JAIST Repository

https://dspace.jaist.ac.jp/

Title OO00o000ooO0oOoO0DbOoO0bOooboooDo
ooono
Author(s) BUI , DUY DANG
Citation
Issue Date 2022-12
Type Thesis or Dissertation
Text version ETD
URL http://hdl.handle.net/ 10119/ 1818
Rights
Description ;upervisor:DD 0o, ooooopoooo, O

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Doctoral Dissertation

State Machine Visualization Based on Gestalt

Principles and Its Applications

Dang Duy Bui

Supervisor: Kazuhiro Ogata

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

[Information Science]
Dec, 2022

Abstract

This dissertation proposes an approach to visualizing/graphically animating state machines
based on Gestalt principles for humans to find invariants of the state machines. This approach
mainly addresses the question “Can Gestalt Principles help humans to understand state ma-
chines well?.” where to understand state machines is defined as knowing invariant properties
of the state machines. The more humans know invariant properties of the state machines, the
better humans understand the state machines.

State machine visualization is one possible way to make humans gain insights into state
machines because humans are good at visual perception. Graphically animating state machines
is one approach to state machine visualization. To graphically animate state machines, it is
necessary to design what are called state picture templates such that a series of state picture
template instances (or state pictures) can be regarded as a movie film. Any state picture
templates of a state machine do not work well for our purpose, and we need to carefully
design a state picture template of a state machine so that graphical animations based on it
help humans to find likely invariants of the state machine. We use Gestalt principles, a set
of principles/laws that describes how humans group similar elements, recognize patterns, and
simplify complex images when humans perceive visual objects, to design state picture templates
of state machines. Because likely invariants of a state machine may not be true invariants of the
state machine, we first use model checking to check if likely invariants have counterexamples
and then use interactive theorem proving to judge if likely invariants left are true invariants of
the state machine. We basically use a tool called State Machine Graphical Animation (SMGA)
that takes a state machine template and a state sequence of a state machine, and generates a
graphical animation of the state machine. However, SMGA is not mature enough.

This dissertation addresses how likely invariants of protocols/systems can be found by hu-
mans who use the graphical animation approach. In particular, this research shows the im-
portance of the state picture template and gives practical tips for users to design complex
protocols/systems. Those tips are inspired and evaluated by Gestalt principles. We also pro-
pose guidelines of how to use the tips for finding likely invariants. To make the guidelines more
effective, SMGA is revised by integrating it with Maude, a specification/programming language
and processor that is equipped with many useful facilities, such as a reachability analyzer (the
search command), a parser for context-free grammars plus associative-commutative (AC) bi-

nary operators and a pattern matcher for the grammars plus AC binary operators. The revised

version of SMGA is called r-SMGA in which such powerful features of Maude can be used. The
search command can be used as an invariant model checker.

Case studies are conducted to demonstrate the usefulness of the proposed approach and
r-SMGA. Based on experiments with new features of r-SMGA and the guidelines proposed,
several likely invariants are found, and most of them survive with the search command feature
of -SMGA and are proven true invariants with interactive theorem proving. When conducting
interactive theorem proving for a likely invariant that has survived with the search command,
we can use some of other such likely invariants as lemmas, provided that we have found an

enough number of likely invariants of a state machine.

Keywords: state machine graphical animations; r-SMGA; likely invariant discovery; Gestalt

principles; interactive theorem proving.

ii

Acknowledgments

Firstly and foremost I would like to gratitude to Professor Kazuhiro Ogata for his endless
support and great encouragements not only in research but also in his experience of life. His
immense knowledge and plentiful experience have encouraged me all the time in my academic
research. Being a student in his laboratory is the proudest of my life. He cares so much about
my work and gives me advice, comments, and great ideas to make my research keep on track.
He always motivates me to improve myself day by day. I always remember his sentences when I
am in a difficult time “We cannot change the past, although you may want to reflect on yourself
to avoid the same mistake again. You should look forward.”, his sentences help me to overcome
the difficult time. No words can describe what he has done for me and I am indebted to him.

Secondly, I would like to give special thanks to Associate Professor Adrian Riesco who is my
supervisor of the minor research topic, and the committee members Professor Kunihiko Hiraishi,
Professor Toshiaki Aoki, Associate Professor Nakamura Masaki, and Associate Professor Fuyuki
Ishikawa for their encouraging words, detailed comments, and rich suggestions that have been
very important for me to improve my work as well as complete the dissertation. Especially,
Associate Professor Adrian Riesco who is an expert in Maude, and his immense knowledge and
plentiful experience have supported me in Maude integration.

Thirdly, I would like to express my special thanks to the Doctoral Research Fellow (DRF)
at JAIST, the NEC C&C Foundation, and SHIBUYA Science Culture and Sports Foundation
for financial support during my Ph.D. study at JAIST. I also would like to give deep thanks to
the JAIST staff who helped directly and indirectly by giving me the best environment in my
daily life.

Fourth, I would like to express my appreciation to my lab mates and Vietnamese friends.
Thank you for sharing wonderful moments and interesting ideas, not only in research but daily
life, being by my side, and helping me to overcome difficult periods. Without their support,
sharing, and encouragement, it would be impossible for me to complete my Ph.D. study at
JAIST. It was an unforgettable memory in my life. Thank you very much and love you all!

Last but not least, I would like to thank my family for the tremendous support and hope
they have given me. I also would like to give the greatest thanks to the people who came and

helped me when I was studying at JAIST. Thank you all.

il

Contents

Abstract i
Acknowledgments iii
1 Introduction 1
1.1 Motivation oL 1

1.2 Contributions 2

1.3 Dissertation Structureo 3

2 Preliminaries 5
2.1 State Machines and Maudeo 5
2.2 State Machine Graphical Animation (SMGA) 6
2.3 CafeOBJ and Proof Scoreso 7
2.4 Gestalt Principles 10

3 Related Work 12
4 Designing State Picture Templates 20
4.1 Designing State Picture Templates of the TAS Protocol 20
4.2 Practical Tips for Designing State Picture Templates 21
4.3 Practical Tips for Conjecturing Likely Invariants of Protocols/Systems 22
4.4 Guidelines for Discovering Likely Invairants of Protocols/Systems 23

5 Integration of SMIGA and Maude 26
5.1 Features of the Revised Version of SMGA 26

6 Case study: the Mellor-Crummey-Scott Protocol 32
6.1 Graphical Animations of the MCS Protocol 32
6.1.1 Description and Maude Specification 32

6.1.2 Designing the State Picture Template 35

6.1.3 Evaluation of State Picture Template Based on Gestalt Principles 41

6.1.4 Likely Invariants Discovery Based on Our Proposed State Picture Template 42

6.1.5

Graphical Animations of a Flawed Version of the MCS Protocol

6.2 Formal Verification of the Confirmed Likely Invariants of the MCS Protocol in
CafeOBJ o

6.2.1
6.2.2

Specification of the MCS Protocol in CafeOBJ
Formal Verification of the Confirmed Invariants of the MCS Protocol

6.3 SUmmary

7 Case Study: the Suzuki-Kasami Protocol
7.1 Graphical Animations of the SK protocol

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6

Descriptiono
Specification of the Protocol in Maude
Conjecturing Likely Invariants of the SK Protocol
Finding Likely Invariants Using Guidelines
Confirmation of Guessed Likely Invairants Using Maude Features

Graphical Animations of a Flawed Version of the SK Protocol

7.2 Formal Verification of the Confirmed Invariants of the SK Protocol in CafeOBJ

7.2.1
7.2.2

Formal Specification of the Suzuki-Kasami Protocol in CafeOBJ

Formal Verification of the Confirmed Invariants of the SK Protocol

7.3 SUIMMATY . . . o o v et e e

8 Evaluation

8.1 Analysis of the Case Studies

8.2 Answer to the Research Question

8.3 Limitations

9 Conclusion and Future Work
9.1 Conclusion
9.2 Future Work

Bibliography

First-author Publications

Other Co-author Publications

54
54
95
26
o8
63
65
66
68
68
70
73

77
7
78
79

82
82
83

86

94

95

List of Figures

2.1

4.1
4.2
4.3

0.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1
7.2
7.3

7.4
7.5

Overview of SMGA

A straightforward design of the TAS protocol.
One possible design of the TAS protocol.
The most suitable design of the TAS protocol.

Overview of T-SMGA

The MCS protocol in Algol-like pseudo-code
Virtual queue used in the MCS protocol
A straightforward state picture template for the MCS protocol
A straightforward state picture for the MCS protocol
An old state picture template for the MCS protocol
An state picture instance for the MCS protocol
A new state picture design for the MCS protocol
A new state picture instance for the MCS protocol
Some pictures for extended CS region
Three state pictures discovered by the Pattern matching feature.
A state picture template of a flawed version of the MCS protocol

State pictures as examples of a likely invariant

Algol-like description of the Suzuki-Kasami protocol
A state picture template of the SK protocol.
A state picture template of three observable components: pcli], privilege[i], and

requesting|i] for node i, wherei =1,2,3.
Some state pictures found with Pattern matching feature

Some state pictures found with the condition “requesting[l1] is true”.

21

58

List of Tables

4.1
4.2
4.3

5.1

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6

8.1

8.2
8.3

8.4

Tips for designing areas and/or positions of values of observable components . .
Tips for designing kinds of values of observable components
Tips for conjecture likely invariants of protocols/systems using graphical anima-

TIONS e
Summary of new and revised features.

Observable components and their tips used to design
False invariants of the MCS protocol
Confirmed invariants of the MCS protocol
A number of likely invariants and its relevance
Proved properties of the MCS Protocol
Proved properties of the MCS Protocol (ent)

Observable components and their tips used to design
Confirmed invariants of the SK protocol.
False invariants of the SK protocol.
A number of likely invariants and its relevance
Proved properties of the SK Protocol
Proved properties of the SK Protocol (ent)

Tips for designing state picture templates and number of their uses in the MCS
protocol and the SK protocol
Tips for designing state picture templates and case studies use them
Tips for conjecturing likely invariants and number of their uses in the MCS
protocol and the SK protocol

Tips conjecturing likely invariants and case studies use them

67
68

Chapter 1

Introduction

1.1 Motivation

The motivation of the dissertation is to propose an approach to graphically animating state
machines based on Gestalt principles for humans to find likely invariants of the state machines.
This dissertation focuses on the research question (RQ) “Can Gestalt principles help humans
to understand state machines well?,” where to understand state machines is defined as know-
ing properties of the state machines. This research concentrates on invariant properties only
because invariant properties are the most fundamental ones and often used as lemmas to prove
different classes of properties so as to exclude unreachable states. Therefore, the more hu-
mans know invariant properties of the state machines, the better humans understand the state
machines.

In the dissertation, a likely invariant is considered as a characteristic that seems correct
and is not proven in programs or specification of protocols/systems. Daikon [1] is a famous
tool in Software Engineering and what Daikon does is to find likely invariants of programs.
Several applications of Daikon |2, 3, 4, 5] show the usefulness of likely invariants and human
understanding of program behaviors. Therefore, it is worth finding likely invariants. State
machine visualization is one possible way to make humans gain insights into state machines
because humans are good at visual perception [6]. Graphically animating state machines is one
approach to state machine visualization. To graphically animate state machines, it is necessary
to design what are called state picture templates such that a series of state picture template
instances (or state pictures) can be regarded as a movie film. Any state picture templates of a
state machine do not work well for our purpose, and we need to carefully design a state picture
template of a state machine so that graphical animations based on it help humans to find likely
invariants of the state machine. We use Gestalt principles |7, 8, 9], a set of principles/laws that
describes how humans group similar elements, recognize patterns, and simplify complex images
when humans perceive visual objects, to design state picture templates of state machines.

Because likely invariants of a state machine may not be true invariants of the state machine,

we first use model checking to check if likely invariants have counterexamples and then use
interactive theorem proving to judge if likely invariants left are true invariants of the state
machine. We basically use a tool called State Machine Graphical Animation (SMGA) [10]
that takes a state machine template and a state sequence of a state machine, and generates a

graphical animation of the state machine. However, SMGA is not mature enough.

1.2 Contributions

In summary, this study addresses RQ by providing an approach based on Gestalt principles to
graphically animating state machines for humans to find likely invariants of the state machines
and demonstrating the usefulness of our proposed approach by conducting case studies. In
particular, based on RQ, two issues need to be concerned: (1) applying Gestalt principles
for visualization of state machines and (2) using such visualization to find properties of state
machines. Based on such issues and the graphical-animation-based visualization approach, two

sub-questions are considered as follows:
RQ1: How to design state picture templates based on Gestalt principles?
RQ2: How to conjecture/find likely invariants based on graphical animations?

where RQ1 focuses on tackling the issue (1) while RQ2 concentrates on solving the issue (2).
Note that likely invariants can become properties (or true invariants) when they are proven
by theorem proving, which will be handled in the dissertation. Therefore, to answer RQ, it is
equivalent to answer RQ1 and RQ2. To be able to answer RQ1 and RQ2, the dissertation

focuses on three following tasks:

Designing State Picture Templates

This task shows the importance of state picture templates, and mainly provides two kinds of tips
for designing state picture templates and conjecturing likely invariants of protocols/systems.
The tips for designing state picture templates are our results from many case studies [11,
12, 13]. Such tips are inspired and evaluated by Gestalt principles, especially the common
region, proximity, and similarity laws. Moreover, based on the tips for conjecturing likely
invariants, this task also proposes guidelines as a generic way to orientate humans in finding

likely invariants.

Integrating SMGA and Maude

To make the tips more effective, this task mainly provides several features that assist humans
to conjecture likely invariants. The revised version of SMGA is called r-SMGA that consists of

a special display feature (for displaying data structure, such as queue and array), interactive

feature (for human users to focus on or hide visual objects that they are interested or less
interested in), and some Maude features implemented by integrating SMGA and Maude [14], a
specification /programming language and processor that is equipped with many useful facilities,
such as a reachability analyzer (the search command), a parser for context-free grammars plus
associative-commutative (AC) binary operators and a pattern matcher for the grammars plus

AC binary operators, so that r-SMGA can use such powerful features of Maude.

Conducting Case Studies Using Our Approach

Conducting case studies is a metric to evaluate our approach. This task demonstrates the
usefulness of our proposed approach by conducting case studies. For each case study, several
likely invariants are found using our guidelines (with practical tips) and features in r-SMGA.
Those likely invariants are confirmed by the search command and proved by interactive theorem
proving. The results show that our approach can help humans to understand state machines

based on true invariants.

1.3 Dissertation Structure

The study is structured into nine chapters that can be summarized as follows:

Chapter 1 introduces the motivation with RQ and our proposed approach to address RQ
with two sub-questions RQ1 and RQ2. This chapter also introduces our contributions

and the structure of the dissertation.

Chapter 2 mentions some preliminaries for readers to comprehend the study such as
state machines, Maude, SMGA, Proof scores in CafeOBJ, and Gestalt principles.

Chapter 3 investigates the literature review on automated theorem provers, systems
visualization, evaluation of visualization and usability, and Gestalt principles. Then,
based on the literature review, this chapter describes the way to evaluate the state picture
template and SMGA.

Chapter 4 describes the first contribution. Firstly, the chapter shows how important
state picture templates are. Then, this chapter focuses on how to design the state picture
template by giving some tips based on Gestalt principles, such as the common region,
proximity, and similarity laws. The chapter also gives some tips and practical guidelines
to find likely invariants of protocols/systems in general. The TAS protocol is exemplified

to explain the usefulness of some tips.

Chapter 5 describes the second contribution that makes the proposed tips more effective.
This chapter introduces the revised version of SMGA (r-SMGA) where new and revised

features have been implemented so that they can help human users to conjecture likely
invariants of protocols/systems. Those new and revised features include special display
features (e.g. users can display visually some data structures, such as array and queue),
interactive features (e.g. users can interact with visual objects in the state pictures, such
as focusing and hiding which visual objects that users are interested or less interested
in), and some Maude features implemented by integrating SMGA and Maude so that
r-SMGA can use some powerful features of Maude, such as a parser for the context-free
grammar plus Associative-Commutative (AC) binary operators, a pattern matcher for

the grammar plus AC binary operator, and a reachability analyzer (the search command)

Chapter 6 reports on a case study where the Mellor-Crummey-Scott (MCS) mutual
exclusion protocol [15] is used as an example to demonstrate the usefulness of our proposed
approach, especially the tips for designing state picture templates. Firstly, this chapter
introduces the MCS protocol and its specification in Maude. Then, this chapter shows
the usefulness of our tips for designing state picture templates by comparing our state
picture template and state picture template of previous work. Based on the tips for
conjecturing likely invariants, several likely invariants of the MCS protocol are conjectured
and confirmed with the search command in r-SMGA. The chapter reports a case that a
flawed version of the MCS protocol is used to show that our approach works well with
the defective versions. Finally, most confirmed invariants are proven by proof scores in
CafeOBJ. This chapter also reports reasons why the rest of the confirmed invariants are

not proven and introduces one possible way to handle it.

Chapter 7 reports on a case study where the Suzuki-Kasami (SK) distributed mutual
exclusion protocol [16] is used as an example to demonstrate the usefulness of our proposed
approach, especially our proposed guidelines with new features in r-SMGA. Firstly, this
chapter introduces the SK protocol and its specification in Maude. Then, based on
guidelines with some features of -SMGA, several likely invariants are found and explained
in details. Those invariants are confirmed with the search command in r-SMGA. This
chapter also reports a case that a flawed version of the SK protocol is used to show
that humans still obtain some flawed states by observing graphical animations in spite of
defective versions. Finally, all confirmed invariants are proven by proof scores in CafeOBJ.
This chapter shows some ways to use our proposals to find likely invariants as lemmas

when conducting interactive theorem proving.

Chapter 8 evaluates our proposals by analyzing the results from case studies. Two
sub-questions RQ1 and RQ2 are answered and analyzed to show the helpfulness of our
proposals. Then, RQ is addressed by answering RQ1 and RQ2 in the chapter. This

chapter also mentions some limitations of the study.

Chapter 9 concludes the study and gives several future directions.

Chapter 2
Preliminaries

This chapter provides some backgrounds that can help readers to better comprehend this disser-

tation such as state machines, Maude, SMGA, proof scores in CafeOBJ, and Gestalt principles.

2.1 State Machines and Maude

A state machine M = (S, I, T) consists of a set S of states, a set I C S of initial states, and a
binary relation T'C S x S over states. (s,s’) € T is called a state transition. The set R C S of
reachable states with respect to (w.r.t.) M is inductively defined as follows: (1) for each s € I,
s € R and (2) for each (s,s") € T, if s € R, then s’ € R. A state predicate p is an invariant
property w.r.t. M if and only if p(s) holds for all s € R. In this dissertation, characteristics of
a state machine that are likely to be invariant properties of the state machine are called likely
invariants. A finite sequence sq,...,s;, Sit1,...,S, of states is called a state sequence of M if
so € I and (s;,8;41) € T for each i =0,...,n— 1.

