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Abstract

Speech is one of the most essential and important means for humans to com-
municate with each other. With the advancement of science and technology,
speech now can be transmitted from a far distance to help connect people
around the world through phones or web meetings,... Furthermore, it can
also be used as an interface for humans to communicate with machines via
automatic speech recognition (ASR) systems. However, in real environments,
speech is contaminated by noise, reducing its quality and intelligibility such
that it heavily affects the performance of these systems. In order to address
this issue, efficient speech enhancement algorithms are needed for both hu-
man hearing and ASR systems.

Many techniques have been proposed to separate clean speech from the
noisy mixture. Current state-of-the-art methods usually use short-time Fourier
transform (STFT) as the means for feature extraction. The word recogni-
tion rate of ASR systems utilizing these techniques as the front-end still falls
short of expectations, despite the fact that these methods can enhance the
quality and intelligibility of noisy speech. Recent studies have showed that
temporal envelope and temporal fine structure are crucial cues for speech
perception and they also play a significant role in improving the speech intel-
ligibility in noisy conditions. Therefore, speech enhancement by modifying
instantaneous amplitude (TA) and instantaneous phase (IPh) extracted from
an auditory filterbank is expected to have better improvement in quality, in-
telligibility as well as word recognition rate of ASR systems than STFT. On
this basis, a speech enhancement method based on IA and IPh from the audi-
tory filterbank was proposed. However, this method processed each channel
independently, which could neglect important cross-channel information for
ASR systems.

The purpose of this research is to investigate a model that can utilize
cross-channel information of IA and IPh to explore the ability of this infor-
mation in elevating the word recognition rate of ASR systems. This model
revolves around vector-quantized variational autoencoder to estimate IA, and
a complex convolution network to estimate IPh.

The efficacy of the proposed model will be estimated using three metrics:
perceptual evaluation of speech quality, short-time objective intelligibility,
and word error rate. The outcomes demonstrate that the proposed method
can enhance quality, intelligibility of noisy speech and is competitive with
some state-of-the-art methods. However, this method still cannot resolve the
issue of high word error rate in ASR systems.
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Chapter 1

Introduction

1.1 Research background

One of the most fundamental and important ways that people interact with
one another is through speech. In these modern days, instead of having to
be physically close to each other to have a conversation, we can utilize the
convenience of electronic devices such as phones, computers,... to be in touch
with other people around the world.

With the breakthrough of sciences and technologies, speech is no longer a
communication tool exclusively between humans anymore. The research and
development activities have brought up new innovations that allow humans
to communicate with machines to provide better life experiences. An impor-
tant medium for human-machine interfaces is automatic speech recognition
(ASR) systems.

However, there exists one problem that affects speech for human hear-
ing and its related systems and still remains unsolved. In noisy conditions,
speech signals are severely degraded in quality and intelligibility. The perfor-
mance of ASR systems is also heavily reduced due to the damaged integrity of
speech. To overcome this problem, researchers have been developing speech
enhancement (SE) algorithms as the pre-processing system for noisy speech
throughout the past decades. By processing noisy speech using these SE
models, the quality and intelligibility of speech can be both improved. How-
ever, it is still not enough to elevate the word recognition rate for ASR
systems since enhanced speech is usually over-suppressed or distorted [1].
Therefore, effective speech enhancement for both human hearing and ASR
systems under noisy conditions is a challenging problem and worth paying
attention to.



1.2 Problem statement

Numerous speech enhancement methods have been proposed for human hear-
ing and robust ASR systems as a front-end. From classic unsupervised tech-
niques such as spectral subtraction, minimum mean-squared error of short-
time spectral amplitude, and statistical methods [2] to powerful supervised
models such as deep learning networks [3]. Modern state-of-the-art methods,
notably [4], usually process on short-time Fourier transform (STFT) domain.
Yet the enhanced speech from these models still does not have a good perfor-
mance on ASR systems since these models tend to overly suppress the noise
and cause distortions in the output speech [1].

The temporal envelope and temporal fine structure are crucial cues for
speech perception, according to several psycho-acoustical research [5,6], and
they also significantly contribute to speech intelligibility in noisy conditions
[7]. Moreover, it has been found that the low-frequency range that is less than
2 kHz has more deciding factors to speech intelligibility [8]. These findings
match with human auditory system since we process speech in the time do-
main and we are good at telling the differences between low-frequency sounds
but barely able to distinguish high-frequency sounds. Therefore, speech en-
hancement by modifying instantaneous amplitude (IA) and instantaneous
phase (IPh) extracted from an auditory filterbank is expected to have more
improvement in quality as well as intelligibility than STFT [9]. On this basis,
a speech enhancement method based on IA and IPh from the auditory fil-
terbank was proposed in [9], which can improve sound quality as well as the
intelligibility of speech under noisy conditions. However, this method pro-
cessed each channel independently, which could neglect cross-channel infor-
mation that contains spectral features. Since most ASR systems use spectral
features extracted from the frequency domain [10], neglecting cross-channel
information may reduce the word recognition rate of ASR systems.

1.3 Research purpose

This research aims to investigate a deep-learning-based speech enhancement
framework that can utilize the cross-channel information of A and IPh from
the auditory filterbank to explore the ability of this information in elevating
both the quality, intelligibility, and word recognition rate of ASR systems for
the enhanced speech.

To achieve this research purpose, there are three sub-tasks in this study.
The first sub-task is to investigate a pair of analysis-synthesis auditory fil-
terbanks that can be integrated into a larger trainable network. Since the



analysis filterbank can be re-implemented from [9], the synthesis filterbank is
expected to behave like an inverse of this analysis block. The second sub-task
is to propose a deep learning model to estimate clean TA given noisy IA. This
model needs to have abilities to utilize cross-channel information from the
input. The final sub-task is to propose a module for phase correction with
the same ability to utilize cross-channel information.

