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Abstract 

Three-element component La2O3-based catalysts for the oxidative coupling of methane (OCM) are 

examined for this study using machine learning (ML) approaches such as support vector regression 

(SVR) and random forest regression (RFR). This validation was conducted while assuming that the 

three-element component (M1–M2–M3) resulting in high C2 yield predicted by ML is helpful to 

ascertain the appropriate component to promote the unique nature of La2O3 itself: the low-

temperature OCM feature. The combined use of an open-source high-throughput screening (HTS) 

database and SVR assisted the discovery of three-element component La2O3-based OCM catalysts 

of 11 types with C2 yield (> 5.0%) appearing at 450oC. Then, to predict more unique component 

La2O3-based OCM catalysts from the outer field of screening elements at HTS experimentation, 

HTS and literature databases were applied for SVR and RFR. This combined approach discovered 

11 additional combinations of three-element component La2O3-based OCM catalysts affording C2 

yield (> 5.0%) appearing at 450oC. 

 

1. Introduction 

Because of the increasing availability of natural gas resources such as shale gas and methane 

hydrate, catalytic transformation of methane has attracted strong attention in industrial and academic 

fields. The oxidative coupling of methane (OCM) discovered in the 1980s is one attractive process 

for producing C2 hydrocarbons of ethylene (C2H4) and ethane (C2H6) directly from methane (CH4) 

[1-2]. However, using conventional processes of catalyst discovery based on scientists’ intuition and 

experience, the desired performance criteria of a C2 yield higher than 30% and superior C2 selectivity 

of 80% with an appropriate C2 yield sufficient to generate economically rational industrial plant 

systems have persisted as great challenges for the past 40 years [3-6]. 



Along with the recent intense growth of data science management and machine learning (ML) 

engineering, a common interesting query has arisen: “How can such new technologies aid catalyst 

discovery more effectively in comparison with conventional method?”. Catalyst Informatics has 

been adopted to develop next-generation understanding as a trend of data used for catalyst discovery 

[7-10]. Indeed, some successful discoveries of homogeneous catalysts have been achieved [11-12]. 

Such discoveries rely on the nature of homogeneous catalysis, which is fundamentally attributable 

to the design of an active metal center and a coordinating ligand. When applying a heterogeneous 

(solid) catalyst, greatly challenging issues arise for application because heterogeneous catalysis 

depends on numerous catalyst features such as composition, morphology (size, shape, crystallinity, 

etc), oxidation state, defect, strain, support nature, additive element, and stability under active 

conditions. In fact, ascertaining the relations among physicochemical features as determined by their 

reactivity and by conventional characterizations is extremely complicated. Moreover, even if some 

clear relation is identified between those characteristic features and reactivity, it remains controversial 

whether the relation can serve in a common role as a global descriptor. In other words, the model of 

representing heterogeneous catalysis feature using ML algorithm networking is an extremely 

important and persistent subject [13]. 

Since 2017, the author has explored how to apply the ML engineering to produce benefit 

information for catalyst scientists under close collaboration with ML engineers and data scientists, as 

presented later in Acknowledgements. During initial stages of research, results demonstrated that a 

well-defined random forest regression (RFR) based on a large dataset from the literature including 

1,868 catalyst data can propose 56 undiscovered catalyst components and corresponding reaction 

conditions for OCM to achieve C2 yield higher than 30% [14]. It is particularly interesting that the 

RFR also revealed the hidden key importance of OCM catalysis among the 11 descriptors of the 

preparation method, reaction temperature, CH4 pressure, O2 pressure, contact time, cation1, cation1 

mol%, cation2, cation2 mol%, catalyst support, and catalyst support mol%. Those findings indicated 

ML approaches as effective tools for discovering unreported catalysts and for elucidating hidden 

effects such as catalyst components and reaction conditions on catalyst performance. However, at the 

next research stage in validation, a difficulty arose in achieving target OCM catalyst performance 

with a high C2 yield over 30% among the predicted catalyst components [15]. One more impressive 

experience was conducted on tracing the catalyst behaviors under different reaction conditions by 

interpolate filling using ML engineering with a small experimental dataset. At this time, the author 

examined the OCM reaction over a well-known Na-Mn-W/SiO2 catalyst for 156 data points 

collected one-by-one using a conventional fixed-bed reactor for experimentation. Then, ML was 

implemented to treat experimental conditions in high dimensions described with five reaction 



parameters: reaction temperature, CH4/O2 ratio, CH4 and O2 gas concentrations (CH4 + O2 conc.), 

total flow rate, and catalyst weight. At this time, extra tree regression (ETR) was found to represent 

the trend of experimental data accurately [16]. This representation predicted that the target of C2 yield 

features over Na-Mn-W/SiO2 can help to indicate the best reaction conditions to afford the best 

performance. Therefore, ML was demonstrated as a powerful approach for ascertaining and then 

elucidating the best experimental conditions in multiple dimensions. Other earlier studies of reaction 

network representation [17-18] and hidden rule identification by item-set mining [19] have also 

provided attractive findings for improvement of scientists’ understanding of some catalysis features. 