In this dissertation, to express a state of S, we use a braced associative-commutative collec-
tion of name-value pairs although there are many possible ways to express states. Associative-
commutative collections are called soups and name-value pairs are called observable compo-
nents. That is, a state is expressed as a braced soup of observable components. The jux-
taposition operator is used as the constructor of soups. Suppose ocl, oc2,0c3 are observable
components and then ocl oc2 oc3 is the soup of those three observable components. A state
that can be characterized by the three observers can be expressed as {ocl oc2 oc3}. There are
many possible ways to specify state transitions. In the disertation, Maude is used to specify
state transitions as rewrite rules. Maude [14] can specify complex systems flexibly and is also
equipped with several formal analysis techniques, such as reachability analysis and linear tem-
poral logic (LTL) model checking. A rewrite rule starts with the keyword rl, followed by a
label enclosed by square brackets and a colon, two patterns (terms that may contain variables)
connected with =>, and ends with a full stop. A conditional one starts with the keyword crl

and has a condition following the keyword if before a full stop. The following is the form of a

conditional rewrite rule:
crl (b : l=>rif ... /\ ¢ /\ ...

where [b is a label, [and r are the patterns, and ¢; is a part of the condition, which may be an
equation l¢; = r¢;. The negation of le; = re¢; could be written as (l¢; =/= r¢;) = true, where
= true could be omitted. If the condition ... /\ ¢ /\ ... holds under some substitution o,
o(l) can be replaced with o(r).

Maude provides the search command that allows users to find a reachable state from ¢ such

that the state matches the pattern p and satisfies the condition c:
search [n,m] in MOD : t =>* p such that c.

where MOD is the name of the Maude module specifying the state machine, n and m are
optional arguments stating a bound on the number of solutions and the maximum depth of the
search, respectively. n typically is 1, m typically is unbounded (or equivalently omitted) and ¢
typically represents an initial state of the state machine.

Maude provides LTL model checking so that we can check whether a system satisfies a
property that is expressed as an LTL formula. Maude can check the system that starts from

init satisfies ¢ by the following command:
reduce modelCheck(init, @) .

Maude returns true if the system satisfies ¢ provided that init is only considered as its initial
state. Otherwise, a counterexample is returned, which has a form of a state sequence and a
loop!. When the system has multiple initial states, it suffices to conduct the model checking

experiment for each initial state so that we can model check that the system enjoys the property.

2.2 State Machine Graphical Animation (SMGA)

State Machine Graphical Animation (SMGA) was originally developed by Nguyen and Ogata [10].
The main purpose of SMGA is to make formal-methods experts able to conjecture likely invari-
ants of protocols/systems. There are two phases when using SMGA: preparation and control,
as shown in Figure 2.1. In the preparation phase, SMGA requires a state picture template and
a state sequence as the input. The state picture template is designed by users, while the state
sequence is generated by Maude from a formal specification of a protocol/system. Designing
the state picture template is an important part of SMGA [11] because if the state picture tem-
plate is essentially composed of texts, then, it is boring and hard to observe likely invariants of
protocols [13]. Based on the input, SMGA produces graphical animations as output. Observ-
ing such animations allows human users to conjecture likely invariants. In the control phase,
users can control the animations, such as changing the speed of the animations (for running

automatically) and running step by step, in which each step is a state transition. In addition,

'https://maude.lcc.uma.es/maude30-manual-html/maude-manualch12.html

given a state sequence input, SMGA allows us to search for some states in the state sequence
such that such states satisfy some conditions. This feature uses regular expressions to conduct
the search and is called Find Patterns in |11, 13].

sMGA ﬂontrol Pattern matchi}
feature feature
ans)
W
Generating o .
) \ interacting ‘
l&f @ & :
A formal (@) @
specification
A state A state Special display
. ti
picture sequence (option) Graphical
template . .
\) _animations
f ‘ ’ ‘
k input / \ output J
Preparation phase Control phase

Figure 2.1: Overview of SMGA

SMGA basically provides two kinds of visualization for an observable component: (1) textual
display and (2) visual display. (1) presents a value of an observable component as text, while
(2) presents a value of an observable component visualized by what users expect, such as visual
objects. For example, an observable component simulates a traffic light that exhibits one of the
three values: Red, Yellow, and Green. The following figure displays the state picture template
(on the left-hand side) and the state picture when the traffic light exhibits Green (on the right-
hand side). In the figure, the text on the top (“Traffic light”) is used as (1), while three circles

with three different colors are used as (2).

Traffic light Green

80

2.3 CafeOBJ and Proof Scores

CafeOBJ [17] allows us to not only write formal specifications of protocols/systems but also
verify that they satisfy some desired requirements/properties by writing and executing what
are called proof scores [18]. Model checking only supports the verification of protocols/systems

that have a finite number of reachable states, meaning that we need to, for example, limit

7

the number of processes/nodes participating in a protocol/system under checking. Formal
verification by writing proof scores [18] does not limit either the number of processes/nodes
participating in a protocol/system or the number of sessions, for example, how many times
each process/node enters a critical section. This subsection illustrates that advantage via an
example with a mutual exclusion protocol. The protocol, called TAS (Test And Set), can be

written in pseudo-code as follows:

loop { “Remainder Section”
rs : repeat while test&set(locked);
“Critical Section”
cs : locked := false; }

We suppose that each process is located at either rs (Remainder Section) or cs (Critical Section)
and initially at rs. locked is a Boolean variable shared by all processes and initially false.
test&set(locked) atomically does the following: if locked is false, then it sets locked to true and
returns false; otherwise, it just returns true.

We want to prove that TAS enjoys the mutual exclusion property whose informal description
is that there is always at most one process located at the Critical Section (cs), no matter how
many processes participate in the protocol and no matter how many times each process tries
to enter the cs. We first specify TAS in CafeOBJ and then prove that it enjoys the mutual
exclusion property by writing proof scores. To specify the protocol, we use two observers with
which we observe the location of each process and the value stored in locked. The two observers

are expressed as the CafeOBJ operators declared as follows:

op pc : Sys Pid -> Label
op locked : Sys -> Bool

where Sys is the sort (or type) representing the state space, Pid is the sort of process IDs, and
Label is the sort of locations such as rs and cs. For s of Sys and p of Pid, pc(s,p) is the
location at which p is located at state s and locked(s) is the value stored in locked at state s.

An arbitrary initial state is expressed as a CafeOBJ operator (init). We use two transitions
that are expressed as CafeOBJ operators (enter and exit). Those CafeOBJ operators are

declared as follows:

op init : -> Sys {constr}
op enter : Sys Pid -> Sys {constr}
op exit : Sys Pid -> Sys {constr}

where constr stands for constructors. init and enter are defined by means of equations as

follows:

eq pc(init,P) = rs .
eq locked(init) = false .

ceq pc(enter(S,P),Q) = (if P = Q then cs else pc(S,Q) fi)
if c-enter(S,P)

ceq locked(enter(S,P)) = true if c-enter(S,P)

ceq enter(S,P) = S if not c-enter(S,P)

eq c-enter(S,P) = (pc(S,P) = rs and not locked(S))

where S is a CafeOBJ variable of sort Sys, and P and Q are CafeOBJ variables of sort Pid. Note
that in CafeOBJ, all variables are implicitly universally quantified. The equations for exit are
defined likewise.

The mutual exclusion property is then defined by the following predicate:

op mutex : Sys PiD PiD -> Bool
eq mutex(S,P,Q) = (pc(S,P) = cs and pc(S,Q) = cs) implies P = Q .

We prove that the predicate mutex holds in all reachable state S and all processes P and Q,
namely that mutex is an invariant property of the state machine formalizing TAS. It is proved
by (simultaneous) structural induction on variable S by writing proof scores in CafeOBJ. There
are one base case and two induction cases. The following is the proof of the base case written

in CafeOBJ, which is called a proof score fragment (or just a fragment):

open TAS .
ops p q : -> Pid .
red mutex(init,p,q)

close

where TAS is the CafeOBJ module in which the specification of TAS and the predicate mutex
are available, open makes the given module available, close stops the use of the module,
and red (an abbreviation of reduce) reduces the given term by applying equations. p and q
are fresh constants of sort Pid representing arbitrary process IDs (which are possibly equal).
Feeding this proof score fragment into CafeOBJ, CafeOBJ returns true, meaning that the case
is discharged.

There are two induction cases needed to be tackled because we defined two operators with
the constr attribute besides init. Let us consider the induction case in which enter is taken

into account. The proof score fragment for this induction case is as follows:

open TAS .
op s : -> 8ys .
ops pqr : ->Pid .
red mutex(s,p,q) implies mutex(enter(s,r),p,q)

close

where s represents an arbitrary state and mutex(s,p,q) is an instance of the induction hy-
pothesis. However, feeding this proof score fragment into CafeOBJ, the returned result is
neither true nor false, but instead a complicated term. Case splitting is used to overcome

this situation. The proof of one sub-case is as follows:

open TAS .
op s : -> 3ys .
ops pqr : ->Pid .

eq pc(s,r) = rs .

eq locked(s) = false .

eqp=r .
eq (q = r) = false .
eq pc(s,q) = cs .

red mutex(s,p,q) implies mutex(enter(s,r),p,q)

close

The equations characterize the sub-case. For example, a Boolean term can be used to split a
case into two sub-cases: (1) the term equals true and (2) it equals false. The induction case
is first to split into two sub-cases with the Boolean term pc(s,r) = rs (distinguishing whether
the process r is in the remainder section in the state s): (1) (pc(s,r) = rs) = true and (2)
(pc(s,r) = rs) = false. (pc(s,r) = rs) = true can be replaced with pc(s,r) = rs that
is used as the first equation of the fragment. CafeOBJ returns false for this fragment. We

need to conjecture a lemma to discharge the sub-case. The lemma is as follows:
eq inv1(8,P) = (pc(S,P) = cs implies locked(S))
Then, in the fragment above, inv1 is used as a lemma to discharge the sub-case as follows:

red invl(s,q) implies mutex(s,p,q) implies mutex(enter(s,r),p,q)

CafeOBJ now returns true for the fragment. The proof of inv1 needs to use mutex as a lemma.
Although the proof of mutex uses inv1 and vice versa, our proof is not circular. The reason is
that we use simultaneous (structural) induction to develop our proof. The correctness of this
method has been mathematically proved in [18]. Note that it is not straightforward to find

lemmas for complex and/or complicated protocols in reality.

2.4 Gestalt Principles

We use examples to introduce three Gestalt principles that are used to design and assess
state picture template in the dissertation: common region principle, proximity principle and

similarity principle. Let us take a look at the following image:

10

1 8.8.0. 8.8 ¢

Six stars are aligned horizontally such that the distance of each adjacent pair of stars is the
same. Then, we perceive that there are just six stars and did not recognize any sub-groups in

it. Let us change the layout a little bit as follows:

3 e e b He

We can recognize three rectangles as three sub-groups including two stars for each. This

visual perception is call “common region” principle.

Let us change the first image of six stars in a different way. The changed image is as follows:

*k Kk kk

There are still six stars but we can recognize that there are three sub-groups each of which
consists of two stars. This is because the distance between each adjacent pair of sub-groups is
greater than the distance between the two stars in each sub-group. This visual perception is
called “proximity principle”.

Let us change the first image of six stars in a different way. The changed image is as follows:

* ok ok koK

We do not change the layout but change the color of some stars. We can recognize that there are
three different kinds of stars because there are three different colors. Thus, we may perceive
that there are three sub-groups each of which consists of the same color stars. This visual

perception is called “similarity principle”.

11

Chapter 3

Related Work

This section first reports on our literature review on automated theorem provers, systems visual-
ization, evaluation of visualization and usability, and Gestalt principles. Based on the literature

review, this section finally describes our way to evaluate the new state picture template and

the SMGA tool.

Literature Review on Automated Theorem Provers

We first give a literature review on automated theorem provers where their approaches mainly
tackle proof search. Then, we investigate some approaches that close to our approach, and
finally, report two recent studies on an integration of formal methods and visualization.
Automate theorem provers (ATPs) are generally based on propositional and first-order logic
(FOL) and involve the development of computer programs that can automatically perform log-
ical reasoning. Proof search is one bottleneck of ATPs because of search space (combinatorial)
explosion [19, 20]. One approach called proof guidance is to use heuristics and strategies to
guide the proof search [21, 22|, while another approach is to use machine learning techniques to
automatically determine heuristics for assisting with proof guidance even though the learned
features have been manually designed [23|. Some studies [24, 25| use deep learning techniques to
learn those features, which has the appeal of lessening the amount of expert knowledge needed
compared with handcrafting new heuristics. Crouse et al. [26] have proposed TRAIL using deep
reinforcement learning techniques to learn features from scratch to beat other reinforcement-
learning based techniques. Wang et al. [27] have proposed an approach that uses represent
mathematical formulas as graphs and embeds them into vector space. That approach achieves
state-of-the-art results on the HolStep dataset [28]. Even the results of those techniques are
promised, there still exist problems that state-of-the-art ATPs cannot tackle that makes Alemi
et al. [29] stating that “we believe theorem proving is a challenging and important domain for
deep learning methods,...”, which shows that ATPs are not mature enough in practice. The

motivation of the work [27] (one of the models got state-of-the-art results) comes from an ob-

12

servation that a mathematical formula can be represented as a graph that encodes the syntactic
and semantic structure of the formula, which is evidence to show that the visual perception is
still a promising approach in theorem proving. Even though, those approaches and techniques
are far of our approach, but, there still exists one state-of-the-art study that indirectly shows
the usefulness of visual perception.

Let us introduce Daikon [1], a software can discover likely invariants from execution traces
(sequences), which is closed to our approach (conjecturing likely invariants from observing
graphical animations of sequences). Likely invariants in Daikon are detected from program
executions by instrumenting the source program to trace the variables of interest, running
the instrumented program over a set of test cases, and inferring likely invariants over both
the instrumented variables and over derived variables that are not manifest in the original
program. The essential idea is to test a set of possible likely invariants against the values
captured from the instrumented variables; those invariants that are tested to a sufficient degree
without falsification are reported to users. Win and Ernst [2] use likely invariants discovered
from Daikon as lemmas in the proofs of more complex properties in a theorem prover even
invariants can be so numerous and so simple that humans overlook them. They conduct case
studies where some protocols and their desired properties are used as examples, to show the
usefulness of their approach. They use (i) IOA language [30] to formally specify the protocols
and generate execution traces, (ii) Daikon to discovery likely invariants via the execution traces,
and (iii) Larch Prover [31] as a theorem prover where used lemmas come from (ii). The results of
case studies show that likely invariants discovered by Daikon are useful (used in the proof) even
most of them are redundant (not used in the proof). Because of the grammar of Daikon (that
is used to generate likely invariants), there are three limitations of likely invariants discovered
by Daikon: (1) number of variables in likely invariants are at most three, (2) some boolean
connectives such as V, =, and < are not in likely invariants, and also with (3) existential
quantifiers 3. In our approach, we use Maude to specify a protocol/system, generate state
sequences and visualize them in SMGA in a similar way of (i); observing the state sequences,
we can conjecture likely invariants in a similar way of (ii); and use proof scores in CafeOBJ as a
theorem prover where used lemmas are from (ii) in a similar way of (iii). One advantage of ours
compares to Daikon approach is likely invariants in task (ii) that can contain limit properties
while likely invariants discovered by Daikon cannot. Because of the dependence on humans,
our approach cannot automate as so as our limitation.

Similar to Daikon with its application, Créme [32|, an automatic invariant prover, can
automatically generate lemmas used for proving invariant properties. The main technique
of Créme to generate lemmas is based on fixed-point computation and case splitting. One
advantage of Créme is to generate counterexamples if some properties does not hold. Because
of fixed-point computation technique, it take much time to automatically generate lemma
candidates. In addition, the implementation of Créme is not efficient so Créme may not work

in complex protocols because of its limitations. Yang et al [33] have proposed an approach

13

that can prove quantified theorems in programs with algebraic data types. The main technique
is to use inductive reasoning where the prover decomposes given theorems into the base-case
and inductive-case subgoals and uses a backtracking rewriter that sequentially simplifies each
of the subgoals toward true. For cases that cannot succeed by the prover, the authors do
two ways: (i) generalizing the rewritten formula by replacing certain concrete subterms in a
formula with fresh variables and attempts to prove its validity from scratch. If this way is
succeeded, the formula can be used as lemmas, otherwise (ii) performing a SyGuS [34]-based
lemma enumeration driven by templates, i.e., formulas with unknowns potentially provided by
the user. After tasks (i) and (ii) are done, lemma candidates are filtered to minimize number
of lemmas to be proved. Task (ii) is similar to other automated lemma generating techniques
that uses a grammar to generate lemma candidates, the different point is to use humans as a
factor to make it well perform. It shows that humans are still needed in theorem proving. If
possible, investigating the techniques of [32, 33] to be able to automatically generate lemmas
used for proving invariant properties are one piece of our future.

Our approach with SMGA can be regarded as an integration of formal methods and visual-
ization. We introduce two recent studies on an integration of formal methods and visualization.
One [35] is a study on visualization of what is done inside by Vampire [36], an automated
first-order logic theorem prover, and the other is a study on visualization of the structural
operational semantics of a simple imperative programming language [37]. Although automated
theorem provers are attractive because they may automatically prove theorems, they cannot
truly fully automatically prove all possible theorems. Proof attempts may fail. If that is the
case, human users need to comprehend why the proof attempts fail and need to change the
format of input logical formulas and/or some internal proof strategies. It is very difficult for
non-expert users and at least non-trivial for expert users to really comprehend why the proof
attempts fail because it is necessary to understand what is done inside by an automated the-
orem prover, such as Vampire [36]. Gleiss, et al. [35] have then developed SATVIS, a tool to
visualize what is done inside by Vampire. Students and even programmers should learn seman-
tics of programming languages so as to understand programming languages better, which may
make it possible for them to write better programs. However, it is hard for students to learn
semantics of programming languages. Perhac and Zuzana Bilanova [37] have then developed an
interactive tool for visualization of the structural operational semantics of a simple imperative
programming language. SMGA partially shares the motivation of the first study [35]. This is
because the main purpose of SMGA is to help human users to understand systems through
graphical animations of state machines. Nothing special is directly shared by SMGA and the
second study [37] except an integration of formal methods and visualization. However, several
formal semantics of programing languages have been described in the K framework [38], where
K has been implemented in Maude. SMGA basically graphical animates state machines spec-
ified in Maude. Therefore, it would be possible to integrate SMGA and the K framework so

that formal semantics of programming languages can be visualized.

