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Abstract: Multi-turn dialogue is the major manifestation of a conversation. Compared with single-turn dialogue, re-
sponse selection is more complex as the context varies. We stress the importance of dialogue history and apply the
pre-trained model BERT to assign proper weight to each utterance of a dialogue. Previous works take all the dialogue
history as context to measure the matching degree of a context-response pair, causing the quadratic computational cost
and truncation of longer sequences exceeding the length limitation of BERT. We propose a sentence-based method to
deal with the aforementioned problems, obtaining the sentence embedding of a single unit utterance of dialogue and
forming a classification token of a context-response pair. We discuss how to obtain a sentence embedding with high
quality and to design the input representations in response selection. The results show that the average of the first-last
layer output exhibits the best performance for obtaining a sentence representation. The proposed method, concatenating
the sentence embeddings of context with the token embeddings of response candidates, is nearly on a par with the token
embedding based SOTA method. Notably, the processable length of dialogue history is enlarged about ten times with a
low computational cost, potentially reducing chatbot response time and inspiring user engagement.

Keywords: Multi-turn Dialogue, Chatbox, Human-Robot Interaction.

1. INTRODUCTION

Customer service chatbots are being widely used in
e-commerce [4] and the nursing robot provides elderly
companion services through conversation [1], [2]. The
two major types of chatbots are retrieval-based systems
and generative systems. The former requires a large num-
ber of predefined responses and knowledge base, which
makes it reliable yet less flexible. The latter can generate
new dialogues, but is still under research. Retrieval-based
multi-turn chatbots use pairwise text scoring. Leveraging
BERT [5], there are two common methods for evaluat-
ing the quality of pairwise text: bi-encoder and cross-
encoder [23]. Bi-encoder, for example, calculates the co-
sine semantic similarity of given context and the context
of prepared context-response pair. On the other hand, the
cross-encoder measures the matching score of the given
context and candidate response pair. The context and re-
sponse candidate are concatenated as the input. Then the
output of high dimensional classification token embed-
ding is fed to a logistic regression model to calculate the
matching score. Cross-encoders achieve higher perfor-
mance, while their computational cost is higher than their
counterparts.

We hypothesized that the longer the dialogue his-
tory, the more accurate the response selection. It is re-
ported that a chatbot can benefit from a previous chat his-
tory learning an individual user’s preference and back-
ground [13]. Specifically, the self-attention mechanism
helps increase the impact of related dialogue utterances
and decrease the impact of unrelated ones. This led to
two consequent problems. One is the high computa-
tional cost due to the interaction between arbitrary two
tokens with a self-attention-based model. The other is
that as the chat history goes longer, it will eventually
exceed the input length limitation of BERT. Managing

the trade-off between better performance and reasonable
computational cost, we use sentence embedding instead
of a series of token embeddings. This allows for ac-
commodating longer chat history and lowering the com-
putational cost. We discuss strategies to obtain high-
quality sentence embeddings for response selection. We
shed light on the input token representation of context-
response pair and sentence embedding representation of
a single dialogue utterance of context. Additional small-
scale experiments are conducted on dialogue length. We
train and test our method on the Ubuntu Dialogue Cor-
pus (UDC). BERT takes an input of a sequence within
a maximum of 512 tokens. The average number of
words of an utterance in UDC is 10.34. We therefore
take about 49.2 utterances into consideration with a to-
ken embedding-based method. In contrast, the number of
utterances increases to about 500 with our method which
is more than ten times the token-embedding method. We
can estimate the number by subtracting the length of re-
sponse (assumed average utterance length 10.34) as well
as three special tokens (one [CLS] and two [SEP] to-
kens) from the maximum length of input. Moreover, our
sentence embedding-based method reduces the computa-
tional complexity compared with the token embedding-
based method. When a chatbot provides a response to
the user’s utterance in a dialogue, given li as the length of
the i-th utterance of the dialogue, the computational com-
plexity decreases from O((

∑i
n=0 li)

2) to
∑i

n=0 O(l2i ).
The final result of our sentence embedding-based method
(86.62%) is comparable to the token embedding-based
SOTA model (90.82%).



