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Abstract

When a piece of text is automatically translated from one language to an-
other, this process is known as machine translation (MT). Neural machine
translation refers to a solution that uses neural networks to translate text
(NMT). The machine translation dataset includes not just one but two lan-
guages: the source language and the destination language. This is in contrast
to other language models, where the corpus contains only one language. In
short, connections between each sentence in the original language and its
translated counterpart in the target language are established, and after that,
these connections are used to predict translated sentences from the source
sentence.

Most optimization algorithms for NMT will use token-level maximum likeli-
hood estimation during neural machine translation training to optimize the
model. However, during evaluation sequence generation, like beam search,
use only the probability distribution for each time step to infer the translated
sentence. The translated sentence is subsequently assessed by a corpus-level
held-out set evaluator using metrics such as the BLEU score, which cannot
be differentiated or decomposed.

The use of reinforcement learning in neural machine translation is expected
to lessen the discrepancy between training and evaluation. However, the
model is still limited by sparse rewards, which will affect the model’s quality.
The actor-critic method will be used to enrich the rewards when training
reinforcement for neural machine translation. To achieve this goal, we pro-
pose an actor-critic approach to the sentence-level machine translation model
using the BLEU score as the goal to improve the translated sentences. In this
article, we achieve remarkable progress on the translation task Vietnamese-
English and vice versa using PhoMT and IWSLT 2015 data sets.

Keywords: Neural Machine Translation, Reinforcement Learning, Actor-
critic method.
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Chapter 1

Introduction

Today, the need to exchange information between countries and cultures is in-
creasing, making the need for translation a necessity. The manual translation
process by humans gives high quality but slow speed, low productivity, and
high cost, which cannot be reused. Moreover, an interpreter, no matter how
good, cannot translate well in all fields and different languages. Therefore,
an automatic computer translation system is needed to help with the process
of translation.

1.1 Problem statement

These days, more and more people are using neural machine translation
(NMT) due to its excellent performance and the fact that no manual technical
work is required. Most models will use supervised training to train, which
means by using the source sentence and the prior (ground-truth) target
tokens as inputs, it is typically trained to increase the likelihood of each
token in the target phrase. Such training approach is referred as maximum
likelihood estimation (MLE) [1].The token-level goal function during training
is simple to use but is incompatible with sequence-level evaluation metrics
like BLEU [2].
The improvement of sequence-level objectives has been implemented using
reinforcement learning (RL) techniques to overcome the consistency prob-
lem. For instance, for NMT sequence generation tasks, policy optimization
techniques like REINFORCE and actor-critic are used [3].

Recently paper by Kiegeland et al. [4] claims ”Training from scratch will
fail any method that uses the BLEU score as the reward signal because there
will be no non-zero reward translation outputs to sample. The practical
advantages over a strong pre-trained model vanish when there is little to
learn from the new feedback, as when it is provided on the same data that
the model was already trained on. Reinforcement learning methods have
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the potential to enhance machine translation models in settings when no
reference translations are available, only reward signals are, and models can
be pre-trained using already collected data.” So in this study we will define
reward signal that can be train and environment of reinforcement learning
apply to neural machine translation.

1.2 Objectives

We will design an algorithm that makes pre-trained neural machine trans-
lation possible to further improve the BLEU score by ∆ points, higher is
better.

1.3 Purpose of this study

Apply Actor-Critic method ( One kind of Reinforcement Learning ) to Neural
Machine Translation where Actor is neural machine translation model such
as Transformer. Critic is model from paper by Lee et al [5]. Structure of
this method similar to method of paper by Yang et al. [6] but instead of
label 0 and 1 for training discriminator we use BLEU score for train critic
(discriminator) model. And this study is specialized for Vietnamese-English
datasets.

1.4 Thesis Outline

1. Chapter 2 We introduce the data used for this study and the basics
of how machine translation models to train and inference, as well as
some knowledge about reinforcement learning.

2. Chapter 3 We detail how the actor-critic approach was applied to the
neural machine translation model in our experiments.

3. Chapter 4We talk about experimental setup and experimental results.
4. Chapter 5 We talk about the weaknesses of the current method and

new ideas for future work that need improvement.
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Chapter 2

Background and Related Datasets

2.1 Related Datasets

The data set is the most crucial part of a machine learning system. With
a quality data set, the machine learning model may effectively learn the
critical information present in the data. The following is an introduction
to some of the most well-known datasets for neural machine translation for
English-Vietnamese and vice versa.