14

Literature Review on Systems Visualization

SMGA is a systems visualization tool. Other systems visualization tools have been developed.
As usual, we have conducted a literature review of some systems visualization tools related to
SMGA. We mention the tools and compare SMGA with them.

ShiViz [39] is a tool to visualize logs generated by distributed systems. Logs in this con-
text are basically sequences of events, hosts that carry out the events and timestamps when
the hosts carried out the events. The most important events are message sending and re-
ceiving. Feeding a log into ShiViz, ShiViz generates a diagram that is similar to a sequence
diagram. The diagram helps human users comprehend what events precede and/or succeed
what events, some patterns of message passings, etc. ShiViz has a functionality to find three
typical patterns of message passings: (a) Request Response, (b) Broadcast and (c) Gather.
The authors conducted three experiments to assess ShiViz: (1) a controlled experiment with a
mix of 39 undergraduate and graduate students in which one group of participants studied dis-
tributed system executions using ShiViz and another group without ShiViz; (2) two homework
assignments in a distributed systems course conducted by 70 students who used ShiViz to help
them debug and understand their implementations; (3) a case study conducted by two systems
researchers who were developing complex distributed systems to evaluate the end-to-end use-
fulness of ShiViz to developers in their work. The evaluation results are positive in that ShiViz
helps students understand distributed systems better and even expert engineers in distributed
systems are able to discover subtle errors lurking in distributed systems unless otherwise it
would be infeasible or take much longer time to do so. The visualization used by ShiViz (still
visualization) and the one (graphical animation) used by SMGA can be complementary.

Artho, et al. [40] propose an extended version of UML sequence diagrams so that multi-
threaded programs, especially interactions among multiple threads, can be visualized. Threads
are two aspects in Java programs: data (or objects) and executable units. UML sequence
diagrams do not have enough descriptive capabilities for threads as executable units. The au-
thors propose hexagonal diagrams for threads as executable units. Their extended sequential
diagrams make it possible to describe what threads as execution units start or resume parts of
participants (threads as objects) lifelines and terminates. It is possible to describe some depen-
dencies among events carried out by threads as execution units, which can be used to describe
lock acquisition and release by threads as execution units. The authors suppose that their ex-
tended sequential diagrams could be helpful for human users to comprehend counterexamples
generated by model checkers or runtime verification tools. SMGA can graphically animate coun-
terexamples generated by Maude LTL model checker [41]. Their extended sequence diagrams
are also still visualization, while our visualization is graphical animations.

VA4JVM [42] is a tool that can visualize outputs generated by Java Pathfinder (JPF). JPF
outputs can be lengthy and is not easy-to-read especially when JPF finds something wrong,

such as race condition and deadlock. VA4JVM can zoom some specific part of JPF outputs,

15

filter such outputs, leaving more interesting fragments only, and highlight some fragments of
such outputs that look more interesting so that human users could comprehend JPF outputs
better. As above-mentioned, SMGA can graphically animate counterexamples generated by
Maude LTL model checker [41].

Magee et al. [43] have proposed a way to visualize the behavior of a Labeled Transition
System (LTS) described in FSP and developed a tool to support their proposed technique.
One novelty of their approach to graphical animation of the LTS behavior is to use Timed
Automata as formal semantics of animations. Their proposed technique makes it possible to
compose multiple animations by composing Timed Automata. Their tool has been implemented
with SceneBeans!, a library of JavaBeans. As written, their visualization is graphical animation

like ours. SceneBeans could be used to implement a future version of SMGA.

Literature review on evaluation of visualization and usabil-
ity

It is truly crucial to reasonably evaluate any new techniques proposed and tools that supports
the techniques including information visualization techniques and tools. Several papers on
evaluation of information visualization techniques and tools have been published because it
is not straightforward but rather hard to reasonably evaluate them. We have conducted a
literature review of some such papers. We summarize them, which partially made us decide
how to evaluate the new state picture template and SMGA.

Carpendale [44] mentions challenges of information visualization evaluation and two kinds
of methods to evaluate information visualization: quantitative evaluation and qualitative evalu-
ation. She writes that reasons why current evaluations are not convincing enough to encourage
widespread adoption of information visualization tools include that information visualizations
are often evaluated using small datasets, with university student participants, and using simple
tasks.

Isenberg, et al. [45] conducted a systematic review of 581 papers published at IEEE Visu-
alization (now IEEE Scientific Visualization) conference for 10 years (2012-2006, 2003, 2000
and 1997) to assess the state and historic development of evaluation practices as reported in
those papers. They found that there was a steady increase in evaluation methods that include
participants, either by evaluating their performances and subjective feedback or by evaluating
their work practices and their improved analysis and reasoning capabilities using visual tools
for the six years (2012-2007). They also found that generally the studies reporting require-
ments analyses and domain-specific work practices are too informally reported that hinders
cross-comparison and lowers external validity.

Merino, et al. [46] conducted a systematic literature review of 181 full papers published at

lhttps://www.doc.ic.ac.uk/1tsa/scenebeans/

16

SOFTVIS/VISSOFT conferences on software visualization evaluation. They found that 68% of
those papers lack of strong evaluation. They then propose guidelines to increase the evidence
of the effectiveness of software visualization approaches, thus improving their adoption rate.
Caine [47| conducted an analysis of all manuscripts published at CHI 2014 to determine local
standards for sample size within the CHI community. She summarizes recommendations for
authors as local standards in the CHI community on how to determine their sample size to
evaluate their proposed techniques and/or tools. She also warns that relying on local standards
should not be considered “best practice”.

Schmettow [48] points out that usability professionals and HCI researchers tend to use
and /or want to have a magic number to determine the sample size to conduct usability studies,
such as the 10 4 2 rule of Hwang and Salvendy [49]. Resorting to such a magic number may
make usability studies inaccurate for making predictions and underestimate required sample
size as well. He recommend usability professionals and HCI researchers to conduct expensive,
quantitatively managed studies when usability is critical. He, however, concludes the paper
with the following sentence: “Most usability practitioners will likely continue to use strate-
gies of iterative low-budget evaluation where quantitative statements are unreliable but also

unnecessary”.

Literature review on Gestalt principles

Gestalt principles (or laws) (or principles of grouping) [50, 7, 8, 9] are a set of principles that
govern humans perceiving an image as a whole, although the image is constituted of smaller
visual objects and there do not seem any direct relations between the humans’ perception of
the image and smaller visual objects. Note that “gestalt” is a German word meaning “form”
or “group”. Gestalt principles have been used to design and assess visual interfaces, etc. in
Computer Science.

Graphs are very common structures often used in many domains. Therefore, many software
tools have been developed to draw graphs. Graphs may represent something dynamics, such as
mobile networks. If so, whenever data represented as graphs change, the graph should change
accordingly. Human users, however, may not follow such a change reasonably well, losing their
mental maps. Nesbitt and Friedrich [51] have come up with how to visualize such a change by
using Gestalt principles.

It is crucial to automatically identify some objects in a digital image for many purposes,
such as security. To this end, it is necessary to make the boundaries between those objects and
the others very distinct. Cao [52] invented a good algorithm for this aim by utilizing Gestalt
principles and Helmholtz Principle, a quantitative version of the former [53].

Yalcinkaya and Singh [54] claim that information technologies have not been utilized reason-
ably well in AEC-FM industry, where AEC-FM stands for Architecture/Engineering/Construc-

17

tion (AEC) and Facilities Management (FM) Markets (see https://www.ogc.org/), in spite
of many AEC-FM standards agreed in the industry, such as construction operations building
information exchange (COBie) over its spreadsheet representation. They also claim that this is
not just because of technical reasons caused by the standards but because of cognitive percep-
tion of COBie spreadsheet representation exchanged and processed by end-users. Then, they
used Gestalt principles to analyze COBie spreadsheet representation, proposing more visual
representation called VisualCOBie.

It is necessary to comprehend and track information or data that have been moved in cloud
systems. It has been common to use logs and graphs that represent such logs. It has become
the new trend for cloud users to comprehend “data provenance,” a historical record of data and
their origin. Then, Garae, et al. [55] proposed “User-centric Visualization of data provenance
with Gestalt (UVisP),” a novel user-centric visualization technique for data provenance. UVisP
aims at facilitating the missing link between data movements in cloud systems and end-users’
uncertain queries about their files’ security and life cycle in the cloud systems. It makes it
possible for users to transform and visualize data provenance with implicit prior knowledge of

Gestalt principles.

Our way to evaluate state picture template and SMGA

The purpose of SMGA partly overlaps that of ShiViz, which is to help human users comprehend
distributed systems through visualization. The main purpose of SMGA is to help humans in
Formal Methods conjecture likely invariants that make them better understand, however, while
the main purpose of ShiViz is to help students and engineers understand implementations (or
programs) of distributed systems. The developers of ShiViz conducted some experiments that
involved human participants to assess it. We do not follow their approach to evaluate ShiViz so
as to evaluate the state picture templates and the SMGA tool partly because the main purposes
of SMGA and ShiViz are different and partly because it is not straightforward to determine
a good number of participants for our assessment purpose as we surveyed. Instead, we use
Gestalt principles to assess the state picture templates of SMGA. Gestalt principles have been
used to design and evaluate still images. Because SMGA produces graphical animations that
are not still images but are dynamic images, there may be someone who wonders why we use
Gestalt principles to evaluate the SMGA tool. We first need to make a state picture template to
produce a graphical animation with SMGA. A state picture template is a template still image
in which many visual objects are fixed. A small number of visual objects change in a series of
concrete still images that are made from a state picture template and a sequence of states in
text and that can be regarded as a movie film. Based on Gestalt principles, we can design and
evaluate a state picture template because it is basically a still image. It is crucial to decide

the positions of many visual objects that are fixed, for which we can use Gestalt principles.

18

Even for visual objects that change their positions in a series of concrete still images, it is also
important to decide the positions of the visual objects in each still image, for which we can use
Gestalt principles as well. Note that Nesbitt and Friedrich [51] have used Gestalt principles to
design animated visualization of network data that are represented as graphs, which is another
case in which Gestalt principles have been used to design dynamic images.

It is a common practice to conduct a case study (or a few case studies) to evaluate newly

2. We follow this practice to evaluate

proposed formal techniques and tools supporting them
the SMGA tool because its main purpose is to help humans to conjecture likely invariants that

make them better understand.

2Please refer to some papers published at some Formal Methods conferences, such as FM and ICFEM.

19

Chapter 4
Designing State Picture Templates

This chapter mainly is inspired to answer RQ1 and RQ2. As mentioned, a state picture tem-
plate designed by human users is the input of SMGA. By conducting several case studies, this
chapter shows how a state picture template is important and proposes two kinds of practical
tips for designing a state picture template based on Gestalt principles, such as the common re-
gion, proximity, and similarity laws; and for conjecturing likely invariants of protocols/systems.
The TAS protocol is used as a simple example to show how usefulness some of those tips are.
Based on the tips for conjecturing likely invariants of protocols/systems, we propose guidelines

to orientate humans to find likely invariants.

4.1 Designing State Picture Templates of the TAS Protocol

As introduced in Section 2.3, the TAS protocol has one global variable locked shared by pro-
cesses participating in the protocols. Let us suppose that there are three processes participating
in the protocol and we can specify the protocol in Maude with two observable components as

follows:

e (locked: B) - a Boolean value B representing locked.

e (pcli]: L) - avalue L of process ¢ indicating a location of process i, such as rs and cs.

An initial state can be expressed as follows:

(locked: false)
(pclpll: rs) (pclp2]: rs) (pclp2]: rs)

There is one simple way that can automatically generate a state picture template is to use
textual display for all observable components as shown in Figure 4.1. It is boring to observe
such kinds of text, especially in animations. One possible design is shown in Figure 4.2, where
processes are designed as circles with ID inside, sections (rs and cs) are displayed in two

designated places that contain values of processes in such sections, and locked is still used with

20

textual display. This design is better and we can simply obtain locations of processes and easily
count the number of process in each section when the number of process participating in the
protocol is small enough. However, locked is still textual that is enough for this protocol though,
it will be similar to first design if the number of observable components increases. To this end,
Figure 4.3 is the best design for us, where processes are designed by circles with different colors
and locked is design with a lock image, when locked is true, the image is displayed, otherwise
nothing is displayed. This design follows some proposed tips that are inspired and evaluated

by Gestalt principle, and will be introduced in the next section.

locked: false

pelp1]: 1S
pc[p2]: rs
pc[p3]: rs

Figure 4.1: A straightforward design of the TAS protocol.

rs ~| CS
locked
[fae |

Figure 4.2: One possible design of the TAS protocol.

y

")

e 2

A

Figure 4.3: The most suitable design of the TAS protocol.

4.2 Practical Tips for Designing State Picture Templates

Based on conducting many case studies [11, 12, 13|, there are two assumptions that users need

to concern with when using our proposed approach:

e Understanding protocols/systems to be able to specify such protocols/systems as state
machines in Maude and CafeOBJ.

e Numbers of values of observable components should be small enough at a moment [11].

For instance, number of processes participating systems/protocols should be two or three.

21

where the first assumption is to guarantee that humans know some basics of protocols while
the second assumption is created based on our experience [11]. In addition, based on such
case studies, we propose an essential lesson learned as a main orientation when designing state

picture templates. The orientation can be expressed as follows:

e Values of observable components should be visual as much as possible and be arranged
based on Gestalt principles, such as common region, proximity, and similarity laws. For
example, visual objects of observable components that are closely related should be closely
arranged; visual objects of observable components whose types are the same should be the
same, while different colors should be used when you would like to distinguish different
instances; visual objects of observable components that are less related should be arranged

apart

This orientation is crucial because animation-based visualization works well when humans easily
catch and understand changes of still pictures [9] and texts are one of barriers for this issue.
The rest of our lessons learned are classified into two categories: tips for designing areas and/or
positions of values of observable components and tips for designing kinds of values of observable
components. Those tips are summarized in Tables 4.1 and 4.2, where SPT-T stands for State
Picture Template Tip. Let us explain some tips using observable components in TAS protocol
as examples. Locations and values of processes are designed followed by SPT-T 1 and SPT-T 2,
where locations can be trivial to observe based on the common region law of Gestalt principles,
and processes can be easily to observe based on the proximity and similarity laws of Gestalt
principles. Note that all proposed tips are our lessons learned when conducting many case
studies [11, 12, 13, 56].

4.3 Practical Tips for Conjecturing Likely Invariants of

Protocols/Systems

Given a state picture template and graphical animations produced based on the template, this
section focuses on addressing a question of how to find likely invariants of protocols/systems.
To do that, this section gives some practical tips to conjecture likely invariants of protocol-
s/systems. Those tips are summarized in Table 4.3, where LIC-T stands for Likely Invariant
Conjecture Tip. Let us use some tips applying for the TAS protocol. We focus on locations and
values of processes based on LTC-T 1, and locked and values of processes based on LTC-T

2, we conjecture likely invariants as follows:
TAS-LI 1: There is at most one process in the cs.
TAS-LI 2.1: If locked is true, one node is in the cs.

TAS-LI 2.2: If one node is in the cs, locked is true.

22

Table 4.1: Tips for designing areas and/or positions of values of observable components

SPT-T 1 To recognize what sections there are at which each process or node is located,
allocate the pane (or place) for each section such that the relations among the
sections are visually perceived and display some diagram on the designated
pane.

SPT-T 2 To recognize what pieces of information, allocate the pane (or place) for each
such piece of information such that we can visually perceive they are shared by
all processes and nodes and display them on the designated panes adequately.

SPT-T 3 To recognize whether there are some that are more crucial than the others
among the shared resources prepare the panes (or places) for them and display
them there adequately.

SPT-T 4 To recognize what pieces of information are owned by each process or node,
allocate the panes (or places) for them to make it possible to visually perceive
what pieces of information are owned by what processes or nodes and display
them on the designated panes adequately.

SPT-T 5 If there exist observable components that have natural numbers as their val-
ues and the values are small enough, the values should be visually expressed
nearby together so that we can see them simultaneously and compare them

instantaneously.

TAS-LI 3.1: If locked is false, no node is in the cs.

TAS-LI 3.2: If no node is in the cs, locked is false.

Those tips can be confirmed Maude search command and they are confirmed when three pro-
cesses participate in the protocol. Moreover, TAS-LI 1, 2.2, and 3.1 are proven with CafeOBJ
mentioned in Section 2.3. Note that the tips are proposed in [11] and applied to many case
studies [11, 12, 56, 57, 58].

4.4 Guidelines for Discovering Likely Invairants of Proto-

cols/Systems

From the proposed tips for conjecturing likely invariants and our experiences from case stud-
ies [11, 12, 56|, the section propose guidelines as a generic way to find likely invariants of proto-
cols/systems using graphical animations. Human users can utilize this guidelines to find likely
invariants of protocols/systems. Note that this guidelines and good state picture templates are
complements together because it depends on humans who are good at visual perception. Our

proposed guidelines can be summarized as follows:

23

Table 4.2: Tips for designing kinds of values of observable components

SPT-T 6 When an observable component can have two different values, it should be
visually /graphically represented as a light bulb.

SPT-T 7 If a value of an observable component does not change, it should be expressed
at a fixed label.

SPT-T 8 When an observable component can have three or more (but moderate) dif-
ferent values, we should prepare some designated area, such as a rectangle,
and a specific position in the area for each value where some visual object,
such as a circle on which the value is written, is displayed; if the observable
component has a value, only the visual object for it should be displayed and
the other visual objects for the other values should disappear; there may be
some special value, and if the observable component has such special value,
nothing should be displayed.

SPT-T 9 If there are some local variables, then we should design the layout of the
visual representations for them so that we can visually/graphically identify
what variables or observable components are local to what processes or nodes;
for example, all local variables for each process should be aligned horizontally
and /or vertically.

SPT-T 10 When an observable component has a composite value which consists of more
than one component value inside (i.e. (name: valuey,values,...,valuey,)), we

need to carefully select which component values (e.g. value,) to visualize.

Step 1: Based on proposed tips (mainly with LIC-T 1 and LIC-T 2), find as many
likely invariants as possible by carefully observing graphical animations. Some conditions

can be extracted from such likely invariants.

Step 2: Use the Pattern matching feature (which will introduced in the next chapter) in
order to find states that satisfy each likely invariant found at Step 1 (or any other steps)

or a condition extracted from the likely invariant.