2. RELATED WORK

2.1 Multi-turn Dialogue

Context plays an important role in multi-turn dia-
logues since it may affect response selection. The main
challenges as well as the latest advances for multi-turn
dialogue have been presented in different types of sur-
veys [18]. For retrieval-based model, RNN-based ar-
chitecture had been a common choice until the Pre-
trained Language Model (PLM) was widely used, such
as a sequential matching network [26] and a fine-grained
context representation by a deep utterance aggregation
model [31]. In recent years, PLM is extensively pre-
ferred due to the low burden of fine-tuning as its ex-
tra training makes the model adapt to given tasks like
post-training [25] and fine-tuning with domain-specific
dataset [10]. Combination with other learning strategies
similar to fine-grained contrastive learning [14] and exter-
nal auxiliary self-supervised learning have made it over-
come the problem of incoherence and inconsistency in
multi-turn dialogues [27]. Efficient utilization of con-
text has proven to be effective as in Multi-hop Selec-
tor [29] that filters out the noise inside the context. On the
other hand, the generative model is a typical sequence-to-
sequence model. Kim et al. [11] proposed an RNN model
that emphasizes the importance of dialogue history as-
signing different weights learned by an attention mecha-
nism to context utterances. Zhang et al. [30] investigated
the topical relevance. Different from models that mainly
concentrate on word and sentence level information, this
model verified the usefulness of topic level information
in multi-turn dialogue generation. Data manipulation [3]
provided another perspective by increasing the propor-
tion of effective data through data augmentation. There
are studies that combine generative model and retrieval-
based model together. In [21], it was shown that an en-
semble model could outperform each single model by a
large margin.

Strategies for response selection include topic-aware
modeling, speaker-aware modeling, and knowledge-
grounded modeling. Dialogue comprehension attempts
to understand the dialogue contents from a different level,
such as utterance-level dialogue understanding [6], topic-
aware modeling [28], and hierarchical residual match-
ing [24]. Earlier strategies for personalized chatbots
utilized explicit user profiles from external resources,
whereas recent approaches learn the implicit information
like personalized language style and preferences [17].
Speaker-aware chatbots can filter context according to the
speaker’s information and select a subset of utterances
considered as important ones [8]. External knowledge
improves the performance of a chatbot. The knowledge
base can be created from chat history, document or web
page [20], and saved as structured data. It is possible to
increase the accuracy when picking or generating a re-
sponse, applying attention mechanism to balance context
and knowledge base [12] or manage the dialogue flow [7].

2.2 BERT Related Models

The pre-trained BERT is considered a standard model
in NLP tasks [5]. Input token ids are converted into input
token embeddings and sequentially fed to the transformer
layers and transformed into a context-aware embedding.
Self-attention allows BERT to learn longer range depen-
dencies of sentences than RNN-based models.

Our work aims to find a proper way of getting sen-
tence embeddings. BERT returns dynamic token embed-
dings with a different context. The easiest way to obtain
the sentence embedding is to use the [CLS] token em-
bedding based on the dynamic token embeddings. Sen-
tence BERT [19] used a siamese network to get sentence
embeddings which greatly decreases the time consump-
tion for semantic similarity searching. The anisotropy of
token embedding distribution was reported harmful for
[CLS] sentence embedding. Data whitening was pro-
posed to eliminate the adverse impact of anisotropy by
normalizing the data distribution [22].

The purpose of [CLS] token is to learn the correla-
tion of a sentence pair, which determines its suitability
for classification related tasks rather than semantic sim-
ilarity comparison. Since our proposed cross-encoder-
method is based on matching-degree with [CLS] token
rather than cosine similarity, these calibration strategies
are not suitable to our situation. Another sentence em-
bedding method with higher performance applies differ-
ent pooling methods with different layer combinations.
The pooling method includes average pooling and max
pooling. For the objective layer, the last layer is the most
common, and combining multiple layers, such as the last
two layers or the first and last layers, is an alternative
strategy. In this work, we investigate the proportion of
the two outputs that provides the best result.

2.3 Basis of this Research

This research builds on [9] that provided a fine-grained
post-training for learning the utterance-level knowledge.
For post-training, this work uses a Masked Language
Model (MLM) variant and utterance relevance clas-
sification (URC) as training objectives different from
the standard BERT. The MLM variant proposed in
RoBERTa [15] learns a more contextual representation
by randomly masking a token rather than masking a pre-
determined token. The URC task generates short sub-
dialogues consisting of a short context and a response.
There are three possible sources for the response: the
correct response, a random utterance in the same dia-
logue, or a random response from another dialogue. With
this multi-classification task, the model can distinguish
the positive and negative cases better in subsequent fine-
tuning. The loss of the post-training is twofold: the cross-
entropy of the MLM task and URC task formulated as
Eq. 1, and the loss of the URC as Eq. 2.

