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Abstract—Cardiac Output (CO) is a key hemodynamic vari-
able that can be estimated in a minimally invasive way via using
Arterial Pressure Waveform Analysis (APWA). Many models use
circulation mechanics to build the relationship between arterial
pressure and CO. In this study, we attempt to apply machine
learning and feature engineering to analyze the Arterial Pressure
Waveform (APW) and create regression models to predict the
CO. We utilize the traditional APWA model knowledge and the
time-domain, frequency-domain, and other characteristics of time
series data for feature engineering. We present the benchmarking
results for several machine learning models using the MIMIC-
II waveform database. We compare the predicted CO values
from our proposed models with the “gold standard” TCO (CO
measured by intermittent pulmonary artery thermodilution).
Our results show that the Random forest model has the most
accurate agreement (MSE: 1.421 L/min, bias: -0.01 L/min, 95%
limits of agreement: -2.35 L/min to +2.32 L/min, percentage
error: 39.44%). Notably, the XGBoost model demonstrates good
tracking ability with TCO (radius bias: 11.79°, 95% radius limits
of agreement: ± 28.89°), achieving the clinically acceptable level.

Index Terms—Cardiac Output, feature engineering, machine
learning, Arterial Pressure Waveform

I. INTRODUCTION

Hemodynamic monitoring plays an important role in peri-
operative and critical care. CO, a key hemodynamic variable,
acts as a valuable tool for the diagnosis and management of
critically ill patients [1]. Several ways have been presented in
order to measure or estimate CO values. The Fick principle,
as the first method to measure CO, was proposed in 1870

by Adolf Eugen Fick [2], using oxygen as the marker to
calculate CO through the whole body’s blood flow. Indicator
dilution techniques are based on injecting a substance into the
circulatory system and measuring its change in concentration
over time, which relates to the rate of flow in the system.
The substance could be Lithium [3] or cold saline (also
called ”Thermodilution”, the gold standard methods in CO
measurement and the measured CO is named TCO) [4].

As the indicator dilution techniques are invasive, minimally
invasive or non-invasive methods are developed. APWA is
widely used for estimating hemodynamic parameters. One of
the most classical models is the ”Windlessel model”, proposed
by Otto Frank [5] in 1899. It describes the elasticity or
compliance of the large arteries as a pneumatic air chamber
with the first-element model. Afterward, the extensions to
two-element, three-element, and four-element models were
proposed, considering more sophisticated factors, such as
arterial impedance and oscillatory phenomenon. Becides, some
models focused on finding the relationship between power and
flow [6]. In contrast, others considered the waveform morphol-
ogy [7]. All the aforementioned models are based on physical
or mathematical modeling for the relationship between the
blood flow, blood pressure, and power to estimate the CO,
which is sophisticated and requires large-scale experiments for
calibration and obtaining correction factors [8].

Recently, more advanced time series or waveform analysis
models were introduced to analyze the hemodynamic param-
eters. Yang et al. [9] used deep learning models to extract the



characteristics of blood pressure waveform to estimate the CO.
Moon et al. [10] presented a deep learning model to estimate
SV (Stroke Volume, SV × HR (Heart Rate) = CO). Kwon et
al. [11] estimate SVV (Stroke Volume Variance) from APW
based on 1-D CNN (Convolutional Neural Network). This kind
of research entails time and effort-intensive data collection,
especially the TCO records to be served as a ground truth,
which is difficult to collect as it requires invasive procedures.

In this work, we attempt to use the feature engineering and
machine learning methods to estimate CO based on ABPW,
without the need for collecting massive amounts of data.
Specifically, we propose to fuse Hemodynamic, Waveform,
and Demographic features and use regression-based machine
learning models to estimate CO values. Furthermore, we
conduct a benchmark testing of several machine learning
models for the CO predicting task. We use the public MIMIC-
II (Medical Information Mart for Intensive Care II) waveform
dataset [12]. Our results indicate that machine learning models,
especially Random forest and CatBoost, outperform other
traditional APWA models [13] both in agreement and trending
ability. Notably, XGBoost reaches the clinical requirement of
trending tracking as defined in [14].