Step 3: By carefully observing the graphical animation of the states obtained at Step 2
and /or the states as still pictures, where a likely invariant D; is used at Step 2 to obtain
the states, confirm the guessed likely invariant so far to some extent and/or find as many
likely invariants as possible. Let D, be one of the likely invariant found. Then, D; = D,

is one possible likely invariant candidate.

Step 4: Repeat Step 2 with the likely invariants, such as D;, found at Step 3, followed

by Step 3, from which new likely invariants could be found.
The proposed guidelines aim to find likely invariants that have a form of the implication relation.

24

Table 4.3: Tips for conjecture likely invariants of protocols/systems using graphical animations

LIC-T 1 By concentrating on one observable component, we may find that it never has
some specific value, it has some specific value much more often than the other
values, or some likely invariants related to one observable component.

LIC-T 2 By concentrating on two different-kind observable components, we may find a
relation between them, from which we may conjecture some likely invariants.

LIC-T 3 By fixing some specific values of some observable components and taking a
look at all state pictures in which the observable components have the specific
values, we may find some relations among the observable components and
some other observable components, from which we may conjecture some likely
invariants. It is necessary to use the Pattern matching feature of r-SMGA (that
will discuss in section 5) so as to take a look at all such state pictures because
there may be many such states and it is almost impossible to remember all of
them.

LIC-T 4 By carefully investigating conditions of some guessed likely invariants and the
states found by the Pattern matching feature of (part of) the conditions, we

may conjecture some other likely invariants.

Then, humans can compose complex likely invariants (contain more than 2 variables) based on
their understanding.

To make the guidelines more effective, in the next chapter, we will propose r-SMGA, a
revised version of SMGA, which provides features inspired by some steps of the guidelines.

Those features assist human users to find likely invariants leading by the proposed guidelines.

25

Chapter 5

Integration of SMGA and Maude

Based on two kinds of tips mentioned in the previous chapter, this chapter introduces the
revised version of SMGA (r-SMGA) where new and revised features have been implemented
that can help human users to find likely invariants of protocols/systems. Those new and revised
features include special display features (e.g. users can display visually some data structures,
such as array and queue), interactive features (e.g. users can interact visual objects in the state
pictures, such as focusing and hiding which visual objects that users interest or less interest),
and some Maude features implemented by integrating SMGA and Maude so that r-SMGA can
use some powerful features of Maude, such as associative-commutative binary operators as well

as context-free grammars, and reachability analysis.

5.1 Features of the Revised Version of SMGA

The main goal of the this section is to provide interactive features for helping users to con-
jecture likely invariants of a protocol/system for which graphical animations are prepared and
controlled by r-SMGA. r-SMGA allows human users to interact with visual objects used in the
state picture template, for example, focusing on or hiding them when the users are more or less
interested in them. r-SMGA also helps human users to get more insights of a protocol/system
by finding the pictures that satisfy some with powerful pattern matching empowered by Maude
from its graphical animations. We have integrated r-SMGA and Maude so that r-SMGA can
use powerful features of Maude, such as reachability analysis, parsing, and LTL model checking.
Moreover, Maude has a powerful pattern matching feature based on rich grammars, such as
context-free grammars and associative and /or commutative binary operators, so that users can
search graphical animations for more various information as they want than regular expressions
in the previous version. To this end, we use a server as a bridge to communicate between r-
SMGA and Maude. The server uses Maude bindings [59] to communicate with Maude via APIs,
while the server uses sockets to communicate with r-SMGA via message passing. r-SMGA’s

new features are described in the rest of the section.

26

r-SMGA communicating ‘ } 1
Sequence Pattern matchin
Control generation Interaction Maude P ¢
feature foature feature features eature
WY E @ %Y
[S

- - searching
interacting
v

& h
A formal Cﬁ%}
& = =

A state .

ict Special display
picture (option) Graphical Graphical
‘template animations animations

\\; in;:ut //’ \\ output \ J

Preparation phase Control phase Search phase

Figure 5.1: Overview of -SMGA

Figure 5.1 displays an overview of r-SMGA in which light-blue texts refer to the new and
revised features. There are three phases when using r-SMGA: preparation, control, and search.
The main purpose of the preparation and control phases is to produce an input and an output,
while the search phase focuses on analyzing data with the pattern matching feature. In the
preparation phase, we use a state picture template and a formal specification of a protocol as
the input that is fed into r-SMGA. Note that users do not need to prepare a state sequence
as in the previous version. Moreover, we provide a feature called Special display to help users
to visualize some specific data structures such as array and queue. Some other visualization
features, such as displaying network containing huge messages in [13], can be reused in r-
SMGA. Let us introduce some examples for the Special display feature. For queue, we provide
two ways so that each element of a queue is displayed visually. The first way is for an observable
component whose value is a queue only. For example, let look at the observable component
(q: 3 1 1 | 2 | empty) where qis a name of the observable component, 3 | 1 | 2 | empty
is its value and 3 is the top of the queue. One possible way is to display the observable
component as text in the same way of SMGA provided. In r-SMGA, users can display visually
each element as they expect. Note that users must know the maximum possible elements in
the queue to prepare such number of positions in the queue. Let look at the state picture
template of the observable component (we assume that the queue has at most three elements

so we prepare three positions in the queue) as follows:

Where each circle in the arrow represents each element in the queue and the top element in
the queue is displayed on the left-most. Each circle is designed for all possible elements in the
queue so that the queue above can be visually displayed as users expect. The following figure

is the state picture for the observable component mentioned above

27

qololo

The second way is for two observable components and queue is a value of one of them.
Element is the queue represents a ID of the rest one and users want to display the queue based

on the rest one. For example, let look at some observable components as follows:

(lane: 3 | 1 | 2 | empty)
(car[1]: straight) (car[2]: right) (car[3]: left)

where lane and car[_] are name of the observable component, 3 | 1 | 2 | empty and di-
rections are their values. Users expect to display the observable component lane with its value
are values of the observable components car. In r-SMGA, the state picture template and the

state picture of the queue for the case above can be prepared as follows:

e
<4— T =

where the figure on the top and bottom side are the state picture template and the state picture,

respectively.
In the control phase, we implement two new features called Sequence generation and Inter-
action. The Sequence generation feature aims to automatically generate a state sequence based

on the formal specification of a protocol on the fly. It consists of five functions:

e Default generation: The function automatically generates a random sequence (by se-
lecting randomly one of the successor states for a next state) whose length is up to a
fixed number (100 by default). This function guarantees that two consecutive states are
different in the sequence. Once a new state sequence is generated, it will be added to a
list where its index denotes the state sequence. Users can select any state sequence in the

list by an index to reuse it without generating it again.

e Update: The function uses a selected state sequence from the list, then generates a new
random state sequence and replaces the selected state sequence by the new one. Users

can adjust the length of a state sequence before producing a new state sequence.

28

e Add: The function works similarly to Default generation, except that users can set a

length of a new state sequence before generating.
e Clear: The function erases a selected state sequence from the list.

e Reset list: The function erases all state sequences from the list.

Users can utilize the Interaction feature to interact with a state picture template or a state

picture while observing the animations. This feature consists of two functions:

e Focus: This function allows users to focus on selected visual objects in a state picture
template or a state picture by displaying only those visual objects and not displaying the

remaining visual objects.

e Hide: Users can select visual objects in a state picture template or a state picture that

they want to hide. Then, the selected visual objects are not displayed on the screen.

We also provide three more functions for each function above: undo, redo, and reset. Undo
allows users to cancel the latest action (Focus or Hide), while redo allows users to carry out
the latest action again. Reset allows users to go back to the original state picture template.
Note that the function reset is different to reset list in the sequence generation feature. In
addition, users can utilize the Interaction feature, while running some other features.

In the search phase, there are two features named Maude and Pattern matching. In the
Maude feature, we provide two functions called search command (reachability analysis) and

model checking as follows:

e Search command: The input of this function is a specification and a command including
parameters mentioned in Section 2. Given the corresponding parameters, such as an initial
state, a target state, and a number of solutions, the function calls to the Maude search
command. If the number of solutions in the parameters is one, the function returns a
state sequence leading to the target state from the initial state. When the number is
greater than one, the function returns a list of state sequences where indices in the list
denote the state sequences. In the list, users can utilize a state sequence by selecting the

corresponding index of the list. If there is no solution, an alert message is returned.

e Model checking: Given a specification of a protocol, an LTL formula, and an initial
state, we can conduct model checking with r-SMGA. If the protocol does not satisfy the
formula with the initial state, a counterexample is returned that has the form of a state
sequence with a loop mentioned in Section 2. Note that if the reachable state space of
the protocol is huge, Search command and Model checking can stuck or take a long

time to return results.

29

The purpose of Pattern matching feature is to find states satisfying some conditions from the
state sequence being used. In r-SMGA, the Pattern matching feature is implemented based on
some features empowered by Maude so that it can work on various cases, such as finding some
specific messages in the network (formalized as a soup, an associative-commutative collection,
of messages) that we cannot do with the previous version. This feature uses state sequences in
the list maintained by r-SMGA and a pattern with a condition written in Maude as the input.
The pattern and the condition are defined in the same way to the target state and the condition
in the Search command function. The output is a list of states that match the pattern with
the condition, or a message “no solution” if there is no such a state. The Pattern matching

feature has the following three functions:

e Pattern matching on a sequence: Users select one state sequence from the list and
fill a pattern with a condition. Then, the function returns a list of states that match the

pattern and satisfy the condition from the selected state sequence.

e Pattern matching on some sequences: Users can select multiple state sequences
from the list and fill a pattern with a condition. Then, the function returns a list of
sequences of states that match the pattern and satisfy the condition from the selected
state sequences. Users can select one sequence of the list returned to observe states that

satisfy the pattern and the condition.

e Pattern matching on all sequences: This is the same as the second function provided

that all state sequences in the list are selected.

In the search phase, we provide two ways to display the output: (i) a still picture that includes
all states that match a pattern with a condition and (ii) graphical animations of such states.
Displaying the output as animations can help human users to quickly recognize the difference
between such states, which may be useful to conjecture likely invariants based on the proposed
guideline in Section 4.4. We will show its usefulness in the rest of the dissertation. The following

figure shows functions of the displaying the output as graphical animations.

Run Stop Run Step Back Step Reset 0 v

Duration Show all solutions

Value: 100 ms.

where buttons on the left-hand side are similar to those used for the functions in the control
feature; a list and a button on the right-hand side are a result (a list of solutions) returned from
the Maude feature and the Pattern matching feature and a function to load all states (in the
result-aboved) to the output display, respectively. We summarize the new and revised features

with their purposes and functions in Table 5.1.

30

Table 5.1:

Summary of new and revised features.

Feature

Purpose

Functions

Special display

Visualizing some specific
data structures such as ar-

ray and queue

Sequence generation

Generating a state se-
quence on the fly and keep-

ing state sequences in a list

Default generation, add,
update, clear, and reset
list

Interaction feature

Interacting with elements
from a state picture tem-

plate or a state picture

Focusing and hiding

Maude feature

Using Maude features that
Maude supports

Search command and

model checking

Pattern matching

feature

Searching states by match-

ing a pattern with a condi-

Pattern matching on

a sequence, some Sse-

tion quences, and all se-
quences in the list
Displaying the out- | Displaying the output in | Control functions for

put of the search

phase

the search phase as anima-

tions

animations and showing

all output states

31

Chapter 6

Case study: the Mellor-Crummey-Scott

Protocol

This chapter uses the Mellor-Crummey-Scott (MCS) protocol as an example to demonstrate
the usefulness of both kinds of tips, especially tips for designing state picture templates. This
chapter is mainly divided into two parts: graphical animations of the MCS protocol and formal
verification of the confirmed invariants of the MCS protocol in CafeOBJ, where the former
shows a flow of how to conjecture likely invariants using r-SMGA while the latter is to prove
such likely invariants by proof scores in CafeOBJ. Firstly, this chapter introduces the MCS
protocol and its specification in Maude. This chapter then graphically animates the MCS
protocol where a state picture template is designed based on the proposed tips for designing
state picture templates. This chapter also shows the importance of state picture templates
by comparing our proposal with the previous work and evaluating them by Gestalt principles.
Then, based on the proposed tips for conjecturing likely invariants, we can conjecture several
likely invariants, and those likely invariants are confirmed with the Search command function
in r-SMGA. One flawed version of the MCS protocol is used to show that our approach still
works even the input is a defective version. Finally, most of the confirmed invariants (survived
via the Search command) are theorem proved to demonstrate how well humans understand
based on our proposed approach. We also report reasons that some of the confirmed invariants

cannot be done with CafeOBJ even we intuitively know that they are correct.

6.1 Graphical Animations of the MCS Protocol

6.1.1 Description and Maude Specification

The MCS protocol [15] is a shared-memory mutual exclusion protocol invented by Mellor-

Crummey and Scott. Partly because its variants had been used in Java VMs, the 2006 Edsger

32

rs: “Remainder Section”

11: next, := nop;

12: pred, := fetch&store(glock, p);
13 if pred, # nop {

14 : lock, := true;
15: nextpred, = p;
16 : repeat while lock,; }
cs: “Critical Section”

17 . if next, = nop {

18 : if comp&swap(glock, p, nop)
19 : goto r1s;

110 : repeat while next, = nop; }
111 : lockyeqs, = false;

112 : goto rs;

Figure 6.1: The MCS protocol in Algol-like pseudo-code

W. Dijkstra Prize in Distributed Computing went to their paper!. It can be described in
Algol-like pseudo-code as shown in Figure 6.1. It uses one global variable glock and three local
variables next,, pred, and lock, for each process p. Process IDs are stored in glock, next,
and pred,, while Boolean values are stored in lock,. In this paper, initially, glock, next, and
pred,, are set to nop, while lock, is set to false, where nop is a special ID that is different from
any real process IDs. lockyeqt, 18 lock, such that next, = q and nexty,eq, is next, such that
pred, = q. Note that because the protocol is used for shared-memory computers, any process
p can read and write lock, and pred, even though ¢ is different from p. The protocol uses two
atomic operations (or instructions): fetch&store and comp&swap. For a variable v and a value
a, fetch&store(v, a) atomically does the following: it sets v to a and returns the old value stored
in v. For a variable v and two values a & b, comp&swap(v, a,b) atomically does the following:
if the value stored in v equals a, then v is set to b and true is returned; otherwise false is just
returned. The MCS protocol uses a virtual queue basically composed of process IDs by using
next,. Figure 6.2 (a) shows the virtual queue that consists of ps, p; and p3 in this order such
that all of them have been completely put into it. glock always refers to the bottom element
whenever the virtual queue is not empty, while it is nop whenever the virtual queue is empty.
Enqueuing and dequeuing for the virtual queue are not atomic. Therefore, there may be some
elements that have not yet been completely put into it. Figure 6.2 (b) shows the virtual queue
that consists of ps, p; and ps in this order such that p; has not yet been completely put into it

and will set next,, to ps by using pred,,, where pred,, = ps.

Lyww.podc.org/dijkstra/2006-dijkstra-prize

33

p1: 16 ps:cs p3: 16
glock

nextpl nextpz nextp3 J
e

(a) The virtual queue that consists of p,, p; & ps in this order
such that all three elements have been completely put into it

p1: 14 P2:Cs ps: 16
glock
nexty, nextp, nextp, J
L—1
predy,,

(b) The virtual queue that consists of p,, p; & p3 in this order
such that p; has not yet been completely put into it and will
set nextp, to p, by usingpred,, , where pred,, = p,

Figure 6.2: Virtual queue used in the MCS protocol

We suppose that there are three processes that participate in MCS protocol. Let Mycs

formalize the MCS protocol. Each state in Syicg is expressed as follows:

{(glock: bp)
(pclp1l: 1) (predlpil: pp1) (Qocklpll: b1) (next[pil: npi)
(pclp2]: 1) (pred[p2]: pps) (lock[p2]:by) (next[p2]: nps)
(pclp3]:l3) (predlp3]: pp3) (lock[p3]:b3) (next[p3]:np3)t

where bp, pp; and np; for « = 1,2,3 are process IDs, [; for ¢ = 1,2,3 is a label, such as rs, 11
and cs, and b; for ¢ = 1,2, 3 is a Boolean value. Initially, bp, pp; and np; are nop, [; is rs and b;
is false. Iyics consists of one state. Let init equal the initial state.

Tyvics is described in Maude as follows:

rl [want] : {(pc[P]: rs) 0OCs}
=> {(pc[P]: 11) 0OCs} .
rl [stoxt] : {(pc[P]: 11) (mext[P]: Q) 0OCs}
=> {(pc[P]: 12) (next[P]: nop) 0Cs} .
rl [stprd] : {(glock: Q) (pc[P]: 12) (pred[P]: Q1) 0OCs}
=> {(glock: P) (pc[P]: 13) (pred[P]: Q) OCs} .
rl [chprd] : {(pc[P]: 13) (pred[P]: Q) 0OCs}
=> {(pc[P]: (if Q == nop then cs else 14 fi)) (pred[P]: Q) 0OCs} .
rl [stlck] : {(pc[P]: 14) (lock[P]: B) 0OCs}
=> {(pc[P]: 15) (lock[P]: true) 0Cs} .
rl [stnpr] : {(pc[P]: 15) (pred[P]: Q) (next[Q]: Q1) OCs}

34

rl

rl

rl

rl

rl

glock: nop

pc[p1]: rs pc[p2]: rs pc[p3]: rs

next[p1]: nop next[p2]: nop next[p3]: nop
pred[p1]: nop pred[p2]: nop pred[p3]: nop
lock[p1]: false lock[p2]: false lock[p3]: false

Figure 6.3: A straightforward state picture template for the MCS protocol

=> {(pc[P]: 16) (pred[P]: Q) (next[Q]: P) 0OCs} .
[chlck] : {(pc[P]: 16) (lock[P]: false) 0OCs}
=> {(pc[P]: cs) (lock[P]: false) 0OCs} .
[exit] : {(pc[P]: cs) 0OCs}
=> {(pc[P]: 17) 0OCs} .
[rpnxt] : {(pc[P]: 17) (next[P]: Q) OCs}
=> {(pc[P]: (if Q == nop then 18 else 111 fi)) (mext[P]: Q) 0OCs} .
[chglk] : {(glock: Q) (pc[P]: 18) 0OCs}
=> {(glock: (if Q == P then nop else Q fi))
(pc[P]: (if Q == P then 19 else 110 fi)) 0Cs} .
[go2rs] : {(pc[P]: 19) 0OCs}
=> {(pc[P]: rs) 0OCs} .

crl [rpnxt2] : {(pc[P]: 110) (next[P]: Q) OCs}

if
rl

rl

where 0Cs is a Maude variable of observable component soups, P, Q and Q1 are Maude variables

of process IDs, and B is a Maude variable of Boolean values. if b then = else y fi equals x if

=> {(pc[P]: 111) (next[P]: Q) 0OCs}

Q =/= nop .