LFP = LMLM + LURC (1)



LURC = −
∑ 3∑

i

yi log (gurc (sc, ut)i) , (2)

where sc is the short context of a sub-dialogue, ut is the
candidate response, yi is the ground truth of a sample, and
the subscript i denotes one of the three classes in classi-
fication task for post-training, respectively. gurc(sc, ut)
is the final score calculated via feeding [CLS] through a
single layer perceptron for the multi-classification. gurc
measures the relevance between the short context and tar-
get utterance, which is used to calculate the cross-entropy
loss for back-propagation. The outer sum adds up the
cross-entropy for each utterance in dialogue, and the in-
ner sum does the discrete probability distributions of the
three classes.

3. PROPOSED MODEL

We define technical terms used. Utterance is the con-
tents a single speaker speaks in one dialogue turn. An
utterance may contain several sentences, but generally
only one. In a multi-turn dialogue, context means all the
utterances except the last utterance, which is named as
the candidate response.

3.1 Outline of the Proposed Model
Our model as depicted in Fig 1 deals with context and

response differently. The input to BERT is the id of each
input token. Then the ids are converted into static to-
ken embeddings. We use a single sentence embedding
for each context utterance to represent a series of token
ids. The token ids of the response candidate are converted
into embeddings and concatenated with the previous sen-
tence embeddings. After obtaining the context-response
pair that consists of sentence embedding of context ut-
terances and token embeddings of response candidate,
the pair is fed into BERT as the input. Then the final
output of [CLS] token is used for classification to deter-
mine whether the given pair is proper or not. The 768-
dimension [CLS] token are transformed into a scalar by
a single-layer perceptron. The output scalar is processed
by a sigmoid function to calculate the normalized score.
Comparing with the ground truth labels, the loss is cal-
culated with a cross-entropy function and parameters are
updated via back-propagation.

3.2 Input Token Representation
We consider the input token representation and output

embedding representation to get high-quality sentence
embeddings of the context utterances. The output sen-
tence embeddings are concatenated with response token
embeddings and become the input of the subsequent pro-
cess. Likewise, the input embedding representation needs
to be designed for better performance.

3.2.1 Inner-utterance Input Representation
Inner-utterance input token representation is the in-

put for obtaining the context-related token embeddings

of context utterances. The left side of Fig. 2 shows the
four types of strategies used.
• Method 1 is a standard BERT input representation with
special tokens [CLS] and [SEP] on both ends.
• Method 2 removes all special tokens. We hypothesize
that the knowledge learned by special tokens may become
noise while representing a sentence. Input without spe-
cial tokens can represent the original utterance better.
• Method 3 uses [EOU] token instead of [SEP], which
is used as the segmentation mark between context utter-
ances in previous studies.
• Method 4 only uses [EOU] token at the last of a context
utterance, which simply splits the original token embed-
ding based input with the [EOU] token.

3.2.2 Sentence Embedding Representation
We propose a sentence embedding method to repre-

sent a sequence of context utterances instead of token em-
beddings. This method should represent a sentence with-
out too much information loss and with high efficiency
of restoring the information carried by a certain token
in the original input. [CLS] token is one simple repre-
sentation, but not good as sentence embedding [22]. As
mentioned in related work, applying pooling on different
layers shows a better performance. We test different layer
combinations with average pooling.

3.2.3 Inter-utterance Input Representation
The inter-utterance input embedding representation

determines how to combine the sentence embeddings to-
gether. The bottom right corner of Fig 2 shows the in-
put token representation of BERT (top) and the work
in [9] (bottom). [SEP] is used to segment a pair of sen-
tences with a standard BERT model. In the post-training,
[SEP] is used to segment the context utterances and the
response. Meanwhile, an additional special token [EOU]
is used to segment utterances inside the context. We aim
to find out the difference when applying different inter-
utterance input embedding representation.

4. EXPERIMENTS

An extensive set of experiments were conducted with
different strategies on UDC [16], designing our proposed
base model under the following conditions.
• The max length of a context utterance is set to 50.
• The max length of a context utterance embedding and
response token embedding pair is set to 128.
• The average of the first-last layer output is used as the
context utterance embeddings.
• The input token representation of inner-utterance utter-
ances is set without any special tokens.
• The input token representation of inter-utterance utter-
ances is set without any special tokens.
Two versions of the SOTA model and our model are:
• BERT with fine-tuning based on token embeddings (a
variant of SOTA model)
• BERT with fine-grained post-training and fine-tuning
based on token embeddings (SOTA model)



Fig. 1. Proposed model architecture: Context utterances are fed into BERT to obtain context-related embeddings 1⃝,
which are subsequently processed to obtain sentence embeddings 2⃝. Candidate responses are fed to BERT to get the
context-free token embeddings before further processed by the transformer blocks 3⃝. The sentence embedding of
context utterances and token embedding of response are concatenated to get a text pair 4⃝, and fed into BERT 5⃝. The
[CLS] token embedding of output will be given to a one-layer perceptron 6⃝ and the normalized result is used as the
final score for assessment.

