar to those used in the
gammatone function. Figure 3.1(d) illustrates three gammachirp kernels used in this
experiment.
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Figure 3.2: Processing pipeline of orthogonal matching pursuit algorithm evaluated in
this work to derive spikegrams from speech signals.
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3.4 Matching pursuit algorithms

3.4.1 Orthogonal matching pursuit

The orthogonal matching pursuit algorithm was introduced by Mallat and Zhang in 1993
to decompose a signal into a linear combination of elementary waveforms [34]. The paper
provides proof that the MP algorithm can decompose any function f(t) ∈ L2(R) into a
linear expansion as follows:

f(t) =
+∞∑
n=0

⟨Rnf(t), gn(t)⟩ gn(t), (3.7)

where gn(t) ∈ D is a TF kernel of an overcomplete dictionary D, and the coefficient ⟨·⟩
is the orthogonal projection of the residual signal Rnf(t) on the kernel gn(t). Figure 3.2
depicts the decomposition process of the MP algorithm and the main calculation loop (i.e.,
decompose signal, find max, update, and halt) is depicted with the gray blocks and solid
arrows. The MP algorithm starts with calculating the signal decomposition step (input:
original signal, time-frequency dictionary; process: decompose signal; output: orthogonal
projection of the original signal) as follows:

f(t) = ⟨f(t), g0(t)⟩ g0(t) +R0f(t). (3.8)

The output of this step is the orthogonal projection ⟨f(t), g0(t)⟩ of the input signal
f(t) on a kernel g0(t) ∈ D, and R0f(t) is the residual signal. The energy reservation
equivalent to Eq. (3.8) is as follows:

∥f(t)∥2 − |⟨f(t), g0(t)⟩|2 =
∥∥R0f(t)

∥∥2
. (3.9)

The left side of Eq. (3.9) can be interpreted as the similarity between the original signal
f(t) and its resynthesized signal. Therefore, it can be seen that the lower the residual
energy ∥R0f(t)∥2, the higher the quality of the resynthesized signal. Thus, in the second
step (input: orthogonal projection, process: find max, output: selected kernel), the MP
algorithm finds in the orthogonal projection space a kernel g0(t) ∈ D such that the inner
product |⟨f(t), g0(t)⟩| is maximum for the residual energy ∥R0f(t)∥2 to be minimum.

Information about the selected kernel (e.g., time, frequency localization, and magni-
tude) g0(t) is used in the update step to produce a spikegram, resynthesized signal, and
residual signal. More specifically, the projection of f(t) on the selected kernel g0(t) (i.e.,
|⟨f(t), g0(t)⟩|) becomes one spike on the spikegram, the resynthesized signal is updated as
f̄n(t) = ⟨f(t), gn(t)⟩ gn(t) + f̄n−1(t), and the residual signal is updated as
Rnf(t) = Rn−1f(t)− ⟨Rn−1f(t), gn−1(t)⟩ gn−t(t).

The next step (input: resynthesized signal, original signal; process: halt; output: yes
or no) is applying stopping rules to halt the algorithm; otherwise, the algorithm may
perform signal decomposition, find the max, and update the loop infinitely. The original
MP algorithm that decomposes a function f in vector space introduces a precision factor
ϵ such that:

∥f∥ −
p−1∑
n=0

|⟨Rnf, gn⟩|2 ≤ ϵ2 ∥f∥ , (3.10)

where p is the number of iterations. However, when the input signals are audio or speech,
it is more meaningful to choose a more suitable precision factor (e.g., PEMO-Q, PESQ,
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LSD, and SNR) to compare the distance between the original signal and the resynthesized
signal. Therefore, at the third step of an iteration pth of the MP algorithm, the stopping
rule uses a precision factor ϵ to compare the original signal and the resynthesized signal.
If the stopping criteria is met, the algorithm halts, and a spikegram, a resynthesized
signal of ϵ precision, and a residual signal can be obtained as output. Otherwise, the MP
algorithm loops back to the first step (input: residual signal, time-frequency dictionary;
process: decompose signal; output: orthogonal projection of the residual signal), and the
signal decomposition takes the residual signal Rpf(t) as input and projects it on the space
created by the time-frequency kernels of the overcomplete dictionary. In the case when
the quality of the resynthesized signals cannot satisfy the precision factor, a maximum
number of iterations is chosen to ensure that the MP algorithm does not loop infinitely.

3.4.2 Masking model

Inaudible kernels have to be removed to obtain a better representation model for speech
signals. For this reason, a masking model is necessary to separate noises from actual
signals. The work reported in [21] employs a masking model that can remove unnecessary
components effectively. In the present study, a similar model is applied to calculate
masking patterns. The forward masking and backward masking patterns created by a
selected kernel are calculated by multiplying the masking threshold with masking curves.

mf = θδf , (3.11)

mb = θδb. (3.12)

Equations (3.11) and (3.12) show the calculations for the forward masking and back-
ward masking patterns of a selected kernel, where mf ,mb, θ, δf , and δb are the forward
masking pattern, backward masking pattern, masking threshold, forward masking curve,
and backward masking curve, respectively.

Masking threshold

At an arbitrary iteration ith of the matching pursuit algorithm, the masking threshold
caused by the selected kernel at this iteration is calculated by:

θ(ni, k) = 10 log10

(
a2i p

2
k

qk

)
− 4Γ(ni, k) + 16, (3.13)

qk = Υk + 10(log10 200− log10 dk), (3.14)

where ni is the temporal position of the selected kernel in ERB k, ai is the magnitude
of the selected kernel, pk is the peak value of the Fourier transform of the normalized
kernel in ERB k, qk is the elevated threshold of hearing in quiet for the same ERB and
is calculated by Eq. (3.14), Γ(ni, k) is the tonality index for the ERB k at the temporal
position ni, Υk is the absolute threshold of hearing in ERB k, and dk, calculated in
milliseconds, is the duration of the selected kernel. Figure 3.4 shows an example of the
masking threshold created by a selected kernel, θ ≈ 21.4 dB.
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Forward masking curve

The decay of the forward masking curve is calculated as a logarithmic function of the
forward masking duration:

δf (k, n) = αk(βk − log10 n), (3.15)

αk = log10

(
ni + 0.1lk + ρkfs
ni + 0.1lk + 1

)
, (3.16)

βk = log10(ni + 0.1lk + ρkfs), (3.17)

lk = round(dkfs), (3.18)

ρk = 100 arctan(dk), (3.19)

where dk in milliseconds and lk in samples are the duration of the selected kernel, fs is
the sampling frequency, ρk in milliseconds is empirically defined as the effective duration
of the selected kernel, and round(ni+0.1lk+1) ≤ n ≤ round(ni+0.1lk+ρkfs). The right
curve in Figure 3.4 shows an example of a forward masking curve created by a selected
kernel.

Backward masking curve

The backward masking curve is also calculated as a logarithmic function of the backward
masking duration:

δb = γk(log10 n− ηk), (3.20)

γk = log10

(
ni − 1

ni − dbfs

)
, (3.21)

ηk = log10(ni − dbfs), (3.22)

where db = 3 (ms) is empirically selected as the effective duration of the backward masking
of all kernels, and ni − dbfi ≤ n ≤ ni − 1. The left curve in Figure 3.4 shows an example
of a backward masking curve created by a selected kernel. The gap between the backward
masking and forward masking curves is the temporal position ni of the selected kernel.
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Figure 3.4: An example of masking patterns caused by selected kernel.