[stlnx] : {(pc[P]: 111) (next[P]: Q) (lock[Q]: B) 0OCs}
=> {(pc[P]: 112) (next[P]: Q) (lock[Q]: false) 0OCs} .
[go2rs2] : {(pc[P]: 112) 0OCs}

=> {(pc[P]: rs) 0OCs} .

b equals true and y if b equals false.

6.1.2 Designing the State Picture Template

It is also possible to automatically generate a straightforward state picture template for the
MCS protocol, such as the one shown in Figure 6.3. State pictures generated from the state

picture template, such as the one shown in Figure 6.4 are almost the same as states in text:

{(glock: p1)

35

glock: p1

pc[p1]: 15

next[p1]: nop
pred[p1]: p2
lock[p1]: true

pc[p2]: 16
next[p2]: nop

pred[p2]: p3

lock[p2]: true

pc[p3]: 18
next[p3]: p2
pred[p3]: nop
lock[p3]: false

State 17 : (glock: p1) (pc[p1]: 15) (pc[p2]: 16) (pc[p3]: 18) (next[p1]: nop) (next[p2]: nop) (next[p3]: p2)
(lock[p1]: true) (lock[p2]: true) (lock[p3]: false) (pred[p1]: p2) (pred[p2]: p3) (pred[p3]: nop)

Figure 6.4: A straightforward state picture for the MCS protocol

RS L1 2 3 L4
= =
~ ~
Iy O
L12 glock 13
[0 |
”
i next{p1]:nop next[p2]: nop nextp3] : nop <
(11 : L6
pred[p1] :nop pred[p2]:nop predip3] : nop
lock[p1] : false lock[p2] : false |ock[p3]: false
I T
L10 L9 L8 7 cs
@@ @ e ® e @[@

Figure 6.5: An old state picture template for the MCS protocol

(pclpl]: 15) (next[pl]: nop) (pred[pl]: p2) (lock[pl]: true)
(pclp2]: 16) (next([p2]: nop) (pred[p2]: p3) (lock[p2]: true)
(pcp3]: 18) (next[p3]: p2) (pred[p3]: nop) (lock[p3]: false)}

Observing such texts, especially in animations, is too boring and so observable components

should be visual as much as possible mentioned as an essential tip.

Nguyen and Ogata [60] made the state picture template shown in Figure 6.5 for the MCS
protocol. A state picture generated from the state picture template is shown in Figure 6.6.
The state picture allows us to immediately realize that processes pl, p2 and p3 are located
at 15, 16 and 18, respectively. Nguyen and Ogata [60] conducted a case study in which several
likely invariants of the MCS protocol can be discovered by observing graphical animations of
the MCS protocol such that each state picture used in the graphical animation is generated
from the state picture template. For example, one of the likely invariants found is as follows:

No state such that a process is at cs, 17, 18, 110, or 111 and another process is at cs, 17, 18,

36

RS L1 L2 L3 L4
= = = >
uts A
L12 glock 5
pl
a1 = nextfpi]:nop nextfp2]:nop nextjp3]:p2 Y
predp1]:p2 pred[p2] :p3 pred[p3] : nop
|Ock[p1] : true lOCk[DZ] : true |ock[p3] : false
@ v
L10 L9 L8 L7 CS
< = & <

State 17 : (glock: p1) (pc[p1]: 15) (pc[p2]: 16) (pc[p3]: 18) (next[p1]: nop) (next[p2]: nop) (next[p3]: p2
) (lock[p1]: true) (lock[p2]: true) (lock[p3]: false) (pred[p1]: p2) (pred[p2]: p3) (pred[p3]: nop)

Figure 6.6: An state picture instance for the MCS protocol

110, or111.
Let the likely invariant be called MCS-LI 0 in this section.

Although the state picture shown in Figure 6.6 also allows us to notice the values stored in
the global variable glock and the three local variables next,, pred, and lock, for each process p,
their representations on the state picture are almost the same as the text representation. Since
SMGA requires and/or permits human users to make state picture templates, the representa-
tions must be able to be visually /graphically perceivable. We use proposed tips to come up
with the state picture template shown in Figure 6.7. Figure 6.8 shows a state picture generated
from the state picture template.

The design of the glock representation used in Figure 6.5 is as follows:

glock

nop

The value of glock is nop, pl, p2 or p3. Regardless of the value, the value is displayed on the

same place. For example, when the value is pl, it is displayed as follows:

glock

pl

The design of the glock representation used in Figure 6.7 is as follows:

glock

37

RS L1 L2 |_3 L4
® ®~e @70 @@ @@ @
e glock T
L12 ‘ ‘ L5
. . e next .
L11ﬁ I |-| I LGG
%@ @ eme e @0
s 0 @ OEE @ 8 —
L10 cs
oo@o .@.'@' ® [e°®

Figure 6.7: A new state picture design for the MCS protocol

If the value is nop, nothing is displayed on the rectangle or pane for glock. If the value is p1, pl
is displayed at the left-most place of the rectangle for glock. If the value is p2, p2 is displayed at
the middle place of the rectangle for glock. If the value is p3, p3 is displayed at the right-most

place of the rectangle for glock. For example, when the value is pl, it is displayed as follows:

glock

We can say that the glock representation used in Figure 6.7 and Figure 6.8 helps human users
more visually /graphically perceive its value than the one used in Figure 6.5 and Figure 6.6.

The design of the next,, pred, and lock, representations for each process p used in Figure 6.5
is as follows:

next[p1] : nop next[p2] : nop next[p3] : nop
pred[p1] :nop pred[p2] :nop pred[p3] : nop
lock[p1] : false lock[p2] : false |ock[p3]: false

Regardless of the values of next,, pred, and lock,, their values are displayed on the same places.
For example, when next,; is nop, pred,; is p2, locky, is true, next,s is nop, predys is p3, lockys

is true, next,s is p2, predys is nop and lock,s is false, those values are displayed as follows:

nextlp1]:nop next[p2]:nop npext[p3] : p2
pred[p1] :p2 pred[p2] :p3 pred[p3] : nop
lock[p1] : true lock[p2] : true |ock{p3] : false

38

RS L1 L2 L3 L4
= = = =
1 glock iy
L12
® | "
pred next
| | B | | — T
L6

| @) B2 | |
| | P3| \@

L10 L9 L8 L7 cs

<A @ ® @ <3

State 17 : (glock: p1) (pc[p1]: 15) (pc[p2]: 16) (pc[p3]: 18) (next[p1]: nop) (next[p2]: nop) (next[p3]: p2
) (lock[p1]: true) (lock[p2]: true) (lock[p3]: false) (pred[p1]: p2) (pred[p2]: p3) (pred[p3]: nop)

Figure 6.8: A new state picture instance for the MCS protocol

The design of the next,, pred, and lock, representations for each process p used in Figure 6.7

is as follows:

pred next

@ @Bl @ @
@ @BGE @ @
@ @B @ @

The next, representation appears at the right-most place, where there are three rectangles, the

first, second and third ones of which from top are used for pl, p2 and p3, respectively. For
example, if the value of next,; is nop, nothing is shown on the first rectangle; if the value is pt,
the circle on which pe is written is shown at the designated place on the first rectangle. The
lock, representation appears at the middle place, which also indicates that the first, second and
third rows are used for pl, p2 and p3, respectively. When lock,,; is true, the background color
of pi is red; otherwise the color is non-red (or light blue). The pred, representation appears at
the left-most place, where there are three rectangles, the first, second and third ones of which
from top are used for pl, p2 and p3, respectively. For example, if the value of pred,, is nop,
nothing is shown on the first rectangle; if the value is pi, the circle on which p: is written is
shown at the designated place on the first rectangle. For instance, when next,; is nop, pred,,
is p2, locky; is true, next,s is nop, predps is p3, lockys is true, nextys is p2, predys is nop and

lockys is false, those values are displayed as follows:

39

RS L1 L2 L3 L4 RS L1 L2 L3 L4
® = = = = ’7 N = = =
- @ glocl T £ gloc T
= 12 I—J 5
pred next next
S | B | | T = | | o | | =
L6 L11 L6
| @ = @ | [@) = | |
T | | p3 | | —= T | | 3 | | =
L10 L9 L8 L7 CS L10 [E:3 L8 L7 CS
< <a & = @ < & =
State 22 : (glock: p1) (pelp1]: 16) (pc[p2]: 16) (pclp3): rs) (next[p1): nop) (next[p2): p1) (next[pd]: p2) State 10 : (glock: p1) (pe[pi]: 13) (pclp2): 14) (pclp3]: 13) (nextpi]: nop) (next{p2}: nop) (next[p3]:
(lock{p1]): true) (lock(p2]: false) (lock[p3]: false) (pred[p1): p2) (pred[p2): p3) (pred[p3]: nop) nop) (lockfp1]: false) (lock[p2]: false) (lock[p3]: false) (pred[p1]: p2) (pred[p2]: p3) (pred[p3]: nop)
RS L1 L2 L3 L4 RS L1 L2 L3 L4
’» ® = = =2 = (= = = =
& ook T & B2
L12 5 L12 LS
next next
T | | | | —— | | | | —
L11 6 L6
[® » [@ | | @ » @ |
T | | P3| |'=w g | e | |
L10 o 8 7 [Cs L10 L9 L8 L7 CS
= = @ @ & @ K ¢’7
" - State 24 : (glock: p1) (pc[p1]: 16) (pc[p2): 17) (pcfp3]: rs) (next(p1]):) (next[p2): p1) (next[p3]: p2)
e el e sl B el e e e e <lock.1p11: «ru:T (w:qu]: false) (bc:[P3]: false) (pfed[r:ﬂ: Tz)(md"[::]: p3) (D'edl:;i‘]: ::p)
RS L1 [¥] L3 L4 RS L1 L2 L3 L4
= =) == = = = = =
@ glock J - ft glock T
L12 L5 L5
pred next pred next
S | B | | — T | | B3 | | =T
| @ » | | | Q= \
|] 3 [| g | e3 | | —=
L10 L9 L8 L7 [cs L10 L9 L8 L7 CS|
<a] ® ¢ < @ & @ 63’7

. . . 1 . : . . State 18: (glock: p1) (pcp1]: 15) (pe[p2): 16) (pelp3]: 110) (next[p1]: nop) (nextp2]: nop) (next(p3]:
State 15 : (glock: p1) (pc[p1]: 15) (pcfp2]: 14) (pc[p3]: 18) (nextp1]: nop) (nextp2]: nop) (next{p3]:
nop) (lockip1l: true) (lockip2: false) (lockip3]: false) (prediofl: p2) (predp2l: p3) (predipd]: nop) P2) (ockip1l: true) (ocklp2]: true) (lock{p3): false) (pred[p1l: p2) (Predip2]: p3) (Predip3: nop)

RS L1 L2 L3 L4
= = & =
L12 = L ¥
L5
pred next
— L | =
L6
® | @ » @ |
| | 5 | |
L10 L9 L8 L7 ics
] <G & 5

State 25 : (glock: p1) (pelp1]: 16) (pelp2]: 111) (pelp3: rs) (next{p1]: nop) (next{p2): p1) (next(p3]: p2
) (lockip1]: true) (lock{p2]: false) (lock[p3): faise) (pred(p]: p2) (pred[p2): p3) (pred[p3]: nop)

Figure 6.9: Some pictures for extended CS region

pred next

Table 6.1 summarizes observable components of the MCS protocol and the tips used to

design their visualization.

40

Table 6.1: Observable components and their tips used to design

Observable components Tips

pcli] SPT-T 1&2
lock(i] SPT-T 4&6&9
pred|i SPT-T 4&6&8&9
next|i] SPT-T 4&6&8&9
glock SPT-T 3&8

6.1.3 Evaluation of State Picture Template Based on Gestalt Princi-
ples

On both the old state picture template and the new state picture template of the MCS protocol,
we can perceive that there are 14 rectangles aligned along the edge of the whole image due to
similarity principle. The 14 rectangles represent the 14 sections on which processes are located
and each of the rectangles has its name on it, such as rs, 11 and cs. An arrow-shape visual object
is shown between each pair of adjacent rectangles, meaning that processes basically move from
one section to the other. Processes are represented as circles on which their IDs, such as pl,
are shown. Taking a look at state pictures immediately allows us to recognize which sections
processes are located. On the old state pictures, all circles representing processes are in one
color, while on the new state pictures different colors are used to make it clear to distinguish
different processes due to similarity principle. On both the old state picture design and the new
state picture design of the MCS protocol, the visual representation of glock is arranged a bit
far from the visual representations of the three local variables owned by processes, which makes
it clear that glock can be perceived as one independent group due to proximity principle.

On the new state picture template of next,, pred, and lock, for each process p, we can
perceive that there are three groups due to similarity principle. The three groups correspond
to pred,, lock, and next, from left on the new state picture template. We also perceive that
there are also three different groups due to proximity principle. The three different groups
correspond to pl, p2 and p3 from top on the new state picture template.

Because the types of glock, next, and pred, are the same, process IDs or nop, we use
the same visual representation for them so that we can perceive it due to similarity principle.
When such a variable has a process ID, a circle on which the process ID is shown appears
at the designated place on the rectangle that represents the variable. Since pl, p2 and p3
are processes, each of them is represented as a circle due to similarity principle. Since they
are different processes, however, we use three different colors for the three different processes
due to similarity principle. When such a variable has nop, nothing appears on the rectangle

that represents the variable. This is because nop is different from process IDs and should be

41

distinguished from them. We can recognize that such a variable has nop thanks to similarity
principle. Because of the visual representations of glock, next, and pred,, we can perceive
whether among those variables have a same value (namely a same process ID or nop) or different
values.

The type of lock, is Boolean and then it has either true or false. We use two different colors
to represent the two different values. Red is used to represent true, while non-red (or light
blue) is used to represent false. This is because when lock, is true, process p is supposed to
wait somewhere to proceed to the critical section and when lock, is false, p is allowed to enter

the critical section. We can perceive which lock, is true or false thanks to similarity principle.

6.1.4 Likely Invariants Discovery Based on Our Proposed State Pic-

ture Template

Using LIC-T 1 (focus on the location of processes, such as rem and cs) and carefully observing
graphical animations for the MCS protocol in which new state pictures, such as Figure 6.6, were
used, we realized that there is always at most one process at cs, 17, 18, 110 and 111. This is
exactly the same as MCS-LI0 discovered based on old state pictures, such as Figure6.8. We
call these sections (cs, 17,18, 110 and 111) CS region. We also noticed that there exists at most
one process p such that p is located at 13 and pred, is nop and there exists at most one process
p such that p is located at 16 and lock, is false. Moreover, if p is located at 13 and pred, is nop,
there is no process in CS region and there is no process ¢ at 16 such that lock, is false, and if p
is located at 16 and lock, is false, there is no process in CS region and there is no ¢ at 13 such
that pred, is nop. 13 and 16 are only the sections from which processes enter CS region. We call
CS region plus 13 and 16 extended CS region. The first likely invariant that can be conjectured
by carefully observing graphical animations for the MCS protocol in which new state pictures,

such as Figure 6.6, are used is as follows:

e MCS-LI1: There exists at most one process except for processes p such that (1) p is
located at 13 and pred, is not nop and (2) p is located at 16 and lock, is not false in

extended CS region.

Extended CS region is one key concept that captures one important aspect of the MCS protocol
and MCS-LI 1 is very crucial in that several other likely invariants can be discovered based on
this likely invariant. Figure 6.9 shows some state pictures that capture MCS-LI1. On the top
left state picture, there are two processes pl and p2 in extended CS region such that both are
located at 16, locky, is true and locky, is false and therefore p2 is only the process in extended
CS region in the sense of MCS-LI1 because pl satisfies condition (2) in MCS-LI1. On the top
right state picture, there are two processes pl and p3 in extended CS region such that both are
located at 13, predp; is p2 and pred,s is nop and therefore p3 is only the process in extended
CS region in the sense of MCS-LI 1 because pl satisfies condition (1) in MCS-LI 1. Each of the

42

other five state pictures shows that there exists one process at one section of CS region and for
all processes ¢ located at 13 and 16 if any, pred, is not nop and lock, is not false, respectively.
Based on LIC-T 1 and focusing on a process in CS region or extended CS region, we can

recognize the following likely invariant:

e MCS-LI2.1: Whenever there is a process at 110, there is at least one process at 13, 14, 15
or 16;

e MCS-LI2.2: Whenever there is a process at 111, there is at least one process at 16.

The bottom left state picture of Figure 6.9 is an example of MCS-LI2.1 and the bottom right
state picture of Figure6.9 is an example of MCS-LI2.2.

Carefully observing the next, and pred, representations for each process p (based on LIC-
T 1), nothing may be displayed and the circle on which ¢ that is different from p is written
may be displayed but the circle on which p is written is never displayed. Thus, we can realize

the following likely invariants:

e MCS-LI3.1: The value of next, for each process p is never p.

e MCS-LI3.2: The value of pred, for each process p is never p.

For example, taking a look at the next,; representation or rectangle, it is visually /graphically
observable that the circle on which pl is written never comes into sight on the designated
position. This is because next,; is visually/graphically represented in the new state picture
design.

Based on LIC-T 2, some relations between two observable components can be discovered by
carefully observing graphical animations, from which some likely invariants can be conjectured.
A relation between the glock observable component and the pc[p] observable component can be

perceived by graphical animations and allows us to conjecture the following likely invariants:
e MCS-LI4.1: If glock is nop, then there is no process at 13, 14, 15 or 16 or in CS region;
e MCS-LI4.2: If glock is a process p, then p is located at 13, 14, 15 or 16 or in CS region;

e MCS-LI4.3: If glock is not nop (or equivalently a process), then there exists a process in

CS region.

Similarly, a relation between the pred[p] observable component and the pc[p] observable

component (LIC-T 2) allows us to conjecture the following likely invariants:
e MCS-LI5: If pred, for each process p is nop, then p is never located at 14, 15, 16 or 112.