Fig. 2. We fine-tune our model after fine-grained post-training [9]. The input token design of post-training is on the top
of the figure. To use a single sentence embedding instead of a series of token embeddings with ideal performance, we
discuss various inner-utterance as well as inter-utterance input representations. The former concentrate on the input
design of an utterance, whereas the latter concentrate on the relationship between utterances.

• BERT with fine-tuning based on sentence embeddings
(a variant of our model)
• BERT with fine-grained post-training based on token
embeddings and fine-tuning based on sentence embed-
dings (our model)

For input representation, different inner-utterance and
inter-utterance input representations are tested. The to-
kens of a context utterance are fed into BERT with or
without different special token combinations in order to
investigate how these special tokens affect the quality
of generating a sentence embedding. For inter-utterance
representation, we aim to find out whether keeping corre-
spondence with the structure of token embedding-based
post-training is necessary or not. This is tested by with
or without a special token [EOU] inserted between the
context utterances embedding.

Sentence embedding representations were tested with

the following three combinations: [CLS] token, the av-
erage of last hidden layer output, and the average of
first-last hidden layer outputs. We observed that the last
method outperformed the others. Further experiments
were carried out to find the optimal mixing ratio of Layer
1 and Layer 12.

The chat history was evaluated using dialogues con-
taining more than 512 tokens and those lasting more than
15 turns, respectively. For the former, we compare the
difference between an entire sequence of tokens and 512
tokens maximum. For the latter, we verify the importance
of topical coherence in utterances.



5. COMPUTATIONAL RESULTS AND
ANALYSIS

We compared our proposed method with the SOTA
model. Table 1 shows the recall rate of top 1, top 2, and
top 5 based on the token embedding method with differ-
ent training methods. FP and FT stand for fine-grained
post-training and fine-tune, respectively. The suffix ’t’
and ’s’ denote that training methods (FP and FT) are
based on the token embedding method or sentence em-
bedding method.

Comparing BERT FTt with BERT FPt FTt, post-
training is highly effective since the recall rate at top 1
increased 10.01% to 90.82%. BERT FTs uses our sen-
tence embedding-based fine-tuning method. The recall
rate at top 1 is 11.32% lower than the token embedding-
based fine tuning BERT FTt. Sentence embedding-
based fine-tuning applied to a token embedding-based
pre-trained model does not reach the same performance
level as token embedding-based fine-tuning. Apply-
ing sentence embedding-based fine-tuning to a token
embedding-based post-trained model, and testing with
sentence embedding-based method, the recall rate at top
1 increased 13.89% to 83.39%.
Table 1. Results of our model with different embedding
methods

model R@1 R@2 R@5
BERT FTt 80.81 89.67 97.52
BERT FPt FTt 90.82 95.97 99.39
BERT FTs 69.50 82.45 95.43
BERT FPt FTs 83.39 92.34 98.67

Fig. 3 shows the fine-tuning convergence curve of 2
epochs with BERT FPt FTt model. Leveraging post-
training, the curve converges rapidly within the first 10
batches. The average losses of epoch 1 and epoch 2 are
0.156 and 0.093, respectively. As shown in Fig. 4, the
converging speed of BERT FPt FTs is slower than the to-
ken embedding-based SOTA model. Also, the fluctuation
and average loss are greater than the SOTA model with
an average loss of 0.278 at epoch 1 and 0.211 at epoch 2.

Fig. 3. The convergence curve of SOTA model [9]

Fig. 4. The convergence curve of our model

It should be noted that there is still a gap between
our proposed sentence embedding method and the token

embedding-based method. However, delicately design-
ing the input representation and sentence embedding, we
can still get an acceptable result that narrows the gap
to about 4.5%. This provides an evidence that token
embedding-based post-training mainly learns utterance
level knowledge with token level input. However, our
sentence embedding-based method may not efficiently
leverage this knowledge. Thus, we conjecture that a sen-
tence embedding-based post-training may lead to better
performance which is a promising direction of future re-
search.