35



Algorithm 1: An orthogonal matching pursuit algorithm evaluated in this work
to derive spikegrams from speech signals

Input: Original speech signal f(t), Time-frequency dictionary D = {gn(t)}
Output: Spikegram W , resynthesized speech signal f̄(t), residual signal Rf(t)
Initialization:
f̄(t)← zeros(length(f(t))),
Rf(t)← f(t),
C ← f(t) ∗ {gn(t)},
W ← zeros(size(C)),
MAX PEMOQ← 0.9,
maxi← 5000,
i← 1

1 while i ≤ maxi do
2 (If , It) = find max(C)
3 gi(t) = D(If )
4 W (If , It) = W (If , It) + C(If , It)
5 f̄(t) = f̄(t) + C(If , It)× gi(t)
6 Rf(t) = Rf(t)− C(If , It)× gi(t)
7 Spemoq = calculate PEMOQ(f̄(t), f(t))
8 if Spemoq ≥MAX PEMOQ then
9 break

10 C = Rf(t) ∗ {gn(t)}
11 return W, f̄(t), Rf(t)
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Algorithm 2: A perceptual matching pursuit algorithm evaluated in this work
to derive auditory representations from speech signals

Input: Original speech signal f(t), Time-frequency dictionary D = {gn(t)}
Output: Auditory representation W , resynthesized speech signal f̄(t), residual

signal Rf(t)
Initialization:
f̄(t)← zeros(length(f(t))),
Rf(t)← f(t),
C ← f(t) ∗ {gn(t)},
W ← zeros(size(C)),
M ← absolute threshold of hearing in quiet,
C ← apply masking effect M ,
MAX PEMOQ← 0.9,
maxi← 5000,
i← 1

1 while i ≤ maxi do
2 (If , It) = find max(C)
3 gi(t) = D(If )
4 W (If , It) = W (If , It) + C(If , It)
5 f̄(t) = f̄(t) + C(If , It)× gi(t)
6 Rf(t) = Rf(t)− C(If , It)× gi(t)
7 Spemoq = calculate PEMOQ(f̄(t), f(t))
8 if Spemoq ≥MAX PEMOQ then
9 break

10 C = Rf(t) ∗ {gn(t)}
11 M = update masking pattern(gi(t), If , It)
12 C = apply masking effect(M)

13 return W, f̄(t), Rf(t)
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3.4.3 Perceptual matching pursuit algorithm

The original matching pursuit algorithm is energy driven; it decomposes a function in
the vector space by selecting the most suitable kernel at each iteration to minimize the
residual energy. The resultant spikegrams describe the energy structures of input signals.
Moreover, the algorithm does not take into account the masking effects happening in the
human auditory system. As a result, many inaudible kernels are also selected during the
coding process; thus, the resulting spikegrams contain many unnecessary spikes. For this
reason, inaudible kernels should be removed to refine the structures of input signals and
to achieve better coding efficiency.

Speech signals are related to perception; thus, it is reasonable to incorporate psy-
choacoustic principles with the matching pursuit algorithm to guide the selection of the
most suitable kernels. The masking model described in section 3.4.2 is utilized to refine
the perceptual structure by removing inaudible kernels. Along with using the ERB scale
to derive time-frequency kernels and perceptual evaluation (e.g., PEMO-Q or PESQ) as
a stopping rule, the masking model makes the perceptual matching pursuit algorithm
become perception driven and can produce an auditory representation that conveys the
perceptual structures of speech signals.

Figure 3.3 shows the processing steps of the perceptual matching pursuit algorithm.
The difference between PMP and MP is that the masking effect step (input: orthogonal
projection, selected kernel; process: mask effect; output: masked projection) is applied
to the orthogonal projection before the find-max step. At the first iteration of the PMP,
the masking patterns are set to the absolute threshold of hearing in quiet. Then, after
the find-max step, the masking effect caused by the selected kernel is used to update
the masking patterns using the masking model described in section 3.4.2. Then, this
new masking surface is applied to the orthogonal projection of the next iteration and so
on. The masking model also provides a stopping rule for the PMP. That is, after the
masking effect is applied, if there is no non-zero element on the orthogonal projection,
the algorithm will halt.

Algorithm2 describes the implementation of the proposed method. The algorithm
takes a speech signal f(t) and a time-frequency dictionary D = {gn(t)} as inputs, where
n is the number kernels. The outputs of the algorithm are the auditory representation W
of the input speech signal, the resynthesized signal f̄(t), and the residual signal Rf(t).
Before the main calculation loop, the algorithm initializes the resynthesized signal f̄(t) to
be a vector of zeros with the length of the input signal f(t). The residual signal Rf(t) is
the input signal f(t). C is the matrix of coefficients resulted by calculating the correlation
between the input signal f(t) and the TF dictionary {gn(t)}. The auditory representation
W is initialized as a matrix of zeros with the same size as the coefficient matrix C. The
masking surface M is set to be the absolute threshold of hearing in quiet and then,
this masking surface is applied to the coefficient matrix C to remove the elements that
are below the threshold. The stopping criteria of the algorithm are the desired PEMO-Q
scoreMAX PEMOQ = 0.9 and the maximum number of iterations maxi = 5000. In the
main calculation loop, the algorithm starts to find the frequency channel If and temporal
position It of the largest coefficient of C with the find-max step. The selected kernel of
the ith iteration gi(t) can be found with the frequency channel index If . The auditory
representation W is updated by adding the largest coefficient C(If , It) to the existing W .
The resynthesized signal f̄(t) is updated by adding the selected kernel (C(If , It)×gi(t)) to
the existing f̄(t). The residual signal Rf(t) is updated by subtracting the selected kernel
(C(If , It) × gi(t)) from the existing Rf(t). In the next step, the algorithm calculates
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the current PEMO-Q score Spemoq between the resynthesized signal f̄(t) and the input
signal f(t) and then compare the score with the desired PEMO-Q score. If the current
score is larger than or equal to the desired PEMO-Q score, the algorithm exits the main
calculation loop. Otherwise, the algorithm updates the coefficient matrix C by calculating
the correlation between the residual signal Rf(t) and the TF dictionary {gn(t)}. The
masking surface M is updated using the selected kernel gi(t) and the spatiotemporal
indices (If , It) as described in section 3.4.2. Then, the updated masking surface is applied
to the new coefficient matrix to remove inaudible elements. Then, the algorithm returns
to the find-max step to find the next largest coefficient. Finally, when the desired PEMO-
Q score is satisfied or the maximum number of iteration maxi is reached, the algorithm
returns the auditory representation W , the resynthesized signal f̄(t), and the residual
signal Rf(t); then halts.
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Chapter 4

Perceptual Features of Auditory
Sparse Representation

4.1 Summary

In this chapter, evaluations of the auditory sparse representations are conducted. The
representations aim to mimic the NAPs; however, real NAPs of the auditory nerves are
unavailable to compare to. Therefore, a speech analysis/synthesis experiment is conducted
to evaluate the effectiveness of the representations in capturing significant perceptual
features of speech signals.

4.2 Evaluation conditions

The effectiveness of an auditory representation can be evaluated in terms of three aspects:
the higher the quality of the resynthesized speech signals, the better, the lower the number
of non-zero elements, the better, and the ability to represent perceptual structures of
speech signals. The first two aspects represent the trade-off between quality and coding
data. Reducing the number of coefficients of a signal representation may lead to a
reduction in the quality of the resynthesized signals while keeping an exceeding amount
of coding data that may make a minor contribution to the quality of the resynthesized
signals. An experiment was conducted to compare the signal reconstruction quality of
spectrograms, spikegrams, and auditory representations.

4.3 Experiment setups

For the first experiment, parameters were prepared to create 11 sets of conditions to eval-
uate and compare: spectrograms created by a Gabor (GB-FB), a gammatone (GT-FB),
and a gammachirp (GC-FB) filterbank, spikegrams created by an orthogonal matching
pursuit algorithm with a damped sinusoid (MP-DS), a Gabor (MP-GB), a gammatone
(MP-GT), and a gammachirp (MP-GC) dictionary, and auditory representations created
by a perceptual matching pursuit algorithm with a damped sinusoid (PMP-DS), a Gabor
(PMP-GB), a gammatone (PMP-GT), and a gammachirp (PMP-GC) dictionary. 630
speech samples spoken by 630 different speakers drawn from the TIMIT database [57] were
used in the processes of creating the spectrograms, spikegrams, auditory representations,
and resynthesized speech signals. Regarding the first evaluation aspect, PEMO-Q [58],
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PESQ MOS score [59], SNR, and LSD were used to compare the distance between original
speech signals and resynthesized speech signals. With regards to the second evaluation
aspect, the sparseness or the amount of coding data of spectrograms, spikegrams, and
auditory representations was evaluated by calculating the number of non-zero elements per
second. Figure 4.1 illustrates an example of a speech signal in time domain and different
kinds of its representations in time-frequency domain. Panel (a), (b), (c), and (d) are
a speech signal in time domain, a spectrogram produced by a gammachirp filterbank, a
spikegram by an MP-GC, and an auditory representation by a PMP-GC, respectively.