Similarly, a relation between the pc[p] observable component and the next[p] observable

component (LIC-T 2) allows us to conjecture the following likely invariants:

43

Total: 13 states (13 state patterns)

State Pattern 1 (1 states) Define Pattern | Delete Pattern

RS L1 L2 L3 L4
=N =)
iy glock 93
L12 | | LS
pred next
s | | p1 | T
L11 L6
| @ » [@
T ® |, | T
L10 L9 L8 L7 €
<@ <@ @
State Pattern 2 (1 states) Define Pattern | Delete Pattern
RS L1 L2 L3 L4
4 glock [
L12 ’ I LS
pred next
& | | ot | ;
11 L6
| @ » [@
o O) | P3| T
L10 L9 L8 L7 cs
@ @ @
State Pattern 3 (1 states) Define Pattern | Delete Pattern
RS L1 L2 L3 L4
Z0s glock T
L12 | | LS
pred next
e | | et | 2
L11 L6
| @ » [@
o) | e8| ;
L10 L9 L8 L7 [e5
<a <@ &

44

Figure 6.10: Three state pictures discovered by the Pattern matching feature.

e MCS-LI6.1: If each process p is located at 12 or 19, then next, is nop;

e MCS-LI6.2: If next, for each process p is nop, then p is not located at 111 or 112.

Similarly, a relation between the lock[p] observable component and the pc[p] observable

component (LIC-T 2) allows us to conjecture the following likely invariants:
e MCS-LIT7.1: If lock, for each process p is true, then p is located at 15 or 16;

e MCS-LI7.2: If each process p is located at 15, then lock, is true.

Note that when a process p is located at 16, another process may set lock, to false.
Based on LIC-T 3, it is necessary to fix the values of some observable components so

as to discover some similarities of multiple states and/or some relations among observable

components. It is not straightforward to do so by observing graphical animations because we
need to remember states in which the former observable components have the fixed values. For
example, it must not be reasonable to remember all states in a graphical animations such that
predy; is p2 and p2 is located at rs, 11, 12, 19 or 112. One possible remedy for it is to use the
Pattern matching feature of r-SMGA. Given a pattern and a condition written by human users,
the feature finds all states in an input sequence of states such that they match the pattern and
the condition. When we would like to find all states in an input sequence of states such that
predy; is p2 and p2 is located at rs, 11, 12, 19 or 112, it suffices to write the following the pattern

and the condition in Maude:

pattern:

(pred[p1]: p2) (pcl2]: La:Label) 0OCs:Sys

condition:

La:Label = 11 or La:Label = 12 or La:Label = rs or La:Label = 19 or La:Label = 112

where 0Cs : Sys refers to the other observable components. Figure 6.10 shows three state pictures
among the states discovered by the Pattern matching feature of r-SMGA.

It does not suffice, however, to use the feature abovementioned so as to conjecture non-trivial
likely invariants. This is because the pair (p1, p2) is one possible combination and there are five
more combinations to consider: (pl,p3), (p2,pl), (p2,p3), (p3,pl) and (p3,p2). Note that we
do not need to take the three combinations (p1l,pl), (p2,p2) and (p3, p3) into account because
of MCS-LI3.1. Let (p,q) be each of the six combinations to consider. Carefully observing
all states discovered by the Pattern matching feature for the six combinations (LIC-T 3) to

consider, we can conjecture some non-trivial likely invariants:

e MCS-LIS8.1: If pred, is ¢ and q is located at rs, 11, 12,19, 111 or 112, then p is not located
at 13, 14 or 15;

e MCS-LIS8.2: If pred, is ¢ and glock is g, then p is not located at 13, 14 or 15;

e MCS-LIS8.3: If pred, is ¢, next, is not nop and p is located at 13, 14, 15, 16, cs, 17, 18 or
110, then ¢ is not located at 13, 14 or 15.

We noticed that there are both states in which next, is nop and those in which next, is not
nop among the states found by the Pattern matching feature of the condition of MCS-LIS&.1,
while there are only states in which next, is nop among the states found by the feature of the
condition of MCS-LI8.2. Then, finding the states with the feature of the second sub-condition
only of MCS-LI 8.2 because the first sub-condition is shared by both likely invariants, we realized
that next, is nop in all of them (LIC-T 4). Therefore, we came up with the following likely

invariant:

45

o MCS-LI9: If glock is a process p (or equivalently non-nop), next, is nop.

We have used the Search command of r-SMGA to model check that all likely invariants
conjectured in this section are invariant properties with respect to the state machine formalizing
the MCS protocol. Table 6.3 and Table 6.2 show all found likely invariants are not yet survived
and survived with the Search command function of -SMGA, respectively. The Tips column

in Table 6.3 refers to specific tips to conjecture likely invariants.

Table 6.2: False invariants of the MCS protocol

No. Content Tips

1 there is at most one process in extended cs re- | LIC-T 1
gion, 19 and 112

2 if a process is in 15 or 16, its lock is true LIC-T 2

3 there is no such case pred of process I is process | LIC-T 2

J and pred of process J is process I

4 if process I is located at 13, process J is located | LIC-T 2

at 16, next of process J is I

6.1.5 Graphical Animations of a Flawed Version of the MCS Protocol

This section aims to demonstrate that our approach can work well even the input is defective
versions. In this section, we make the MCS protocol become a flawed version by making the

function com&swap become non-atomic. The following is the correct rule in Maude:

rl [chglk] : (glock: Q) (pc[P]: 18) => (glock: (if Q ==
then nop else Q fi))
(pc[P]: (if Q == P then 19 else 110 fi))

We replace the correct rule by two following rules:

rl [chglkl] : (glock: Q) (pc[P]: 18) =>
(pc[P]: (if Q == P then 18.5 else 110 fi)) (glock: Q) .
rl [chglk2] : (glock: Q) (pc[P]: 185) => (glock: nop) (pc[P]: 19)

This version needs to add one more location 185 and we need to change the state picture
template by adding one more place for this location. Figure 6.11 shows the state picture
template of this flawed version.

Observing graphical animations of this flawed version, some likely invariants are similar
to the original version. For example, There is at most one process in cs, 17, 18, 185, 110, 111.

However, we can obtain that whenever one process is located at 185, then another process is

46

Figure 6.11: A state picture template of a flawed version of the MCS protocol

stuck at 16. It is because when a process I is located 185, another process J enters to the virtual
queue so that process I cannot release process J because process I returns to rs instead of moving
to 112. This characteristic is not invariant, but graphical animations help us to comprehend

the reason. It implies that our approach is still help humans to understand the state machines

RS L1 L2 |_3 L4
M @°®
1 glock T
L12 | ‘ L5
pred next ‘
® @ @M @ @ v

L6

(@) @] B2 [@) @
T @ @] B (@ @) .@
|_10 9 L85 L8 @) L7 cs
@ e e ere eMfe @90 @ e ®

in spite of defective versions.

6.2 Formal Verification of the Confirmed Likely Invariants

of the MCS Protocol in CafeOBJ

6.2.1 Specification of the MCS Protocol in CafeOBJ

The specification of the MCS protocol in CafeOBJ can be made in the same way as what has

been described in the Section 2.3. Let Sycg = (Ones, Inces, Tues) be the state machine

formalizing MCS.

Ourcs has the five observers that are declared as follows:

op glock :
op next :
op prede :
op lock :

op pcC

where Sys is the sort denoting Rg,,., Pid is the sort denoting process IDs, Pid&Nop is the sort

Sys -> Pid&Nop .
Sys Pid -> Pid&Nop .
Sys Pid -> Pid&Nop .
Sys Pid -> Bool .

: Sys Pid -> Label .

denoting process IDs and nop and Label is the sort denoting the 14 labels.

Iycs is specified as follows:

op init

: -> Sys {constr} .

A7

eq glock(init) = nop .
eq pc(init,P) = rs .

eq next(init,P) = nop .
eq prede(init,P) = nop .
eq lock(init,P) = false .

where P is a CafeOBJ variable of Pid.

Thics has the 14 transitions that are declared as follows:

op want : Sys Pid -> Sys {constr} .

op stnxt : Sys Pid -> Sys {constr} .
op stprd : Sys Pid -> Sys {constr} .
op chprd : Sys Pid -> Sys {constr} .
op stlck : Sys Pid -> Sys {constr} .
op stnpr : Sys Pid -> Sys {constr} .
op chlck : Sys Pid -> Sys {constr} .
op exit : Sys Pid -> Sys {constr} .

op chnxt : Sys Pid -> Sys {constr} .
op chglk : Sys Pid -> Sys {constr} .
op go2rs : Sys Pid -> Sys {constr} .
op chnxt2 : Sys Pid -> Sys {constr} .
op stlnx : Sys Pid -> Sys {constr} .
op go2rs2 : Sys Pid -> Sys {constr} .

The first (want) through sixth (stnpr) operators express state transitions such that a process
(given as the second parameter) moves to 11, 12, 13, 14 or cs, 15 and 16 from rs, 11, 12, 13, 14 and
15, respectively, in a state (given as the first parameter). chlck expresses a state transition such
that a process tries to move to cs from 16 in a state. The eighth (exit) through 11th (go2rs)
operators express state transitions such that a process moves to 17, 18 or 111, 19 or 110 and rs
from cs, 17, 18 and 19, respectively, in a state. chnxt2 expresses a state transition such that a
process tries to move to 111 from 110 in a state. stlnx and go2rs2 express state transitions
such that a process moves to 112 and rs from 111 and 112, respectively, in a state. Some more
descriptions on the operators are given. For example, if a process p is at 12 in a state s, then
stprd(s,p) denotes the state just after p has executed the statement at 12 and moved to 13
from 12; if p is at 16 in s, then chlck(s,p) denotes the state just after p has exited the loop at
16 and moved to cs if lock, is false and the state just after p has done one iteration of the loop
at 16 if lock, is true.

The transitions are defined in terms of equations that specify how the values observed by

the five observers change. For example, stprd is defined as follows:
ceq glock(stprd(S,P)) = P if pc(S,P) = 12 .

48

ceq pc(stprd(S,P),Q) = (if P = Q then 13 else pc(S,Q) fi) if pc(S,P) = 12 .
eq next(stprd(S,P),Q) = next(S,Q)
eq lock(stprd(S,P),Q) lock(S,Q)
ceq prede(stprd(S,P),Q) = (if P = Q then glock(S)
else prede(S,Q) fi) if pc(S,P) = 12 .
ceq stprd(S,P) = S if (pc(S,P) = 12) = false .

where S is a CafeOBJ variable of Sys and P & Q are CafeOBJ variables of Pid. The remaining

transitions can be defined likewise.

6.2.2 Formal Verification of the Confirmed Invariants of the MCS

Protocol

In this section, we aim to use proof scores in CafeOBJ to prove all confirmed invariants in the
previous section. We expected that all confirmed invariants will be proven, but some of them
cannot be done with CafeOBJ. Let us introduce a situation that cannot be done and start with

the true invariant as follows:
if a process is located at the extended cs region, glock is not nop.

It is straightforward to comprehend that a process in the extended cs region refers to the top
of the virtual queue, then there exists an element in the virtual queue, and therefore glock is
not nop. It is proven as inv4 shown in Table 6.5. However, the following likely invariant makes

us stuck in a long time and cannot be done in CafeOBJ:

if a process is located at 13 and its pred is not nop, or 14, or 15,

or 16 and its lock is true, then glock is not nop.

Figure 6.12 shows state pictures that satisfy this likely invariant. We can obtain that, when
a process p is located at 13 and pred, is not nop, or 14, or 15, or 16 and lock, is true, there
exists another process in the extended cs region, therefore, glock is not nop. We can intuitively
comprehend it, but it is not easy to formally prove it based on the current formal specification
as it is. Ome such reason is that we need to identify a position of this process in the virtual
queue. To comprehend the reason, let us rephrase the likely invariant as “if a process is located
at 13 and its pred is not nop, or 14, or 15, or 16 and its lock is true, it refers to the virtual queue
that contains at least two elements where this process is not the top of the virtual queue.” The
MCS protocol uses a virtual queue with glock, each process next and each process pred, where
glock refers to the bottom element of the virtual queue if the queue is not empty. Therefore,
when we concern the process in the likely invariant (make us stuck), we need to concern the
number of processes in the virtual queue and the position of the process in the likely invariant

(make us stuck) in such virtual queue. Currently, we cannot prove the likely invariant (make

49

us stuck) in the original version of the MCS protocol by CafeOBJ. One possible solution is to
use the other version that simulates the original version of the MCS protocol where a queue in
simulated version simulates the virtual queue of the original version of the MCS protocol. We

have done such simulation in [61] but not for proving the likely invariant (makes us stuck). We

leave such work as a piece of our future directions.

RS L1

L2

3 4 RS 1 2 3 4
=N =) = = =N = = P
5 1 glock T oy glock I
L1
| L5 L12 | L5
pred next pred next
4 1
T e P e e M 1o
p2 p2
T @ | B8 | | —% T @ | B8 | | —=
L10 9 8 7 Cs L10 19 8 7 cs
@ <@ G <@ @ <@ G <@
RS K} 2 3 L RS X} 2 3 L4
=N =) [=o P = =) = P
ks glock g @ glock T
112 12
@ | : | ®] e
pred next pred next
—5— | ER [e ot | @ =T
3 11 6
| | e2 | | | | 2 [@ |
T ® | »3 | | —= @ | 1581 | | —=
L10 9 8 7 Cs L10 9 s 7 CS
@ <A € < <@ = & <@

Figure 6.12: State pictures as examples of a likely invariant

Finally, Tables 6.5 and 6.6 show all properties (true invariants) of the MCS protocol. Note
that the order of the properties is not same with the confirmed invariants. Table 6.4 shows
information of a number of likely invariants and its relevance, such as numbers of such likely
invariants that have counterexamples, are confirmed by model checking, and are proven by

theorem proving.

6.3 Summary

This chapter shows the usefulness of both kinds of proposed tips, especially the proposed tips
for designing state picture templates, for human users to find likely invariants of the MCS
protocol. Most likely invariants found based on the tips survived with the search command in
r-SMGA. We also report a case that a flawed version of the MCS protocol is conducted by our
approach. This result shows that our approach still works for defective versions. Furthermore,
most of the confirmed invariants are true invariants by interactive theorem proving. Some of the
confirmed invariants cannot be proved even though we intuitively know that they are correct.

It demonstrates that humans can understand the MCS protocol based on our approach.

20

Table 6.3: Confirmed invariants of the MCS protocol

No. Content Tips

1 there is at most one process in extended cs region LIC-T 1

2 pred of process I is never process [LIC-T 1

3 next of process I is never process | LIC-T 1

4 if next of process I is process J, next of process J is not process I | LIC-T 1

5 if lock of process I is true, process I is located at 15 or 16 LIC-T 2

6 if process I is located at 15, its lock is true LIC-T 2&4&3

7 if there is process is not in rs, 11, 12 and 19, then glock is not nop | LIC-T 2&3

8 if process I is in (13 and its pred is not nop) or 14 or 15 or (16 and | LIC-T 4&3&2
its lock is true) and glock is process I, then there exists a process
is in extended cs region

9 if process I is in rs, 11, 12, 19, 110, 111, 112, then glock is not | LIC-T 2&3
process |

10 if a process is in 12 or 19, its next is nop LIC-T 2&3

11 if a process is in 111 or 112, its next is not nop LIC-T 2&3

12 if a process is in 14, 15, 16, its pred is not nop LIC-T 2

13 if process is 13 and pred is nop, no other process is in extended | LIC-T 4&3
cs region

14 if glock is a process I, its process I is nop LIC-T 2&3

15 if pred of process I is process J and process J is located at rs, 11, | LIC-T 4&3
12,19, 111 or 112, then process I is not located at 13, 14 or 15

16 if pred of process I is process J and glock is process J, then | LIC-T 4&3
process I is not located at 13, 14 or 15

17 if pred of process I is process J, next of process J is not nop and | LIC-T 4&3
process I is located at 13, 14, 15, 16, cs, 17, 18 or 110, then process
J is not located at 13, 14 or 15

Table 6.4: A number of likely invariants and its relevance

No. of likely invariants A B C D

21 4 17 14 4

A: Numbers of likely invariants that have counterexamples

B: Numbers of likely invariants that are confirmed by invariant model checking

C: Numbers of likely invariants that are proven by theorem proving

D: Other invariants that are used as lemmas

o1

" ((O'Q)1xou = (g‘g)ixeu)jou sordur ((s1 =
(O'g)od 10 g1 = (O'g)od 10 T = (B)‘g)od)jou pue ospej = (dou = (P)‘g)ixeu) pue osfej
= (O = Jg) pue (s1 = (g‘g)od 10 g1 = (4'S)2d 10 1] = (g‘S)2d)jou) = (BH‘d‘S)6aut be TTAUIL ‘OTAUL ‘QAUT ‘CAUL | GAUIL
(b = (d's)pead pue onry = (J°g)3o0[pue 97 = (4°s)od) sordurr (ssyey —
(s1 = (p‘g)ad 10 11 = (D‘g)od 10 g1 = (O'S)2d) pue 4 = (O'g)axeu)) = (H‘Jd'S)gaut ba TTAUI ‘GAUL ‘CAUT | QAUI
*((((osrey = (d'g)swol pue 91 = (d°g)2d) 10 1] = (d°S)>d 10 011 = (d'S)2d 10 g
= (d‘'s)od 10 2] = (d's)od 10 0 = (g‘g)od)3ou) serpdunr (() = J)rou pue (so = ({H‘g)od
10 41 = (D'g)od 10 g = (D'g)>d 10 011 = (D'S)2d 10 111 = (D'S)2d))) = (D'd‘S)LAut bo QAUT ‘GAUT ‘TAUT | LAUL
*((((osrey = (d'S)3w01 pue 91 = (d's)od)
10 111 = (d's)od 10 011 = (g‘S)od 10 Q[= (J'S)od 10 2] = (g'S)od 10 s0 = (g‘g)od)jou)
soridut (osfey = (O = d) pue ospey = (DH'S)or pue 91 = (B's)od)) = (D'd's)9aut bo LAUL ‘GAUL ‘TAUL | gAUL
(D = (d's)paxd pue (q's)xoor pue 9] = (d°S)od) serdutt (d = (O'S)ixou pue
() = g)rou pue (s1 = (p‘g)od 10] = (DH‘Q)od 10 g1 = (O'S)od)rou)) = (BH‘'d‘S)gaur ba CAUL | GAUI
" ((dou = (Q)3por3)jou sorjduur
(TT1 = (g'S)°d 10 1] = (g‘S)2d 10 Q] = (d‘S)od 10 2] = (d'S)2d 10 s0 = (g‘S)od 10 (dou
= (d's)paxd pue ¢ — (4'g)od) 10 (esfey = (d'S)¥00[pue 91 = (d'8)°d))) = (d's)paut bo GAUT ‘GAUT ‘TAUL | pAUL
*(enay = (g‘Q)yoor serduut ¢ = (g‘g)aod) = (4‘S)gaur be GAUI | gAUI
((dou = ({y‘g)perd)jou serdur (esyey
= (0 = d) pue g = (b's)>d pue dou — (g'g)paxd pue ¢ — (d'5)od)) = (D'd'S)gaut bo AU | gaul
~((((ostey = (d's)x0or pue 91 = (d°g)od) 10
111 = (d‘s)od 10 011 = (g‘S)2d 10 Q] = (g‘S)2d 10 2] = (g‘S)2d 10 0 = (J‘g)od)jou)
soridurt ((& = g)rou pue dou = (p‘g)perd pue ¢ = (p'g)od)) = (D''S)Taur bo PAUL ‘CAUL ‘ZAUL | TAUI
xequAs rgOoye) | @aoiad 03 pasn (s)ewrmio] PUIeN