5.1 Effect of Different Input Representations
We present the experimental results obtained using dif-

ferent input token representation methods.

5.1.1 Inner-utterance Input Representation
From the results presented in Table 2, it can be con-

cluded that special tokens are necessary when applying a
sentence embedding instead of a sequence of token em-
beddings to represent a sentence. As the initial hypothe-
sis, we consider that special tokens are not helpful for a
good sentence embedding representation. Since these to-
kens are designed for specific tasks like MLM and NSP,
the information carried by these special tokens is only
useful for specific purposes and they may become noise
otherwise. Therefore, we considered input token repre-
sentation of a context utterance without any special to-
kens to better represent a sentence. However, the result
indicates that with the special tokens, the performance
increased 2.5%. This means that the standard BERT in-
put token representation pattern with special tokens is the
best way for gaining the sentence embedding. Even if
other customized special tokens are used in post-train or
fine-tuning, [CLS] and [SEP] can help with a better rep-
resentation.

Table 2. Models comparison with different inner-
utterance input token representations

model loss R@1 R@2 R@5
with [CLS] & [SEP] 0.170 86.17 93.96 99.00
with [CLS] & [EOU] 0.201 84.25 92.94 98.77
with [EOU] 0.209 83.67 92.57 98.74
without special tokens 0.211 83.39 92.34 98.67

5.1.2 Inter-utterance Input Representation
A simple test was performed on the inter-utterance ut-

terances input token representation. As evidenced by the
result in Table 3, placing a special token [EOU] between
context utterances brings about a slight performance im-
provement. The recall rate of top 1 increased slightly
0.30%. This indicates that the correspondence with the
inter-utterance input token representation pattern of post-
training is beneficial at least to some extent. Differences
between the structure of the token embedding-based fine-
tuning method and the sentence embedding-based fine-
tuning method are narrowed.



Table 3. Models comparison with different inter-
utterance input token representations

model loss R@1 R@2 R@5
with [EOU] 0.265 83.69 92.58 98.74
without [EOU] 0.211 83.39 92.34 98.67

5.2 Effect of Different Sentence Embedding Represen-
tations

Table 4 summarizes the experimental results obtained
with different sentence embedding methods. It can be
seen that using [CLS] as a sentence embedding achieved
the lowest accuracy among the proposed methods. The
average of the last layer as sentence embedding outper-
formed [CLS] but is still not satisfactory. The average
of the first layer and average of the first-last layer (the
weight of the first and the last layer is 0.5 respectively)
showed almost the same results, which are better than the
other methods. In consideration of the favorable perfor-
mance of using the average of multi-layer outputs, we
conducted a series of experiments to see if there is an op-
timal balance between the first and the last layer.
Table 4. Models comparison for sentence embedding
methods

model loss R@1 R@2 R@5
[CLS] 0.433 52.98 66.62 86.55
L12 0.314 79.01 91.20 98.46
L1 0.199 82.83 92.02 98.60
L1+L12 0.211 83.39 92.34 98.67

5.3 Effect of Different Mixing Ratio of L1 and L12
We tested different weights for Layer 1 and Layer 12

as summarized in Table 5. The first two columns denote
the weight of Layer 1 and Layer 12, while the following
columns are for average loss and recall rate at top 1 of
epoch 1 and epoch 2. For the sake of convenience, the
normalized weights of Layer 1 and Layer 12 are denoted
by two numbers in parentheses separated by a comma.
Table 5. Comparison of different weights in Layer1 and
Layer12 with our baseline model

L1 L12 epoch1 epoch2
avg loss R@1 avg loss R@2

1.00 0.00 0.270 82.54 0.199 82.83
0.90 0.10 0.268 82.83 0.197 83.11
0.80 0.20 0.268 82.96 0.197 83.55
0.75 0.25 0.266 83.04 0.197 83.60
0.70 0.30 0.267 82.94 0.198 83.58
0.60 0.40 0.268 83.17 0.198 83.49
0.50 0.50 0.276 82.40 0.211 83.39
0.40 0.60 0.285 82.22 0.218 82.90
0.25 0.75 0.300 81.15 0.233 81.50
0.20 0.80 0.308 80.77 0.237 81.32
0.00 1.00 0.326 78.24 0.314 79.01

First, we set several pairs of weights for the coarse
scale investigation of the relationship between the
weights and recall rate. We observed an apparent de-
crease in recall rate when the weight of Layer 1 is lower

than 0.5. Therefore, additional experiments were carried
out with finer interval in the range of (0.5, 0.5) to (1.0,
0.0). Fig. 5 shows the recall rate with different weights in
epoch 1 and epoch 2. The optimal range of the first-last
layer ratio was found between (0.6, 0.4) and (0.8, 0.2).
Either only using Layer 1 or Layer 12 exhibited substan-
dard performance. Compared with the Layer 1 only case,
the Layer 12 only case performed worse.