All the algorithms we used were composed in MATLAB 2020a environment including
Signal Processing Toolbox version 8.4. Our experiments were conducted on a typical
contemporary computer with an Intel Core i9-7900X CPU @ 3.30 GHz, 16 GB RAM, 500
GB solid-state drive, and Ubuntu 18.04.6 64-bit long-term support operating system.
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Figure 4.1: A speech signal and its representation models. Panel (a), (b), (c), and (d) are
a speech signal in time domain, a spectrogram produced by a gammachirp filterbank, a
spikegram by an MP-GC, and an auditory representation by a PMP-GC, respectively.
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Table 4.1: Results of the speech analysis/synthesis experiment.

Spectrogram—filterbank (FB)
GB GT GC

PEMOQ 0.98 ± 0.00 0.99 ± 0.00 0.99 ± 0.00
PESQ 4.38 ± 0.07 3.89 ± 0.13 4.16 ± 0.09
LSD 1.98 ± 0.18 1.28 ± 0.14 1.43 ± 0.16
SNR 6.38 ± 1.97 18.25 ± 1.92 21.39 ± 3.68
Rate m× n m× n m× n
Spikegram—orthogonal matching pursuit (MP)

DS GB GT GC
PEMOQ 0.87 ± 0.04 0.89 ± 0.01 0.89 ± 0.01 0.89 ± 0.01
PESQ 2.93 ± 0.36 3.12 ± 0.37 3.20 ± 0.36 3.24 ± 0.31
LSD 102.34 ± 52.01 74.52 ± 45.72 77.15 ± 45.24 79.53 ± 45.78
SNR 17.91 ± 2.48 22.21 ± 3.26 21.92 ± 3.28 20.99 ± 3.31
Rate 1484 1206 1163 1151

Auditory representation—perceptual matching pursuit (PMP)
DS GB GT GC

PEMOQ 0.80 ± 0.08 0.90 ± 0.00 0.89 ± 0.01 0.89 ± 0.02
PESQ 2.53 ± 0.27 3.17 ± 0.35 3.23 ± 0.31 3.27 ± 0.29
LSD 135.42 ± 57.71 75.64 ± 46.02 79.83 ± 46.97 81.60 ± 47.34
SNR 14.49 ± 1.38 22.27 ± 3.04 20.81 ± 2.51 19.73 ± 2.58
Rate 905 1238 1093 1066
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4.4 Results and discussions

The evaluation results of the spectrograms, spikegrams, and auditory representations are
shown in the top panel, the middle panel, and the bottom panel of Table 4.1, respectively.
PEMO-Q, PESQ MOS, LSD, and SNR scores are in pairs of (mean score ± mean
standard deviation). It can be seen that the signal representation methods achieved
similar scores in PEMO-Q, PESQ MOS, and SNR. Arguably, the spikegrams and auditory
representations provided slightly lower scores because a PEMO-Q score of larger-than-
or-equal to 0.90 is used as one of the stopping rules in the MP and PMP algorithms.
For this reason, the spikegrams and auditory representations provided similar evaluation
scores with only less than 1,500 non-zero elements per second, while the spectrograms,
though providing slightly higher scores, required entire (m × n) coefficients to represent
speech signals, wherem and n are the number of channels of the spectrogram and sampling
frequency of the input signals, respectively. In terms of LSD, the spikegrams and auditory
representations provided significantly lower scores in comparison with the spectrograms;
this could be the result of the lower number of coding data. However, speech signals
were used in this experiment, so it is more reasonable to compare the quality by using
perceptual evaluations, e.g., PEMO-Q and PESQ MOS. At this point, it appears that
sparse representations are preferable to spectrogram representations in representing speech
signals.

In terms of the optimal kernel, the perceptual evaluation results in Table 4.1 show
that the DS kernel had the lowest performance. More specifically, the MP-DS provided
the lowest quality with the highest spike rate in comparison with the other kernels. In the
case of PMP-DS, the algorithm could not reach the perceptual stopping rule (PEMO-Q
≥ 0.90). These results suggest that DS might not be an optimal kernel for speech signals.
Among the spikegrams and auditory representations created by MP and PMP with GB,
GT, and GC, it can be seen that the PEMO-Q scores were similar because PEMO-Q
≥ 0.90 was used as one of the stopping rules. However, the PESQ scores and rate of non-
zero elements had opposite directions in the order of GB, GT, GC. More precisely, the
PESQ score increased in the order of GB→ GT→ GC, and the rate of non-zero elements
decreased in the order of GB ← GT ← GC. It can be observed that the gammachirp
kernel provided a higher perceptual quality with a lower rate in comparison with the
other kernels. With regards to the first and the second evaluation aspects, it appears that
auditory representations created by PMP-GC provided the highest perceptual quality and
the lowest number of non-zero elements per second.

In terms of masking effects, comparing spikegrams created by MP-GT and MP-GC
with auditory representations created by PMP-GT and PMP-GC, it can be seen that these
methods provided similar evaluation results; however, the PMP produced a lower number
of non-zero elements. This means that the masking effects helped to remove a number
of unnecessary elements in the auditory representation. The masking model described in
section 3.4.2 was designed specifically for gammatone and gammachirp kernels; therefore,
its performance is unstable with DS and GB kernels.
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Chapter 5

Unique Patterns of Auditory Sparse
Representation

5.1 Summary

In this chapter, unique patterns on auditory sparse representations are evaluated. In
Chapter 4, it has been verified that the representations contain important perceptual
features; however, the uniqueness of the patterns has to be evaluated. It means that
if several speech signals are produced by the same speaker speaking the same linguistic
content, the patterns on their representations should be similar. Therefore, a general
landmark-based hashing technique is used in this chapter to evaluate the patterns. The
NAPs should cary different kinds of patterns related to different information such as
speaker individuality, linguistic content, emotions, etc. Specialized algorithms should be
constructed for specific tasks to achieve optimal performance.

5.2 Landmark-based pattern analysis technique

Perceptual patterns on auditory representations are built by using a landmark-based
analysis technique [20]. In this technique, each spike on an auditory representation is
regarded as an anchor point or a landmark and paired with subsequent landmarks to
become spike patterns. The pairing criteria used in [5] invloves two steps that are building
a target zone and selecting matched landmarks.

Each landmark has two important information that are current temporal location (t1),
and current frequency location (f1). A temporal interval ∆t is selected to determine the
width of the target zone and frequency interval ∆f is selected to determine the height of
the target zone. Thus, the target zone with an area of (t1 + ∆t) × (f1 ±∆f) is used to
search for subsequent landmarks for the current landmark.

Among the matched landmarks in the target zone, a number of k landmarks that are
nearest in time to the current landmark are chosen to form the perceptual patterns. This
process is repeated until the end of the auditory representation. Figure 5.1 illustrates the
process of this technique. The resulting perceptual patterns can be regarded as a graph
with vertices are the spikes and edges are the pairs among the spikes.
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Figure 5.1: An example of landmark-based pattern analysis.
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5.3 Hashing technique

Cosidering a landmark L1(t1, f1) and its matched subsequent landmark L2(t1, f2), infor-
mation about this matched pair is kept as a vector as follow [t1f1f2∆t], where ∆t = t2−t1.
Together with other matched pairs, the entire graph (or entire perceptual patterns)
is encoded into a matrix consisting of 4 columns that are start time column t1, start
frequency column f1, end frequency column f2, and delta time column ∆t.

The hash table consists of 2 columns, the first column is the start time column t1.
The second column is calculated with the following formula uint32 (F1 + ∆f +∆t).

Eventually, an auditory representation is transformed into a graph representing its per-
ceptual patterns by landmark-based analysis technique, and then this graph is converted
into a hash sequence by using the hashing technique.

5.4 Evaluation conditions

The purpose of this section is to evaluate the effectiveness of auditory representations
in conveying the perceptual structures of speech signals. It is argued that sparse repre-
sentation is preferable to spectrogram representation because the structures of signals
can be emphasized by the non-zero elements of sparse representation, which is thus
beneficial to pattern recognition. Therefore, an experiment was conducted to compare
the perceptual structures of auditory representations, spike patterns of spikegrams, and
patterns of spectrograms.

5.5 Experiment setups

An experiment was conducted to evaluate and compare perceptual structures in auditory
representations with spike patterns in spikegrams and patterns in spectrograms. Robust
landmark-based audio fingerprinting (RLBAF) [5] was employed for this purpose. RLBAF
is designed to obtain unique structures of music signals known as audio fingerprints. These
unique structures are compared to identify short excerpts of music in a music fingerprint
database. The algorithm of this application is believed to be the computational routines
of a successful commercial service [20]. Therefore, this application is employed to evaluate
perceptual structures of auditory representations.

