
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Data structure for multi-layered digital score

Author(s) 霜坂, 秀一

Citation

Issue Date 2022-12

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/18170

Rights

Description
Supervisor: 東条 敏, 先端科学技術研究科, 修士(情報科

学)

Master’s Thesis

Data structure for multi-layered digital score

Shuichi Shimosaka

Supervisor Satoshi Tojo

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

December, 2022

Abstract

Content-Based Musical Retrieval (CBMR) intends to figure out the methods
for performing search and retrieving information efficiently from digitized
music scores. Since the current objective of CBMR is primarily to get similar
musical patterns using monophonic or polyphonic queries, no method has
been proposed to extract similar occurrences using the structural information
on music such as a key or a harmonic progression. (e.g. find the measures
from digitized scores that have a II-V-I harmonic progression)

In this thesis, multi-layered data structure containing scores, key and
harmonic information will be proposed along with algorithms that realize
the search. The proposed data structure and the algorithms allow searching
through a progression of key or harmony, which satisfies the needs to explore
music that has a similar musical structure. In particular, people will be able
to view the music score as a search result of a query of key or harmony by
using the data structure which contains information about the opus number,
the measure number, the key and the harmony.

While current CBMR research only provides the functionality for search-
ing for the surface of music by executing the exact matching or the fuzzy
matching for given music notes, the proposed method aims to capture the
needs to search for music not by music notes but by musical structure, namely
“Are there examples where Bach used a V-IV harmonic progression, which
should be rare? If yes, how many cases do we see in his works and how did
he address this progression in his compositions?” or, “Can we see all the past
examples of a II-V-I progression created by great composers?”, which have
been common questions amongst musicologists, composers and professional
musicians.

Contents

1 Introduction 1

2 Related Works 3
2.1 Research area of MIR . 3
2.2 Issues in searching for music scores 4
2.3 Basic theory of CBMR . 5
2.4 Implementation of CBMR . 5
2.5 Topics CBMR has not covered 6

3 Database used in the thesis 8

4 Problem settings and the proposed data structure 12
4.1 Problem settings . 12
4.2 Proposed data structure . 13
4.3 Creation of the corpus table 13
4.4 Search algorithms . 15

4.4.1 Harmony search in the absolute reference (H1) 16
4.4.2 Harmony search in the relative reference (H2) 20
4.4.3 Key search in the absolute and the relative reference

(T1 and T2) . 24

5 Further possibility for leveraging the proposed data struc-
ture 28
5.1 Fuzzy search for H2 . 28

5.1.1 Issue of the H2 search 28
5.1.2 Relation between the degree of key and the degree of

harmony . 29
5.1.3 Method for the fuzzy search 31
5.1.4 Supplemental notes for the fuzzy search 32

5.2 Finding a sequence using a harmonic progression 33
5.2.1 Overview of the descending fifth sequence 33

1

5.2.2 Method to find the descending fifth sequence 34

6 Conclusion 38
6.1 Achievements of the thesis . 38
6.2 Future work . 39

List of Figures

1.1 Concept of multi-layered score and searching for the upper
layer of music . 2

3.1 Example of the BWV609 annotation 9
3.2 MusicXML expression for the upbeat of the 4th beat of mea-

sure 1 of BWV609 . 10

4.1 Analysis of the measure 1 and 2 of BWV599 14
4.2 Process flow for performing a search 16
4.3 Overview of creating tgtList from cmpList (m=3) 17
4.4 Overview of the process to display the search result (Search

query: args[]=(Bmin-5, Emaj, Amin)) 18
4.5 Overview of creating tgtList from cmpList (m=3) 21
4.6 Overview of the process to display the search result (Search

query: args[]=(Bmin-5, Emaj, Amin)) 22
4.7 Overview of creating tgtList from cmpList (m=3) 25
4.8 Overview of the process to display the search result (Search

query: args[]=(a, e, a)) . 26

5.1 Example of the descending fifth sequence (BWV593, cited
from MILNE Library [19]) . 34

5.2 The 4th measure of BWV599 36
5.3 The 9th-13th measures of BWV625 37

List of Tables

4.1 Summary of the search requirements 12
4.2 Proposed data structure . 13
4.3 Example of the Little Organ Book corpus table for the measure

1 and 2, BWV599 . 14
4.4 Implementation Environment 15

5.1 Corpus table example (shown as the search result in the H2
search) . 29

5.2 Corpus table example (not shown as the search result in the
H2 search) . 29

5.3 Enhancement of Table 5.1 . 31
5.4 Enhancement of Table 5.2 . 31
5.5 Example of the corpus table (Modulation from the IIIrd key

to the Ist key) . 32
5.6 Chord names with index . 35
5.7 Chord name, Index and the difference of two consecutive chords

of the 4th measure of BWV599 35
5.8 The 10th-13th measures of BWV625 and the difference of two

consecutive chords . 36

Chapter 1

Introduction

Musicologists, composers and professional musicians have had the desire to
find similar musical occurrences that have similar musical structure. For ex-
ample, they may ask “Are there examples where Bach used a V-IV harmonic
progression, which should be rare? If yes, how many cases do we see in his
works and how did he address this progression in his compositions?” or, “Can
we see all the past examples of a II-V-I progression created by great com-
posers?” The reason why they respect the examples of composers of the past
is that the compositional technique of Western music consists intrinsically
of the accumulation of the previous realization of great composers. This
means that a thorough understanding of past compositions should be the
prerequisite for their musical analyses or compositions. Despite the fact that
these information-seeking needs are primitive and largely rule-based, these
tasks are essentially carried out manually, even now. Therefore, information
technology can offer a more efficient way of streamlining the process.

The existing research has focused on finding the methods to perform
the search for digitized scores, as in MEI or MusicXML, queried by music
notes. It can be said that the existing methods take only care of searching
for music notes, which are the surface of the music and are merely one of the
many components of the music. Western music in particular has a layered
structure on a background, such as key or harmony. To the best of the
author’s knowledge, there have been no proposed methods, data structure or
tools that enable search by using music’s structural information to fulfill the
needs such as “finding measures that have a V-IV harmonic progression” or
“listing all the composition examples for the II-V-I harmonic progression”.

In this thesis, multi-layered data structure containing scores, key and
harmonic information will be proposed along with algorithms that realize
the search. The proposed data structure and the algorithms allow searching
through a progression of key or harmony, which satisfies the needs to explore

1

music that has a similar musical structure. In particular, people will be able
to view the music score as a search result of a query of key or harmony by
using the data structure which contains information about the opus number,
the measure number, the key and the harmony. While current CBMR re-
search only provides the functionality for searching for the surface of music
by executing the exact matching or the fuzzy matching for given music notes,
the proposed method aims to capture the needs to search for music not by
music notes but by musical structure. (Figure 1.1)

Figure 1.1: Concept of multi-layered score and searching for the upper layer
of music

This thesis employs annotated data of J.S. Bach’s Little Organ Book,
which contains a Roman numeral analysis produced by Japanese profes-
sional organists as part of the KAKEN project “Computation model for
understanding music based on statistical grammar model and constructive
semantics”. Since there have been few annotation efforts done by profes-
sional musicians which analyzed great composer’s work and interpreted its
structure, the database can be regarded as a valuable information resource
of digital musicology, and therefore the database was adopted in this thesis
for the experimental purposes. In the meantime, the method proposed in
this thesis can be applied to other annotated musical corpora.

2

Chapter 2

Related Works

2.1 Research area of MIR
Music Information Retrieval (MIR) refers to an area of research that seeks to
extract information from the digitized music data resource. According to the
definition by Downie [1], “Music Information Retrieval (MIR) is a multidis-
ciplinary research endeavor that strives to develop innovative content-based
searching schemes, novel interfaces, and evolving networked delivery mecha-
nisms in an effort to make the world’s vast store of music accessible to all.”,
which attempts to provide effective measures to allow users to access the
enormous digital music resources available.