2.1.1 IWSLT 2015 dataset

In 2015, Stanford developed the International Words and Sentences Transla-
tion (IWSLT) corpus, which consists of many pairs of languages, one of them
being a bilingual dataset in English and Vietnamese. Machine translation
models for the present English-to-Vietnamese and vice versa challenge are
compared and evaluated using this dataset https://paperswithcode.com/sota/machine-
translation-on-iwslt2015-english-1Machine Translation Task on IWSLT’2015
English-Vietnamese.

Data set Sentences Download
Training 133,317 Github link
Development 1,553 Github link
Test 1,268 Github link

Table 2.1: IWLST 2015 En-Vi dataset

2.1.2 PhoMT dataset

Because in deep learning, no matter how good the algorithm is, the most
important part is still the data. Before 2021, there were not many bilingual
datasets for Vietnamese-English open source, only IWSLT 2015. Also, for
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the same reason. That is why machine translation for Vietnamese-English is
classified as low-resource, making it difficult for researchers. So in 2021VinAI
created PhoMT open-source contains 3.02M parallel sentence pairings in
Vietnamese and English and is a high-quality, large-scale parallel dataset.
The following are some statistics from the dataset: 2.1:

Figure 2.1: Dataset statistics of PhoMT.

Data set Sentences
Training 2,977,999
Development 18,719
Test 19,151

Table 2.2: PhoMT En-Vi dataset

2.2 Background Knowledge

2.2.1 Tokenization: How text is represented

In the context of natural language processing tasks, the term ”tokenization”
refers to the process by which a string of text, such as ”A set of words which
creates a complete meaning is termed a sentence” is represented as a sequence
of vocabulary components (called tokens).

Character-level tokenization. Let V stand for the alphabet, for ex-
ample (plus punctuation). A sequence of length 69 would result from the
preceding example: [’A’, ’ ’, ’s’, ’e’, ...]. Tokenization at the character level
typically produces exceedingly long sequences.

Word-level tokenization. Similarly, we could have V be made up of
nothing but English words (plus punctuation). A sequence of length 13
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would result from the preceding example: [‘A ’, ‘set ’, ‘of ’, ...]. Tokenization
at the word level usually necessitates a colossal vocabulary and has trouble
with test-time additions of new words.

Subword tokenization. This is the current standard practice: V is a
collection of frequently occurring word segments such as ”ful,” ”ing,” and
”pre.” Common words like ”are” are generally tokenized separately, and
V also includes single characters to guarantee that every possible word is
represented. Subword tokenization can be done in various ways. One of
the simplest and most successful ones is Byte Pair Encoding [8]. There
are two implement of BPE tool first is by author https://github.com/

rsennrich/subword-nmt.git, second is tool by Google called SentencePiece
https://github.com/google/sentencepiece.git.

Final vocabulary and text representation. Each tokenization/vocab-
ulary element is given a distinct index in the range {1, 2, . . . , NV − 3}. The
vocabulary is then expanded to include a variety of specialized tokens. A
couple of the possible unique tokens are discussed here: Beginning and
ending sequence tokens are represented by bos token := NV − 1 , and
eos token := NV , NV = |V | represents the number of words in the full
lexicon.

To represent text, we use a pair of tokens, the bos token and the eos token,
which are followed by a series of indexes (called emphtoken IDs) that corre-
spond to the text’s (sub)words.

Token embedding. The token embedding is responsible for learning how
to properly represent each vocabulary element as a vector in Rde see 1.

Algorithm 1: How to embed token.

Input: v ∈ V ∼= [NV], ID of token.
Output: e ∈ Rde ,the token’s scalar representation in vector form.
Parameters: We ∈ Rde×NV , Matrix for tokens in vocab.

1 return e = We[:, v]

Unembedding. Distribution over the vocabulary elements is learned by
the unembedding from a vector representation of a token and its context; see
2.
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Algorithm 2: Unembedding.

Input: e ∈ Rde , a token encoding.
Output: p ∈ ∆(V ), a statistical distribution of words.
Parameters: Wu ∈ RNV×de , the unembedding matrix.

1 return p = Softmax(Wue)

2.2.2 Encoder-decoder framework seq2seq model

Encoder. In order to compress all of the information from the input string
into a vector of a specified length (the ”intermediate vector”), the encoder
goes over each token in the string individually. This vector is then trans-
formed by the encoder and sent on to the decoder.