The speech data used in this experiment was created by three female and three male
speakers uttering three pieces of speech content: “ohayo gozaimasu,” “konichiwa,” and
“kombanwa.” Ten utterances by each speaker and each speech content (180 utterances
in total) were used for creating a speech fingerprint database. Spectrogram representa-
tions, spikegram representations, and auditory representations of this speech database
were created. Then, RLBAF was used to obtain the structures in these three kinds of
representations, and, these structures were then hashed and kept as a speech fingerprint
database. In the same manner, another 18 utterances were used for querying the database.
Given an arbitrary query, for instance, “konichiwa” spoken by female number 2, let us
see if the structures of this query can be used to recover ten other “konichiwa” utterances
produced by the same speaker in the fingerprint database.
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Table 5.1: Confusion matrix illustrates matching results produced by using GC auditory
sparse representations as input for RLBAF application.

# 01 02 03 04 05 06 07 08 09 10 11 12 13
Ain’t That a Bitch 01 1

Attitude Adjustment 02 1
Crash 03 1

Fallen Angels 04 1
Falling in Love 05 1

Full Circle 06 1
Hole in My Soul 07 1

Kiss Your Past Good Bye 08 1
Nine Lives 09 1

Pink 10 1
Something’s Gotta Give 11 1

Taste of India 12 1
The Farm 13 1
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Table 5.2: Pattern matching results produced by using landmark-based pattern analysis.

# Methods
Mean
recall

Mean
precision

Mean
F1 score

1 STFT-FB 0.15 ± 0.21 0.42 ± 0.45 0.19 ± 0.22
2 GB-FB 0.57 ± 0.28 0.11 ± 0.20 0.11 ± 0.19
3 GT-FB 1.00 ± 0.00 0.10 ± 0.10 0.16 ± 0.14
4 GC-FB 1.00 ± 0.00 0.06 ± 0.07 0.11 ± 0.12

5 MP-GB 0.92 ± 0.13 0.57 ± 0.23 0.68 ± 0.17
6 MP-GT 0.94 ± 0.13 0.60 ± 0.21 0.70 ± 0.16
7 MP-DS 1.00 ± 0.00 0.61 ± 0.24 0.73 ± 0.19
8 MP-GC 1.00 ± 0.00 0.68 ± 0.22 0.78 ± 0.17

9 PMP-GB 0.91 ± 0.13 0.59 ± 0.22 0.69 ± 0.17
10 PMP-GT 0.93 ± 0.14 0.62 ± 0.21 0.71 ± 0.16
11 PMP-DS 1.00 ± 0.00 0.63 ± 0.18 0.76 ± 0.13
12 PMP-GC 1.00 ± 0.00 0.66 ± 0.21 0.77 ± 0.16
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5.6 Results and discussions

Before discussing the main results with speech signals, a small experiment was conducted
to verify if the proposed method was effective with music. The RLBAF application
described in the previous section had three parts that were STFT spectrogram as input,
land-mark based pattern analysis, and hashing method. In this experiment, the STFT
spectrogram was replaced by the proposed auditory sparse representation as input and
the other parts were kept the same. The music database used in this experiment was the
same with one used by the RLBAF including 13 music tracks. For each track, a 6-second
segment was selected randomly and used as a query. The result of this experiment is
shown as a confusion matrix on Table 5.1. It can be seen on the diagonal line of the
confusion matrix that the recall and precision are 100%. It can be concluded that the
proposed auditory sparse representation is as effective as the baseline system in identifying
music.

Table 5.2 summarizes the matching results of the main experiment with speech signals.
Rows 1 to 4, 5 to 8, and 9 to 12 of the table correspond to the results obtained by
using spectrograms, spikegrams, and auditory representations as inputs for the RLBAF
application, respectively. The results are illustrated in pairs of (mean score ± mean
standard deviation). In general, the matching results produced by using spectrograms
were significantly lower than those of the spikegrams and auditory representations. Table
5.3, 5.5, 5.6, 5.7 show the confusion matrices of matching results produced by using
spectrograms as input for RLBAF application. The precisions of these cases were re-
markably low; the highest case was only 11%, which means that most of the results
were incorrect. Although the precision of STFT-FB was the highest, the recall was the
lowest, only 15%. Table 5.3 shows a confusion matrix of this case. The leftmost column
is the speech fingerprint database, and each row of this column represents ten speech
fingerprints corresponding to ten speech utterances. The top row of the table represents
18 labels corresponding to the 6 speakers and the 3 pieces of speech content, and correct
matches are shown on the diagonal cells of the table. Because the recall in this case was
very low, the cells are almost empty. The highest result in this case is presented in row
#15; the query used in this case was produced by female number 3 speaking “kombanwa.”
The recall was eight matches over ten matches in total; however, there are only five correct
matches over ten in total as shown in column #15, and there are three incorrect matches
shown in column #07, that is, the label corresponding to female 1 speaking “konichiwa.”
Although the recalls of GB-FB, GT-FB, and GC-FB were higher than those of STFT-FB,
100% with GT-FB and GC-FB, the precisions and the F1 scores were the lowest of all
cases. It can be seen that using spectrograms as inputs for the RLBAF application, their
patterns resulted in either low or highly incorrect detection.

The matching results obtained by using spikegrams and auditory representations as
inputs for the RLBAF are summarized in rows 5 to 8 and rows 9 to 12 in Table 5.2,
respectively. Table 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.4 show the confusion matrices of
matching results produced by using spikegrams and auditory representations as input for
RLBAF application. It can be seen that the sparse representations provided significantly
higher precision and F1 scores in comparison with the spectrogram representations. At
this point, it appears that sparse representations are also preferable to spectrogram
representations in representing the structures of speech signals.

In terms of the optimal kernel, examining the matching results produced by using
spikegrams and auditory representations, the results show a similar pattern. The recall
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produced by the DS and GC kernels was the highest, by the GT kernel the second highest,
and by the GB kernel the lowest. The precisions and the F1 scores were in an increasing
order of GB → GT → DS → GC. It appears that the GC kernel provided the highest
recall, precision, and F1 score. Table 5.4 shows a confusion matrix produced by using
PMP-GC. Examining the diagonal cells of the table, it can be seen that the precision was
above 50% in most of the cases, and the seven highest results are shown in rows 3, 12, 14,
15, 16, 17, and 18, where correct matches were at least eight out of ten in total. Taking
a closer look at the case shown in row 12, the query used in this case was produced
by male number 3 speaking “konichiwa.” There were two incorrect matches shown in
column #18, that is, the label corresponding to male number 3 speaking “kombanwa.”
This means that although the pieces of speech content were incorrect, the speaker was
the same. This holds for all of the seven highest results listed above. With regards to
the evaluation conditions, it appears that the spikegrams and auditory representations
created by the GC kernels provided the highest matching results.

5.7 Conclusion

Inspired by the amazing performance of our auditory system in complicated listening
tasks, such as speaker identification, speech recognition, and sound localization, in ex-
tremely noisy environments. The goal of this study is improving reliability of speech
fingerprint used for authenticating speakers and linguistic contents by mimicking the
auditory representation. There are three sub-objectives. First, auditory representations
are used as the representation model for speech signals by using a matching pursuit
algorithm and psychoacoustic principles. Second, perceptual structures on an auditory
representation are obtained using a landmark-based technique. Third, a hashing method
is used to combine perceptual features to create unique fingerprints.

Auditory representations are derived from speech signals as a way to mimic the
neural activity patterns of the auditory nerves. The auditory representation is created
by considering the time-frequency resolution, sparse representation, optimal kernel, and
masking effects. It was evaluated in terms of three aspects: the higher the quality of the
resynthesized speech signals, the better, the lower the number of non-zero elements, the
better, and the ability to represent the perceptual structures of speech signals.

The auditory representation has an advantage over the traditional spectrogram repre-
sentation in that the ERB scale is utilized to control the center frequencies and bandwidths
of kernels. This strategy makes the time-frequency resolution of the auditory represen-
tation more similar to that of the NAP. Another advantage is that perceptual structures
can be emphasized in the auditory representation because it is a sparse representation.
Thus, these two advantages make features in auditory representations more similar to
that of the NAP. The effectiveness of the auditory representation was evaluated in an
analysis by synthesis experiment. The TIMIT dataset and evaluation techniques such
as PEMO-Q, PESQ, LSD, and SNR were used to compare the original speech signals
and the resynthesized speech signals. The results of this experiment show that although
auditory representations require a significantly lower number of non-zero elements, similar
perceptual scores can be achieved in comparison with spectrogram representations.