There are mainly two major areas of focus that MIR considers: one is the
audio information retrieval and another is the symbolic information retrieval
(Velard et al. [2]). The audio information represents digital audio informa-
tion such as in WAV or MP3 format and the symbolic information represents
digitized music score such as in MIDI, MusicXML or MEI format. The audio
information retrieval basically applies the signal processing technique, while
the symbolic information retrieval has an affinity for the Natural Language
Processing (NLP). Since both approaches have advantages and disadvan-
tages, a suitable method should be selected each time in accordance with the
purpose of the data extraction. For example, the audio information retrieval
technique should be used when the user wants to search for music from his
or her humming, whilst the symbolic information retrieval technique corre-
sponds to the need to search for scores from music notes populated by the
user.

Among the methods that use the symbolic information, Content-Based
Musical Retrieval (CBMR) aims in particular to research how to conduct
a search for digitized music scores to acquire the information that the user

3

may want. Garfinkle et al. [3] defines that “Content-Based Music Retrieval
(CBMR) for symbolic music aims to find all similar occurrences of a musical
pattern within a larger database of symbolic music.”. To put it simply, CBMR
aims to obtain relevant music scores when a query such as music notes or a
melody is given. CBMR attempts to accommodate various social demands
such as finding a song title from a particular tune, studying examples of past
composition of well-known themes or examining the possibility of plagiarism.
As discussed in more detail in the next section, the search procedure should
have the flexibility to cover the wide range of requirements. For example,
it should meet multiple needs such as allowing exact matching and fuzzy
matching, allowing not only monophonic, but also polyphonic entries, and
so on.

2.2 Issues in searching for music scores
As our modern life is inseparably connected to the Internet, it is indisputable
that search technology, which aims to efficiently gather the required data
from a huge amount of information on the Internet, occupies an essential
position in information technology. Needless to say, search engines such as
Google have been constantly evolving in recent decades. It is important
to note that when people talk about search technology, it usually refers to
a search by natural language, with some exceptions such as searching for
images. Therefore, when we say “search for music scores”, it frequently means
searching for scores using the meta-data such as the name of the composer,
the title of the song, the genre and so on. Meanwhile, there has been a huge
demand to search for scores by musical elements such as music notes or a
melody, because such functionality can greatly assist musicians, composers
and musicologists to collect examples of past music. However, unlike natural
language querying, there are two major hurdles to performing a search by
musical elements. The first issue is an absolute data shortage. Although
there are abundant music scores appearing on the Internet, many of them
are stored as image files, which provide limited information to the computer.
Therefore, even at present, there are few data storages that provide machine-
readable music scores such as in MEI or MusicXML format. The second issue
is the difficulty of seeking music symbolically, which is a key focus of CBMR.
For example, even when people simply want to find a tune that moves as
“C-D-E-F-G-A-B”, there are multiple factors to take into consideration such
as “Which pitch of C-D-E-F-G-A-B?”, “Is a consecutive move only allowed
(e.g. C4-D4-E4-F4-G4-A4-B4) or is a jump permitted (e.g. C4-D3-E5-F2-
G5-A2-B4)?”, “What is the duration of each note?”, “Are we searching for a

4

melody appearing on outer voices or do we want to look for inner voices as
well?”, “Is there a designated instrument or timbre?”. The symbolic music
search system should take these considerations into account so that it can
provide appropriate results consistent with the user’s intent. Lemström [4]
established definitions of these diverse music search requirements.

2.3 Basic theory of CBMR
The purpose of CBMR is not only to retrieve music scores that perfectly
match a given query for music notes, but to retrieve all similar patterns from
a query by allowing some sort of fluctuations. A variety of methods have been
proposed to cope with the fuzziness of this type of data extraction. Velardo
et al. [2] summarized the existing approaches by 1. Category (Mathemat-
ics/Music theory/Hybrid), 2. Type of melody (Monophony/Polyphony), 3.
Genre (General/Folk songs), 4. Similarity function, 5. Musical Parameters
(Pitch/Duration/Harmony etc.), 6. Musical Representation (String of sym-
bols/Graph etc.). Most notably, the approach proposed by Orio and Rodà [5]
can be regarded as a major study of CBMR that took advantage of music
theory. Inspired by Schenkerian analysis [6] and Generative Theory of Tonal
Music (GTTM) [7], Orio proposed to create a graph from music scores that
simplifies melodies. The graph has multiple layers according to the reduction
level, which is intended to be used as a basis for the fuzzy search.

2.4 Implementation of CBMR
Apart from the basic theory of CBMR, a prominent example of the project
which aspires to implement digital music data storage with search and anal-
ysis capabilities is the SIMSSA (Single Interface for Music Score Searching
and Analysis) project initiated by Fujinaga et al. [8]. By forming divisional
cooperative subgroups called “Axis”, the SIMSSA project streamlines a set
of workflows of 1. image recognition of scores, 2. storing scores in XML
format and 3. making searchable information available to the public. A
subgroup called “Content Axis” pursues the sophistication of OMR (Op-
tical Music Recognition) by utilizing the machine learning and the image
recognition technology so that they can store the scores in machine-readable
format. Meanwhile, a subgroup called “Analysis Axis” seeks to construct
efficient methods to search for stored music scores made by the Content Axis
subgroup. Furthermore, they also aim to establish a user interface to share
analytic information such as statistics of each musical composition. The

5

SIMSSA project offers one reasonable response to resolve the complexity of
data storage of music scores and search methods, in a way that it is an end-
to-end approach ranging from performing XML encoding of music scores to
producing a searchable interface of the music data storage. Hopkins et al. [9]
explicates the data structure used by the SIMSSA project.

The most well-known tools developed by the Analysis Axis subgroup as
part of the SIMSSA project are PatternFinder [3] by Garfinkle and jSym-
bolic [10] by McCay. PatternFinder is a score search platform, which is
built utilizing music21 [11]. The tool realized various types of music score
search such as exact matching and fuzzy matching of monophonic/polyphonic
queries given by the user. PatternFinder is unique in that it offers a dis-
tributable package which implemented CBMR. On the other hand, jSym-
bolic is a statistical analysis platform for music scores. By loading MEI or
MIDI files into the tool, jSymbolic extracts feature values such as the pitch
class histogram, the average duration of notes, the range of the piece and so
on. The tool is intended to be used for musicological analysis, such as music
classification, more commonly known as the estimation of a composer from
an anonymous piece.

The NEUMA [12] project is another example of implementing CBMR
other than the SIMSSA project. Like as the SIMSSA project, the goal of the
NEUMA project is to establish a digital music library by taking advantage
of OMR technology. The NEUMA website (http://neuma.irpmf-cnrs.fr) of-
fers a simple music score searching function that allows the user to search
from monophonic music notes provided through the simple keyboard layout
displayed on the screen.

Apart from the comprehensive approaches described above, several stand-
alone score search tools exist. For example, PEACHNOTE developed by
Viro [13] provides a built-in melody search function in IMSLP, whereas Ask
Toskanini! developed by Bahraini and Tilevich [14] specializes in searching
for scores from the highest/lowest pitches, the melody, the tempo and so on.

2.5 Topics CBMR has not covered
The tools mentioned in the previous section only provide the functionality
to search for music scores by using music notes as a query. Western music
consists not only of music notes, but also of a background frame, such as key
(e.g. progression from C-Major to a-minor) or harmony (e.g. progression
from G-Major’s V to I). Although there have been needs amongst musicians,
composers and musicologists to search for music scores using the background
information of music (e.g. “find the location that modulates from C-Major to

6

a-minor”, “find the location that has the chord progression from G-Major’s
V to I”), existing CBMR approaches have not undertaken to cover such a
demand. There is little existing research that has focused on extracting
information using the upper layer structure of music. Although it is not
directly related to the score search, Haas et al. [15] attempted to compute the
similarity of harmonic structure between two pieces of music by comparing
the trees generated from a proposed algorithm.