The novelty of this study is to utilize the spectral information across AF
sub-bands of TA and IPh for speech enhancement tasks so that it could help
improve the recognition rate of enhanced speech from ASR systems. In detail,
this study considers the restoration of IA and IPh at a channel using the in-
formation of IA and IPh from all other channels. If the proposed method can
improve both sound quality, speech intelligibility as well as word recognition
rate of ASR systems, it can help elevate the quality of various applications
such as hearing aids, ASR, mobile phones, and online web-meetings.

1.4 Structure of the thesis

The structure of this thesis is as follows:

e Chapter 1 presents the importance of speech enhancement in Section
1.1, explains the problems in Section 1.2, and describes the objectives,
originality, and importance in Section 1.3.

e In chapter 2, a survey about typical methods for speech enhancement
will be introduced in Section 2.1. An explanation for the target research
is presented in Section 2.2, which includes a review of the analysis
auditory filterbank in Section 2.2.1 and overview of this target method
in Section 2.2.2.

e Chapter 3 will introduce the proposed method. First, the procedure to
obtain the synthesis auditory model is described in Section 3.1. Then,
Sections 3.2 and 3.3 will explain how to restore the instantaneous am-
plitude and instantaneous phase, respectively.

e Chapter 4 describes in detail how to implement the proposed method.
Specifically, Sections 4.1 and 4.2 will explain two deep learning mod-
els used for instantaneous amplitude estimation and Section 4.3 will
explain the model for instantaneous phase estimation.

e Chapter 5 explains the evaluations of the proposed method. Dataset
information, objective metrics, and model configurations are described
here. And the results and discussion are also presented.



e Chapter 6 summarizes this thesis and discusses the future works that
still need to be done to make the proposed method better.
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Figure 1.1: Structure of the thesis



Chapter 2

Literature review

2.1 Typical methods for speech enhancement

For single-channel speech enhancement tasks, several techniques have been
presented. These techniques can be divided into two groups: unsupervised
and supervised. For the unsupervised category, there is a wide range of no-
table algorithms. Although most of them are statistical models, there are
still additional factors that need to be reviewed. The supervised algorithms,
on the other hand, employ trainable models to suppress noise given a dataset
of both clean and noisy speech in advance. The model will be given pairings
of clean and noisy speech during the training phase, and an optimization
algorithm (mainly gradient descent) is performed to adjust the model pa-
rameters in order to produce speech that is as similar to the clean speech
as possible. In this section, both categories and their respective algorithms
shall be reviewed.

For the unsupervised category, a well-known method is spectral subtrac-
tion initially proposed by Boll [11] for stationary noise suppression. Short-
time Fourier transform (STFT) is used to convert the noisy speech to the
frequency domain. The non-speech sections are used to estimate the noise
magnitude spectrum, which is then subtracted from the noisy magnitude
spectrum to get the estimated clean speech spectrum. However, this method
produces musical noise artifacts in enhanced speech. Paliwal et al. [12], em-
ployed the modulation domain in an analysis-modification-synthesis (AMS)
architecture to decrease the musical noise for enhanced speech in order to
solve this issue.

For statistical-based speech enhancement algorithms, the Wiener filter works
on an AMS scheme to minimize the mean squared error (MSE) between
the predicted magnitude spectrum and clean speech spectrum [13]. Sev-



eral variations have been proposed over the years such as [14], which uti-
lized relationships between time frames to reduce residual noise. And [15],
which estimated a priori signal-to-noise ratio. These methods employed the
STFT-based AMS models to obtain the estimated power spectrum from the
noisy power spectrum. Other minimizing MSE-related methods focused on
short-time spectral amplitude (MMSE-STSA). Some notable schemes for this
method are [16], which can reduce musical noise in enhanced speech, and [17]
- which estimated the underlying clean speech magnitude spectrum given the
phase information. Additionally, techniques based on non-negative matrix
factorization (NMF) have been introduced to separate components in the
noisy spectrum. Li et al. [18] used the NMF to decompose the noisy spectrum
into three parts: structured noise, raw speech estimate, and noise residual.
The first two parts are then used in a non-negative sparse coding framework
to predict a binary mask used to predict clean spectrum. Mohammed et
al. [19] pre-trained a partial set of basis spectrum on clean speech in advance
and adapt it to noisy spectrum in runtime.

Aside from the STFT domain as a means for feature extraction, many re-
searchers have started incorporating human auditory system properties into
their models. Such properties are captured and modeled as gammatone filter-
bank [20] and gammachirp filterbank [21]. Lin et al. [22] used a gammatone
filterbank (GTFB) to extract features from the noisy speech and estimated
the clean speech using the Wiener filter idea. On this basis, Kianyfar et
al. [23] extended the idea and improved the performance of this model to
adapt to non-stationary noise. Kortlang et al. [24] used a statistical model
to predict the noise spectral density for the Wiener filter-based model and
yielded comparable results in strong babble noise environment.

Over the past decade, deep learning-based models have been studied for
speech enhancement and helped elevate the performance of this field of re-
search since then. By utilizing a large scale of training data, these supervised
algorithms can provide robust solutions for speech enhancement. Several
methods processed the raw speech directly. Pandey et al. [25] used a convo-
lutional neural network comprised of causal and dilated convolutional layers
to map noisy waveform to enhanced waveform. A speech enhancement gener-
ative adversarial network (SEGAN) was introduced by Pascual et al. [26] to
train two models: a generator G and a discriminator D. During the training
phase, G will map noisy speech z to enhanced speech z, while D will try to
tell the differences between z and true clean speech y. Both G and D are
simultaneously trained, G will try to perform better to fool D and D will
try to perform better at distinguishing 2 and y until Z is not distinguishable
from true clean speech y. Both methods achieved high results in improving
the quality and intelligibility of noisy speech.