The auditory representation created by a PMP algorithm also has an advantage over
the spikegram created by an MP algorithm in that masking effects are employed to
remove unnecessary elements of the representation. This way, the perceptual structures in
auditory representations are more refined and more similar to the NAP. The effectiveness
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of the auditory representation and the spikegram were also compared in the analysis
by synthesis experiment. The results showed that even with fewer non-zero elements,
the auditory representation can have similar evaluation scores, especially in the case of
gammatone and gammachirp kernels.

The perceptual structures of auditory representations and patterns of spectrograms
were also compared by using RLBAF. The results of this experiment show that even with
significantly fewer non-zero elements, the auditory representation can provide noticeably
higher recalls, precision, and F1 scores. This means that perceptual structures contribute
highly to the performance of the speech fingerprint algorithm.

Perceptual structures of the auditory representation and patterns of the spikegram
were also compared by using RLBAF. The results showed that even with fewer non-zero
elements, the perceptual structures of the auditory representation can provide similar
recalls, precision, and F1 scores. In general, the unnecessary elements in the spikegram
neither contribute to the quality of the resynthesized speech signals nor the performance
of the speech fingerprint algorithm.

The auditory representation created by using GC kernels has an advantage over
other kernels in that it is most similar to the impulse response measured at the basilar
membrane. Thus, the frequency and the temporal masking effects produced by the GC
kernel are more similar to auditory masking. Consequently, the perceptual structures of
the GC auditory representation are most similar to the NAP. The perceptual structures
of the GC auditory representation were compared with those of other kernels by using
RLBAF. The results showed that the GC kernel can provide the highest recalls, precision,
and F1 scores.

In theory, by examining the four psychoacoustic principles—the time-frequency res-
olution, sparse representation, optimal kernel, and masking effects; and in practice,
by examining the three evaluation aspects, it appears that the auditory representation
created by the perceptual matching pursuit algorithm with gammachirp kernel can provide
the highest performance of the speech fingerprint algorithm.
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Chapter 6

Speech Fingerprints Identification
Algorithms

6.1 Summary

In this chapter, a speech fingerprints identification algorithm is constructed to evaluate the
uniqueness and usefulness of the proposed speech fingerprints. The present study assumes
that speech fingerprints are contained in the NAPs of the auditory nerves and experimental
results reported in Chapter 4 and 5 show that the auditory sparse representation conveys
important perceptual features and contains distinguishable patterns. However, a vast
majority of research articles in the literature considers speech fingerprints as binary or real
hash sequences. The advantages of the hash sequences are their effectiveness because of the
high identification accuracy and their efficiency because of the high indexing speed when
dealing with large-scale datasets. Therefore in this chapter, a deep hashing algorithm is
constructed to convert the proposed speech fingerprints into hash sequences to employ
the aforementioned advantages.

Deep hashing algorithms used for speaker identification and retrieval aim to produce
discriminative hash codes for a set of speech signals. The basis of this task is highly related
to speaker individuality. However, existing deep speaker hashing algorithms were con-
structed without considering speaker individuality. Previous studies have demonstrated
the importance of speaker individuality in speech analysis and synthesis applications.
Furthermore, recent studies have demonstrated the advantages of sparse representations
of speech signals over the traditional spectrograms. Therefore, a method is proposed to
hash the significant acoustical features related to speaker individuality by using auditory
sparse representations. In speaker identification and speaker retrieval experiments with
the VoxCeleb2 dataset, 64-bit hash codes—produced by the proposed method—achieved
99.91% in top-1 accuracy and 97.55% in MAP@100, which are highly competitive with
other state-of-the-art methods.

The rest of this chapter is organized as follows. Section 6.4.1 describes an algorithm,
which incorporates a gammachirp auditory filterbank and an orthogonal matching pursuit,
used to produce auditory sparse representations. The representations can be regarded as
speech fingerprints. Section 6.4.2 describes a deep hashing method that is equivalent
to a speech fingerprint identification algorithm. Section 6.5 describes experiments and
evaluations. Section 6.6 reports the experimental results and discusses the uniqueness
and effectiveness of the proposed speech fingerprints.
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6.2 Introduction

Speaker identification and retrieval are useful for many applications such as automatic
access control for various services and automatic detection of speakers in complex scenes.
As speech data grows gigantically, speaker identification and retrieval tasks with high
accuracy and reasonable speed have become problematic. Deep hashing for speaker
identification and retrieval has become very common recently because of its high accuracy
and low computational cost when dealing with large-scale datasets [60,61]. Such a system
often consists of a pre-processing module and a deep learning to hash algorithm. The
effectiveness of a deep hashing method depends on both pre-processing and hashing
techniques.

The pre-processing module is responsible for converting raw speech signals into feature
vectors, which serve as inputs for a deep hashing algorithm. Short-time Fourier transform
spectrograms are often used as the feature vectors [62]. Features related to speaker
individuality, i-vector/x-vector, are commonly used in the existing methods [63,64]. Some
methods [65,66] use feature enhancement techniques to increase how discriminative hash
codes are. However, current pre-processing techniques did not consider perceptual features
and speaker individuality inherent in speech signals carefully.

The work in [67] reported that speaker individuality is related to the F0 contour and
that speaker individuality can be controlled by using the Fujisaki F0 model. Also, the work
reported in [68] regards the speaker individuality of a speaker as a distribution of log F0.
The mean and variance of a log F0 distribution can be linear scaled to convert speaker
individuality. Furthermore, common vocoder systems [69–72] produce F0 contours by
searching within the range of 40 to 800 Hz. This means that the range of frequencies
from 40 to 800 Hz is very important for speaker individuality.

Several studies [47, 52] in speech-coding methods pointed out that the redundant
coding data of spectrogram representations obscured the underlying structures of speech
signals. Sparse representations produced by orthogonal matching pursuit (OMP) algo-
rithms were proposed to overcome this issue by focusing on significant features. Further-
more, gammatone/gammachirp auditory filterbanks were used with OMP algorithms to
produce auditory sparse representations, which contained perceptual structures of speech
signals, to mimic the neural activity patterns (NAPs) of the auditory periphery [21].
Experimental results reported in [21,73] showed that the auditory sparse representations
were more beneficial to speech-coding and pattern-analysis applications than spectrogram
representations. Therefore, utilizing such auditory sparse representation would increase
the effectiveness of a deep hashing algorithm in speaker identification and retrieval tasks.

Speaker identification and retrieval are specialized tasks in the domain of speech;
therefore, it is more meaningful to use features that are related to speaker individuality.
In this study, we propose a method that maps significant acoustical features related to
speaker individuality into hash sequences in the Hamming space. The contributions of
our study are listed as follows.

• We focus on the frequency range between 40 and 800 Hz because it is important for
speaker individuality.

• We utilize the advantages of an auditory sparse representation using a deep hashing
technique. The equivalent rectangular bandwidth (ERB) scale and a gammachirp
(GC) function are used to design a GC auditory filterbank; together with an OMP
algorithm, speech signals are converted into auditory sparse representations as a
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way to mimic NAPs.

• An extensive experiment with the VoxCeleb2 dataset is conducted to evaluate the
effectiveness of the proposed method on speaker identification and retrieval tasks.

6.3 Related Works

Deep hashing methods used for speaker identification and retrieval in the literature are
largely separated into two categories: classifier-based and feature-based methods.
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6.3.1 Classifier-based Techniques

In this category, the main focus is constructing powerful non-linear classifiers that can
tolerate the variations of noisy inputs. Different architectures [74, 75] and loss functions
[76–78] have been proposed to learn the distance between data points of a distribution.
These techniques concentrate on designing mapping functions, dealing with optimization
problems, and increasing quantization qualities. Traditional input features are often used
in these methods such as the short-time Fourier transform spectrograms and MFCCs.

Applications in this category pay less attention to the importance of input features
inherent in speech signals. Therefore, utilizing the inputs that contain highly distinguish-
able features would increase the effectiveness of the classifiers.