Context Vector. This vector helps the decoder arrive at the correct con-
clusion by encapsulating the complete meaning of the input string and pro-
viding it with context. This is the first hidden state of the decoder, which
also serves as the latent, hidden state of the sequence. It is computed by the
encoder, which also serves as the latent, hidden state of the sequence.

Decoder. Uses the context vector and tries to predict the target sequence.

Figure 2.2: Encoder decoder framework example by LSTM.

2.2.3 Transformer

In the past, people used neural network architectures such as convolution neu-
ral network (CNN) and feedback neural network (RNN) applied to seq2seq.
The advantages and disadvantages of these two network architectures can be
summarized as follows:
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• Even though CNN networks can be built in parallel at a single layer,
they cannot capture sequence dependencies of varying lengths.

• RNNs can learn to recognize information that is spread out throughout
a sequence of varying length, but they are unable to parallelize a
sequence.

An attempt to pool the benefits of convolutional neural networks (CNNs) and
recurrent neural network (RNN), Vaswani et al. [9] designed a new architec-
ture using attention mechanism. This architecture, called Transformer 2.3,
parallelizes by learning the feedback sequence with a attention mechanism,
and also encodes the position of each element in the sequence. Now we have
a model that works with less iterations in training.

Figure 2.3: The transformer architecture.

2.2.4 Training and Inference in NMT

Training. By using the source sentence and the previous (ground-truth)
target tokens as inputs, it is typically trained to maximize the likelihood of
each token appearing in the target sentence. This is accomplished through
the training process. Maximum likelihood estimate is the name given to this
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type of training approach (MLE) [1]. For training seq2seq model we need to
maximize below function 2.1:

max J(θ) :=
∑
(x,y)

logP (y | x; θ) =
∑
(x,y)

Ty∑
t=1

logP (yt | y<t, x; θ) (2.1)

Inference. After having the probability distribution, we will use it to pre-
dict the translated sentence from the input of the sentence to be translated,
see 2.2 and 3 for more detail. Current ŷt depends on the previous generated
ŷ<t.

ŷt = argmaxP (· | ŷ<t, x; θ) (2.2)

A

Algorithm 3: x̂← Inference(z, θ̂)

/* Performing the prediction with a trained sequence-to-sequence

model. */

Input: A seq2seq transformer and trained parameters θ̂ of the
transformer.

Input: z ∈ V ∗, input sequence, e.g. a sentence in English.
Output: x̂ ∈ V ∗, output sequence, e.g. the sentence in Vietnamese.
Hyperparameters: τ ∈ (0,∞)

1 x̂← [begin of sentence token]
2 y ← 0
3 while y ̸= end of sentence do

4 ProbDis← Transformer(z, x̂ | θ̂)
5 probword : p← ProbDis[:, length(x̂)]

6 sample a token y from distribution q ∝ p1/τ

7 x̂← [x̂, y]

8 end
9 return x̂

2.2.5 Search Algorithm

For convenience, assume that the output of the decoder is a text string. Call
the size of the output dictionary Y (containing all the words that can appear
in the output string, including ” < eos > ”) as |Y| , and the maximum length

of the output string is T ′ . Thus, a total of O(|Y|T
′
) output sequences can

be generated. All substrings after ” < eos > ” in the output string will be
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omitted. In addition, we denote c as the context vector that encodes the
information of all hidden states from the input.

Greedy search. At each time step t′ of the output sequence, we choose
the word with the highest conditional probability in |Y| word as output as
follows:

yt′ = argmax
y∈Y

P (y | y1, . . . , yt′−1, c) (2.3)

When ” < eos > ” is encountered or when the output string reaches the max-
imum length T ′, we terminate the prediction. So the conditional probability
of an output sequence generated from the input sequence is:

∏T ′

t′=1 P (yt′ |
y1, . . . , yt′−1, c). The biggest problem with greedy search is that there is no
guarantee that the found string is the optimal one.

Exhaustive Search. If we want the most probable sequence, we could use
an exhaustive search, which involves listing all the possible output sequences
and their conditional probabilities and then outputting the sequence with
the highest anticipated probability. This would accomplish our goal, but at
the exorbitant computing cost of O(|Y|T

′
), where O is the base and Y and

T’ are the exponents, where Y and T’ are the lengths of the sequence and Y
are the base sizes, respectively.