Another approach is using STFT as a means for feature extraction and pro-
cessing on the magnitude spectrum to learn the mask targets. These targets
are ideal binary mask (IBM) [27,28], ideal ratio mask (IRM) [29,30] or spec-
tral magnitude mask (SMM) [31]. By multiplying those masks with the noisy
magnitude spectrum on an element-wise basis, the estimated clean magni-
tude spectrum can be obtained. This estimated magnitude spectrum is then
incorporated with the noisy phase to form the enhanced speech using inverse
short-time Fourier transform. In other words, these methods just leave the
phase unprocessed. However, by experimenting on various cases of differ-
ent combinations of noisy/clean amplitude/phase in the STFT domain, [32]
and [33] have shown that the clean phase spectrum still yields significant
information for speech enhancement. Motivated by this finding, researchers
have started paying attention to the phase spectrum. Erdogan et al. in-
corporated phase information into the SMM and called it phase-sensitive
mask [34]. The results of this method yielded a better estimation for clean
speech than the original SMM.

Still, direct clean phase estimation remains a challenging task. In recently
proposed deep-learning-based methods, researchers have started to focus on
processing the complex STFT coefficients, which can deal with the phase in
an indirect way. Lee et al. [35] proposed a model to predict a parametric
complex-valued time-frequency mask (PCM), this mask is used to jointly es-
timate both STFT magnitude spectrum and phase spectrum. Li et al. [36]
utilized long-short term memory (LSTM) layers with delayed output to es-
timate a complex ideal ratio mask, which is then applied to the complex
STFT coefficient of noisy speech to obtain the clean one. Sun et al. [37] used
a U-net model with the complex spectrum as input to predict both STFT
magnitude spectrum and phase spectrum. These techniques have opened a
new approach to deal with the phase information, which has been consid-
ered difficult since the wrapped phase does not have any clear patterns to
be distinguished from the noisy one, and the unwrapped phase is unbounded.

2.2 Speech enhancement on instantaneous am-
plitude and instantaneous phase

2.2.1 Auditory filterbank

The gammatone filterbank is designed after the cochlear of humans auditory
system [38]. Each sub-band of this filterbank corresponds to a position on



the basilar membrane. The impulse response of this filter is expressed as
g(t) = at" e U ERBUI cog on fit >0 (2.1)

where a, n and by are filter amplitude, filter order, and bandwidth coeffi-
cient, respectively. Center frequency f. and equivalent rectangular band-
width ERB(f.) for this frequency are defined as follows

ERB(f.) = 24.7 + 0.108f, (2.2)

In case n = 4, by=1.019, Eq. (2.1) represents human’s auditory filter [39].
This filterbank characteristics are illustrated in Fig. 2.1.

To obtain the instantaneous amplitude (IA) and instantaneous phase
(IPh) of a random signal z(%), the Hilbert transform is applied on Eq. (2.1)
to derive the analytic representation of the filter

C(t) _ at”—leJQcht—zﬂbeRB(fc)t’ (23)

By using ((t) to filter z(t), we can obtain
X (k. ) = [ X (k, £ eGs (XG0, (2.4

with | X (k,t)| being IA and ®(k,t) = arg (X (k,t)) being the phase spectrum.
k, t is the channel and sample index, respectively. Then we have [Ph defined
as

o(k,t) = ®(k, 1) — 27 fit, (2.5)

where fj is the center frequency at channel k.

IA | X (k,t)| and TPh ¢(k,t) will be used as feature targets for our speech
enhancement task. Also, from this point onward, if nothing else is men-
tioned, gammatone filterbank will be regarded as analysis model and inverse
gammatone filterbank will be regarded as the synthesis model.

2.2.2 Kalman filter-based method for instantaneous am-
plitude and instantaneous phase estimation

Nower et al. [9] have proposed a model for speech enhancement focusing on
instantaneous amplitude (IA) and instantaneous phase (IPh) restoration. In
this analysis-modification-synthesis (AMS) scheme, IA and IPh are extracted
from the noisy speech by an analysis gammatone filterbank into K channels.
Then, on one channel at a time, the linear prediction (LP) coefficients of
clean speech are calculated by two methods: non-blind and blind.
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Figure 2.1: Gammatone filterbank characteristics (33 channels in total). Top:
impulse responses in the 0th, 10th, and 20th channel (center frequencies are
60 Hz, 123 Hz, and 253 Hz, respectively); bottom: magnitude frequency
responses in all 33 channels

In the non-blind method, clean speech is available for LP coefficients cal-
culation. The purpose of this non-blind scenario is to identify the upper
improvement limit for this scheme. For the blind method, clean speech is
not available. An investigation that LP coefficients of IA and IPh in each
channel have similarities in values and are not dependent on speaker identity
or the content of the speech was conducted and verified. The LP coefficients
are pre-trained on a closed dataset and then inferred during the enhancement



process.
These LP coefficients will be passed to a Kalman filter to estimate clean
IA and IPh on a recursive basis. Based on the state of earlier time steps, the
state of the present time step can be approximated. Finally, the estimated
IA and IPh are combined together to form the real signal in the gammatone
domain and this real signal is synthesized back to a waveform by using the
inverse gammatone filterbank. This methods overall block diagram is shown
in Fig. 2.2.
However, one thing to be noted is this method processed each channel inde-

Channel 1 Speech
enhancement

1 Speech enhancement
N

Noisy IA

Kalman filter

Noisy IPh
Prediction

Channel K Speech
enhancement

H
H
Restored IPh ™1 GTFB speech

H
.
Noisy speech GTFB I mner
H

Figure 2.2: Block diagram of Kalman filter-based method for instantaneous
amplitude and instantaneous phase estimation

pendently, which neglected cross-channel information that contains spectral
features. Most ASR systems use spectral features extracted from the fre-
quency domain [10], so neglecting cross-channel information may reduce the
word recognition rate of ASR systems.