6.3.2 Feature-based Techniques

In this category, speech signals are usually treated with pre-processing techniques such
as voice activity detection and noise reduction to mitigate the interference of noisy
datasets. Feature enhancement techniques such as those using log domain features and
Mel-frequency cepstral coefficients (MFCCs) focus on important acoustical features [65,
66]. On the basis of low-level acoustical features, data-driven techniques such as i-
vector [79], d-vector [80], and x-vectors [81] are also used to increase the inter-class
distance and to reduce the intra-class distance. Based on i-vector, several deep hashing
techniques were proposed and achieved high performance in speaker identification and
retrieval tasks [63,64]. However, these techniques mainly focus on the magnitude spectrum
of the subband frequencies of speech signals. Thus, the hash codes are representatives of
the energy distribution of the speech signals.

Psychoacoustical and experimental studies have found that speech signals convey
latent patterns unique to each speaker [67, 68]. Therefore, it is useful to construct a
technique that hashes the inherent speaker individuality. This way, the resultant hash
sequences can be regarded as the representatives of speaker identities.

6.4 Proposed Method

Our proposed method consists of two main parts: auditory sparse representation and deep
hashing algorithms. Figure 6.1 shows the processing steps of the proposed method. The
auditory sparse representation algorithm extracts important acoustical features related
to speaker individuality to provide input features. The deep hashing algorithm maps the
input features to the hash sequences in the Hamming space.

6.4.1 Auditory sparse representation algorithm

Auditory sparse representation was studied extensively in [73]. In this study, a GC
auditory filterbank is used for producing significant acoustical features related to speaker
individuality and an OMP algorithm is used for producing sparse representations of speech
signals. These two components convert speech signals into sparse codes that are similar to
NAPs of the auditory system. The dashed-line rectangle on the left of Fig. 6.1 illustrates
the processing steps of this algorithm.
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Gammachirp auditory filterbank

The GC auditory filterbank used in this study has three important properties that provide
highly accurate information about speaker individuality. The first property is using a
frequency range from 40 Hz to 800 Hz because this region conveys information about
fundamental frequency F0 [67, 68]. Therefore, acoustical features related to speaker
individuality should be derived from this region.

The second property is using the ERB scale to calculate the center frequencies and
bandwidths of auditory filters to account for the frequency selectivity characteristic of
the auditory system. Moore and Glasberg [53] constructed a formula that describes the
relationship between the number of ERBs and frequency as follows:

Number of ERBs, E = 21.4 log10 (4.37fc + 1)

⇒ fc =
1

4.37

(
10

E
21.4 − 1

)
,

(6.1)

where fc(kHz) is the center frequency of an auditory filter, and E is the ERB number on
the ERB scale. Furthermore, the formula used to calculate bandwidths of the auditory
filters are as follows:

ERB(fc) = 24.7(4.37fc + 1), (6.2)

where ERB(·) takes a center frequency fc and gives a corresponding filter bandwidth.
The center frequencies fc and bandwidths of the GC auditory filterbank are calculated
by using Eq. (6.1) and (6.2).

The third property is using a GC function to analyze speech signals. There are several
functions that can be used as filter functions such as the exponential, damped sinusoid,
Gabor, and gammatone. However, a psychoacoustic study found that the impulse response
measured at the basilar membrane has a gamma distribution and an up chirp [50]. Human
masking data was also used to derive an auditory filter that simulate this phenomenon [49].
Experimental results in [73] showed that the GC function provided highest perceptual
scores. Therefore, the GC function should provide optimal features for analyzing speaker
individuality. The GC function is as follows:

γ(t) = atn−1e−2πbERB(fc)t cos(2πfct+ c ln t+ ϕ), (6.3)

where a, n = 4, b = 1.019, t, c ln(·), and ϕ correspond to the amplitude, order of the filter,
coefficient of the filter bandwidth, time, chirp factor, and phase, respectively [56]. Panel
(a) and (b) of Fig. 6.2 show a three-second speech signal from the VoxCeleb2 dataset and
its corresponding GC filterbank spectrogram, respectively.

Orthogonal matching-pursuit algorithm
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Figure 6.2: Sample output of the auditory sparse representation algorithm. (a) is a
speech signal in the VoxCeleb2 dataset, (b) is its GC filterbank spectrogram, and (c) is
the corresponding auditory sparse representation.
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Algorithm 3: An orthogonal matching pursuit algorithm used in this paper to
produce auditory sparse representations of speech signals.

Input: Speech signal s(t), gammachirp filterbank Γ = {γn(t)}
Output: Auditory sparse representation C
Initialization:
r(t)← s(t),
S ← s(t) ∗ Γ
C ← zeros(size(S)),
N ← 6000,
i← 1

1 while i ≤ N do
2 α, If , It = max(S)
3 C(If , It) = C(If , It) + α
4 γi(t) = Γ(If , )
5 r(t) = r(t)− α× γi(t)
6 S = r(t) ∗ Γ
7 return C
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A sparse representation of a speech signal is a representation that contains a very low
number of non-zero elements that are said to be the “geometric” information of the speech
signals [9]. Previous studies used OMP algorithms to emphasize the underlying structures
of speech signals on the sparse representations [21, 73]. Experimental results of these
studies showed that sparse representations outperformed spectrogram representations
in perceptual evaluations and pattern analysis applications. Although GC auditory
spectrograms convey acoustical features related to speaker individuality, we further refine
the features by utilizing the advantages of sparse representations.

Processing steps of the OMP are briefly described in Algorithm 3. In general, the
OMP requires a speech signal s(t) and the GC auditory filterbank Γ = {γn(t)} as inputs,
where n is the number of GC filters; and produces an auditory sparse representation C
of the input speech signal.

In the initialization steps before the main calculation loop, the algorithm set a residual
signal r(t) to be the same as the input speech signal s(t). Then, it calculates S as the
correlation matrix between the input speech signal s(t) and all of the GC filters γn(t)
of the filterbank Γ. Then, it pre-allocates the auditory sparse representation C to be a
matrix of zeros with the same dimensions as the correlation matrix S. Finally, the OMP
sets the maximum number of iterations N and the counter i to be 6000 and 1, respectively.

The main calculation loop, which has six steps in total, is where the auditory sparse
representation C is produced. The steps are as follows:

1. The first step i ≤ N is the stopping criterium of the algorithm. Preferably,
perceptual scores such as PEMO-Q [58] or PESQ [59] should be used as the stop-
ping criterium to control the trade-off between perceptual quality and number of
coefficients. However, performing a perceptual evaluation in each iteration would
increase computational complexity of the algorithm significantly, especially when
working with large-scale datasets. Therefore, we empirically set N = 6000 to obtain
2000 coefficients per second.

2. Next, the algorithm searches on the correlation matrix S for the largest coefficient
α, as well as the frequency channel index If , and the time offset It of α.

3. In the third step, the coefficient at the coordinate (If , It) of auditory sparse repre-
sentation C is increased by α.

4. In the fourth step, the GC filter of the ith iteration γi(t) is extracted from the GC
filterbank Γ using frequency channel index If .

5. In the fifth step, the energy produced by the coefficient α and the GC filter γi(t) is
removed from the residual signal r(t).

6. In the last step, the correlation matrix S is replaced by the correlations between the
residual signal r(t) and the GC filters of the GC filterbank Γ. Then, the algorithm
goes back to the first step.

When the maximum number of iterations is reached, the algorithm halts and returns
the auditory sparse representation C of the input speech signal. Figure 6.2 (c) shows an
example of the auditory sparse representation.
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6.4.2 Deep hashing algorithm

Central similarity quantization (CSQ) [82] is a deep learning to hash algorithm, which
converts an image into a binary hash sequence. The hash sequences are seen as data points
in the Hamming space, and the Hamming distance is used to measure the similarity among
them. First, the algorithm calculates a set of predefined hash centers by drawing samples
from a Hadamard matrix or a Bernoulli distribution. Then, a deep learning algorithm is
trained to produce hash sequences that approach a hash center based on the Hamming
distance. As a result, similar images are mapped into a cluster of hash sequences around
a pre-defined hash center. Experimental results show that CSQ achieves outstanding
performance on the ImageNet [83], MS COCO [84], and NUS WIDE [85] datasets.

We have used the auditory sparse representation algorithm to derive the inherent
speaker individuality of each speaker. Now, we use CSQ to map similar speaker individ-
ualities into the same binary hash cluster in the Hamming space. Then, we can perform
the speaker identification and retrieval by calculating the Hamming distance between the
hash sequences.