According to these shared experiences with collaborators, the author has found that ML and data 

management engineering skills hold great potential to reveal hidden trends of data in both large and 

small datasets, but exact prediction of the outer area performance is apparently still challenging. It is 

worth describing that the former is apparently difficult by human senses, but the latter has been 

achieved by conventional catalyst scientists without such a complete understanding, in catalyst 

development and modification history. Therefore, arranging the ML-aided catalyst discovery with 

more appropriate methods for generating unexpectable components possessing high performance at 

target reactions is truly desired. 

Along with the intense growth of data analysis and predictions that have been made using ML 

and data management engineering tools, it has become necessary to collect huge amounts of tailor-

made datasets with high efficiency. Several parallel reactor systems have been developed in a fixed 

bed catalytic reactor [20-23]. The combined use of tailor-made datasets for experimentation that have 

complied using systematic high-throughput screening (HTS) experimentation and ML and data 

management engineering skills have opened up different protocols for understanding catalysis 

features at catalyst discovery [24-29]. One earlier study used OCM catalyst discovery from a bias-

free and consistent process for HTS at OCM. They described their approach as “Catalyst discovery 

from Scratch” [30]. For this protocol, three active elements (M1–M2–M3) were selected randomly 

from Li, Na, Mg, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Mo, Pd, Cs, Ba, La, Ce, Nd, Eu, Tb, 

Hf, W, or “none” to make 28 selections. Then, these were co-impregnated onto the support, which 

was also selected randomly from MgO, gamma-Al2O3, SiO2, Ca(OH)2, anatase-TiO2, ZrO2, 

Ba(OH)2, La2O3, or CeO2 to make nine selections. The dried powder was calcined at 1000oC for 3 h 

to supply mixed-oxide form. Then totally 300 catalysts were prepared and checked for reactivity 

under various reaction condition using the systematic HTS system. The generated bias-free catalyst 

library and data analysis with visualization, ML engineering, and constructed networking provided 

a perspective for views on OCM catalysis features that were different from those assisted with 

conventional catalyst chemistry methods [13, 31-33]. It is proposed that those studies based on 



systematic HTS may alter the style of catalyst discovery. However, the utility of such powerful tools 

of HTS has limited their popularity because of associated costs for construction and operation at 

present situation. Nowadays, the databases also can be accessible from the literature and/or an on-

line open platform such as CADS [34-35]. Therefore, a need exists for discussing a means of 

applying open-resource datasets collected by different researchers including HTS datasets to assist 

various researchers during catalyst discovery and modification. 

Herein, the author specifically examines the low-temperature OCM character derived La2O3 

catalyst [19]. Reportedly, lanthanum-based catalysts such as La2O3 nanorod [36], La2O3CO3 

nanorods [37], and La2Ce2O3 perovskite [38-39] have shown especially low onset temperatures of 

OCM: 420-550oC. However, multi-element-supported La2O3 features have rarely been investigated 

[22]. Therefore, the author believes that ML-aided catalyst investigation revealing a new multi-

element-supported La2O3 catalyst possessing much unique lower temperature OCM feature has 

become a notable achievement [40]. 

 

2. Experimental 

Three-element-supported La2O3 catalysts were prepared using co-impregnation method with an 

aqueous solvent of mixed metal resources at 50oC for 6 h. The loading amount for each metal was 

fixed at 0.3 wt%, in theory. After evaporating the water solvent, the remaining mixed powder was 

dried at 110oC. Then it was calcined at 600oC for 3 h. No-metal-supported La2O3 (bare), denoted as 

none/La2O3, was treated using the same protocol. The OCM reaction was performed with as-

prepared catalyst (50 mg) in a conventional fixed-bed reactor system (downstream) with a furnace 

(L = 270 mm) in 50oC intervals at 400-850oC. Pre-treatment was applied at 400oC for 1 h under an 

O2 flow (20.0 ml min-1). Then, a typical OCM stream composed of CH4/O2/N2 = 12.0/6.0/3.0 ml 

min-1 was used to evaluate the OCM reactivity. It is noteworthy that a standard Na-Mn-W/SiO2 gave 

a significant C2 yield of 24.8% at 800oC, whereas none/La2O3 served C2 yield of 11.2% at 500oC 

 

Figure 1. Trends of typical OCM catalyst at present reaction condition at CH4/O2 = 2.0. 
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under the conditions (CH4/O2 = 2.0) shown in Figure 1. The findings indicated clearly that the former 

had a high potential at higher temperature. The latter possessed a unique feature as a lower onset 

temperature in OCM reaction. 