10



Chapter 3
Proposed Model

3.1 Auditory filterbank synthesis model

In order to convert the target features in this work (IA and IPh) back to
the time domain, a proper synthesis model must be investigated. In the
target method [9], time-reversal impulse responses of the analysis model was
used as the synthesis model. However, since the method in this work is
focusing on deep learning, both the analysis and synthesis models are required
to be integrated as part of a larger trainable network for backpropagation
algorithm [40].

Our analysis and synthesis models utilize the structure of convolutional
neural network (CNN) [41]. The analysis model is implemented using the
same idea as [38] while the synthesis model is initialized to be zeros in all
channel. To train the synthesis network, a signal z(t) is passed through the
analysis network, followed by Hilbert transform to obtain complex signal
Xk(t). This complex signal will be used to obtain IA and IPh for the speech
enhancement task later. But for the purpose of obtaining the synthesis model
in this section, X, (t) is transformed back to real values X (t) using

Xi(t) = [ Xi(t)] cos (arg (Xi(1))) (3.1)

The synthesis model is trained to map X (t) to the output Z(t) so that ()
is the same as input z(t). Figure 3.1 illustrates this process.

The impulse responses of this synthesis model after training is showed in
Fig. 3.2. This trained synthesis models will be used for speech enhancement
task in the following sections.

11
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Figure 3.2: Impulse responses of the trained inverse gammatone filterbank
at channel 0, 10 and 20 (center frequencies are 60Hz, 123Hz and 253Hz,
respectively)

3.2 Instantaneous amplitude restoration

In the time domain, the noisy speech z(n) can be represented as the summa-
tion of speech s(n) and noise e(n)

z(n) = s(n) + e(n), (3.2)

It is assumed that the signals s(n) and e(n) have a mean of zero, and this
assumption can be recognized by subtracting each of them with their corre-
sponding means at the beginning of the procedure. Therefore, we also have
z(n) to be zero mean.

The noisy speech z(n) is filtered by a K-channel gammatone filterbank ¢(7)
described in section 2.2.1. The result of this process is given by

X(k,n) =x(n)*g(k,7) = S(k,n) + E(k,n), (3.3)

12



where % denotes the convolution operation. When clean speech is the input,
the analysis filter produces S(k,n); when pure noise is the input, it produces
E(k,n). Now if we assume that the signal at channel k - X (k,n), can be
denoised by a mask h

~

X(k,n) = hX(k,n), (3.4)

To calculate this mask h, we consider the mean squared error (MSE) between

~

X(k,n) and S(k,n)
Err = E[(X(k,n) — S(k,n))?] = E[(hX (k,n) — S(k,n))?, (3.5)

In order to reduce this error Err, we set the derivative of 3.5 to zero with
regard to h,

oErr B O(hX (k,n) — S(k,n))*| _ 0
oh oh B (3.6)
E [Qh(S(k,n) + E(k,n))* — 2(S%*(k,n) + E(k,n)S(k, n))] =0
If we assume that the speech component S(k,n) and the noise component

E(k,n) are uncorrelated to each other, and they also have zero mean, then
finally

h:E{ S2(k, ) }_ o2

= s 3.7
S?(k,n) + E?(k,n) 02+ 0?2 (37)
where 0?2 is the speech variance and o2 is the noise variance.

The estimated instantaneous amplitude of clean speech As(k:, n) can be
obtained using

Ag(k,n) = Ax(k,n) ®h? (3.8)

with ® being the element-wise multiplication operator, Ax(k,n) is the TA
of noisy speech, and v is an adjustable parameter used to scale the mask.
During experimentation, v = 0.5 is chosen since it gives the best results for
speech perception. Then Eq. 3.8 is similar to an ideal ratio mask in [3].
Motivated by [42], a method that estimated a Wiener filter that has sim-
ilar form to the mask h. In this study, we use vector-quantized variational
autoencoder (VQ-VAE) model to estimate the speech variance o2. And a

convolution neural network (CNN) to estimate the noise variance o2. De-
tailed for each model will be described in chapter 4.

3.3 Instantaneous phase restoration

Due to the warping property, direct mapping from noisy phase to estimated
clean phase is difficult. To overcome this problem, several studies have pro-
posed using a complex convolution network (CCN) to predict an additive

13



mask @, for phase correction [4,42]. Using this mask, estimated clean phase
®4 can be realized by R
g =dx + D, (3.9)

where (iJS, ®y are estimated clean phase and noisy phase, respectively. This
CCN is a sub model of the modification block in an analysis-modification-
synthesis (AMS) scheme. To train this model, the scale-invariant signal-
to-noise ratio (SI-SNR) is used as the optimization function for the AMS
process. This function minimizes the angle between the clean speech and
the enhanced speech, hence it can help estimate the amount of correction for
noisy phase.

Motivated by this idea, we investigate two setups in this study to estimate
the phase additive mask ®,,:

e Noisy complex gammatone coefficients as input for the network to learn
the additive mask, this setup has the same idea for phase correction
as [4,42].

e Instantaneous phase as input for the network model to learn the addi-
tive mask.

With these setups, stretched SI-SNR (SSISNR) is used as the optimization
function since this function has fewer local maxima than SI-SNR [37].

1+ cos@
SSISNR = 101 _— 3.10
0g10 1 — cosf ( )
Tr-I
cosf) = —— (3.11)
|2]|2]

where 6 is the angle between the enhanced speech Z and the clean speech .
As illustrated in Fig. 3.3, using SISNR could make the algorithm think —
and 7 are the optimal points but what we actually want is 0. Using SSISNR
can avoid this issue.