The rest of the paper is organized as follows: Data pre-
processing procedures are outlined in the next section. Section
III is devoted to the feature extraction procedures. Section
IV details the results obtained using tested machine learning
models and computational analysis. The last two sections are
for Discussions and Conclusions, respectively.

II. DATA PREPARATION

A. Datasets

Our dataset is extracted from the MIMIC-II Waveform
Database Matched Subset [12], [15]. It contains 4, 897 wave-
form records and 5, 266 numeric records from bedside patient
monitors in intensive care units (ICUs) of the MIMIC-II
Waveform Database, which have been matched and time-
aligned with 2, 809 MIMIC-II Clinical Database records [16].
Waveform records include one or more ECG (Electrocar-
diogram), ABP, PPG (Fingertip Photoplethysmogram), etc.
Numeric records include HR, SpO2 (Oxygen saturation), SBP
(systolic blood pressures), MAP (mean blood pressures), and
DBP (diastolic blood pressures), TCO, etc. The database also
records demographic and clinical information, including age,
sex, ICD9 codes (Diagnostic Code Descriptions), Hematocrit
(mean and standard), and medications.

B. Data segmentation

In the dataset, the ABP signals, sampled at 125 Hz, and
the reference TCO measurements occur at irregular intervals.
We extracted the ABP waveform and TCO measurement to
compose the input segmentations. One segmentation contains
the TCO at T0 and ABP waveform with a time window of 10
seconds (T0−10S , T0), as shown in Fig. 1.

Mechanical ventilation results in a cyclical increase (during
inspiration) and decrease (during expiration) of intra-thoracic
pressures and these pressure fluctuations, in turn, alter the

diastolic filling of the right and left ventricles. Therefore,
we use the 10 seconds time window, which is based on the
normal respiration rate to decrease the influence of the period
of respiration on hemodynamic data [10], [17].

Fig. 1. The flowchart for data segmentation procedure.

III. FEATURE ENGINEERING

Feature engineering is to extract features from ABP wave-
forms and demographic records. Fig. 2 shows the three types
of features: 1) the features with hemodynamic meanings, ex-
tracted from the traditional ABPW models; 2) the features with
waveform meanings, extracted based on the basic waveform or
time series methods; 3) the demographic information with the
standardization process. In total, 68 features forms the input
vector for the machine learning models.

Fig. 2. Feature engineering from ABP waveform and demographic records.

A. Traditional ABPW models for feature engineering

The beat-to-beat HR, BP, DBP, and MAP from arterial
waveforms are the basic hemodynamic parameters. Also, PP
(Pulse Pressure), dicrotic notch, Asys (the area under the
curve of the systolic part of the arterial pressure) [4], and
their time durations and changes also reflect the hemodynamic



status [17]. Besides, traditional ABPW algorithms model the
arteries as a pneumatic air chamber and transfer the blood pres-
sure into the power or volume values, shown in Table I [13].

Thus, we fuse the above hemodynamic parameters with tra-
ditional ABPW models’ domain knowledge as hemodynamic
features, shown in Fig. 2.

1) Noise and abnormal process: In practice, The ABP
waveform data has noise and/or abnormalities, as shown in
Fig. 3. Noise results in extracting the wrong heart beat periodic
intervals. The procedure summarized in Algorithm 1 is to filter
out the noise based on RR interval normal/abnormal values.

Fig. 3. Noise and abnormal waveform.