Beam search. This is a refined version of the greedy search algorithm.
The beam size, denoted by the hyper-parameter k.At the first time step, k
words with the highest conditional probability are selected as the beginning
of k possible sequences of output values. Based on the k candidate output
sequences from the previous time step, we calculate and select the k sequences
with the highest conditional probability from the total k |Y| capability at each
subsequent time step. These are the output sequences that could potentially
be produced at that time step. To conclude, in order to obtain the complete
list of candidate output strings, we first filter out any strings in the set that
contain the string ” < eos > ” and then reject any strings that come after
that character. This gives us the final set of candidate output strings.

In the final set of candidate output sequences, we will take the sequence
with the highest score as the output sequence. The score for each series is
calculated as follows:

1

Lα
logP (y1, . . . , yL) =

1

Lα

L∑
t′=1

logP (yt′ | y1, . . . , yt′−1, c), (2.4)
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Figure 2.4: The example of beam-search.

Here, L is the length of the final candidate sequence, and α is usually set
to 0.75. Lα in the denominator is the penalty on the logarithmic sum for
long strings. It can be estimated that the computational cost of the beam
search is O(k |Y|T ′) . It ranges between the computational cost of greedy
search and exhaustive search. Alternatively, greedy search can be thought
of as a beam search with a beam size of 1.By using the k beam size in a
flexible manner, the beam search is able to find a compromise between the
computational cost and the search quality.

2.2.6 Evaluate quality machine translation

2.2.6.1 Human Evaluate

The human-based method gives the best assessment of the quality of the
translation, but this assessment is time-consuming and expensive due to the
need to hire linguists to evaluate.

2.2.6.2 Automatic Evaluate: BLEU

BLEU stands for Bilingual Evaluation Understudy, is a method of evaluating
a translation based on reference translations, the BLEU score was proposed
by Kishore Papineni, et al. in their paper [?]. The prerequisite to be able
to use BLEU is that you must have one (or more) sample sentences. For the
machine translation problem, the sample sentence is the output sentence of
a pair of sentences in the data set. BLEU evaluates a sentence by matching
it with sample sentences and gives a scale from 0 (absolute deviation) to 1
(absolute match).
BLEU is known to be a simple, easy to understand, low computational cost
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method similar to human evaluation. However, the human factor in sentence
pattern making makes BLEU not completely objective. For example, the
same sentence can have many good translations, and sometimes it is not
possible to write them all in one set of sample sentences.

BLEUscore = BP · exp(
n∑

i=1

(wilogpi)) (2.5)

Where:
pi : average of the modified n-gram precisions using n-grams up to length N
wi : positive weights
BP (Brevity Penalty): Short penalty used to penalize translations that are
too brief. The short penalty is calculated over the entire corpus:

BP =

{
1 if c > r

e(1−r/c) if c ≤ r
(2.6)

Where:
c be the length of the candidate translation.
r be the effective reference corpus length.
The BLEU score can be computed by first counting the number of n-gram
matches that can be found between the sample sentence (R) and the phrase
being assessed (C), and then dividing that total by the total number of tokens
in C. The choice of n depends on the language, task, and specific goal. The
simplest we can use uni-gram is n-gram containing one token (n=1). Visually,
the larger n, the smoother the sentence. This score is position-independent,
so BLEU cannot evaluate word order. This is both an advantage and a
limitation of BLEU. In language, a sentence can be represented by different
word orders but still have to follow certain rules. In addition, to avoid having
a repeated translation of a word still get a ”high” score (e.g., ”this this
this this” versus ”this is a cat”), BLEU takes into account the number of
occurrences. Maximum expression of each n-gram in all sample sentences to
limit the maximum number of matches. In the above example, this will only
be counted once.”

2.2.7 Reinforcement Learning

Although reinforcement learning is considered to be its own branch of ma-
chine learning, it does share certain characteristics with other types of ma-
chine learning, which can be categorized according to one of the following
four domains:
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• Supervised Learning Algorithms are trained on labeled data. The
only properties that supervised learning algorithms can learn are those
that are included in the data set. Image recognition models are typical
supervised learning applications. These models learn to detect com-
mon characteristics of specified forms after receiving a batch of tagged
photos.

• Unsupervised learning Developers let algorithms loose on completely
unlabeled material in unsupervised learning. Without being instructed
on what to look for, the algorithm learns by recording its own obser-
vations regarding data features.

• Semisupervised learning This strategy strikes a middle ground.
Developers enter a more extensive corpus of unlabeled data along with
a relatively modest sample of training data that has been labeled. The
algorithm is then told to apply the knowledge it has gained from the
labeled data to the unlabeled data and make inferences about the set
as a whole.