Finally, the estimated clean instantaneous phase Qgg is obtained by adding
the noisy instantaneous phase gbAg with this mask

bs = dx + P, (3.12)
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Chapter 4

Implementation

4.1 Speech variance estimator model

4.1.1 Vector-quantized Variational Autoencoder

First introduced in 2017, vector-quantized variational autoencoder (VQ-VAE)
[43] is a generative model that works on discrete latent distribution of data.
Basically, it works based on the idea of learning from experience. This
model’s structure consists of:

e An encoder network used to extract useful information from input z to
discrete latent space h,.

e A vector-quantization (VQ) block that takes in the output of the en-
coder h,. This block consists of a codebook and a quantizer. The code-
book defines the latent embedding space e € RE*P while the quantizer
finds an embedding set v, from the codebook such that the distance
from set h, to {e;, € RP,k € 1,2,..., K} is smallest. Then this block
will output this set v, to the decoder.

v, = {ey, where k=argmin,||h, — eilla} (4.1)

e A decoder that reconstructs & from the embedding set v,.

Fig. 4.1 illustrates this process. During the training phase, the latent code-
book will approach the true discrete latent distribution of the original dataset
x and the encoder network will also try to make its output approach this dis-
tribution. After the training phase, we can consider the codebook in V(Q
block to be the knowledge learned from the dataset z and this knowledge
will be used to generate future data.
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Figure 4.1: Overview of the VQ-VAE model

The optimization function for this model is described as

L =d(z, )+ [sg(ha) — val* + dllhe — sg(va) I, (4.2)

where d(z, ) is the distance between x and 2, sg(-) is the stop-gradient op-
erator, and 0 is set to 0.25 to be the same as the original paper [43].

In the quantization process, backpropagation algorithm cannot run in Eq.
4.1 because there is no gradient here. Therefore, the straight-through repa-

rameterization trick is used to directly copy the gradient from the decoder
input v, back to the encoder output h, to solve this problem.

h, = Enc(z),
v, = Quantizer(h,),
Uy = hx + Sg(vx - hac)a

& = Dec(v,),

where Enc(-), Quantizer(:), and Dec(-) are the encoder function, quantizer
function, and decoder function, respectively.

4.1.2 Speech variance estimation using VQ-VAE-based

model
As explained in Section 3.2, to restore IA, we need to estimate speech vari-
ance o2 and noise variance o2 for the mask h. To use the VQ-VAE for speech
variance estimation, the latent codebook should be robust to noise. How-
ever, when we used direct noisy input to train VQ-VAE, we observed that
the latent codebook has very low perplexity, which means that the patterns
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of encoded clean speech features could not be learned in the codebook. Hence
the decoder does not have enough information to reconstruct the speech spec-
trogram.

Since the main functionality of the codebook is to provide sufficient knowl-
edge for the decoder to reconstruct the clean spectrogram. Direct training
on noisy speech could make the codebook learn false information. Therefore,
a pre-training process on clean speech was conducted. In other words, in
the pre-training step, input to the VQ-VAE will be clean speech features S
to train the codebook. Then, in the main training step, the codebook with
pre-trained knowledge will be frozen, and only the encoder and decoder will
be further trained on noisy features X.

The model used in this study is illustrated in Fig. 4.2. It has two VQ-
VAE levels. Only level 1 takes in input X and output X. Encoders and
decoders are based on Wavenet model [44]. A block of Wavenet modules is
put between two CNN layers to construct encoder and decoder with the acti-
vation functions being the differences between them. The detailed structures
for encoder-decoder are illustrated in Fig. 4.3.

One thing to be noted that is the input to decoder 1 is concatenated from

Noisy 1A Spgech
Codebook 1 variance

[ Encoder 2 H Quantizer 2 H Decoder 2 ]
Codebook 2

Figure 4.2: Structure of VQ-VAE model used to estimate speech variance in
main training phase

the output of quantizer 1 and decoder 2 to reconstruct the speech variance.
Since there are two steps in training this model: pre-training step and main-
training step, we also have two optimization functions for each stage

Lpre(©) = LSD(AE, 67) + ) [l — sg(h)[* + 6 [ls(vs) — hs[l?, (4.3)
U ieU
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Lonain(©) = LSD(A%,5%) +6 3 [lsg(uh) — iy (1.4)
ieu

where LSD(A%,52) is log spectral distance between squared clean TA A%
and estimated speech variance 62, U={level 1, level 2}, and © indicates all
parameters of all sub-models. A’ is the output of the encoders, v* is the
quantized value as in Eq. 4.1 and sg(-) is the stop gradient operator. ¢ is
0.25, the same value as in the original paper [43]. The difference between
Eq. 4.3 and Eq. 4.4 because in main-training stage, only the encoders and
decoders are fine-tuned while the codebooks are frozen. Therefore Y, ||v'—
sg(h?)||* part, which is used to train the codebook in main-training phase is
not needed.
Fig. 4.4 illustrates the results of this process. The speech variance 62 is now
can be obtained.

4.2 Noise variance estimator model
To estimate the noise variance o2, this study utilizes the noise-variance es-

timation model of [42]. This model includes one encoder and one decoder
stacked on top of each other. Their structures are already described in Fig.
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4.3. The input to this model is
I = max(A% (k,n) — 62,0) (4.5)

Log spectral distance will also be chosen as the optimization function for this
model. The predicted noise variance is illustrated in Fig. 4.5.

Lnoise(©) = LSD(A%, 62) (4.6)

The noise variance 62 is now also can be obtained. Using Eq. 3.7 and 3.8, we

can obtain estimated clean instantaneous amplitude Ag(k,n). The overall
process to restore IA can be summarized in Fig. 4.6
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Figure 4.5: Squared-value of noise IA and predicted noise variance

4.3 Phase correction model

A deep complex network is used to estimate the additive phase mask ®,,, for
phase correction. This network structure consists of a complex convolution

20

d8



Pretraining phase VQ-VAE
Latent codebook

Reconstructed I1A

Main-training phase Frozen during main phase
Noisy IA VQ-VAE
d - Speech Variance |

Noise estimator

I Noise Variance }—vl Mask Estimated IA

Figure 4.6: Block diagrams for instantaneous amplitude estimation.

network (CCN), followed by a block of Wavenet modules, followed by two
LSTM layers. Finally, another CCN will calculate the complex output for
this model. The structure of CCN is described in [4]. Fig. 4.7 illustrated
this model.