Algorithm 1: adjust peak list with RR value difference
Input: peak list and RR list to be adjusted
Output: peak list adjust

1 write the value of peak list[0] into peak list adjust;
2 mean ← RR mean;
3 for i← 0 to len (RR)− 1 do
4 a← RR[i];
5 if a−mean < const then
6 while a = a+RR[i + 1] < const do
7 a = a+RR[i];
8 peak list adjust[i] ← peak list[i+1];

9 if a−mean > const then
10 rr m ← round (a/mean);
11 rr interval ← a/rr m;
12 p interval ← rr interval/(1000/freq ABPW);
13 p d ← peak list adjust[i-1];
14 for rr i ← 0 to rr m−1 do
15 peak list adjust[i] ← p d + p interval;

16 Return peak list adjust;

B. Waveform features

In this study, 39 waveform features are abstracted from
10s waveform and incorporated into machine learning mod-
els as inputs, including: Seasonal and Trend decomposition,
the strength of seasonality, the strength of trend, spikiness,
linearity, amount of level shift, presence of flat segments, the
Auto-Correlation Function (ACF), the Partial Auto-Correlation
Function (PACF), Hurst exponent, the Auto-Regressive Con-
ditional Heteroskedasticity (ARCH) statistic, etc.

C. Demographic information

The study includes 227 patients of either sex, aged from 37-
90 years in ICU. Two kinds of demographic information are
taken into consideration: age and sex. The characteristics of
the patients are displayed in Table II. The training and testing
sets have the similar statistic distributions among patients.

IV. MODEL TRAINING AND RESULT ANALYSIS

A. Model training and testing

Machine learning methods have been already widely used to
analyze various physiological data and waveform signals [27],
[28]. We extract the waveform-related and hemodynamic-
related features from arterial pulse waveform signals and
input these features combined with patients’ demographic
information into the machine learning models.

We divide the training, validation and test dataset as 8:1:1
(training size: 2, 226; validation size: 247; test size: 268) and
use 10-fold cross-validation to evaluate 19 machine learning
models categorized into 6 types: linear regressor, linear ridge
regressor, and linear lasso regressor belong to the linear regres-
sion model; decision tree regressor and extra tree regressor
belong to the tree model; random forest regressor, HGB
regressor, GBR regressor, ABR regressor, bagging regressor,
XGBoost regressor, LightGBM regressor, and CatBoost re-
gressor belong to ensemble model (specifically, the XGBoost
regressor, LightGBM regressor, and CatBoost regressor use
the gradient boosting method, which is widely used and has
good performance in the clinical domain); Gaussian regres-
sor, Bayesian ridge regressor, and ARD regressor belong to
Bayesian model; neural network regressor, KNN regressor, and
SVM regressor belong to other models.

B. Result analysis

We evaluate all the above models and choose one or more
representatives from each type for the final result comparison.

1) Distribution and box plot: Fig. 4 shows the distribution
or spread out between the model predicting results and TCO.
Most CO values are between 4 to 7 L/min and the distributions
are similar to the measured TCO. Machine learning and feature
engineering have similar distribution characteristics.

Fig. 4. Disctribution and boxplot.

2) Regression evaluation: Estimating CO is a regression
issue to predict the CO value of the last timestamp in the
ABPW time window. In this study, seven regression evaluation
metrics are used to summarize the predictive skills, shown in
Table III. From the results, Random Forest, CatBoost, and
XGBoost can be seen as the top three performing models.

3) Meta-analysis of four graphic: In the hemodynamic
domain, especially CO prediction task, the meta-analysis de-
scribe the relationship between the TCO and predicted CO [3].
The Meta-analyses summarised results from seven representa-
tive models are shown in Table IV and Fig. 5∼Fig. 8.