7

Chapter 3

Database used in the thesis

This thesis utilizes the annotated database of J.S. Bach’s Little Organ Book,
which contains a Roman numeral analysis created in partnership with Japanese
professional organists as part of the KAKEN project 16H01744: “Computa-
tion model for understanding music based on statistical grammar model and
constructive semantics”. Although several annotated data sets are available
that include a Roman numeral analysis performed by professional musicians,
such as Neuwirth et al. [16]’s annotated data for Beethoven’s pieces, the pub-
licly accessible data corpus for the Little Organ Book was never produced.

This chapter describes the abstract of this database. In the meantime, the
background and details of the data is accessible to everyone on the KAKEN
project site, https://www.jaist.ac.jp/is/labs/tojo-lab/kiban-A/.

The targeted pieces are the total 45 works of J.S. Bach’s Little Organ
Book, BWV599-BWV644 (except BWV634, which is deemed to be the earlier
version of BWV633). As described in the KAKEN project website, existing
research for music information retrieval focuses primarily on simple struc-
tured music, such as Bach’s 4-voice chorales. Since the Little Organ Book is
regarded as a direct expansion of his 4-voice chorales in terms of composition
technique, the annotation is made to these works so that the computer can
process various musical expressions and the diversity of ornaments in the
musical works.

The first step in compiling data was the creation of MusicXML data
for each piece. The MusicXML data was created from actual scores by com-
puter processing with human inspection. The scores were from Montréal: Les
Éditions Outremontaises (2008) edited by Pierre Gouin, obtained from In-
ternational Music Score Library Project (IMSLP) / Petrucci Music Library.
(Licence: Creative Commons Attribution Non-commercial 3.0)

The next step was the addition of a Roman numeral analysis to the score
by professional musicians. Although computer-generated harmonic analysis

8

is an area that has long been desired, as indicated by Gotham et al. [17] and
Ju et al. [18], human intervention is at present unavoidable because there are
many ambiguities in interpreting harmony.

With regards to the method, when modern people refer to harmonic anal-
ysis, it tends to be based upon the theory of functional harmony, advocated
by Hugo Riemann (1849-1919), which rooted in Jean-Philippe Rameau (1863-
1764)’s music theory. However, it should be noted that it is not possible to
interpret perfectly the harmony of the Little Organ Book according to the
theory of functional harmony. This is for the most part because Bach’s music
was created before this theory was established. Moreover, the Little Organ
Book includes especially works that were written in church mode, which is
outside the tonality. Meanwhile, the analysis was intended to answer the
question such as “how do modern people, who are accustomed to tonal mu-
sic, understand the harmony and tonality of the Little Organ Book, and how
does modern music theory interpret the pieces?”. In other words, the anal-
ysis provides one interpretation for the structure of Bach’s works in terms
of tonality and harmony by venturing to use the expressions of the theory
of functional harmony. The goal of the analysis is to discover how modern
people deal with sound and perceive tonality.

The annotated scores are available in PDF and MusicXML on the website.
Figure 3.1 describes a PDF example of the BWV609 annotation. The first
and second measures are analyzed as follows:

Figure 3.1: Example of the BWV609 annotation

1. The pickup measure: G-Major’s I

2. The 1st-2nd beat of measure 1: G-Major’s V

3. The 3rd-4th beat of measure 1: G-Major’s I

4. The upbeat of the 4th beat of measure 1: G-Major’s IV/V (identical
to C-Major’s V)

5. The 1st beat of measure 2: G-Major’s IV and VI

9

6. The 2nd beat of measure 2: : G-Major’s V

7. The 3rd beat of measure 2: : G-Major’s I

8. The 4th beat of measure 2: : D-Major’s V and I

As noted as a cautionary note on the site, the analysis does not identify
inversion of chords and does not strictly differentiate a borrowed chord with
modulation. This is because the primary purpose of the analysis is to deter-
mine the most appropriate interpretation of the degree of key and harmony
perceived by modern people. The example in Figure 3.1 interprets the up-
beat of the 4th beat of measure 1 as a borrowed chord (IV/V) while the 4th
beat of measure 2 is interpreted as modulation.

With regards to MusicXML, the annotation is incorporated into the
<lyric> attribution, which enables computational analysis. For example,
the upbeat of the 4th beat of measure 1 is shown in Figure 3.2.

Figure 3.2: MusicXML expression for the upbeat of the 4th beat of measure
1 of BWV609

Before using the data, the following points need particular attention as
some of the expressions presented in the analysis differ slightly from the
common harmonic analysis style.

10

• The German expression is adopted. Thus, “B’ requires special care
because B/b in the German expression represents B♭ Major/Minor in
the English expression. Upper case characters represent major keys
while lower case characters represent minor keys.

• Roman numerals are all represented with upper case characters. (e.g.
III, IV, V) As we can identify major or minor with the key and the
degree of the chord, it is considered unnecessary to use upper case
characters for major chords and lower case characters for minor chords.

• “+” symbol is added for major I or IV chords that may occur in a
minor key. In addition, “-” symbol is added for minor I chords which
occasionally takes place in a major key.

• Distinction of V and VII: VII which is part of the sequence (e.g. the
descending fifth sequence) is treated as VII, while the other dominant
chords are treated as V.

• The numbers in brackets represent harmony that have little or some
ambiguous function. () is displayed for uninterpretable harmonies.

• The analysis does not dispute where exactly modulation happens. The
objective of the analysis is to indicate what degree of which key is the
most reasonable interpretation of harmony. It does not discuss each
given location should be dealt with as a borrowed chord or modulation.

Finally, the analysis does not argue that the provided interpretation is
an only answer. Rather, as syntax analysis of human language often of-
fers several possibilities, there should be several interpretations for a given
harmony.

This database will be referred to as Little Organ Book analysis database
in subsequent chapters. In the Little Organ Book analysis database, each
work has one file for its MusicXML file, with the
“BWV[Bach’s opus number]_Orig_wR.musicxml” naming convention.

11

Chapter 4

Problem settings and the
proposed data structure

4.1 Problem settings
This section defines the upper layer search requirements for the musical piece.
As illustrated below, H1 and H2 are defined for harmony search while T1 and
T2 are defined for key search.

1. H1: Display the location(s) which correspond(s) to the harmonic se-
quences given in the absolute chord notation. (e.g. from Cmaj to
Emin)

2. H2: Display the location(s) which correspond(s) to the harmonic se-
quences given in the relative chord notation. (e.g. from I to V)

3. T1: Display the location(s) which correspond(s) to the sequences given
in the absolute key notation. (e.g. from C-Major to a-minor)

4. T2: Display the location(s) which correspond(s) to the sequences given
in the relative key notation. (e.g. from Ist key to Vth key)

Table 4.1 shows the summary of the H1, H2, T1 and T2 search.

Table 4.1: Summary of the search requirements
Targeted information Search type

Absolute Relative
Harmony H1 H2

Key T1 T2

12

4.2 Proposed data structure
This section proposes a data structure that satisfies the search requirements
H1, H2, T1 and T2, as shown in Table 4.2. This table contains information
about the name of key and the name of harmony in the absolute and the
relative reference for the place identified by the opus number, the measure
number and the beat number.

Table 4.2: Proposed data structure
Column name (Physical name) Column name (Logical name) Format Description
WorkNum Work number Numeral Opus number of the piece
MeasNum Measure number Numeral Measure number in the piece
BeatNum Beat Numeral Beat number of the measure
TonAbs Key name�Absolute� String Key name in the absolute reference in the German expression
TonRel Key name�Relative� String Key name in the relative reference in Roman numerals
HarmAbs Harmony name�Absolute� String Harmony name in the absolute reference in chord names
HarmRel Harmony name�Relative� String Harmony name in the relative reference in Roman numerals

4.3 Creation of the corpus table
Based on the information provided by the Little Organ Book analysis database,
the author has created a table in CSV format that complies with the data
structure proposed in the previous section. The author made the following
changes in order to meet the search requirements.