Input real ][ Input imag
part part

Complex Convld

| |

[ )
[ )
[ woea )
[ )
[ )
[

LSTM_R ] [ LSTM_I

Complex Convld

Output ] [ Output imag ]

real part part

Figure 4.7: Deep complex network structure for estimating additive phase
mask.

As explained in section 3.3, we use two types of input for this model in
order to estimate ®,,

e Noisy complex coefficients as input:
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By using the noisy complex gammatone coefficients X (k,n) and the
instantaneous amplitude mask h in Eq. 3.7. The input to the phase
correction model is

Inputy = R(X (k,n)) © h

Inputg = (X (k,n)) ©h

This setup has the same idea as [42], which is: in non-speech sections,
the amplitude of clean speech is very small or nearly zero. Then if the
mask A is optimal then it will scale the values of complex coefficients
to zero. This will limit the misbehavior of phase in those non-speech
sections and will lead to a better phase estimation.

e Instantaneous phase as input for the network model to learn the addi-
tive mask.

Inputg = cos [¢(k, n)]
Inputq = sin [¢(k, n)]

From the complex output of this model, which consists of the real part o,
and imaginary part o;, the additive phase mask is obtained by

®,, = arctan &, (4.7)
oy

This mask is then used to obtain the estimated instantaneous phase (IPh) as

where 955 is estimated IPh, ¢x is noisy IPh and ®,, is the additive mask,
respectively.
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Chapter 5

Evaluation

5.1 Dataset

The dataset used in all training and testing activities in this study is the
Microsoft Scalable Noisy Speech Dataset (MS-SNSD), which was used in In-
terspeech 2019 Deep Noise Suppression Challenge [45]. It consists of two
separate sub-sets for training and testing.

For the training set, clean speech includes over 23,000 clips of 56 speakers
(28 male and 28 female speakers) reading short sentences, each clip is about
3 seconds long on average. And noise dataset includes 14 types of noise: air
conditioner, announcements, washer/dryer, car noise, copy machine, door
shutting, neighbor speaking, munching sound, babble, neighbor speaking,
squeaky chair, traffic road, typing, vacuum cleaner.

For testing, 1000 clips from 20 speakers were recorded as clean speech dataset,
each clip is about 10 seconds long. And the noise set still has the same noise
types from the training set but from different recordings.

Data augmentation was used on the MS-SNSD dataset, clean speech utter-
ances is scaled to -25 dB to improve robustness for training. To create noisy
speech for training/testing purposes, a random clean speech utterance s and
a random noise clip e were picked to form the noisy speech z utterance as

r=s+Ax*e, (5.1)

where A\ denotes signal-to-noise ratio gain according to snr level, and is cal-

culated as
Y s
A= H6H2105m«/10 (5'2)

In the training phase, the snr value is randomly picked in the range [-5, 20]
to create one noisy utterance. In the testing phase, we divided the testing

23



dataset mentioned above into five snr levels: -5, 0, 5, 10, and 15. So for each
snr level, there are 200 utterances.

5.2 Evaluation metrics

Four objective metrics are used to assess the performance of the proposed
method:

e Perceptual Evaluation of Speech Quality (PESQ) [46]
A common metric used for evaluating speech quality of the target signal
compared to a reference signal. The range of values is from -0.5 to 4.5,
with greater values indicating better quality.

e Short-time Objective Intelligibility (STOI) [47]
Metric used to assess speech intelligibility of the target signal compared
to a reference signal. The range of values is from 0 to 1, with greater
values indicating better intelligibility.

e Signal-to-Noise Ratio (SNR)
SNR is a metric used to measure the level of speech s to the level of
noise e in decibels. SNR = 0 means speech power is equal to noise
power in the mixture. SNR > 0 means there is more speech than noise
and SNR < 0 means there is more noise than speech.

SNR — 10100, 5I°
TP

(5.3)
where s and § are the clean speech and the enhanced speech, respec-
tively.

e Word Error Rate (WER)
A metric used to evaluate how well the enhanced speech can be recog-
nized by an ASR system compared to the clean speech. Consider two
transcriptions A and B, which are output by the ASR system when
the input is clean speech and reference speech (either noisy speech or
enhanced speech), respectively. WER is calculated by

S+D+1
WER = ——— 5.4
= (5.4
where S, D and [ are the numbers of substitutions, deletions, and
insertions in order to turn A to B. N is the number of words in A.

The lower WER is, the better performance of reference speech in ASR
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system. The ASR system used for evaluations in this study is Google
Speech Recognition (GSR) API'. The GSR is widely used in many
other practical speech-to-text-related systems, hence if the proposed
method can work well on GSR, it can be directly applied on real-life
applications.

All four metrics above will be used to evaluate the proposed synthesis fil-
terbank while only PESQ, STOI, and WER will be used to evaluate the
proposed speech enhancement model.

5.3 Experimental configurations

The analysis-synthesis gammatone filterbanks in this study use 33 channels.
The analysis filterbank, which is implemented as in [38], has center frequency
in channel 0 fy = 60 Hz and channel 33 f33 = 6000 Hz. Sampling frequency
used is 16 kHz.

Both pre-train and main-train stages of VQ-VAE model use the same se-
tups, the initial learning rate is set to 4e-4 and decays by the factor of 0.992
to a minimum of 1e-6. Batch size used is 4, inputs to the model are clipped to
3 seconds. Parameters for this model are described in Table 5.1 with regards
to the overall structure in Fig. 4.2 and encoder/decoder structure in Fig.
4.3. The hyperparameters are in the format (filterLength, stride). Dilation
rates for the Wavenet blocks in both encoders are (1, 2, 4, 1, 2, 4), and in
decoders are (1, 2, 4). The number of embeddings in both codebooks is 1024.