[000301d SOIN o3 Jo serpedord porold :G 9 o[qe],

52

* (dou
= (g‘s)pead)sou serpdut (97 = (g‘S)od 10 ¢ = (g‘g)od 10 1 = (g‘S)>d) = (4‘S)0gAur bo QuUOU | ()gAUI
+ (dou = (g'g)¥xeu)jou soydutt (z11 = (d°S)>d pue 111 = (d's)od) = (d'S)6raut bo oUOU | GTAUI
(91 = (g'S)ad 10 ¢[= (g‘s)2d) serduur (J‘Q)3o] = (4‘S)8TAUT bo QUOU | QTAUI
“((d's)pead = (g)¥oor3)jou serdur ((dou
= (g‘s)pead)jou pue (g = (g‘g)od 10 § = (4‘S)2d 10 ¢ = (4‘S)od)) = (J'S)LTAUT Do CTAUL ‘gTAUL | JTAUI
" ((d's)perd = (p'g)pead)jou serpdunr ((dou = (p'g)paad)jou
pue (dou = (g's)pard)jou pue (g = (J')od 10 §1 = (d's)od 10 g1 = (d's)od) pue
(O = da)rou pue (g = (D's)ed 10 g1 = (p's)od 10 31 = (D's)od)) = (O'd'S)9raut bo LTAUT | gTAUL
" (g1 = (D'g)ed 10§ = (B'g)od 10 g =
(O‘g)ad)sou sordut ((((dou = (g‘g)xeu)jou pue (] = (J‘g)od 10 ¢[= (g‘Q)od 10 ¢ =
(d's)od 10 011 = (d'S)od 10 9] = (g‘S)od 10 0 = (J'S)od 10 Q] = (d‘S)od 10 1] = (4°S)2d))
10 g1 = (d'S)od 10 111 = (d'S)od 10 6] = (g‘S)od 10 s1 = (g‘S)od 10] = (4‘S)2d 10
¢l = (d's)od 10 g = (§)30018) pue (O = Jg)ou pue g = (O'S)pord) = (D'I'S)GTAUL Do | GTAUL ‘GTAUL ‘ZTAUL ‘[TAUT | GTAUI
+ (dou = (g'g)¥xeu) serdut (6] = (d°S)od 10 g[= (d°S)od) = (d°S)y1aut bo GTAUL ‘CTAUL | HTAUL
" ((dou = (g'g)sxou) sordut (4 = (§)30018)) = (4'S)e1AUl o GTAUL ‘PTAUL ‘TTAUL | TAUL
Sose) = (4 = (8)or8) serdut (011 = (d°s)2d 10 111 = (d°S)od 10 g1 =
(d's)od 10 6] = (d'S)od 10 s1 = (g'S)od 10] = (d'S)od 10 g[= (d'§)>d) = (d'S)gTaul bo CTAUT | gTAUI
" (08183 = (d = (d'S)paad)) = (d's)T1AUT Do CIAUL | JTAUI
“(osrey = (g = (d's)axeu)) = (J'S)o1AUr bo bo TTAUL | OTAUI
xequiAs rgOoje) | oaoiad 03 pasn (s)ewrmior] PurenN

(yu0) 000301 SO 23 Jo serrredord panroid 99 o[qe],

53

Chapter 7
Case Study: the Suzuki-Kasami Protocol

This chapter uses the Suzuki-Kasami (SK) protocol as an example to demonstrate the usefulness
our approach, especially our proposed guidelines and new features in r-SMGA. This chapter is
mainly divided the content into two parts: graphical animation of the SK protocol and formal
verification of the confirmed invariants of the SK protocol in CafeOBJ. The former mainly
shows the usefulness of new features with the proposed guidelines while the latter mainly
shows one advantage of our proposed approach that can find lemmas when conducting theorem
proving with proof scores in CafeOBJ. Firstly, this chapter introduces the SK protocol and
its specification in Maude. Then, the chapter graphically animates the SK protocol where
a state picture template is designed based on the proposed tips (for designing state picture
template) with new features of r-SMGA. Some examples of how to find likely invariants using
the guidelines and new features of r-SMGA are described in details. The found likely invariants
are confirmed with the Search command in r-SMGA. This chapter also reports a case that a
flawed SK protocol created by our intention is used for our approach. Finally, when conducting
theorem proving for all confirmed invariants, we find that our proposed approach can be used

to find likely invariants that can be used as lemmas.

7.1 Graphical Animations of the SK protocol

This section introduces a case study where the Suzuki-Kasami (SK) protocol is used as an
example. The section first explain how the protocol works is specified in Maude. Then, the
input of -SMGA is prepared including the specification and the state picture template of the
SK protocol. Based on some tips of [11], observing graphical animations, and using new and
revised features of r-SMGA, some likely invariants are conjectured and confirmed to show the

usefulness of those features.

o4

try(7)
setReq(7)

chkPrv(i) -

incRN(7)

sndReq(7) -

wtPrv(7)

exit()

cmpReq(i) <

updQ(?)

chkQ(?)

trsPrv(7)

rstReq(7)

recReq(i) -

> rém

11

12
13

- 14

> 15

> CS

16

- 17

18

19

- 110

procedure P1

requesting = true;

if =have privilege then

ra[i] ==rn[i] + 1;

forallj e {1,..., N} — {i} do
send request(Z, 7x[i]) to node j;
endfor

wait until privilege(queue, In) is received,;
have_privilege := true;
endif

Critical Section;

In[i] == rn[i];

forallje {1,..., N} — {i} do
if (j & queue) A (rn[j] = In[j] + 1) then
queue = enq(queue, j);
endif
endfor

if queue # empty then

have privilege = false;
send privilege(deq(queue), In) to node top(queue);
endif

requesting := false;
endproc

// request(j, n) is received; P2 is indivisible.

procedure P2
ra[j] := max(rn[j], n);
if have_privilege N —requesting A (rn[j] = In[j] + 1)
then have privilege = false;
send privilege(queue, In) to node J;
endif
endproc

Figure 7.1: Algol-like description of the Suzuki-Kasami protocol

7.1.1 Description

We first introduce the Suzuki-Kasami protocol and then describe how to specify it in Maude.
The Suzuki-Kasami distributed mutual exclusion protocol (also known as the SK protocol) was
proposed by Suzuki and Kasami [16]. In the protocol, if a node owns a privilege, then the node
can enter its critical section. The privilege can be transferred to other nodes in the network.
In the protocol, there are N node participants and 1,..., N are used for their IDs. Node is
defined as the set {1,..., N} of all node IDs. Each node can communicate with each other by
exchanging messages in the network. In the protocol, there are two kinds of messages named
request and privilege. A request message is in the form of request(j,n), where j is the ID of a
node that sends the message and n is a natural number that identifies the request number. A

privilege message is in the form of privilege(q, a), where ¢ is a queue of node IDs and a is an

%)

array of natural numbers whose size is V.

In the protocol, there are two procedures P1 and P2 used for each node i € Node and the
two procedures are described in Figure 7.1. requesting and have privilege are two Boolean
variables. requesting is true if node ¢ wants to enter the critical section; otherwise it is false.
have _privilege is true if node i owns the privilege; otherwise it is false. queue is a queue of
IDs of nodes that are requesting to enter the critical section. In and rn are arrays of natural
numbers whose size is N. [n[j] for each node j € Node is the number of node j’s request
granted most recently. rn records the largest request number received from each of the other
nodes. For each node i, its rn is always meaningful, while its queue and In are meaningful
only when node ¢ owns the privilege. For each node ¢ € Node, initially, requesting is false,
have privilege is true if i = 1, otherwise it is false, queue is empty, and each element of [n
and rn is 0.

Procedure P1 is used for node ¢ if it wants to enter its critical section. First, the node
sets requesting to true. If node ¢ owns the privilege, it moves to the critical section. Other-
wise, it increments rn[i] and transfers the request message request(i, rn[i]) to all other nodes.
Then, node ¢ waits to receive the privilege and sets have privilege to true if it receives the
privilege. It moves to the critical section after that. Once node ¢ leaves the critical section, it
updates n[i] by rn[i]. Then, queue is updated by checking if each node j waits to enter its
critical section (rn[j] = In[j] + 1) and j is not in queue (j ¢ queue) and putting such j into
queue. After that, if queue is empty, node i sets requesting to false and leaves P1, keeping the
privilege. Otherwise, have privilege is set to false and node i transfers the privilege message
privilege(deq(queue),in) to the node that is the top of the queue.

Whenever the request message request(j,n) is transferred to node 4, node i runs procedure
P2. However, procedure P2 must be atomically executed. First, rn[j] is updated if it is greater
than n. Then, node i checks have privilege, requesting and rn[j], and if they satisfy the
conditions described in P2, then, node i sets its have privilege to false and sends the privilege

message privilege(queue, In) to node j.

7.1.2 Specification of the Protocol in Maude

We formalize the Suzuki-Kasami protocol as a state machine in Maude. Nat, Bool, Loc, Queue,
and Array are the sorts for natural numbers, Boolean values, locations (e.g., 11 and cs), queues
of node IDs, and natural number arrays of size N, respectively. A message is in the form of
msg(i, body), where i is the receiver node and body is the message body that is either a request
or a privilege. A request is in the form of req(j, k), where j is a node ID and k is a request
number, while a privilege is in the form of priv(q, a), where ¢ is a queue of node IDs and a is a
natural number array of size N. The network is formalized as a soup of messages.

Let Message be a sort for soups of messages and void denote the empty soup of messages.

The observable components used to formalize the SK protocol are classified into two groups:

26

(1) those storing values independent from each node, such as the locked observable component
used to formalize TAS and (2) those storing values dependent on each node, such as the pc
observable component. There are three observable components in group (1), while there are
seven observable components in group (2) for each process. The observable components in

group (1) are as follows:
e (nw: ms) says that the network is ms, a soup of messages. Initially, ms is empty.
e (queue: ¢) says that ¢ is the meaningful queue. Initially, ¢ is empty.

e (1n: a) says that a is the meaningful 1n. Initially, a is the natural number array of size
N such that each element is 0.

The observable components in group (2) for each node ¢ are as follows:

e (pclil: I) says that node i is located at location [. Initially, [is rem.

(have_privilegel[i]: b) says that node i has the privilege when b is true and does not

otherwise. Initially, b is true if = 1 and false otherwise.

e (requesting[i]: b) says that node ¢ wants to enter its critical section if b is true and
does not otherwise. Initially, b is false.

e (queuel[i] : ¢) says that the node i’s queue is ¢. Initially, ¢ is empty.

e (rn[il: a) says that the node i’s rn is a. Initially, a is the natural number array of size
N such that each element is 0.

e (1n[il: a) says that the node i’s In is a. Initially, a is the natural number array of size

N such that each element is 0.
e (idx[i]: j) says that the node i’s loop variable is j. Initially, j is 1.

To specify the SK protocol in Maude, we first divide the protocol into 13 regions as shown
in Figure 7.1. The name of each region is put on the left side, such as try(:) and exit(i). We
suppose that each node is located at one of 12 regions in P1. One region is expressed as one
transition that is written as one rewrite rule in Maude. Thus, there are 13 rewrite rules in the
formal specification of the protocol in Maude. For example, the rewrite rule (whose label is

updateQueue) that corresponds to region updQ(7) is as follows:

rl [updateQueue]
(pclIl: 17) (idx[I]: K) (rn[I]: RN) (In[I]: LN)
(queue[I]: Q) (queue: Q)
=> (pc[I]: if K == N then 18 else 17 fi)
(idx[I]: if K == N then 1 else K + 1 fi)

o7

(rn[I]: RN) (1n[I]: LN)
(queue[I]: if K =/= I and not(K \in Q)
and (RN[K] == (LN[K]) + 1)
then put(Q,K) else Q fi)
(queue: if K =/= I and not(X \in Q)
and (RN[K] == (LN[K]) + 1)
then put(Q,K) else Q fi) .

If the node I’s loop variable K equals N, then node I moves to 18 from 17, exiting the correspond-
ing loop in the pseudo-code, and K is set to 1. Otherwise, node I stays at 17 and K is incremented
to handle the next iteration of the loop. If K does not equal I, K is not in Q (the node I’s queue)
and the latest node K’s request has not been yet granted (RN[K] == LN[K] + 1), then K is put
into Q. Because the node I's queue is meaningful, the queue observable component stores the
node I's queue and the one stored in the observable component is updated likewise. The other

rules work similarly.

nw (received
nw empty ()

empty empty nw (sending)

o (@
o
2o 2o
oo 00

8 iF e
EEL.

Figure 7.2: A state picture template of the SK protocol.

6@0000&

7.1.3 Conjecturing Likely Invariants of the SK Protocol
Designing the State Picture Template of the SK Protocol

Based on the observable components mentioned above and some proposed tips in the previous
chapter, we design the state picture of the SK protocol shown in Figure 7.2.

We borrow some visualization techniques from [13] and redesign some observable compo-
nents such as have_privilege, requesting, queue, rn, and 1n. Based on tips for designing
the state picture template in Table 4.1 and Table 4.2, such as observable components should

be visual as much as possible, in the new state picture template, we redesign have_privilege

o8

1

B

13 @
(2)2)
(t2)(ve)
)
@ (v

(1)

%)
©
es
(52

gee

B B [

Figure 7.3: A state picture template of three observable components: pcli], privilege[i], and

requesting[i] for node i, where i = 1, 2, 3.

and requesting using the visual display. We use the Special display feature to visualize queue,
rn, and 1n. For other observable components, please refer to the work [13|. Based on SPT-T 9

in Table 4.2, the following figure shows the revised design for five observable components:

O (OO (N

o|lo|o =

O|lO0O|OC| O (W
66)©
or—|o=| o=

00
®®E@ >

where three blue rectangles and exclamation marks on the right-hand side are have_privilege [i]
and requesting[:] observable components of the three nodes, respectively where ¢ = 1,2, 3.
We will describe later how exactly the blue rectangles express the have_privilege[i] observ-
able components and the exclamation marks express the requestingl[i] observable compo-
nents. The three circles with different colors inside the blue rectangles represent the labels of
the three nodes. Let us look at the nine light-pink rectangles. From top to down, three light-
pink rectangles aligned horizontally with three numbers inside represent the rn observable
component of each of nodes 1, 2 and 3. The numbers 1, 2, and 3 on the top of the figure rep-
resent indices of arrays starting from 1. The three light-orange rectangles aligned horizontally
represent the 1n observable component in which the meaningful array 1n is stored, where the
text “LN" appears right next to the three light-orange rectangles. The light-orange fat right-
arrow represents the queue observable component in which the meaningful queue is stored.

The following figure shows a case in which the have_privilege[1], have_privilege[2], and

29

have_privilege[3] observable components are true, false and false, respectively; and the
requesting[1], requesting[2], and requesting[3] observable components are false, true

and true, respectively.

@
®!
O

In the previous version, a queue was used with textual display only. r-SMGA makes it possible
to show a queue with the visual display. Human users are supposed to design what visual
objects as elements appear at each position in a visual object that represents a (bounded)
queue. Because there are three nodes, it suffices that the queue stored in the queue observable
component has at most three elements (three node IDs). Thus, there are three positions in the
queue and then each of three node IDs can be located at each position in the queue. We use a
circle on which a node ID is written as a visual object as a queue element. When the queue is
empty, nothing appear at all positions of the queue, while the queue is not full, nothing appears
at some positions of the queue. For example, the queue expressed as 2 | 3 | empty, where

there are two elements, 2 is the top and 3 is the second (and the last), is visualized as follows:

H® >

In the previous version, an array was shown with textual display only. In the formal speci-

fication of the SK protocol, an array is expressed as a soup of index-value pairs. For exam-
ple, the natural number array a of size 3 such that a[1] = 0, a[2] = 1, and a[3] = 0 is
expressed as (1 : 0), (2 : 1), (3 : 0). In the previous version, a is shown as the text

(1 :0, (2 :1), (3 :0)only Inthe current version, a is visualized as follows:

o(11]0

The figure is the visual object for the 1n observable component and the three rn[i] observ-
able components, where ¢+ = 1,2,3, can be visualized likewise. Table 7.1 shows observable

components of the SK protocol and which tips used to design the observable components.

Conjecturing Likely Invariants of the SK Protocol

This section introduces some likely invariants that are conjectured using the proposed tips.
Using LIC-T 1 and LIC-T 2, the Interaction feature helps us to focus on two or more observ-
able components without being distracted by the other observable components. For example,

we focus on the pc[i], have_privilege[:], and requesting[i] observable components for

60

Table 7.1: Observable components and their tips used to design

Observable components Tips

peli| SPT-T 1&2
have _ privilege|i] SPT-T 4&6&9
requesting]i| SPT-T 4&6&9
rn|i SPT-T 4&6&9
In SPT-T 9
queue SPT-T 9

nw SPT-T 3

node ¢ = 1,2, 3 by using the focus function as shown in Figure 7.3. Based on CC-T1, we use
the hide function to focus on one of the three kinds of observable components. By observing

graphical animations, we conjecture some likely invariants as follows:
SK-LI 1: There is at most one node that is located at cs, 16, 17, 18, or 19.
SK-LI 2.1: There exists a case such that three nodes do not own the privilege.

SK-LI 2.2: If a node owns the privilege, there is no other nodes that owns the privilege.

w (received) | void w (received)

H
2
3
8

3

msg(2.real3, 1); msg(2,priv(3 | empiy. (1:012:03:0) gtz pivi3l ey)2:0)3:0) MW (sending) | Mse(2.req(3, 1); msg(2. privi3 | empty, (1:01(2:013:0) — w (sending) msgfd, priviemty, (1:01(2: 1)3:0)

: [
[l

BEEED

ElERE-

2200

@l==[=[=]~
@[==[o]=]e

e

Imi[mea]
T —

] |

E ©
]
i

w
sg(3.reqt2, 1) w (sending) | MSE(2 priviempty. (1:0)(2:013: 1) msg(2,priviempty (1:0,2:0)3:1) W (sending)

w
msg(3,priviempty, (1:0)(2:0)3:0))

RN

s orempt (1-0,2-0,3:0) W (sending) | MB(3.reat2.10;msg(a pridemoty (1:042:013:0)

—
]
]

olo[=[=|~

@le]=[=]=]e

—
B

olo|=|=|m

rzy &
I
—

Bl=|=[=r

®==[=[=]»
Slesds

00®

OOREN
IE]

T —
==

IEEN
O]

[:]@

i

7
[
[

Figure 7.4: Some state pictures found with Pattern matching feature

Based on LIC-T 2, we focus on two of the three observable components shown in the Figure 7.3.