TABLE I
ALGORITHMS TO ESTIMATE CO FROM ABP WAVEFORMS

Algorithm name Algorithm description
Mean Pressure [18] k× MAP
Windkessel (1904) [19] k × (SBP −DBP )× HR
Windkessel with RC decay (1976) [20] k × MAP

T
× ln SBP

DBP
× HR

Liljestrand-Zander (1928) [21] k × SBP−DBP
SBP+DBP

× HR
Herd (1966) [22] k × (MAP −DBP )× HR

Pressure root-mean-square (2002) [23] k ×
√∫

T (ABP (t)−MAP )2dt× HR
Systolic area (1959) [24] k ×

∫
sys ABP (dt)× HR

Systolic area with Kouchoukos correction (1970) [25] k ×
∫
sys ABP (dt)× (1 +

Tsys

Tdia
)× HR

Corrected impedance (1983) [26] k × (163 +HR− 0.48×MAP )×
∫

sys ABP (dt)× HR

TABLE II
PATIENT CHARACTERISTICS FOR TRAINING AND TESTING SET

Training set

(n=2473, p=226)

Test set

(n=268,p=121)

Total set

(n=2741,p=227)

Demographics

Age (years)
37 - 90
70 [62-77]
69.8±11.6

37 - 90
72 [61-77]
68.7±13.0

37 - 90
70 [62-77]
69.7±11.8

Sex (male) 62.2% 63.3% 62.3%

Hemodynamic characteristics

HR
0 - 138.3
86.2 [77.5-93.1]
85.4±13.3

0 - 153.7
86.1 [76.5-94.7]
85.7±16.5

0 - 153.7
86.2 [77.5-93.3]
85.4±13.6

ABP Sys (SBP)
0 - 196.8
113.6 [102.2-126.7]
110.6±32.0

0 - 190.3
113.7 [102.2-126.8]
111.0±34.0

0 - 196.8
113.6 [102.2-126.7]
110.6±32.2

ABP Dias (DBP)
0 - 102.9
55.1 [49.2-62]
53.5±15.7

0 - 94.6
54.8 [48.7-61.8]
53.3±16.4

0 - 102.9
55 [49.2-62]
53.5±15.8

ABP Mean (MAP)
-7.8 - 291
75.8 [68.4-83.9]
76.1±20.5

0 - 243.1
75.2 [67.9-83.7]
76.3±21.8

-7.8 - 291
75.8 [68.4-83.8]
76.1±20.6

CO (TCO)
1.55 - 19.1
4.91 [4.11-6.12]
5.2±1.7

1.82 - 14.1
5.2 [4.2-6.3]
5.4±1.7

1.55 - 19.1
4.94 [4.11-6.13]
5.2±1.7

n: values are expressed as the number of segmentations.
p: values are expressed as the number of patients.
Age: values are expressed as min-max, median [quartile 25% - quartile 75%], mean±std.
Sex: values are expressed as percent.
HR, ABP Sys, ABP Dias, ABP Mean, CO as measured by monitoring.

TABLE III
REGRESSION EVALUATION RESULTS

Regression results
Machine Learning Models

Linear ridge Extra tree Random forest CatBoost XGBoost Bayesian ARD NN Network
MSE 1.967 3.460 1.421 1.468 1.513 1.962 1.940

RMSE 1.403 1.860 1.192 1.211 1.230 1.401 1.393
MSLE 0.045 0.073 0.032 0.033 0.034 0.045 0.044
MAE 1.057 1.334 0.945 0.931 0.957 1.062 1.047

MAPE 20.739 25.294 18.424 18.057 18.453 20.899 20.494
MedAE 0.865 0.965 0.779 0.777 0.765 0.869 0.852
R2 score 0.296 -0.238 0.492 0.475 0.459 0.298 0.306

The scatter plot and fitting curves represent the agreement
or consistency between the TCO and predicted CO. The data
points lie within close proximity to the line of identity x = y
for there to be a good agreement, shown in Fig. 5.

Altman-Bland plot with Bias, LOA (Limits of Agreement),
and PE (Percentage Error) [29], is a way to evaluate a bias
between the mean difference and an agreement interval, shown
in Fig. 6. The Random Forest model is within a bias of -0.01
L/min, the LOA of [-2.35 to 2.32] L/min and the PE of 39.44

%, and it performs best, compared to other machine learning
models, while it can still not reach a clinically good agreement
range (PE≤30%) [3], [14].