For the noise estimator model, the number of filters in both encoder and
decoder are 33, which means the number of channels is kept unchanged when
the data goes through this model. Dilation rates for the Wavenet blocks in
both encoder and decoder are (1, 2, 4).

For the phase mask estimator, input to this model is obtained by con-
catenating the real part and imaginary part as described in Section 4.3, so
the input has the size (66 x T) and this size will keep unchanged throughout
this model. The hidden size of both LSTM layers is 64. Dilation rates for
the Wavenet blocks are (1, 2, 4, 1, 2, 4).

thttps://cloud.google.com/speech-to-text
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Table 5.1: Architecture of the VQ-VAE model.

N denotes the total time

samples of the input speech. And hyperparameters are represented in (filter-
Length, stride) format.

Block Layer name Input size Hyperparameter | Output size
CNN_1 33 x N 5,1 64 x N
Resampling 64 x N 8, 2 64 x (N /2)
encoder 1
CNN_2,3,4| 64x (N /2) 12,1 64 x (N / 2)
CNNJ5 64 x (N / 2) 12,1 64 x (N / 2)
CNN_1 64 x (N / 2) 5,1 128 x (N / 2)
Resampling | 128 x (N / 2) 8, 2 128 x (N / 4)
encoder 2
CNN_2,3,4 | 128x (N / 4) 12,1 128 x (N / 4)
CNNJ5 128 x (N / 4) 12,1 128 x (N / 4)
CNN_1 128 x (N / 4) 5,1 64 x (N /4)
Resampling | 64 x (N / 4) 8,2 64 x (N /2)
decoder 2
CNN.2 3,4 | 64x (N /2) 12,1 64 x (N /2)
CNN_5 64 x (N / 2) 12,1 64 x (N / 2)
CNN_1 128 x (N / 2) 5,1 33x (N /2)
Resampling | 33 x (N / 2) 8, 2 33x N
decoder 1
CNN_2, 3,4 33 x N 12,1 33x N
CNN_5 33 x N 12,1 33x N
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5.4 Results

5.4.1 Evaluation on the performance of the synthesis
model

An assessment step is required to confirm that the synthesis model, which
is described in section 3.1, can correctly transform speech signal from the
gammatone domain back to the time domain. A set of 200 clean speech ut-
terances is used as input to the analysis-synthesis models as described in Fig.
3.1. The reconstructed speech is then evaluated by four metrics mentioned
in Section 5.2 to assess the abilities of the proposed synthesis model and is
compared with the time-reversal version used in the target research [9]. The
results are showed in Table 5.2.

Reconstructed speech using the proposed synthesis model has more quality

Table 5.2: Objective evaluation results for reconstructed speech using
analysis-synthesis filterbanks compared with original speech in two cases:
time-reversal and proposed synthesis model

Synthesis model PESQ STOI SNR WER
Time-reversal 3.99 1.0 8.7 0.06
Proposed 4.37 1.0 20.68 0.07

and SNR than the time-reversal synthesis model. However, the word error
rate is slightly worse.
An unit impulse function is used as the input to this analysis-synthesis sys-
tem to further investigate its characteristics. The output of this process is
transformed to the frequency domain using fast Fourier transform. The re-
sult of this procedure is showed in Fig. 5.1.

Overall, the trained synthesis filterbank still retains the initial properties
for the analysis-synthesis process. Which are:

e Sampling frequency is 16 kHz, hence cutoff frequency is 8 kHz (Nyquist
frequency).

e The center frequency ranges from 60 Hz at the lowest to 6 kHz at the
highest.

Although it is not as perfect analytically as the time-reversal version, this
proposed synthesis filterbank still performs quite well in retaining speech
quality, and intelligibility. And the word error rate is just slightly worse than
the time-reversal version. So we think it is an acceptable result.
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Figure 5.1: Frequency characteristics of the analysis-synthesis filterbanks.
Top: when the synthesis filterbank is time-reversal of analysis filterbank.
Bottom: when the synthesis filterbank is trained using proposed method.

5.4.2 Evaluation on the effectiveness of enhanced IA,

IPh for speech quality, intelligibility and word
error rate

The effectiveness of this proposed method is assessed in two steps in this
section. In the first step, we will evaluate the effectiveness of the enhanced
IA and corrected phase. Step two will involve a comparison of the proposed
approach with other relevant methods. The metrics used in this section
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are PESQ for speech quality, STOI for speech intelligibility, and WER for
word recognition rate of ASR system. The purpose of the first stage is to
evaluate the effectiveness of each sub-model (VQ-VAE, noise estimator, phase
correction estimator) in this proposed method. The goal of the second stage
is to compare the overall performance with other methods.

For the first stage of evaluation, we compare the noisy speech with the
proposed method in 3 cases:

e Enhanced TA with complex gammatone coefficients as input for phase
correction (setup 1).

e Enhanced TA with instantaneous phase as input for phase correction
(setup 2).

e Enhanced IA only (noisy phase).

The results are shown in Fig. 5.2. As we can see, using the enhanced TA
can increase speech quality and intelligibility compared with noisy speech.
However, current schemes for phase correction do not have any improvements
since setup 1 completely nullifies the effectiveness of enhanced IA and makes
the enhanced speech perform worse than the noisy speech. Setup 2 performs
better than setup 1 but it still does not effectively enhance the phase since
the results are not better than noisy phase. For the performance of enhanced
speech in ASR system, current method still cannot reduce the word error rate
of noisy speech.