• The key name in the relative reference was created by the author be-
cause the information was not included in the Little Organ Book analy-
sis database. There is no room for interpretation to obtain the relative
reference name, as it is identifiable from the key name in the absolute
reference, given the fact that the first key of the piece is I.

• The harmony name in the absolute reference was created by the author,
as the information is not included in the Little Organ Book analysis
database. There is no room for interpretation to obtain the absolute
reference name, as it is identifiable from the combination of the key
name in the absolute reference and the harmony name in the rela-
tive reference, which are included in the Little Organ Book analysis
database.

• Borrowed chord expressions such as V/V (the Vth degree of harmony
in the Vth key in the piece) are treated as if modulation occurred. For
example, V/V of a-minor is shown as V of e-minor. This replacement
can be done one by one without having room for interpretation.

13

With regards to the harmony name in the absolute reference, the following
rules are adopted to avoid confusion and to avoid the use of special characters
that can be detrimental to the calculation.

• “maj” is added for all major triads (e.g. Amaj)

• “min” is added for all minor triads (e.g. Emin)

• “min-5” is added for all diminished triads (e.g. Bmin-5)

• “+” represents ♯ (Sharp) (e.g. F+min for F♯ minor chord)

• “-” represents ♭ (Flat) (e.g. B-maj for B♭ major chord)
Table 4.3 shows the example corresponds to the analysis of the measure

1 and 2 of BWV599, which is displayed in Figure 4.1. This table will be
referred to as Little Organ Book corpus table in the following chapters.

Table 4.3: Example of the Little Organ Book corpus table for the measure 1
and 2, BWV599
WorkNum MeasNum BeatNum TonAbs TonRel HarmAbs HarmRel

599 1 1 a I Amin I
599 1 3 e V Bmaj V
599 1 4 e V Emin I
599 2 1 e V Bmaj V
599 2 2 a I Emaj V
599 2 2 a I Amin I
599 2 3 a I Emaj V
599 2 3 a I Bmin-5 II
599 2 4 a I Emaj V

Figure 4.1: Analysis of the measure 1 and 2 of BWV599

14

4.4 Search algorithms
This section describes the algorithms for implementing the H1, H2, T1 and
T2 search. Table 4.4 shows the environment used for implementation.

Table 4.4: Implementation Environment
Program language Python 3
Library music21 [11]
Music notation software MuseScore 3
Music scores The Little Organ Book analysis database in MusicXML
Search target The Little Organ Book corpus table in CSV

Figure 4.2 describes a process flow for the H1, H2, T1 and T2 search.
These searches can be performed in a similar manner as described below.

1. The user inputs a search query.

2. The Python program scans the Little Organ Book corpus table from
the search query and retrieves the opus and measure number(s) which
match(es) the query.

3. The MusicXML file(s) is/are retrieved from the Little Organ Book anal-
ysis database according to the opus number(s) fetched in the process
#2.

4. For all retrieved MusicXML files, MuseScore displays measures fetched
in the process #2.

15

Figure 4.2: Process flow for performing a search

4.4.1 Harmony search in the absolute reference (H1)
Requirements for the H1 search are defined as follows.

1. Scan the HarmAbs column in the Little Organ Book corpus table and
retrieve all rows that match the harmonic sequence given by the user
query.

2. However, if the same harmony is repeated in the Little Organ Book
corpus table, they are treated as if there were no duplicate rows. (e.g.
if there are rows such as Cmaj, Gmaj, Gmaj, Cmaj, they are interpreted
as Cmaj, Gmaj, Cmaj.)

3. If the retrieved rows have different WorkNum elements, such rows are
not considered a search result.

Item #2 above is required because repeated harmony does not change
harmonic functionality. For example, when a user enters a query as “Cmaj,
Gmaj, Cmaj”, he/she should also wish to see the case that is “Cmaj, Gmaj,
Gmaj, Cmaj” in the Little Organ Book corpus table. Item #3 is needed to
exclude the case that matches the user’s query but has the different work
numbers, which does not make any sense as a search result. For example,
when a user enters a query as “Cmaj, Gmaj, Cmaj”, “Cmaj (in BWV599),

16

Gmaj (in BWV599), Cmaj (in BWV600)” should not be retrieved as a search
result because BWV600 has nothing to do with BWV599.

Algorithm 1 shows the execution algorithm for the H1 search. The
overview is outlined below.

1. Row 1-2 load a search query. The process retrieves harmony names
in the absolute reference from the command line and stores them in
args[]. m represents the length of the search query, which will be used
to manipulate the array.

2. Row 3-4 load the Little Organ Book corpus table. The process stores
the information from the Little Organ Book corpus table into csvdata
array. After that, the WorkNum column in csvdata is loaded to the
WorkNum array.

3. Row 5 sets up the search target. The index is given in the first column
of cmpList and the HarmAbs column in csvdata is copied into the
second column of cmpList.

4. Row 8-16 generate the search target. The process retrieves m rows from
cmpList. The first element of the first column is copied into the tgtList
array’s first column. m elements of the second column are transposed
and copied into the tgtList array’s second to m+1th column. The basic
concept of this procedure is illustrated in Figure 4.3. In this example,
the 10th-12th elements of cmpList are not copied into tgtList because
their second column elements are equivalent to the 9th element, which
is Amin.

Figure 4.3: Overview of creating tgtList from cmpList (m=3)

17

5. The search is performed after row 18. Row 20 compares all rows in
tgtList to args. If all elements in the second to m+ 1th column of the
tgtList array match args, row k in tgtList is treated as a search result
candidate.

6. Row 21 retrieves the start index of csvdata by using the tgtList element
in the first column of the kth row.

7. Row 22 retrieves the end index of csvdata by using the tgtList element
in the first column of the k +m− 1th row.

8. Row 24 excludes search results with different WorkNum elements.

9. Row 25-28 prepare to display the search result. resultWorkNum (which
denotes the opus number), resultStMeas (which denotes the minimum
measure number) and resultEdMeasu (which denotes the maximum
measure number) are retrieved from the csvdata rows which satisfy the
condition in row 20 and row 24. Figure 4.4 shows the example where
(Bmin-5, Emaj, Amin) is given as a search query.

Figure 4.4: Overview of the process to display the search result (Search query:
args[]=(Bmin-5, Emaj, Amin))

10. Row 29 loads MusicXML file which has the opus number equal to
resultWorkNum. The measures from resultStMeas to resultEdMeas
are derived. The loaded file is stored in mxmlfileexcerpt.

11. Row 30 calls MuseScore application to display mxmlfileexcerpt.

18

Algorithm 1 Execution algorithm for the H1 search (Harmony search in
the absolute reference)

1: args[] ⇐ Get a search query (e.g.: Dmin, Gmaj, Cmaj) from the com-
mand line arguments

2: int m ⇐ Number of the command line arguments
3: csvdata[][] ⇐ Load the Little Organ Book corpus table (CSV)
4: WorkNum[] ⇐ Load the WorkNum column in csvdata
5: cmpList[][] ⇐ Give the index in the first column and load the HarmAbs

column in csvdata
6: int n ⇐ Number of rows of cmpList
7: Declare two dimensional array tgtList[][]
8: for int i=0 to n-1 do
9: if i==0 then

10: tgtList[i][0] ⇐ cmpList[i][0]
11: tgtList[i][1:m] ⇐ Transposition of cmpList[i+m][1]
12: else if cmpList[i][1] is not equal to the preceding element AND cm-

pList[i][2] is equal to the preceding element then
13: tgtList[i][0] ⇐ cmpList[i][0]
14: tgtList[i][1:m] ⇐ Transposition of cmpList[i:i+m][1]
15: end if
16: end for
17: int p ⇐ Number of rows of tgtlist
18: while k=0 < p do
19: tmplist[] ⇐ tgtList[k][1:m]
20: if args[]==tmplist[] then
21: stIdx ⇐ tgtList[k][0]
22: edIdx ⇐ tgtList[k+m-1][0]
23: chkWorkNum[] ⇐ WorkNum[stIdx:edIdx]
24: if All elements in chkWorkNum[] are equivalent then
25: resultWorkNum ⇐ WorkNum[k]
26: MeasNum[] ⇐ Load the MeasNum column of csvdata
27: resultStMeas ⇐ MeasNum[stIdx]
28: resultEdMeas ⇐ MeasNum[edIdx]
29: mxmlfileexcerpt ⇐ Load the musicXML files that match result-

WorkNum and derive the measures from resultStMeas to result-
EdMeas.