Then, ML prediction was conducted using the open-source HTS data (40,330 points by 350 

catalysts) collected by a collaborator. The data were from surveys of OCM catalyst potential at 700–

1000oC under various reaction conditions of the CH4/O2 ratio, total flow volume, and CH4 + O2 conc. 

[20, 30]. To describe the catalyst composite information of three-element-impregnated catalyst (M1–

M2–M3/Support), a one-hot encoding manner was used. Binary numbers 1 and 0 were assigned to 

the corresponding index cell for composite element and support. The scheme was implemented in 

accordance with reaction conditions and the corresponding C2 yield (Figure 2). Furthermore, for 

extracting appropriate trends of data, the data for validation were selected in accordance with the 

following conditions: total flow greater than 20 mL min−1, CH4 + O2 conc. over 85%, and CH4/O2 = 

2.0. A difficult issue exists for HTS dataset-driven ML at this study: because the HTS data were 

obtained for higher temperatures (700–1000oC) but not for lower temperature trends (approx. 400–

600oC) of OCM performance, direct validation of predicted C2 yield might have insufficient 

guidance to discover low-temperature La2O3-based OCM catalysts. To overcome this shortcoming, 

the author revisited the research history made with collaborators using ML engineering tools (vide 

spuria) for interpretation of the meanings of the trends covered by ML regression models. 

Consequently, the assumption that the ML regression field might emphasize friendly element 

combinations (M1–M2–M3) for OCM showing higher C2 yield was applied for this study to 

ascertain components that are useful for enhancing the unique characteristics for La2O3. 

 

3. Results and Discussion 

First, a support vector regression (SVR) model was applied to represent C2 yields at 40,330 points 

(350 catalysts) covered by HTS. The data points derived from nine catalysts were removed because 

of extraordinary trends in selectivity. This model score at cross-validation of train-and-test 

examination was 0.86. Then, specifically examining the M1–M2–M3/La2O3 category at the 

constructed SVR field predicted 41 three-element combinations at La2O3-based catalysts with 

 

Figure 2. Example of one-hot encoding implementation at this study. 

[Cat. comp. described with a one-hot encoding manner]        [Reaction condition] [Target]

Cat. Comp.        Ba   Ca   Mn   Co   Na    Al2O3 SiO2 ・・・・・ Temp.      pCH4 pO2 pbalance C2 yield

BaCaMn/Al2O3:      1 1 1 0      0       1 0      ・・・・・ 1273 K     0.56   0.29     0.15         x %

CaMnCo/SiO2  :      0      1 1 1 0       0          1 ・・・・・ 973 K                                    y %

MnCoNa/SiO2  :      0      0     1 1 1 0          1 ・・・・・ 1173 K                                    z %



features affording C2 yields higher than 16.01% at higher temperatures. The TOP 20 were selected 

from the SVR field at La2O3 support. Then their potential for use as a low-temperature OCM based 

on La2O3 was examined, as shown in Figure 3. The expected score of C2 yield at the SVR field, the 

predicted C2 vale was higher to the left side in the figure, did not contribute directly to the 

enhancement capacity of La2O3 character over that of low onset temperature. However, an interesting 

finding was that M1–M2–M3 components of 11 types can afford C2 yield at 450oC, which was a 

lower onset temperature than the 500oC observed for none/La2O3. The components (C2 yield at 

450oC) were YEuHf (13.1%), CaYHf (10.1%), CaYEu (15.1%), CaYLa (15.0%), CaYBa (13.6%), 

MgNdHf (9.5%), CaEuHf (13.2%), CaYNd (10.2%), SrNdHf (9.7%), CaNiY(6.1%), and MgEuHf 

(11.4%). Although the remaining nine validations were not matched with the assumption, one was 

more likely to find undiscovered and effective catalysts with such indirect ML effectively from 

different areas of the collected datasets. Indeed, the hit rate for finding the low-temperature OCM 

catalysts was 55% (11 appearances per 20 validations), which is apparently a highly attractive rate. 

Next, implementation of data from the literature combined with the tailor-made HTS data was 

examined. The HTS data were compiled by 28 selections of elements and 9 selections of supports, 

as described above. Therefore, the output area of ML prediction using a one-hot encoding method 

was limited within such original indexes. To investigate more undiscovered La2O3-based catalyst, 

data from the literature of 1,802 points (1,286 catalysts) [3] were added for subsequent ML prediction 

approaches. At that time, 59 catalysts derived from Na-Mn-W based catalyst in HTS [20] were 

excluded. Also, to eliminate data biases derived from the Na-Mn-W-like category and various 

 
Figure 3. Plots of C2 yield over M1–M2–M3/La2O3 selected from TOP 20 category in the SVR 

field based on HTS data. The order of element from left to right was corresponding to the 

predicted C2 yield from high to low values at the SVR field.[10, 40] 
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reaction conditions at HTS experimentations, the best C2 yield values were applied for constructing 

an ML regression model from 300 random HTS data [30]. Then, the score at renewed SVR became 

lower to be 0.45 at the train-and-test examination. That might be attributed to bias in the literature 

data, which were inferred from different reactor systems and conditions at variety laboratories. 