Fig. 5. Scatter plots.

Fig. 6. Bland-Altman plot.

Fig. 7. Four-quandrant plot.

Fig. 8. Polar plot.

Besides the absolute accuracy and precision, it is also
important to assess the ability to track changes in CO. The
Four-quadrant plot (with concordance rate given in Fig. 7) and
the Polar plot (with the angular bias and radial LOA given in
Fig. 8) [14] are utilized for trending capabilities analysis. From
the Four-quadrant plot results, the concordance rate of the
Random forest model is 79.91%, and polar plot analysis results



in an angular bias of 16.31° with radial LOA of ±31.60°. The
XGBoost models’ radial LOA is ±28.89°, within the clinically
acceptable trending tracking ability for CO changes (radial
LOA≤ ±30°) [3], [14].

Through the above results, Random Forest, CatBoost, and
XGBoost perform best among other tested models for agree-
ment and trending ability. And XGBoost shows a good clinical
acceptable trending ability when predicting CO values.

C. Explanations and interpretation

1) Feature contribution analysis: We utilize three different
sets of features: hemodynamic features, waveform features,
and demographic features. We combine and separate feature
sets to re-train and test with Random forest model. The
results are listed in Table V: through the combination of
all three different feature sets, our model provided improved
performance in estimating the CO values.

2) Feature importance: For each feature, we calculated
their importance within the tree-based models as their per-
formance was more accurate than the other tested ones. In
Table VI, we list details of the top 10 features according
to their F-scores for Random forest, CatBoost, and XGBoost
models. From the importance analysis, demographic features
(age and sex) are the two most important factors in the
results while hemodynamic features and waveform features
both contribute to the models as well.

Fig. 9. Representative plot for interpretation of the tracking CO ability. In
this plot, x-axis represents the time while the y-axis is for CO values.

3) Representative plot and tracking ability: The represen-
tative plot in Fig. 9 shows the tracking of CO trends of our
models and the gold standard provided by test datasets. The
proposed models (orange, green, or red) shows a similar trend
to the golden standard CO (blue). It is noteworthy that when
TCO changes rapidly, our model can only track the change
direction, not to the same extent.

V. DISCUSSION

Based on result analysis, we identified future directions:
• Patient demographic information: we only introduce age

and sex due to the dataset limits. From the feature
importance analysis, the patient demographic information
plays an important role in predicting CO. Our clinical
knowledge tells us that the patient body mass index
affects the vascular resistance and hemodynamics. We
plan to add more demographic information, especially

patients’ weights and heights into the feature vector to
improve the performance of the presented model.

• As for feature engineering, features extracted based on
traditional hemodynamic models need an accurate sep-
aration of the RR interval and dicrotic notch periods.
When ABP waveforms are abnormal or noisy under ICU
or severe operations, it become difficult to process. For
such cases, we filter the noise by taking into account
the normal and/or mean RR. However, performance of
filtering noise is still limited. We will use deep learning
models to extract the ABP waveform and automatically
process the abnormal situation.

VI. CONCLUSION

In this study, we proposed the feature engineering and
machine learning methods to predict CO from the ABP
waveform. Features include information based on traditional
hemodynamic models and waveform or time series features.
Putting patient demographics together, we input all three
kinds of features into different machine learning models. We
also provided our benchmarking results for several machine
learning models on public MIMIC-II datasets and evaluated
them by boxplot, regression evaluation metrics, and meta-
analysis of four graphic plots. As evidenced by our results, the
ensemble models (Random Forest, CatBoost and XGBoost)
show good predicting results in all evaluation indicators.

Future work would not only include more demographic
information but also use deep learning models to improve the
feature extraction in order to overcome the difficulties imposed
by severely abnormal signals.
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