30: MuseScore displays mxmlfileexcerpt
31: end if
32: end if
33: end while

19

4.4.2 Harmony search in the relative reference (H2)
Requirements for the H2 search are defined as follows.

1. Scan the HarmRel column in the Little Organ Book corpus table and
retrieve all rows that match the harmonic sequence given by the user
query.

2. However, if the same harmony is repeated in the Little Organ Book
corpus table, they are treated as if there were no duplicate rows. (e.g.
if there are rows such as I, V, V, I, they are interpreted as I, V, I.)

3. If the retrieved rows have different WorkNum elements, such rows are
not considered a search result.

4. If the retrieved rows have different TonAbs elements, such rows are not
considered a search result.

Item #2 above is required as repeated harmony does not change harmonic
functionality. For example, when a user enters a query as “I, V, I”, he/she
should also wish to see the case that is “I, V, V, I” in the Little Organ Book
corpus table. Item #3 is needed to exclude the case that matches the user’s
query but has the different work numbers, as discussed in the H1 search
algorithm. Item #4 aims at excluding the chord progression with multiple
keys, because such search demand should be covered by T1 or T2. The H2
search only covers the search for harmony in the same key.

Algorithm 2 shows the execution algorithm for the H2 search. The
overview is outlined below.

1. Row 1-2 load a search query. The process retrieves harmony names
in the relative reference from the command line and stores them in
args[]. m represents the length of the search query, which will be used
to manipulate the array.

2. Row 3-5 load the Little Organ Book corpus table. The process stores
the information from the Little Organ Book corpus table into csvdata
array. After that, the WorkNum column in csvdata is loaded to the
WorkNum array and the TonAbs column in csvdata is loaded to the
WorkNum array.

3. Row 6 sets up the search target. The index is given to the first column
of cmpList, the HarmRel column in csvdata is copied into the second
column of cmpList and the TonAbs column in csvdata is copied into
the third column of cmpList.

20

4. Row 9-17 generate the search target. The process retrieves m rows from
cmpList. The first element of the first column is copied into the tgtList
array’s first column. m elements of the second column are transposed
and copied into the tgtList array’s second to m+1th column. The basic
concept of this procedure is illustrated in Figure 4.5. In this example,
the 10th element of cmpList is not copied into tgtList because their
second column and third column elements are equivalent to the 9th
element, which are I and a.

Figure 4.5: Overview of creating tgtList from cmpList (m=3)

5. The search is performed after row 19. Row 21 compares all rows in
tgtList to args. If all elements in the second to m+ 1th column of the
tgtList array match args, row k in tgtList is treated as a search result
candidate.

6. Row 22 retrieves the start index of csvdata by using the tgtList element
in the first column of the kth row.

7. Row 23 retrieves the end index of csvdata by using the tgtList element
in the first column of the k +m− 1th row.

8. Row 26 excludes search results with different WorkNum or TonAbs
elements.

9. Row 27-30 prepare to display the search result. resultWorkNum (which
denotes the opus number), resultStMeas (which denotes the minimum
measure number) and resultEdMeasu (which denotes the maximum
measure number) are retrieved from the csvdata rows which satisfy the
condition in row 21 and row 26. Figure 4.6 shows the example where
(II, V, I) is given as a search query.

21

Figure 4.6: Overview of the process to display the search result (Search query:
args[]=(Bmin-5, Emaj, Amin))

10. Row 31 loads MusicXML file which has the opus number equal to
resultWorkNum. The measures from resultStMeas to resultEdMeas
are derived. The loaded file is stored in mxmlfileexcerpt.

11. Row 32 calls MuseScore application to display mxmlfileexcerpt.

22

Algorithm 2 Execution algorithm for the H2 search (Harmony search in
the relative reference)

1: args[] ⇐ Get a search query (e.g.: I, V, I) from the command line
2: int m ⇐ Number of the command line arguments
3: csvdata[][] ⇐ Load the Little Organ Book corpus table (CSV)
4: WorkNum[] ⇐ Load the WorkNum column in csvdata
5: TonAbs[] ⇐ Load the TonAbs column in csvdata
6: cmpList[][] ⇐ Give the index in the first column and load the HarmAbs

column in csvdata
7: int n ⇐ Number of rows of cmpList
8: Declare two dimensional array tgtList[][]
9: for int i=0 to n-1 do

10: if i==0 then
11: tgtList[i][0] ⇐ cmpList[i][0]
12: tgtList[i][1:m] ⇐ Transposition of cmpList[i+m][1]
13: else if cmpList[i][1] is not equal to the preceding element AND cm-

pList[i][2] is equal to the preceding element then
14: tgtList[i][0] ⇐ cmpList[i][0]
15: tgtList[i][1:m] ⇐ Transposition of cmpList[i:i+m][1]
16: end if
17: end for
18: int p ⇐ Number of rows of tgtlist
19: while k=0 < p do
20: tmplist[] ⇐ tgtList[k][1:m]
21: if args[]==tmplist[] then
22: stIdx ⇐ tgtList[k][0]
23: edIdx ⇐ tgtList[k+m-1][0]
24: chkWorkNum[] ⇐ WorkNum[stIdx:edIdx]
25: chkTonAbs[] ⇐ TonAbs[stIdx:edIdx]
26: if All elements in chkWorkNum[] are equivalent AND All elements

in chkTonAbs[] are equivalent then
27: resultWorkNum ⇐ WorkNum[k]
28: MeasNum[] ⇐ Load MeasNum column of csvdata
29: resultStMeas ⇐ MeasNum[stIdx]
30: resultEdMeas ⇐ MeasNum[edIdx]
31: mxmlfileexcerpt ⇐ Load the musicXML files that match result-

WorkNum and derive the measures from resultStMeas to result-
EdMeas.

32: MuseScore displays mxmlfileexcerpt
33: end if
34: end if
35: end while

23

4.4.3 Key search in the absolute and the relative ref-
erence (T1 and T2)

Requirements for the T1 and T2 search are defined as follows. The T1 and
T2 search can be performed by the same algorithm.

1. Scan the TonAbs (in case of T1) or the Ton Rel (in case of T2) column
in the Little Organ Book corpus table and retrieve all rows that match
the key sequence given by the user query.

2. However, if the same key is repeated in TonAbs or TonRel, they are
treated as if there were no duplicate rows. (e.g. if there are rows such
as a, a, a, e, C, they are interpreted as a, e, C.)

3. If the retrieved rows have different WorkNum elements, such rows are
not considered a search result.

Item #2 above is required to identify where the key changes, as the Little
Organ Book corpus table repeats the same TonAbs or TonRel elements while
the same key continues. Item #3 is needed to exclude the case that matches
the user’s query but has the different work numbers, as discussed in the H1
search.

Algorithm 3 shows the execution algorithm for the T1/T2 search. The
overview is outlined below.

1. Row 1-2 load a search query. The process retrieves key names from the
command line and stores them in args[]. m represents the length of the
search query, which will be used to manipulate the array.