• Reinforcement learning This adopts a completely different strategy.
It places an agent in a situation with certain parameters separating
useful behavior from nonbeneficial action as well as a big goal to ac-
complish. In that algorithms must be given clearly defined goals and
defined rewards and penalties, it is akin to supervised learning in several
aspects. As a result, more explicit programming is needed than in
supervised learning. The algorithm, however, functions independently
after these parameters are specified, making it far more self-directed
than supervised learning algorithms. Due to this, reinforcement learn-
ing is occasionally referred to as a subset of semisupervised learning,
although in reality, it is most frequently recognized as a distinct subset
of machine learning. Refer to figure 2.5 for more illustration.

2.2.7.1 Continuous and discrete actions space

In reinforcement learning, action is the mechanism by which the agent
transitions between states of the environment. Let take an example for
illustration.
Breakout Atari game:
The goal of the game is to eliminate as many bricks as possible with only one
ball by hitting them with the walls and/or the paddle at the bottom. It’s
possible for the paddle to go LEFT, RIGHT, or STAY, these are actions.

13



Figure 2.5: Picture showing reinforcement learning in action

Figure 2.6: Atari game

Discrete action space. In the figure 2.7 we see the ball flying to the
left, so we will have to move the paddle to the left to catch the ball. The
discrete action mean we need to answer the question ”Which direction should
I move?”. In this situation, we can only choose 1 of 3 ways to move the
paddle: left. In short, discrete action space is when the number of actions is
finite.

Continuous action space. In the figure 2.8 we see the ball flying to the
left, so we will have to move fast the paddle to the left to catch the ball.
The discrete action mean we need to answer the question ”How fast should
I move?”. In this situation, we need to choose to move the paddle to the left

14



Figure 2.7: Discrete actions

with a selected speed from 0 to 10 meters per second, if it is too fast or too
slow, it will not catch the ball. In short, continuous action space is when the
number of actions is infinite. Because of the infinite number of possible
actions (Translated sentences) so the Neural Machine Translation task
is Continuous Action Space. Therefore, we only choose the Reinforcement
Learning Method that can solve Continuous Action Space such as the Actor-
Critic method.

Figure 2.8: Continuous action

2.2.7.2 Policy Gradient

This section talk about how to train policy gradient for continuous action
space. Because there are infinitely many possible actions to choose from,
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there is no computer memory that can store all of the actions so that there
can be an optimal solution to the problem. So these models only give action
selection probability distributions.
As an example, we have to drive a car on the road to reach our destination.
Vehicles can turn left and turn right at arbitrary speeds at different times; if
the vehicle is farther from the curb than the given distance, then 10 points
will be added, if less than the given distance, 10 points will be deducted, and
points will be 100 when the car reaches to the destination. End the game
when the car hits the curb or reaches the destination. In the beginning, we
drive randomly until we reach the finish line or hit the curb and save those
actions in memory. Actions that increase the points increase the probability
of their occurrence in the action distribution, and vice versa, actions that
reduce the reward points decrease the probability of their occurrence; this is
repeated until the model learns how to drive the car to the finish line without
hitting the curb. Refer to figure 2.9 for more illustration.

Figure 2.9: Continuous actions

In short the algorithm is:

• Initialize the agent.

• Run a policy until termination.

• Record all states, actions, rewards.

• Decrease probability of actions that resulted in low reward.

• Increase probability of actions that resulted in high reward.
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2.2.7.3 Actor-Critic method

• Actor-critic approaches explicitly describe the policy apart from the
value function in a distinct memory structure.

• Because the policy structure is used to select actions, it is known as
the ”actor”.

• The estimated value function is referred to as the ”critic” since it
critiques the actor’s activities.

• The criticism is presented as a temporal difference error. This scalar
signal is the only output of the critic, and it drives all ”actor” and
”critic” learning.

• The critic is a function of state-value. After choosing each action,
the critic looks at how things turned out to see if they were better or
worse than expected. That evaluation is the temporal difference error.
In neural machine translation temporal difference error can be BLEU
score.

Figure 2.10: Illustration of Actor critic
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Chapter 3

Methodology

In this chapter we will introduce how to apply actor-critic algorithm to neural
machine translation.