Fig. 5. Recall rate at top 1 with different mixing ratios

In consideration of the performance of inner-utterance
input representation with special tokens, Table 6 shows
an adverse outcome in mixing ratio compared with the
previous one. A high proportion of high-level informa-
tion performed better. It needs further study to determine
whether the high-level information carried by special to-
kens has a great impact on sentence embedding represen-
tation.
Table 6. Comparison of different weights in Layer1 and
Layer12 with special token attached inner-utterance input
representation

L1 L12 epoch1 epoch2
avg loss R@1 avg loss R@2

0.90 0.10 0.263 83.92 0.190 84.21
0.75 0.25 0.260 85.36 0.183 85.36
0.60 0.40 0.243 85.79 0.173 86.29
0.50 0.50 0.239 86.14 0.171 86.51
0.40 0.60 0.237 86.37 0.169 86.62
0.25 0.75 0.240 86.32 0.171 86.57
0.10 0.90 0.239 86.05 0.173 86.32

5.4 Chat history
We picked up 6, 070 dialogues from the UDC dataset

that contained more than 512 tokens. Table 7 shows that
our sentence-embedding method with an entire sequence
of tokens (Method 1) outperformed that with the maxi-
mum of 512 tokens (Method 2). Since the part beyond
the limit of 512 tokens may contain the topical informa-
tion, the recall rate at top 1 increased 0.71%.

Table 8 shows the importance of topically coherent ut-
terances. We chose 77, 240 dialogues lasting more than
15 turns. We compared the effect of selective removal of
utterances on recall rate. Method 3 did not remove any
utterances and yielded R@1 of 85.14%. Method 4 re-
moved the 1st and the 2nd utterances, whereas Method
5 removed the 3rd and the 4th utterances. Method 4
and Method 5 decreased 0.77% and 0.52%, respectively,



which means topical coherence was of importance.

Table 7. Different strategies for dealing with long dia-
logues

model R@1 R@2 R@5
Method 1 83.25 95.41 99.36
Method 2 82.54 95.32 99.53

Table 8. Comparison of utterance removals

model R@1 R@2 R@5
Method 3 85.14 93.68 99.11
Method 4 84.37 93.45 98.94
Method 5 84.62 93.31 98.95

6. CONCLUSIONS AND FUTURE WORK

We proposed a BERT-based sentence embedding
method that has proven to be promising in multi-turn di-
alog, which was assessed from four main aspects: inner-
utterance input representation, inter-utterance input rep-
resentation, sentence embedding representation, and chat
history.

For inner-utterance input representation, special to-
kens [CLS] and [SEP] of a standard BERT model were
desired for better performance. Although the special to-
kens were designed for specific purposes, the information
carried by them was necessary for better sentence repre-
sentation. For inter-utterance input token representation,
the performance would increase slightly if the input rep-
resentation pattern corresponded with the pre-training or
post-training. In this work, an [EOU] token was used
for segmenting context utterances. With the [EOU] token
inserted in the sentence embeddings of each context ut-
terance, the performance improved 0.30% in recall rate
at the top 1. The comparison of inner-utterance and inter-
utterance input representation indicated that the former
has a more obvious positive impact. For sentence em-
bedding representation, the average of the first-last layer
output was a good option. Inner-utterance input rep-
resentation without any special tokens preferred higher
proportion of the first layer, which is the low level in-
formation source. However, Inner-utterance input repre-
sentation with [CLS] and [SEP] gave a contrary result
that higher proportion of high level information source
was preferred. We will verify in the future that adding
high level information of special tokens with low level
information of word tokens may bring about better per-
formance. Chat history also matters in multi-turn dia-
logue selection. For long dialogues, there exist topically
coherent utterances carrying information more important
than others. Our model was made better at retaining such
important utterances and helpful to guide response selec-
tion.

There is still room for further improvements in the fol-
lowing three aspects. First, sentence embedding-based
post-training may lead to better understanding on sen-
tence embeddings of context utterances. Secondly, a

new type of embeddings is needed to distinguish a sen-
tence embedding of context and a token embedding of
response. Thirdly, different mixing ratios for special to-
kens and word tokens can be applied for better sentence
embedding representation.
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