2. Row 3-4 load the Little Organ Book corpus table. The process stores
the information from the Little Organ Book corpus table into csvdata
array. After that, the WorkNum column in csvdata is loaded to the
WorkNum array.

3. Row 5 sets up the search target. The index is given in the first column
of cmpList and the TonAbs (in case of T1) / TonRel (in case of T2)
column in csvdata is copied into the second column of cmpList.

4. Row 8-16 generate the search target. The process retrieves m rows from
cmpList. The first element of the first column is copied into the tgtList
array’s first column. m elements of the second column are transposed
and copied into the tgtList array’s second to m+1th column. The basic
concept for this procedure is illustrated in Figure 4.7. In this example,

24

the 3rd-4th elements and the 6th to 12th elements of cmpList are not
copied into tgtList because their second column elements are equivalent
to the 2nd or the 5th elements, which are e and a.

Figure 4.7: Overview of creating tgtList from cmpList (m=3)

5. The search is performed after row 18. Row 20 compares all rows in
tgtList to args. If all elements in the second to m+ 1th column of the
tgtList array match args, row k in tgtList is treated as a search result
candidate.

6. Row 21 retrieves the start index of csvdata by using the tgtList element
in the first column of the kth row.

7. Row 22 retrieves the end index of csvdata by using the tgtList element
in the first column of the k +m− 1th row.

8. Row 24 excludes search results with different WorkNum elements.

9. Row 25-28 prepare to display the search result. resultWorkNum (which
denotes the opus number), resultStMeas (which denotes the minimum
measure number) and resultEdMeasu (which denotes the maximum
measure number) are retrieved from the csvdata rows which satisfy the
condition in row 20 and row 24. Figure 4.8 shows the example where
(a, e, a) is given as a search query.

25

Figure 4.8: Overview of the process to display the search result (Search query:
args[]=(a, e, a))

10. Row 29 loads MusicXML file which has the opus number equal to
resultWorkNum. The measures from resultStMeas to resultEdMeas
are derived. The loaded file is stored in mxmlfileexcerpt.

11. Row 30 calls MuseScore application to display mxmlfileexcerpt.

26

Algorithm 3 Execution algorithm for the T1 and T2 search (Key search in
the absolute and the relative reference)

1: args[] ⇐ Get a search query (e.g.: a, e, C) from the command line
arguments

2: int m ⇐ Number of the command line arguments
3: csvdata[][] ⇐ Load the Little Organ Book corpus table (CSV)
4: WorkNum[] ⇐ Load the WorkNum column in csvdata
5: cmpList[][] ⇐ Give the index in the first column, load the TonAbs (in

case of T1) / TonRel (in case of T2) column in csvdata to the second
column

6: int n ⇐ Number of rows of cmpList
7: Declare two dimensional array tgtList[][]
8: for int i=0 to n-1 do
9: if i==0 then

10: tgtList[i][0] ⇐ cmpList[i][0]
11: tgtList[i][1:m] ⇐ Transposition of cmpList[i+m][1]
12: else if cmpList[i][1] is not equal to the preceding element AND cm-

pList[i][2] is equal to the preceding element then
13: tgtList[i][0] ⇐ cmpList[i][0]
14: tgtList[i][1:m] ⇐ Transposition of cmpList[i:i+m][1]
15: end if
16: end for
17: int p ⇐ Number of rows of tgtlist
18: while k=0 < p do
19: tmplist[] ⇐ tgtList[k][1:m]
20: if args[]==tmplist[] then
21: stIdx ⇐ tgtList[k][0]
22: edIdx ⇐ tgtList[k+m-1][0]
23: chkWorkNum[] ⇐ WorkNum[stIdx:edIdx]
24: if All elements in chkWorkNum[] are equivalent then
25: resultWorkNum ⇐ WorkNum[k]
26: MeasNum[] ⇐ Load the MeasNum column of csvdata
27: resultStMeas ⇐ MeasNum[stIdx]
28: resultEdMeas ⇐ MeasNum[edIdx]
29: mxmlfileexcerpt ⇐ Load the musicXML files that match result-

WorkNum and derive the measures from resultStMeas to result-
EdMeas.

30: MuseScore displays mxmlfileexcerpt
31: end if
32: end if
33: end while

27

Chapter 5

Further possibility for
leveraging the proposed data
structure

The proposed data structure can be used in addition to the search require-
ments defined in the previous chapter. This section discusses two cases to
show the further applicability of the proposed data structure.

1. Fuzzy search for H2: enable the H2 search regardless of whether the
harmony is expressed in a borrowed chord or modulation.

2. Find the location where the sequence takes place, especially for the
descending fifth sequence.

5.1 Fuzzy search for H2
5.1.1 Issue of the H2 search
When a harmonic sequence is given in H2 as a search query, it is intended
to find the location that exactly matches the query. Therefore, when the
HarmRel elements are stored as Table 5.1, the query shown below should be
given to select the rows.

• H2 search query�I - IV - V - I - IV/I - IV/V - IV/I

However, when the HarmRel elements are stored as Table 5.2, the H2
search will not select rows because it does not exactly match the given query.
The difference between Table 5.1 and 5.2 is whether the harmony is treated

28

as a borrowed chord or modulation, indicating the same harmony with a
different expression. There is no concrete definition in musicology in which
case would have to be treated as a borrowed chord and which case would have
to be treated as modulation. As there is room for interpretation even from
musicologist’s point of view, the Little Organ Book analysis database also has
an ambiguity in the use of borrowed chords and modulation. This section
will discuss how the H2 search can be improved to enable robust search to
the notation variants.

Table 5.1: Corpus table example
(shown as the search result in the
H2 search)

TonRel HarmRel
I I
I IV
I V
I I
I IV/I
I IV/V
I IV/I

Table 5.2: Corpus table example
(not shown as the search result in
the H2 search)

TonRel HarmRel
I I
I IV
I V
I I

IV I
IV V
IV I

5.1.2 Relation between the degree of key and the de-
gree of harmony

Recalling the scale structure in Western music, the combinations of key and
harmony listed below represent the same harmony, ignoring the existence of
major/minor triads and a leading note.

1. The Ist degree of the Ist key

2. The VIIth degree of the IInd key

3. The Vth degree of the IIIrd key

4. ...

5. The IInd degree of the VIIth key

Although the VIIth degree of the IInd key and the IInd degree of the
VIIth key do not exactly match the Ist degree of the Ist key due to a leading

29

note, this chapter will purposely treat them as identical in order to simplify
mathematical calculations. This simplification will not be harmful because
the fuzzy search should get the result candidates broadly.

For example, a harmony which consists of C-E-G is C-major’s Ist degree,
but it can also be e-minor (the IIIrd key)’s VIth degree, F-major (the IVth
key)’s Vth degree or G-major (the Vth key)’s IVth degree. The important
point to note here is that the sum of the degree of harmony and the degree
of key is 2 (e.g. I+I) or 9 (III+VI or V+IV) in this case. In addition, since
a scale in Western music consists of 7 notes repeated in cycles (e.g. C, D,
E, F, G, A and B for the C-major scale), when we subtract 7 for summation
results which are 9, the sum of the degree of harmony and the degree of key
should all be 2.

When we apply the same calculation for the IVth degree of the Ist key,
we can see all summation results are 5.

1. The IVth degree of the Ist key (Sum: 5)

2. The IIIrd degree of the IInd key (Sum: 5)

3. The IInd degree of the IIIrd key (Sum: 5)

4. The Ist degree of the IVth key (Sum: 5)

5. ...

6. The Vth degree of the VIIth key (Sym: 5 [7+5-7])

Furthermore, when we apply the same calculation for the Vth degree of
the Ist key, we can see all summation results are 6.

1. The Vth degree of the Ist key (Sum: 6)

2. The IVth degree of the IInd key (Sum: 6)

3. The IIIrd degree of the IIIrd key (Sum: 6)

4. The IInd degree of the IVth key (Sum: 6)

5. The Ist degree of the Vth key (Sum: 6)

6. ...