3.1 RL Environment in NMT

When solving a problem for reinforcement learning, the first and most impor-
tant thing is to define the environment, state, action, and reward points [10].
When there is little to learn from the new feedback, such as when it is
supplied on the same data that the model was already trained on, empirical
improvements over a powerful pre-trained model disappear. This is because
there are no non-zero-reward translation outputs sampled when starting from
a random policy. Reinforcement learning techniques offer the potential to
improve machine translation models in scenarios where there are no reference
translations, only reward signals, and models may be pre-trained on existing
data. [4]. It means we cannot get the reward signal at training on the
training set because the maximum likelihood estimation algorithm [1] has
already done its job very well [11]. Therefore, we will take the signal point
at inference, or that is, take the reward signal when evaluating the model on
the validation set.
So we will define action, reward, environment and state as follows:

• Environment = Valid set.

• State = Source sentence

• Agent = Neural machine translation.

• Actions = Hypothesis sentence generate from agent.

• Reward = BLEU score calculate between reference sentence and Hy-
pothesis sentence.

• State-Value function: The critic model calculates the score between the
source and the hypothetical sentence. This model can be trained by
instructing it according to the BLEU score. We will talk more about
it in the next chapter.
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To make it easier to imagine, this method is like teaching a student; the
student is the agent, and the teacher is the critic. Students will learn
everything in the lessons. The exercises here have answers available for
students to compare, and after learning, they use the knowledge they have
learned to apply to the tests; the teachers will grade them and tell students
to try to do better in the next test (students do not know the answer to the
question). As a result, the students will gradually get better.

3.2 Actor-Model: Transformer

Transformer-base is the NMT method adopted in our investigations [9]. To
be more exact, there are N = 6 layers and h=8 parallel attention layers,
or heads. The inner layer of feed-forward networks has a dimensionality
of dffn = 2048, whereas the input and output have a dimensionality of
dmodel = 512. We follow [9] regularization and optimization techniques. We
not only use byte pair encoding [8] for tokenizing training data from scratch
but also use the drop-out method in the paper [12] for a better translation
model. We use this toolkit Fairseq [13] to pre-train the actor model. We will
train the model until they converge .

The following table is the result of pre-trained for each dataset mention
in 2.1.

Data set Vocab by BPE method BLEU score in IWLST 2015 Test Set
IWLST
2015

10.000 28.53 Vi2En —–29.44 En2Vi

IWLST
2015

55.000 29.56 Vi2En —– 28.17 En2Vi

PhoMT 32.000 44.64 Vi2En —– 39.38 En2Vi

Table 3.1: Pre-trained Critic Models

The converge means that the BLEU score cannot improve for a long
training even if we use any regularization techniques of deep learning. Ex-
ample like the figure 3.1 below. We can see that after reaching a 28.17 BLEU
(at about step 22k) score in test set, the model can’t be better.
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Figure 3.1: BLEU score test set during pre-training en2vi

3.3 Critic-Model

Critic detect whether the translated sentence is the same as the human-
translated sentence. It is “State-Value function (Source X, Hypo Y)” in
Actor-Critic method. Refer to figure 3.2 for illustration.

Figure 3.2: Illustration of how critic work

3.3.1 Convolution architecture

The critic base on convolution architecture is taken from paper by Yang et
al. [6].Since the sentences produced by the generator have varying lengths, M
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is the maximum length that can be specified for output from the generator,
which is utilized to turn the sentences into sequences with fixed lengths using
CNN padding. Taking into account the sequence in the source language
s1, . . . , sM and sequence of target language t1, . . . , tM , we build the matrix
of the source S1:M and the matrix of target T1:M respectively as:

S1:M = s1; s2; . . . ;xM (3.1)

And

T1:M = t1; t2; . . . ; tM (3.2)

Where sm, sm ∈ Rk is the k-dimensional word embedding and the semi-
colon is the concatenation operator. Then we will combine these 2 matrices
into a 2d image and use convolution to calculate whether the sentence is like
the human translator or not.

p = σ(convolution (V [cs; ct])) (3.3)

Where V is the transform matrix which transforms the concatenation of
S and T into a 2-dimension embedding and σ is the logistic function. Refer
3.3 for illustration.

Training Algorithm To train this model, we use the same algorithm in
the Generative Adversarial Networks [14] by labeling the image concatenated
by the source sentence and the human-translated sentence as 1, and the image
concatenated by the source sentence and the translated by actor sentence is
0, this is same technique of paper by Yang et al. [6].