Optimization problem of CSQ

The key to the intricacies and effectiveness of CSQ is its loss function to solve a central
similarity optimization problem. The optimization problem is presented as follows:

min
Θ
LT = LC + λ1LQ, (6.4)

where Θ and λ1 are parameters of the deep hash function and a hyper-parameter, respec-
tively. LC is designed based on the well-known maximum a posterior (MAP) estimation
and LQ is introduced as a quantization loss to ensure that the generated hash codes
converge to their corresponding hash centers.

Let X = {xi}Ni=1 be the training set consisting of N samples, C = {c1, ..., cq} be a
set of hash centers drawn from a Bernoulli distribution. Because each data points xi is
associated with a hash center, we have the following semantic hash centers of N elements
C ′

= {c′1, ..., c
′
N}, where c

′
i is the hash center of a data point xi. Assume that H = {hi}Ni=1

is a set of hash codes corresponding to X . H can be obtained by maximizing the following
likelihood probability:

log P (H|C ′
) ∝ log P (C ′|H)P (H) =

N∑
i=1

log P (c
′

i|hi)P (hi), (6.5)

where P (H) is a prior distribution of the hash codes, P (C ′|H) is the posterior probability
or the likelihood function, and P (c

′
i|hi) is the conditional probability of the hash center

c
′
i given the hash code hi. A Gibbs distribution is used to model P (C ′|H) as follows:

P (c
′

i|hi) =
1

αeβDH(c
′
i,hi)

, (6.6)

where α and β are constants, and DH(c
′
i, hi) is the Hamming distance between a hash

code hi of a data point xi and its corresponding hash center c
′
i. It can be seen that

the conditional probability P (c
′
i|hi) is inversely proportional to the Hamming distance

DH(c
′
i, hi). Therefore, by maximizing P (c

′
i|hi), the distance DH(c

′
i, hi) can be minimized,

and thus, the hash code hi of a data point xi is encouraged to approach its hash center
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c
′
i. Binary cross entropy (BCE) is used to measure the Hamming distance between a hash
code and its center,

DH(c
′

i, hi) = BCE(c
′

i, hi) = −
1

K

K∑
k=1

c
′

i,k log hi,k + (1− c′i,k) log (1− hi,k). (6.7)

Substituting Eq. 6.7 to Eq. 6.6 and taking logarithm on both sides, we obtain the
following direct proportion: log P (c

′
i|hi) ∝ − 1

K

∑K
k=1 c

′

i,k log hi,k+(1− c′i,k) log (1−hi,k).
Substituting log P (c

′
i|hi) into Eq. 6.5, we arrive at the following central similarity loss

function:

LC =
1

K

N∑
i=1

K∑
k=1

c
′

i,k log hi,k + (1− c′i,k) log (1− hi,k). (6.8)

The second part of the composite loss function, LQ, is introduced to ensure that the
generated hash codes hi converge to their corresponding hash centers ci. The bi-modal
Laplacian prior for quantization is used for this purpose: LQ =

∑N
i ̸=j(|||2hi − 1| − 1||1),

where 1 ∈ RK is the vector of ones. However, this function is a non-smooth function
or non-differentiable. This problem can be relaxed by using a smooth surrogate of the
absolute function |x| ≈ log cosh x. Consequently, LQ can be rewritten as

LQ =
N∑
i=1

K∑
k=1

log cosh (|2hi,k − 1| − 1). (6.9)

Substituting Eq. 6.8 and 6.9 into 6.4, the composite loss function LT can be used to
optimize the parameters of Θ.

CSQ framework

Figure 6.3 shows the framework of the central similarity quantization. The framework
has 4 important parts:

1. At first, the input to the CSQ, {(xi, xj, ci, cj)}, is a pair of auditory sparse rep-
resentations (xi, xj) and their corresponding hash centers ci, cj, with i ̸= j. More
specifically, each auditory sparse representation, xi, is a 32× 300 matrix extracted
from a speech signal by the extraction method described in Section 6.4.1. Each hash
center ci is a binary sequence of length K.

2. Generally, the next part is a convolutional neural network (CNN) used for feature
learning. In the present study, four convolutional layers from ResNet50 [86] are used
for this part; however, other CNN frameworks such as AlexNet [87] can also be used
for the same purpose.

3. The third part is a hash layer—consisting of three fully connected layers and a ReLU
activation function—that is used to convert high dimensional features (outputs of
the CNN framework) into hash codes corresponding to the input auditory sparse
representation.

4. The last part is the optimization strategy of CSQ as described in Section 6.4.2.
The composite loss function LT is used to encourage the generated hash codes to
approach their corresponding hash centers.
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Table 6.1: Splits of VoxCeleb2 dataset used in speaker identification and retrieval
experiments.

No. Speakers No. Utterances

Training set 3,641 848,957

Validation set
(10 utt./speaker) 3,641 36,410

Test set
(20 utt./speaker) 3,641 72,820

Total 3,641 958,187
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Table 6.2: Evaluation results of proposed method and other state-of-the-art methods in
MAP (%) and Top-1 (%). Real and binary are real-valued and binary-valued hash codes.

Method Code length MAP Top-1

i-vector (binary) [64] 150 — 79.23
x-vector (binary) [64] 150 — 76.74
RSS (binary) [64] 150 — 74.65

i-vector (real) [62] 150 27.70 93.81
AM-Softmax (real) [62] 512 95.82 98.65
DAMH (binary) [62] 256 94.55 98.19

SEM (real) [65] 2048 97.70 98.00
SEM (binary) [65] 32 95.60 96.30

Proposed method 64 97.55 99.91
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6.5 Experiment and Evaluation

6.5.1 Dataset and pre-processing

We used the VoxCeleb2 dataset [88] to evaluate the effectiveness of our proposed method.
More specifically, only speakers whose number of utterances are at least 100 were selected;
thus, the total number of speakers and utterances that were used in our experiments were
3,641 and 958,187, respectively.

For each utterance, we cropped a three-second segment randomly. Then, we used the
algorithm as described in Section 6.4.1 to convert all the utterances into auditory sparse
representations with a dimension of 32×48,000. Then, we used a max pooling technique to
reduce the dimensionality of the feature vectors. More specifically, we used a 32×1×160
(10 milliseconds duration) frame with no overlapping to produce input feature vectors
with a dimension of 32× 300.

6.5.2 Experiment setups and evaluation metrics

We obtained the hash centers by sampling the Bernoulli distribution. More specifically, we
generated 3,641 64-bit binary hash centers that corresponded to the number of speakers
in the evaluation dataset. Furthermore, only a set of hash centers, where the minimum
distance between two hash centers and the mean distance of all the hash centers were at
least 20 and 32, respectively, was used.

Table 6.1 shows the splits of data used in our experiments. For each speaker, we
randomly selected 10 utterances for validation—36,410 utterances in total—and 20 ut-
terances for testing—72,820 utterances in total. The remaining 848,957 utterances of
the whole dataset were used for the training process. We used the same splits in both
speaker identification and retrieval experiments. We used top-1 accuracy for the speaker
identification task and mean average precision at 100 (MAP@100) for the speaker retrieval
task because the lowest number of utterances per speaker was 100.

We trained the deep hashing algorithm for 50 epochs. After every 10 epochs, we
evaluated the performance of the trained deep hashing algorithm with the validation set
using MAP@100 and saved the model as a checkpoint. Then, we used the model that
produced the highest MAP@100 on the validation set for calculating MAP@100 and top-1
accuracy on the test set.

6.6 Results and Discussion

Researchers researching deep hashing have evaluated their methods using different types
and sizes of datasets. Therefore, we compared our results with two recent benchmarks
on VoxCeleb datasets. More specifically, we compared our results with those produced
by DAMH [62], which was the state-of-the-art method in 2019, and Random Speaker-
variability Subspace (RSS) [64]. We also compared our results with SEM [65], which was
the state-of-the-art method in 2021. Table 6.2 shows the results of our experiments.

Regarding the work reported in [64], i-vector and x-vector were used as speaker embed-
dings and binary hash codes were produced by two methods. The first method used Local
Sensitive Hashing (LSH) [?], and this method was used as the baseline for comparison. The
second hashing method introduced RSS to avoid redundant and potentially overlapping
projections. The similarity between CSQ and RSS is that the distribution of the generated
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hashes is a part of the overall algorithms. Therefore, the intra-class and inter-class of
the binary hash clusters of the speakers are controlled by explicit techniques rather than
random projection such as using LSH. Consequently, this is one advantage of our proposed
method over the classical hashing method, using LSH on top of i-vector/x-vector. The
second advantage of our proposed method over RSS is that we used only 64-bit hash
length while RSS used 150 bits. It is evident that the shorter the length, the shorter the
indexing time, and the lower the storage size. Another advantage of our proposed method
is that the speaker identification results are noticeably higher than those reported in [64],
20.68% and 25.26% higher than i-vector and RSS, respectively.