In the second stage of evaluation, we compare the proposed method
with three other methods: DCCRN [4], VQ-VAE on STFT domain (STFT-
VQVAE) [42] and the current baseline method of deep noise suppression
challenge (DNS-baseline) [48]. Since the correction of phase is not good (as
showed in the first stage), we will use enhanced IA with noisy phase to form
the enhanced speech and compare with these three methods. The results
are shown in Fig. 5.3. In terms of speech quality (PESQ) and intelligibility
(STOI), the proposed method is better than DCCRN and STFT-VQVAE in
most cases, from very-noisy speech (SNR = -5 dB) to less-noisy speech (SNR
= 15 dB). However, the baseline method of DNS Challenge is still better.

Regarding the performance of enhanced speech in ASR system, all four
methods perform worse than noisy speech since word error rates (WERs) are
all higher than WER of noisy speech. The proposed method performs the
worst regardless of PESQ and STOI results are higher than DCCRN and
STFT-VQVAE.
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5.5 Discussion

From the evaluation results, the proposed method can improve quality as
well as intelligibility of speech under noisy environments by enhancing in-
stantaneous amplitude. Using current deep learning techniques for phase en-
hancement, however, does not perform very well. Regarding the gammatone
domain with current techniques for phase correction, using instantaneous
phase as input features seems to be better than complex coefficients since
complex coefficients tend to make the network to over-predict the amount of
correction and further damage the speech quality and intelligibility.

Although the currently proposed scheme for phase correction does not
work well for objective evaluation metrics like PESQ and STOI, it is still
promising for ASR system. As shown in Fig. 5.2¢, using instantaneous phase
as input for phase correction model can reduce the word error rate compared
to just using noisy phase. With a more proper model, instantaneous phase
could be a strong feature for improving the performance of enhanced speech
in ASR systems.

Regarding the performance comparison with other methods, by using au-
ditory filterbank features, the VQ-VAE model performs better than STFT
features in terms of PESQ and STOI. However, the proposed method is
still not better than the current baseline model of the DNS challenge. In the
evaluation phase, only DCCRN and STFT-VQVAE were trained on the same
dataset? as the proposed method, while the DNS baseline was trained on a
much bigger dataset®. This could also be a factor that lead to the current
results.

As for the performance of enhanced speech in ASR system, all four meth-
ods are worse than noisy speech. Again, the main reason for this could be
the over-suppression of each method that causes the enhanced speech to have
distortions and lose its naturalness.

https://github.com /microsoft /MS-SNSD
3https://github.com/microsoft /DNS-Challenge

32



Chapter 6

Conclusion

6.1 Summary

In this study, a method for speech enhancement in noisy environments is pro-
posed by restoring instantaneous amplitude (IA) and instantaneous phase
(IPh), which are extracted from the gammatone filterbank. Due to the
main method being a deep learning model and both input and output wave-
forms contributing to the optimization process, the backpropagation algo-
rithm should be able to run on analysis and synthesis gammatone filterbanks.
Therefore, we proposed a method to train the synthesis model while the pa-
rameters of the analysis model are initialized to be the same as in the target
method [9]. The results of this newly implemented analysis-synthesis block
showed that they are acceptable as a means for feature extraction.

As for the speech enhancement model. The cross-channel information in
both TA and IPh is utilized by using convolutional layers to estimate clean
IA and clean IPh with the expectation that this information could help el-
evate the performance of enhanced speech in ASR systems. To restore IA,
we estimate a mask that is similar to the ideal ratio mask [3]. To obtain
this mask, two parameters need to be estimated: speech variance and noise
variance.

By pre-training VQ-VAE model on clean speech dataset, the codebook can
capture the characteristics of speech in the latent space. These characteris-
tics should remain the same in noisy speech. During main-training phase,
the latent codebook is frozen to keep the pre-trained speech information un-
changed. Speech variance is obtained from noisy speech using this VQ-VAE
model. On the other hand, noise variance is obtained by a convolutional neu-
ral network. With these two parameters, estimated TA can be recognized.

For obtaining clean instantaneous phase, being motivated by [4,37,42], the
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complex convolution network with the SSISNR optimization function is pro-
posed to estimate the additive mask for phase correction. We used two kinds
of input to this model: the complex gammatone coefficients and complex
components of noisy instantaneous phase.

The proposed model is objectively evaluated by three metrics: PESQ (for
speech quality), STOI (for speech intelligibility), and WER (to evaluate the
word recognition rate of ASR systems). The results showed that by enhanc-
ing speech using auditory filterbank features, the proposed method performs
better than some referenced methods for enhancing the quality and intelligi-
bility of noisy speech. However, the performance of enhanced speech in ASR
systems is still deteriorated. Furthermore, the results showed that the in-
stantaneous phase is a better feature for phase estimation than the complex
coefficients. With a more suitable model, enhanced instantaneous phase can
help improve the word recognition rate for ASR systems.

6.2 Future works

Despite using auditory filterbank features, the proposed method still cannot
increase the performance of enhanced speech in ASR systems although speech
quality and intelligibility were improved. This issue could be caused by two
reasons. First, the encoders in VQ-VAE models cannot capture the latent
characteristics of speech in the mixture well enough. And second, speech
quality and intelligibility do not reflect how well an utterance performs in
ASR systems. Therefore, a more proper architecture for the encoder should
also be investigated. In the evaluation step, only one ASR system was used,
so the proposed method should also be evaluated on other ASR systems as
well - such as Microsoft Azure Speech! or IBM Speech to text?,... - to avoid
bias in evaluation results. On the other hand, research on which factors of
speech affect the word recognition rate should be carried out. In addition,
the phase information was not enhanced much using the proposed model. So
an effective method for clean phase estimation should also be brought into
the discussion.

Thttps://azure.microsoft.com/en-us/products/cognitive-services/speech-to-text /
2https://www.ibm.com/cloud /watson-speech-to-text
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