However, when this challenge implies a different possible area, it would be an interesting strategy for 

three-element component enhancing the La2O3 nature as a low onset temperature OCM catalyst. 

Random forest regression (RFR) was also applied to the processed data: its score was 0.51. The 

individual TOP 12 of M1–M2–M3/La2O3 components selected from SVR and RFR fields at the 

predicted C2 yield were prepared and examined for those features at OCM. It is particularly 

interesting that MgSrYb (C2 yield at 450oC: 12.1%) and GaSrYb (14.9%) from SVR assistance and 

GaTbHf (7.5%), ZnGaHf (3.8%), GaEuHf (7.5%), GaYEu (5.5%), ZnGaY (7.2%), ZnGaEu (9.3%), 

GaYbHf (6.3%), GaSrEu (7.6%), GaSrY (8.3%), GaSrHf (1.8%), and GaEuTb (8.6%) from RFR 

assistance were newly identified as low-temperature OCM catalysts based on La2O3 in each of 12 

validations, as shown in Figure 4. Only the MgSrNd duplicated earlier experimentation by SVR 

using HTS data (Figure 3), although this was inactive at 450oC. Although RFR was composed 

mainly by GaHf derivatives, results showed that the addition of literature data into the HTS datasets 

can be an effective approach for emphasizing the outer area capacity in ML prediction. An additional 

11 catalysts possessed C2 yields higher than 5.0% at 450oC. 

 
Figure 4. Plots of C2 yield over M1–M2–M3/La2O3 selected from TOP 12 category in the SVR 

and RFR field based on HTS and literature data. The order of element from left to right 

corresponding to the predicted C2 yield from high to low values, respectively, at SVR and RFR 

field.[ 40] 
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  To emphasized the important potential of 24 as-revealed La2O3-based catalysts, the selected 10 

catalysts affording C2 yields higher than 10.0% at 450oC under CH4/O2 = 2.0 were examined further 

to assess the OCM performance at CH4/O2 = 3.5, which condition is a stricter condition for CH4 

activation at low temperatures. Under the present conditions, none/La2O3 showed an onset 

temperature of 600oC for appearance of C2 yield (1.2%). Figure 4 shows that all components retained 

a positive effect on the La2O3 feature of a low onset temperature in OCM at CH4/O2 = 3.5. It is 

noteworthy that the two catalysts of CaYHf and MgEuHf exhibited C2 yields at 450oC of 3.6% and 

3.1%, respectively, even under the CH4/O2 = 3.5 condition. Additionally, the two catalysts of CaYBa 

and YEuHf respectively showed attractive C2 yield of 8.3% and 2.8% at 500oC. These results indicate 

that the as-revealed La2O3 catalysts promoted positive potential for further investigations, such as 

performance improvement and mechanistic study at next stage in conventional methods used for 

catalyst chemistry. 

 

4. Conclusions 

Specifically examining the unique OCM features derived from La2O3 catalyst, this investigation 

of multiple components supported La2O3 catalyst was conducted by ML engineering for the 

combined use of open-resource HTS datasets collected by a collaborator [20, 30] and literature data 

summarized in the review article [3]. To overcome mismatching between the target temperature area 

(approx. 400–600oC) and the collected data area (mainly at around 700–1000oC) in the dataset 

 
Figure 4. Plots of C2 yield as a function of reactor temperature over selected 11 types of M1–

M2–M3/La2O3 at CH4/O2 = 3.5.[ 40] 
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resources, indirect ML prediction was used. Investigation was done based on the hypothesis that the 

M1–M2–M3 combinations giving a high C2 yield at high temperature predicted by a direct ML 

prediction are helpful for finding familiar multiple components on the La2O3 support, consequently 

enhancing the unique nature of low onset temperature in OCM for La2O3 itself. It is particularly 

interesting that three elements of 11 types in 20 validations were found to be effective M1–M2–M3 

components when using HTS data-driven ML with SVR. Moreover, the combined use of HTS and 

data from the literature further revealed additional 11-13 types of active M1–M2–M3 component 

La2O3-based catalysts at 450oC. This finding can promote further studies of improvement, further 

revealing the roles of the respective components at next step in conventional styles of catalyst 

chemistry. Accordingly, this report presents a successfully applied approach for discovering 

heterogeneous catalysts with ML assistance [40]. The use of ML to identify knowledge from trends 

of data to supply new ideas for conventional scientists has also been presented in reports of our recent 

studies [41-43]. 
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