With respect to [62], i-vector was also used as a baseline for comparison in speaker iden-
tification and retrieval tasks. It can be seen that our proposed method outperformed this
baseline. The method that produced the top performance in [62] was called AM-Softmax;
however, this method generated 512 real-valued hash codes that greatly increased indexing
time and storage cost. Moreover, its MAP and top-1 accuracy were 1.73% and 1.26%
lower than those of our proposed method, respectively. A hashing technique was applied
to AM-Softmax to produced binary hash codes and called DAMH. Regarding DAMH,
its 256-bit binary hash codes produced 94.55% in MAP and 98.19% in top-1 accuracy.
The advantages of our proposed method over DAMH are threefold. First, it can be seen
that the MAP and top-1 accuracy produced by our method were 1.72% and 3.00% higher
than those of the 2019 state-of-the-art. Second, a higher performance can be achieved
with a shorter code length, that is, 64-bit instead of the 256-bit of DAMH. Finally, we
used a lower number of utterances in the training set to train our deep hashing method,
which was 848,957 utterances instead of the 903,572 utterances in DAMH. In summary,
our proposed method was more effective than DAMH because it required less training
data yet performed better with a shorter code length.

With respect to SEM with a 2048-bit real-valued code length, the MAP by our method
was almost the same—only 0.15% lower—but the top-1 accuracy was 1.91% higher. The
disadvantage of SEM (real) is that it used 2048-bit real-valued hashes, which greatly
increased the storage size and the identification and retrieval time. Furthermore, only
MAP@10 was calculated; the calculated MAP may not hold if the evaluation range is
increased to 100. A dimension reduction technique and the sign function were applied
to SEM (real) to obtain SEM (binary) to deal with the storage size and indexing time
problems at the cost of its performance. More specifically, both the MAP and top-1
accuracy were lower than those of our method by 1.95% and 3.61%, respectively. We
acknowledge that our method operated with a smaller dataset in comparison with that of
SEM. However, a longer hash code length can be used to increase the coding capability
and a farther hash center distance can be applied to increase the inter-class discrimination.

6.7 Conclusion

Deep speaker hashing techniques in the literature have tried to produce discriminative
hash codes that can be used for large-scale speaker identification and retrieval. Results
from psychoacoustical studies have shown that the inherent speaker individualities in
speech signals are unique to each speaker. Although existing deep speaker hashing
methods can achieve high accuracy, they do not take into account the importance of
speaker individuality. In this study, we proposed a method that maps significant acoustical
features related to speaker individuality to the Hamming space. More specifically, we
used the equivalent rectangular bandwidth (ERB) scale and a gammachirp (GC) function
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to design an auditory filterbank; together with an orthogonal matching pursuit (OMP)
algorithm, we converted speech signals into auditory sparse representations as a way to
mimic neural activity patterns (NAPs). Furthermore, we focus on the frequency range
from 40 to 800 Hz because it is important for speaker individuality analysis. Then, we
used the CSQ to map auditory sparse representations into hash sequences in the Hamming
space. Experimental results on the VoxCeleb2 dataset showed that our proposed method
is highly competitive with other state-of-the-art methods as it achieved 99.91% accuracy
in a speaker identification task and 97.55% MAP@100 in a speaker retrieval task with
only 64-bit binary hash sequences.
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Chapter 7

Conclusion

7.1 Summary

In cyber physical systems, speech is an essential part of various kinds of applications such
as controlling automated systems, communications, and digital properties, etc. Therefore,
speech security is important to ensure that speech is safe and convenient tool to use. A
solution to the problem is using speech fingerprints.

The first goal of this study is constructing an algorithm to approximate the NAPs
of the auditory nerves. This algorithm is important because speech fingerprints are
inherent in the NAPs. A speech analysis/synthesis experiment was conducted to evaluate
the performance of this algorithm. Results suggest that auditory sparse representations
convey significant perceptual features of speech signals. At this point, it can be concluded
that the auditory sparse representations are similar to the NAPs.

The second goal is to verify the uniqueness of the patterns on the auditory sparse
representations. The NAPs cary different patterns specifically to different speakers,
linguistic contents, emotions, etc. The auditory sparse representations are proposed to
mimic the NAPs; thus, they should contain unique patterns depending on different kinds
of information of speech signals. A general landmark-based pattern analysis technique
was used for this purpose. Experimental results show that the proposed auditory sparse
representations contain highly distinguishable patterns. At this point, it can be concluded
that the proposed method provides an effective representation model for speech signals
that is potentially useful for different kinds of speech analysis applications.

The third goal is constructing a speech fingerprint identification algorithm. A gam-
machirp auditory filterbank and an orthogonal matching pursuit algorithm were used to
extract speech fingerprints from speech signals. Also, a deep hashing technique (CSQ)
was used as the identification algorithm. Experimental results show that the proposed
speech fingeprints achieve high performance in distinguishing speakers and very effective
in a large dataset.

7.2 Remaining issues

A masking model was used in the proposed method to removed inaudible kernels and the
PMP-GC provided the highest results in both experiments. However, it was unclear if
the masking model had over or under estimated the masking patterns.

With regards to the second experiment, the RLBAF is a very basic pattern analysis
technique and it was originally designed to work with spectrograms. Thus, the RLBAF
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might not be able to obtain the potential of the auditory representation.

7.3 Future work

The nonlinearity characteristics of the auditory periphery are still a mystery to science.
Thus, in the future, when we have a better understanding about the current characteristics
and discover more physiological and psychoacoustical phenomenons, extensions can be
made to obtain auditory representations that are more similar to the NAPs.

Deep learning has become the state-of-the-art pattern analysis recently; therefore, a
deep learning algorithm can be design specifically to exploit the advantages of the auditory
representations.
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Appendix A

Supplementary Material

A.1 Creating speech database for the speech finger-

print matching experiment

The speech fingerprint matching experiment has to main steps. The first step is creating
a speech fingerprint database for references and the second step is querying the database.
We recorded the speech signals for this experiment in a sound proof room. Six people
including three male and three female (from 23 to 30 years of age) volunteered for the
recording process. The speech contents we used were three Japanese words: /Ohayo-
gozaimasu/, /Konichiwa/, and /Kombanwa/. Each volunteer uttered each word 20 times.
Then, we used a free software to extract 11 utterances for each speaker and each word
(speaker, word) randomly, 198 speech signals in total. We used MATLAB to down-
sample the speech signals from 44,100 Hz to 16,000 Hz. We used 10 pairs (speaker, word)
for creating the speech fingerprint database and 1 pair (speaker, word) for querying the
database.

Figure A.1: Anatomy of the human auditory periphery. The figure was captured from [1].
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A.2 Neural Activity Patterns

If someone asked: “Could you please show me your ears?” We would probably be showing
the two round and springy flaps on either sides of our head. That would normally correct in
the common sense. However, those are just pinnae, the ears are much more complicated,
and we have not fully understood how they work yet. Generally, our ears comprise of
two parts, i.e., the auditory periphery, and the auditory cortex. Figure A.1 illustrates
an anatomy of the human auditory periphery. The auditory periphery consists of three
parts, i.e., the outer ear, middle ear, and inner ear. The sounds we hear first arrive at
the pinna of the outer ear, travel through the auditory canal, and beat the ear drum.
The ear drum and the ossicles of the middle ear transfer the waves of air pressure into
mechanical movements of the stapes, which hammer the oval window of the cochlear.
The spiral snail-like shape of the cochlear is filled with almost incompressible fluids. The
pressure of the fluids caused by the hammering of the stapes generates travelling waves
on the basilar membrane. These travelling waves stimulate the inner hair cells and outer
hair cells of the inner ear. Stimulated inner hair cells discharge a flux of neurotransmitter
into the auditory nerve causing bioelectrical spikes. Thus far, incoming sounds have been
converted into bioelectrical spikes at the auditory nerve. The Neural Activity Patterns
(NAPs) of the spikes carry the information about the sound to the auditory cortex.
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