7. The VIth degree of the VIIth key (Sum: 6 [7+6-7])

30

5.1.3 Method for the fuzzy search
This subsection examines the method of conducting the fuzzy search based
on the characteristics of the degree of key and harmony discussed in the
previous subsection. Let us add one column to the Little Organ Book corpus
table, which is called TonHarm. The values are given to the TonHarm column
according to the rules described below:

1. If the element of HarmRel is not a borrowed chord (i.e. a Roman nu-
meral without “/”), set the sum of TonRel+HarmRel in Arabic number.

2. If the element of HarmRel is a borrowed chord (i.e. Roman numerals
with “/”), set the sum of two Roman numerals in HarmRel in Arabic
number.

3. In all of these cases, subtract 7 if the value equals or exceeds 9.

Table 5.3 and Table 5.4 show the enhancement of Table 5.1 and Table
5.2, which added the TonHarm column according to the rule described above.
When comparing Table 5.3 and Table 5.4, both have the same TonHarm
numbers regardless of the HarmRel expression.

Table 5.3: Enhancement of Table
5.1

TonRel HarmRel TonHarm
I I 2
I IV 5
I V 6
I I 2
I IV/I 5
I IV/V 2
I IV/I 5

Table 5.4: Enhancement of Table
5.2

TonRel HarmRel TonHarm
I I 2
I IV 5
I V 6
I I 2

IV I 5
IV V 2
IV I 5

The search query should also be converted to Arabic numbers as shown
below, in accordance with the rule applied to the TonHarm column. For
example,

• H2 fuzzy search query: 2 - 5 - 6 - 2 - 5 - 2 - 5

should be created from

• H2 search query: I - IV - V - I - IV/I - IV/V - IV/I

By scanning the TonHarm column using the H2 fuzzy search query, we
can retrieve the result regardless of the expression of harmony.

31

5.1.4 Supplemental notes for the fuzzy search
If a minor amendment is applied, the fuzzy search method described in the
previous subsection can also be applied when the base key is not the Ist key.

For example, let us consider the case shown in Table 5.5. This case
represents the example that the I-II-V-I harmonic movement takes place in
the IIIrd key in the middle of the music. After that, another I-II-V-I harmonic
movement occurs in the Ist key.

Table 5.5: Example of the corpus table (Modulation from the IIIrd key to
the Ist key)

TonRel HarmRel TonHarm
III I 4
III II 5
III V 8
III I 4
I I 2
I II 3
I V 6
I I 2

It is important to note that the Ist key in Table 5.5 is the VIth key from
the IIIrd key perspective. For instance, if the Ist key in Table 5.5 is C-major,
the IIIrd key is e-minor. However, from an e-minor standpoint, e-minor is
the Ist key and C-major is the VIth key.

Therefore, the H2 search query shown below should need to obtain the
case of Table 5.5. However, the H2 fuzzy search query corresponds to the
H2 search query cannot retrieve the rows in Table 5.5 because the TonHarm
column is not equivalent.

• H2 search query: I - II - V - I - VI/I - VI/II - VI/V - VI/I

• H2 fuzzy search query: 2 - 3 - 6 - 2 - 7 - 2 - 4 - 7

One way to solve this problem is to transpose the H2 search query from
the IInd key to the VIIth key. Namely, the H2 search query should be
extended to the queries described below.

1. H2 search query (Transposed into the IInd key): II/I - II/II - II/V -
II/I - VII/I - VII/II - VII/V - VII/I

32

2. H2 search query (Transposed into the IIIrd key): III/I - III/II - III/V
- III/I - I - II - V - I

3. H2 search query (Transposed into the IVth key): IV/I - IV/II - IV/V
- IV/I - II/I - II/II - II/V - II/I

4. ...

5. H2 search query (Transposed into the VIIth key): VII/I - VII/II -
VII/V - VII/I - V/I - V/II - V/V - V/I

The H2 fuzzy search queries correspond to the H2 search queries are:

1. H2 fuzzy search query (Transposed into the IInd key): 3 - 4 - 7 - 3 - 8
- 2 - 5 - 8

2. H2 fuzzy search query (Transposed into the IIIrd key): 4 - 5 - 8 - 4 - 2
- 3 - 6 - 2

3. H2 fuzzy search query (Transposed into the IVth key): 5 - 6 - 2 - 5 - 3
- 4 - 7 - 3

4. ...

5. H2 fuzzy search query (Transposed into the VIIth key): 8 - 2 - 5 - 8 -
6 - 7 - 3 - 6

By using all these fuzzy search queries, the case of Table 5.5 can be
retrieved as a search result of the H2 fuzzy search query that is transposed
into the IIIrd key.

5.2 Finding a sequence using a harmonic pro-
gression

5.2.1 Overview of the descending fifth sequence
“Sequence” in musicology is defined as “the more or less exact repetition
of a passage at a higher or lower level of pitch” [19]. In many sequence
models, the descending fifth sequence is one of the more widely used styl-
ized movements of the Baroque period. For example, this sequence has a
harmonic progression which descends several times by Vth degree, such as
V-I-IV-VII-III-VI-II. The MILNE Library [20] explains in more detail the
sequence examples, such as BWV593 illustrated in Figure 5.1. The Little

33

Organ Book corpus table can be utilized to find where the descending fifth
sequence occurs, because we can deduce the existence of the descending fifth
sequence by simply verifying the progression of harmony, without seeing the
melodic movement.

Figure 5.1: Example of the descending fifth sequence (BWV593, cited from
MILNE Library [19])

5.2.2 Method to find the descending fifth sequence
As described in the previous section, a scale in Western music consists of 7
notes which are repeated in cycles. When the G-major chord (triad of G, B
and D) descends by Vth, it reaches the C-major chord (triad of C, E and G).
Likewise, when the C-major chord descends by Vth, it reaches the F-major
chord (triad of F, A and C).

Let us examine how to deal with the characteristic of the scale in a math-
ematical way. Firstly, let us list the chords from A to G and set the index
from 1 to 7, ignoring the sharps/flats and Major/Minor chords, which is
shown in Table 5.6.

When we see a movement of two consecutive harmonies, there is a relation
shown below when the harmony descends by the Vth degree. In this case,

34

Table 5.6: Chord names with index
Chord name Index

A 1
B 2
C 3
D 4
E 5
F 6
G 7

X denotes the number of the first chord and Y denotes the number of the
second chord. {

|X − Y − 1| = 3 if X − Y > 0,
|X − Y | = 3 if X − Y < 0

(5.1)

For example, when harmony shifts from G to C, the difference between
two chords is |7 − 3 − 1| = 3 because X = 7, Y = 3 and X − Y > 0.
Meanwhile, when harmony shifts from A to D, the difference between two
chords is |1−4| = 3 because X = 1, Y = 4 and X−Y < 0. Therefore, we can
get candidates for the descending fifth sequence by subtracting the numbers
from two consecutive harmonies of all HarmRel column elements in the Little
Organ Book corpus table and finding the location where 3 is repeated.

Table 5.7 shows an example of this manipulation, where we find 3 is
repeated in the first half of the measure. In fact, it moves as II-V-I-IV,
which implies the descending fifth sequence as shown in Figure 5.2.

Table 5.7: Chord name, Index and the difference of two consecutive chords
of the 4th measure of BWV599

Chord name Index Difference between two consecutive chords
Dmin 4 -
Gmaj 7 3
Cmaj 3 3
Fmaj 6 3
Dmin 4 2
Gmaj 7 3
Cmaj 3 3

By applying this method to all pieces in J.S. Bach’s Little Organ Book,
we can find the very long descending fifth sequence from the 10th measure to

35

Figure 5.2: The 4th measure of BWV599

the 13th measure of BWV625, which starts with F-major’s V and ends with
d-minor’s I+. By using the Little Organ Book corpus table, we can efficiently
gather candidates of the sequence from a very simple calculation.