Figure 3.3: Critic base on convolution architecture
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3.3.2 Transformer architecture

The critic base on convolution architecture is taken from paper by Lee et al.
[5].Given a source phrase x, an NMT model will generate a set of hypotheses
in the target language in the form of the mathematical expression distribution
H(s) = {h1, h2, . . . , hn}. This study aims to develop a critic that achieves
greater scores for hypotheses of higher quality, where quality is defined in
terms of a user-specified measure µ(u, r) such as BLEU. [2].

Figure 3.4: Critic base on transformer architecture

As shown in 3.4, our critic is a transformer architecture that accepts as
input the combination of the source phrase s and the hypothesis h ∈ H(s).
Additionally, position embeddings are a part of the design, and they give the
model the ability to represent tokens that are common to both languages.
The final hidden state corresponding to the begin-of-sentence token (⟨s⟩)
serves as the joint representation for (s, h); z ∈ Rd is the notation used to
refer to this feature vector. The critic assigns a scalar score o ∈ R to (s, h)
by applying a one hidden layer neural network withdtanh hidden units to
z, The parameters of the critic are denoted by the ”classification head” of
RoBERTa’s basic design [15]. These parameters include the parameters of
the transformer, all embeddings, and the top projection block that translates
the feature vector to the scalar score. Therefore, each hypothesis hi in the
collection H(s) is separately processed and provides a score oi to see if this
sentence is similar to the human-translator.

Training Algorithm By reducing the amount that the target distribu-
tion deviates from the model output distribution and minimizing the Kull-
back–Leibler divergence, DKL (pT∥pM), we train the critic to be discrimina-
tive [16]. The model output distribution is a softmax over the n hypotheses
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that are included in the n-best list for each s.

pM (s, hi | s; θ) =
exp (oi (hi | s; θ))∑n
j=1 exp (oj (hj | s; θ))

(3.4)

Where we specified that the score oj is dependent on the input vector sx
and parameter vector θ. Please note that we do not impose any additional
factorization. Specifically, we do not assume that the score is computed via
auto-regression. The goal distribution is defined as a normalized distribution
of the final metric µ (hi, r) (user-specified metric such as BLEU score), which
we expect improves as its values increase:

pT (hi) =
exp (µ (hi, r) /T )∑n
j=1 exp (µ (hj, r) /T )

, (3.5)

Where T is the temperature used to control the distribution’s smoothness.
In practice, min-max normalization is used to. We start by subtracting
each value from the minimum in the list of hypotheses, then we divide
the resulting number by the difference between the highest value and the
minimum value. This gives the best hypothesis a score of 1, while the
hypothesis with the lowest score receives a score of 0. According to [17], this
aids in the optimization process by reducing the gradient variance (2018).
The critic parameters are then discovered by reducing the KL divergence
over the training set. The following serves as a particular illustration of
training:

L(θ) = −
n∑

j=1

pT (hj) log pM (hj | s; θ) (3.6)

Since all terms are differentiable, we minimize this loss over the training set
using stochastic gradient descent and standard backpropagation of the error.
The training algorithm is same as algorithm in paper by Lee et al. [5].

3.4 Training and Inference

3.4.1 Training Objective

Actor A’s goal is to generate, starting from the initial state, a sequence that
will maximize the amount of its anticipated end reward. The formal formula
for computing the objective function is as follows:

J(θ) =
∑
Y1:T

Aθ (Y1:T | X) ·RAθ
C,Q (Y1:T−1, X, yT , Y

∗) (3.7)
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Where A is actor, θ represents the parameters in A; C is for ”critic.” The
completion of the goal sequence is required in order to receive a reward value
from C. Y1:T = y1; y2; . . . ; yT is the generated target sentences, in this setup
we use T = 5, X is the source-language sentence. Y ∗ is the reference target
sentence. RAθ

C,Q is action-value function of a target-language sentence given
the source sentence X. To estimate the action-value function, we consider the
estimated probability of being real by the critic and the output of the BLEU
objective Q as the reward:

RGθ
C,Q (Y1:T−1, X, yT , Y

∗) =

λ (C (X, Y1:T )) + (1− λ)Q (Y1:T , Y
∗)

(3.8)