Table 5.8: The 10th-13th measures of BWV625 and the difference of two
consecutive chords

TonAbs HarmRel HarmAbs Index Difference between two chords
F V Cmaj 3 -
F I Fmaj 6 3
d VI B-maj 2 3
d II Emin-5 5 3
d V Amaj 1 3
d I Dmin 4 3
F II Gmin 7 3
F V Cmaj 3 3
F I Fmaj 6 3
F IV B-maj 2 3
d II Emin-5 5 3
d V Amaj 1 3
d I+ Dmaj 4 3

36

Figure 5.3: The 9th-13th measures of BWV625

37

Chapter 6

Conclusion

6.1 Achievements of the thesis
This thesis proposed multi-layered data structure containing scores, key and
harmonic information. The proposed data structure allows searching through
a progression of key or harmony, which has not been covered by existing
CBMR research. For example, the proposed data structure and the algo-
rithms fulfill requirements such as “Find measures from music scores by key
that moves from C-major to a-minor” or “Find measures from music scores
by harmony that moves as I, II, V and I”.

The principal contributions of this thesis are as follows.

1. Contribution to musical education: students learning composition will
easily find examples of great composers of the past with the same key
or harmonic movement.

2. Contribution to musical interpretation: by listing all the musical pieces
that have the similar key or harmonic movement, people can be aware
of the similarity in the upper layer of music, which is not easily visible
on the surface of the music. This will lead to a new understanding of
musical pieces when people perform a musical analysis.

3. Contribution to musicology: musicologists used to collect examples
manually when he/she wants to see the similar key/harmonic move-
ment in various musical pieces. The proposed data structure and algo-
rithms will streamline such time-consuming work. People will be able
to easily answer questions such as “find locations that have a V-IV
harmonic progression” or “list all the compositional examples for the
progression of II-V-I”.

38

6.2 Future work
Three points listed below are the topics to be addressed in the future work.

1. Automatic creation of corpus tables: In this thesis, the corpus table
called Little Organ Book corpus table was created manually by the
author. In order to create a corpus table from larger digitized music
score storage, automation of the process using digitized information
(MusicXML, MEI) is a must.

2. Implement functionality other than search: CBMR does not aim only
to consider the effective way to search but also to gather analytical
information about the music. For example, jSymbolic [10] delivers
statistics related to given music notes such as the pitch class histogram
or the average duration of notes. Similar approaches can be taken for
upper layers of music. For example, further contribution to musicology
is expected by providing the transition probability of key or harmony.

3. Further enhancement of the fuzzy search: the H1-H2 and the T1-T2
search algorithms are an exact match search. In Chapter 5, this the-
sis also proposed a fuzzy search algorithm that is robust to notation
variants of borrowed chords and modulation. However, there may be
other requirements for the fuzzy search such as retrieving the “IV-V-I”
harmonic movements from a “II-V-I” search query, which has a feature
very similar to “IV-V-I”. The algorithms proposed in this thesis are not
able to cover such a search demand. One possible solution is to intro-
duce a concept of harmonic distance advocated in Tonal Pitch Space
(TPS) [21], which can retrieve similar harmonic movements from the
function of harmonies.

39

Bibliography

[1] Downie, J. Stephen. “The Scientific Evaluation of Music Information
Retrieval Systems: Foundations and Future.” Computer Music Journal
28, no. 2 (2004): 12-23. muse.jhu.edu/article/169382.

[2] Velardo, V, M. Vallati, S. Jan, “Symbolic Melodic Similarity: State of
the Art and Future Challenges.” Computer Music Journal (2016): 40
(2): 70–83.

[3] Garfinkle, D., C. Arthur, P. Schubert, J. Cumming and I. Fujinaga, Pat-
ternFinder: Content-Based Music Retrieval with music21: Proceedings
of the 4th International Workshop on Digital Libraries for Musicology.
(2017): 5-8

[4] Lemström, K. String matching techniques for music retrieval. Ph.D.
Dissertation. University of Helsinki. (2000).

[5] Orio, N., and A. Rodà. “A Measure of Melodic Similarity Based on a
Graph Representation of the Music Structure.” Proceedings of the Inter-
national Conference for Music Information Retrieval, (2009): pp. 543–
548.

[6] Schenker, H., Der Freie Satz, Neue musikalische Theorien und Phan-
tasien. Universal Wien, O. Jonas, 1956 edition (1935).

[7] Lerdhal, F. and R. Jackendoff. A Generative Theory of Tonal Music.
The MIT Press, Cambridge, MA (1983).

[8] Fujinaga, I., A. Hankinson, and J. Cumming. “Introduction to SIMSSA
(Single Interface for Music Score Searching and Analysis).” Proceed-
ings of the International Workshop on Digital Libraries for Musicology,
(2014): 100–102. London, UK.

[9] Hopkins, E., Y. Ju, G. Polins Pedro, C. McKay, J. Cumming, and I.
Fujinaga. SIMSSA DB: Symbolic music discovery and search. Poster

40

presentation at the International Conference on Digital Libraries for
Musicology. (2019)

[10] McKay, C. jSymbolic: A software application for music information
retrieval and analysis. Invited Speaker. CESEM, Nova University of Lis-
bon, Lisbon, Portugal. 8 March 2018.

[11] Cuthbert, M. Scott and C. Ariza. “music21: A toolkit for computer-
aided musicology and symbolic music data.” Proceedings of the 11th In-
ternational Society for Music Information Retrieval Conference. (2010):
637–642.

[12] Abrouk, L., H. Audéon, N. Cullot, C. Davy-Rigaux, Z. Faget, D. Gross-
Amblard, P. Rigaux, A. Tacaille, E. Gavignet, and V. Thion-Goasdoué.
“The Design and Implementation of neuma, a Collaborative Digital
Score Library.” In Submitted., (2010). Available at http://neuma.irpmf-
cnrs.fr.

[13] Viro, V., “Peachnote: Music Score Search and Analysis Platform,” Pro-
ceedings of the 12th International Society for Music Information Re-
trieval Conference (ISMIR), (2011): pp. 359–362.

[14] Bahraini, A. and E. Tilevich. “Ask toscanini!: architecting a search
engine for music scores beyond metadata.” Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing (2019): n. pag.

[15] de Haas, W.B., M. Rohrmeier, R.C. Veltkamp, F. Wiering, Modeling
Harmonic Similarity Using a Generative Grammar of Tonal Harmony.:
Proceedings of the Tenth International Society for Music Information
Retrieval Conference (ISMIR). (2009): 549–554

[16] Neuwirth M., D. Harasim, FC. Moss, M. Rohrmeier, The Anno-
tated Beethoven Corpus (ABC): A Dataset of Harmonic Analyses of
All Beethoven String Quartets. Frontiers Dig Human. (2018): 5(16).
https://doi.org/10.3389/fdigh.2018.00016.

[17] Gotham, Mark R. H., D. Tymoczko and M. Cuthbert. “The RomanText
Format: A Flexible and Standard Method for Representing Roman Nu-
merial Analyses.” ISMIR (2019).

[18] Yaolong J., S. Howes, C. McKay, N. Condit-Schultz, J. Calvo-Zaragoza,
I. Fujinaga: An Interactive Workflow for Generating Chord Labels for
Homorhythmic Music in Symbolic Formats. ISMIR (2019): 862-869

41

[19] Kennedy, M. and J.B. Kennedy, The Concise Oxford Dictionary of Music
(5 ed.), Oxford University Press (2007).

[20] MILNE Library, https://milnepublishing.geneseo.edu/fundamentals-
function-form/chapter/25-diatonic-descending-fifth-sequences/

[21] Lerdahl, F. Tonal Pitch Space. Oxford University Press (2001).

42