λ is a hyper-parameter control between exploitation and exploration [10]
in reinforcement learning, for simplicity we choose λ = 0.7.
For ease of understanding, this training will consist of two training models
in turn. The actor first generates translated sentences from the original
sentence, thereby creating a dataset to train the critic. Then, when we
evaluate the valid set, we will take the BLEU rating and the critic score
together to generate a signal to adjust the actor’s loss function. A good
return score will direct the actor to learn in that direction, while a low score
will motivate the actor to learn in another direction. These 2 models will
learn until they reach Nash-equilibrium. Nash Equilibrium is a scenario in
game theory in which no player in a non-cooperative game has anything to
gain by changing their strategy [18]. For more illustration refer to figure 3.5

3.4.2 Inference

After training is complete, to use the model when translating, we use beam-
search as usual but instead of taking the sentence with the highest probability
generated by beam search, we use the sentence with the highest score by the
critic, see figure 3.6 for more details.
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Figure 3.5: Diagrammatic representation of the system in its training mode

Figure 3.6: Diagrammatic representation of the system during the inference
stage
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Chapter 4

Experiment and Result

Because of limitation of hardware, we only apply full system to IWLST’15
dataset. With PhoMT dataset we just pre-train the critic for re-ranking
output of actor.

4.1 Convolution-Critic results

From pre-train 10k vocab actor English to Vietnamese IWLST’15 with 29.44
BLEU score (refer to table 3.1 ). Refer to figure 4.1 after very long training
two models reach the Nash-equilibrium we can see that model has maximum
BLEU score is 28.47 and can’t improve from 29.44 BLEU score in test set .
So convolution architecture for critic doesn’t work.

Figure 4.1: Result by CNN-critic, En2Vi BLEU score of test IWSLT’15
dataset

26



4.2 Transformer-Critic results

Based on the two tables of results 4.1, 4.2, we see that the model critic using
the transformer architecture gives very good results when testing on the test
set of IWSLT 2015, here we use SacreBLEU [19] with beam size = 5 for get
result.

Vocab Base-line Actor-critic ∆ Improve
10k
IWSLT’15

29.44 30.33 0.89

55k
IWSLT’15

29.56 31.06 1.5

Table 4.1: Result for English to Vietnamese

4.3 Frozen actor, re-rank by critic.

Due to the fact that the PhoMT dataset is so large, it is approximately 22
times larger than that of IWLST’15, while the training time of 1 epoch for
the small dataset is approximately 3 hours on the A100 GPU. Therefore,
to demonstrate the effective method, we will only pre-train the actor with
the PhoMT dataset and then use the training data of IWSLT’15 to create
a dataset for the critic training. After the training is over, use this critic to
evaluate the actor’s translated sentences on the test set and take the sentence
with the highest critic score to calculate the BLEU score. This experiment
only use transformer architecture for critic model. Refer to figure 4.2.

At full setting, in each step of each input sentence, the actor will create 5
hypothesis sentences 3.4.1, so to be objective with each input sentence in the
training set IWLST’15, we will sample 50 hypothetical sentences. Therefore,
the dataset to train the critic look like 4.3.

Vocab Base-line Actor-critic Improve
10k
IWSLT’15

28.53 29.52 0.99

55k
IWSLT’15

28.17 31.55 3.38

Table 4.2: Result for Vietnamese to English
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Figure 4.2: Frozen the Actor and get best translated by only critic

Figure 4.3: Dataset for training only critic

As we can see in table 4.3 the critic transfomer-architecture perform good
in translation from Vietnamese to English IWLST’15 dataset, and have
competitive result with current state-of-the-art model with extra training
data SOTA in IWLST’15.

Ennglish to Vietnamese Vietnamese to English
32k PhoMT base 39.38 44.65
Re-rank by critic 38.06 ∆ = −1.32 44.80 ∆ = 0.15
SOTA with extra training data 40.2 43.6

Table 4.3: Result re-ranking by only critic in IWLST’15 dataset
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Chapter 5

Conclusion

In this study, we have applied actor-critic method in reinforcement learning
for machine translation to improve machine translation results, and our
propose method can fill the gap between training and inference. As we have
seen this method is like a regularization in deep learning, but instead of
doing it manually it is an automated method. As we can see the results in
the experiment, when the vocabulary is high, it is equivalent to the number
of possible actions of the actor more even if the pre-train is worse, but after
applying this method, it also gives better result, see table 4.2.

For future work, as mentioned in the paper by Wu et al. [11] that ”Rein-
forcement learning is still beneficial when the data is monolingual.” As seen
in the experiment, the critic can filter out the well-translated sentences from
the actor, so if we feed the monolingual data and create the bilingual data,
and then use them to further train the model, there is a good chance that
we can get even better results.
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