By observing graphical animations, some likely invariants are conjectured as follows:
SK-LI 3.1: If a node is located at cs, 16, 17, 18, or 19, then the node owns the privilege.

SK-LI 3.2: If a node is located at 13, 14, or 15, the node does not own the privilege.

61

SK-LI 4.1: If requesting of a node is false, the node is located at rem or 11.

SK-LI 4.2: if a node is located at rem or 11, requesting of the node is false.

The Pattern matching feature is used for LIC-T 3. We use this feature to find states
in which there exists a privilege message in the network. Note that, we cannot do it with
the previous version because of limitation of regular expression. The following figure shows a
command that is used for this case.

pattern matching v On all sequences + There are 2 sequences

pattern:

(nw: NW:Network)
OCs:Config

condition:

hasPrivilege(NW:Networ
k)

Submit

where the top of the figure shows information of the feature, such as the Pattern match-
ing on all sequences function and a number of sequences on the current list. The pattern
(nw: NW:Network) OCs:Config used is written in the rectangle just below “pattern:” and the
condition hasPrivilege (NW:Network) used is written in the rectangle just below “condition:”.
The pattern is used to find states in which there exists an observable component that matches
(nw: NW:Network), where NW:Network is a Maude variable of sort Network declared on-the-fly.
Because every state has such an observable component, all states are candidates to be found.
The purpose of use of the pattern is to extract the contents, a soup of messages, stored in the
observable component. The condition checks whether such a soup of messages has a privilege
message. Because a soup of messages is an associative-commutative collection, we need to
rely on the associative-commutative pattern matching of Maude, which is one unique feature
empowered by Maude. Using LIC-T 2 and observing the animations of such states shown in

Figure 7.4, we conjecture some likely invariants as follows:

SK-LI 5: There is only one privilege message in the network.
SK-LI 6.1: If there is a privilege message in the network, no node owns the privilege.
SK-LI 6.2: If a node owns the privilege, there is no privilege message in the network.

SK-LI 7: If there is a privilege message in the network, no node is located at cs, 16, 17,
18, and 19.

Note that we can conjecture SK-LIs 5-7 by observing states satisfying SK-LI 2.1 (we will explain
the details of how to conjecture those in Section 7.1.4). SK-LI 7 can be guessed by SK-LIs 6.1
and 3.1 based on LIC- 4.

62

7.1.4 Finding Likely Invariants Using Guidelines

Let us start with a situation where we have conjectured some likely invariants of the SK protocol
in Section 7.1.3 using guidelines. Given the state picture template and the specification of the
SK protocol, -SMGA then produces graphical animations. Based on LIC-T 1, observing
the animations and focusing on the visual representations of the privilege[i] observable

components for ¢ = 1,2, 3, we obtain four cases as follows:

9 © @ @
® @ [@ @
® ® © [

Based on the second picture from left in the figure above, which indicates that no node owns the
privilege, we conjecture SK-LI 2.1. Then, we use the Pattern matching feature to find states
that match SK-LI 2.1 and some results are shown in Figure 7.4. Observing the animations made
from the results and focusing on the network, we observe that there is a privilege message in the
network in each state picture of the animations. Therefore, we can guess that if no node owns
the privilege, there exists a privilege message in the network. We confirm it with the Search
command function. Let us suppose that the confirmed invariant is denoted as A = B, where
A and B are “no node owns the privilege” and “there exists a privilege message in the network,”
respectively; = is the logical implication. Once again, we use the Pattern matching feature to
find states that match B and the results obtained are the same as those shown in Figure 7.4.
Then, we can conjecture SK-LIs 5-7. Repeating the process, we can find other likely invariants
of the protocol. Note that we can find a new likely invariant by the transitive property of
implication, namely that if P = R and R = @, then P =). For example, P, R, and @ are
“there exists a node ¢ located at cs, 16, 17, 18 or 19,” “node i owns the privilege,” and “no privilege
message in the network,” respectively; P = R and R = () are SK-LIs 3.1 and 6.2, respectively.
Then, we can get a new likely invariant P = () stating that “if there exists a node located at
cs, 16, 17, 18 or 19, then no privilege message in the network.” Note also that we can create
a complex likely invariant by combining confirmed likely invariants together. For example, if
M = T and N = T, then (M or N) = T. Those concrete likely invariants conjectured this
way are in Section 7.1.3.

Let us use how to find inv8 (that is extremely crucial and mentioned in Section 7.2.2) as an
example to exemplify the guidelines. inv8(s,7) is as follows: if a node 7 is located at neither

rem nor 11 in a state s, then the value stored in requesting[?] is true in state s.

First let us focus on the requesting[i] and pc[¢] observable components for : =1, 2, 3.
We carefully observe graphical animations, especially, the relation between the values

stored in requesting[i] and pc[i]. We notice and guess that the following is likely to

63

oid w (received) | oid nw (received)

w
msg(1,req(3, 1) mostLreaa 1 w (sending) | mse(L.reat2. 1) msgt. rea(2,1) nw (sending)

2%
L&) |

olo|=om

olooolm
~lololw
@

(e B
1\l

o5
O
'HEEE

DQOGAH
€

o|olololn

@%
=

OEN ‘O0EOE

7
]
= :
r
[

iy "]

Figure 7.5: Some state pictures found with the condition “requesting|1] is true”.

be true: if the value stored in requesting[] is true, then the value stored in pc[i] is

neither rem nor 11. This is an example conducted at Step 1.

The condition that the value stored in requesting[] is true can be extracted from the
guessed likely invariant. We use the Pattern matching feature to generates states that
satisfy the condition. See Figure 7.5 for some of the states generated. The figure shows
some states that satisfy the condition “requesting[1] is true.” This is an example

conducted at Step 2.

We then check whether the value stored in pc[:] is neither rem nor 11 by observing the
graphical animations made from the states found and/or the still pictures of the states,
from which we can confirm the guessed likely invariant. This is an example conducted at

Step 3.

We can also use “the value stored in pc[i] is neither rem nor 11”7 as a condition and
generates states that satisfy the condition with the Pattern matching feature. This is
another example conducted at Step 2. We carefully observe the graphical animations
made from the states found and notice that the value stored in requesting[i] is true in
each of the states, from which we guess that if the value stored in pc[7] is neither rem nor
11, then the value stored in requesting[i] is true. This is another example conducted
at Step 3. The examples conducted at Step 2 and Step 3 is an example conducted at
Step 4 as well.

This is how we guess inv8 based on the guidelines.

64

7.1.5 Confirmation of Guessed Likely Invairants Using Maude Fea-

tures

In the previous version, users can confirm guessed likely invariants by using the Maude search
command independently. In r-SMGA, users can confirm the guessed likely invariants by using
the Search command function in r-SMGA. For example, the command to confirm SK-LI 2.1

is as follows:

search [1] in SKP : init =>% (have_privilege[I:NodeID]: true)
(have_privilege[J:NodeID]: true) 0Cs:Config .

where SKP is a module, init is an initial state, I and J are Maude variables declared on-the-fly
of sort NodeID, and OCs is a Maude variable declared on-the-fly of sort Config. The command

can be used in Search command of r-SMGA as follows:

(have_privilege[l:NodelD]: true)
(have_privilege[J:NodelD]: true)

search[1 4, Option A]in SKP P init 7 OCS:Conflg A
such that 4.

The function tries to find a state such that both two different nodes I and J own the privi-

lege. The function does not return any counterexample; hence, the guessed likely invariant is

confirmed. The following figure shows the command for confirming SK-LI 7:

init (nw: NW:Network)
(pc[l:NodelD]: La:Label)
OCs:Config
search[, |option AI] inlSKP 2 Al=>* v Zsuch that

hasPrivilege(NW:Network) and
(La:Label == cs or La:Label == 16 or La:Label == 17 or La:Label == 18 or La:Label ==19)
4.

where hasPrivilege(_) is an operation in specification to check whether the network contains
a privilege message. The command does not return any counterexamples and then SK-LI 7
has been confirmed. Note that users need to check guessed likely invariants because they may
not be correct. For example, observing the animations and focusing on locations of nodes. We

obtain the following figure:

65

rem 11 12 13

o= o= om=m

&l o o|lo|—™
O |=|==IN

z@®6

The figure makes us conjecture that there at most one process in cs, 16, 17, 18, 19, and 110. The
counterexample that leads to 110 is pointed out by the Search command.

Table 7.2 and Table 7.3 show all likely invariants that are survived by the Search command
and all false invariants that are found by the Search command, respectively. The Step in

guidelines column refers to steps used to find likely conjecture.

7.1.6 Graphical Animations of a Flawed Version of the SK Protocol

The main purpose of our proposed approach is to help humans to understand state machines via
likely invariants of the state machines. This section graphically animates a flawed version of the
SK protocol to show that our approach still guarantees the goal in spite of defective versions.
In this flawed version of the SK protocol, we do not update have privilege of node ¢ of the
transition trsPrv(i) in Figure 7.1. The flawed version does not change much than the original
version so that we still keep the current state picture template. Observing graphical animations,
we immediately that there exists a case that two or three nodes can own the privilege at the

same time. The following is the case that three nodes can own the privilege.

66

Table 7.2: Confirmed invariants of the SK protocol.

No. Content Step in guidelines

1 there is at most one privilege own by a node at | Step 1 (LIC-T 1)
the moment

2 there is at most one privilege message in the net- | Step 1 (LIC-T 1)
work
there is at most one node in cs, 16, 17, 18, 19 Step 1 (LIC-T 1)

if a node is in rem or 11, its requesting is false Step 1 (LIC-T 2)

if requesting of a node is false, its location is rem | Step 2&3 (LIC-T 2&3&4)

or 11

6 if requesting of a node is true, its location is not | Step 2&3 (LIC-T 2&3&4)
located at rem or 11

7 if a node is not located at rem and 11, its re- | Step 2&3 (LIC-T 2&3&4)
questing is true

8 if there is the privilege message in the network, | Step 2&3 (LIC-T 3&4)
no node owns privilege

9 if a node is located at cs, 16, 17, 18, 19, no privilege | Step 2&3 (LIC-T 3&4)

message in the network

10 if a node owns a privilege, there is no privilege | Step 2&3 (LIC-T 3&4)

message in the network

11 if a node is located at cs, 16, 17, 18, 19, no another | Step 2&3 (LIC-T 3&4)

node owns the privilege

12 if no node owns a privilege, there is a privilege | Step 2&3 (LIC-T 3&4)

message in the network

nw void nw (received)
vod void nw (sending)
rem 11 12 13
110 11213 14
0o[1]1 @I
0|11 [®
19 ol 1|1 (@ 5
01| 1]|LN
18 17 16 cs

67

Table 7.3: False invariants of the SK protocol.

No. Content Step in guidelines
1 there is at most one process in cs, 16, 17, 18,19, | Step 1 (LIC-T 1)
110
2 if a node does not own a privilege, its location is | Step 1 (LIC-T 2&4)
13 or 14 or 15
3 if a node is located at 13 or 14 or 15, there exists | Step 1 (LIC-T 2&4)
a node is located at cs, 16, 17, 18, 19, 110
4 if a node is located at 15, it is in the queue Step 2&3 (LIC-T 2&3&4)
if a node is in the queue, it is located at 15 Step 2&3 (LIC-T 2&3&4)

Moreover, some likely invariants are also found, such as there are two or more privilege messages
in the network or there are two or more nodes in the cs. It implies that our approach still works

even the input is defective versons.

7.2 Formal Verification of the Confirmed Invariants of the
SK Protocol in CafeOBJ

7.2.1 Formal Specification of the Suzuki-Kasami Protocol in CafeOBJ

We first briefly present the formal specification of the protocol in CafeOBJ. Sorts Sys, Network,
Queue, Array, and Label are introduced to represent the state space, the network, queues,
arrays, and locations at which nodes are located, respectively. The meaning of Sys has been
explained in Section 2.3 while the meaning of the remaining sorts is the same as the one

described in Section 7.1. The observers used in the CafeOBJ formal specification are declared

as follows:

op nw : Sys -> Network .
op pc : Sys NzNat -> Label .
op havePriv : Sys NzNat -> Bool .

op requesting : Sys NzNat -> Bool .

op queue : Sys NzNat -> Queue .
op rn : Sys NzNat -> Array .
op 1ln : Sys NzNat -> Array .
op idx : Sys NzNat -> NzNat .

where NzNat is the sort of non-zero natural numbers, representing node IDs.
The constant init is introduced to represent an arbitrary initial state. Let I is a CafeOBJ

variable of sort NzNat, init is defined in terms of equations as follows:

68

op init : -> Sys {constr}

eq nw(init) = void .

eq pc(init,I) = rem .

eq havePriv(init,I) = (I = 1)
eq requesting(init,I) = false .
eq queue(init,I) = empty .

eq rn(init,I) = ia .

eq ln(init,I) = ia .

eq idx(init,I) =1 .

where void, empty, and ia are constants denoting the empty network, the empty queue, and
the (initial) array such that each content is 0, respectively.

We specify 13 transitions, where each of them is defined in terms of equations that specify
how the values observed by the eight observers change. For example, updQ(7) in Figure 7.1 is

defined as follows:

op updateQueue : Sys NzNat -> Sys {constr} .
eq requesting(updateQueue(S,I),J) = requesting(s,J)
eq havePriv(updateQueue(S,I),J) = havePriv(S,J)
ceq queue(updateQueue(S,I),J) =
if T = J then
-- Check some conditions based on
-- the algorithm, then update queue
if not(idx(S,I) \in queue(S,I)) and not(idx(S,I) = I)
and rn(S,I)[idx(S,I)] = s(1n(S,I) [idx(S,I)]1)
then put(queue(S,I),idx(S,I))
else queue(S,J) fi
else queue(S,J) fi
if c-updateQueue(S,I)

eq ln(updateQueue(S,I),J) 1n(S,J)

eq rn(updateQueue(S,I),J) = rn(S,J)

ceq idx(updateQueue(S,I),J) =
-- Update loop variable (index) by increment operator
if I = J then s(idx(S,I)) else idx(S,J) fi
if c-updateQueue(S,I)

ceq pc(updateQueue(S,I),J) =
-- Update location of node I if its index is over N
if I = J then if idx(S,I) = N then 18 else 17 fi
else pc(8,J) fi
if c-updateQueue(S,I)

eq nw(updateQueue(S,I)) = nw(S)

69

ceq updateQueue(S,I) = S if not c-updateQueue(S,I)

where S and J are CafeOBJ variables of sorts Sys and NzNat, respectively. 1idx(S,I) represents
the value of the loop variable of node I in state S, _\in_ is an operator defined to check whether
the first parameter is in the second parameter, s (_) is the successor function of natural numbers,

and c-updateQueue(S,I) is pc(S,I) = 17. The rest of the transitions can be defined likewise.

7.2.2 Formal Verification of the Confirmed Invariants of the SK Pro-

tocol

Similarly to the TAS case study presented in Section 2.3, we specify the confirmed invariants
from Section 7.1.3 and prove them by writing proof scores in CafeOBJ.

Similarly to what has been presented in Section 2.3, we also use simultaneous structural
induction on variable S of sort Sys to conduct the formal verification. There are one base case
and 13 induction cases (from try(i) to recReq(7) in Figure 7.1). As also described in Section 2.3,
we use case splitting to make each of CafeOBJ fragments return either true or false. For each
case in which CafeOBJ returns false, we need to use lemmas to discharge the case. There are
four factors used to construct lemmas: equations (assumptions) in the fragment of a case that
CafeOBJ returns false, output from CafeOBJ, confirmed invariants, and our approach with
features of -SMGA. When conducting theorem proving all confirmed invariants, most lemmas
are constructed from the confirmed invariants in Section 7.1.3. Let us consider a fragment (or

a sub-case) of the induction case waitPriv(i) in which false is returned as follows:

open INV .
op s : -> 38ys .
ops i j p : -> NzNat .

op pri : -> Privilege .

eq pc(s,p) = 15 .

eq (i = p) = false .

eq j =p -

eq (msg(p,pri) \in nw(s)) = true .

eq pc(s,i) = 19 .

red inv7(s,i,j) implies inv7(waitPriv(s,p,pri),i,j)

close

where pc(s,p) = 15, ..., pc(s,1i) = 19 are our assumptions used to characterize the sub-case

(or the fragment). To discharge this fragment, we use inv2 defined as follows:

op inv2 : Sys NzNat NzNat Privilege -> Bool

70

eq inv2(S,I,J,Pri) = msg(I,Pri) \in nw(S)
implies (not(pc(S,J) = cs or pc(S,J) = 19 or pc(S,J) = 18
or pc(8,J) = 17 or pc(S,J) = 16))

inv2 is constructed by SK-LI 7. We also use some parts of combination of the confirmed

invariants. Let us consider the fragment that returns false as follows:

open INV .
op s : -> 3ys .
ops i j p : -> NzNat .

eq pc(s,p) = 11 .
eqi=p.
eq (j = p) = false .

eq havePriv(s,p) = true .

eq pc(s,j) = 16 .

red inv7(s,i,j) implies inv5(s,j,p) implies inv7(setReq(s,p),i,j)

close

where pc(s,p) = 11, ..., pc(s,j) = 16 are our assumptions used to characterize this frag-

ment. To discharge this fragment, we use inv5 defined as follows:

op invb : Sys NzNat NzNat -> Bool
eq inv5(S,I,J) = ((pc(S,I) = 19 or pc(S,I) = 18 or pc(S,I) = 17 or pc(S,I) = 16)
and havePriv(S,J)) implies (I = J)

inv5 is constructed based on SK-LIs 2.2 and 3.1.
There are two lemmas inv6 and inv8 that are constructed in different ways. inv6 is defined

as follows:

op inv6 : Sys NzNat NzNat Privilege Privilege -> Bool
eq inv6(S,I,J,Pri,Pril) = msg(I,Pri) \in nw(S)
implies not (msg(J,Pril) \in del(nw(S) ,msg(I,Pri)))

where del (

the network (the first parameter). invé says that if there exists a privilege message M from

,) is the operator defined to delete a specific message (the second parameter) in
the network, there is no more privilege messages in the network just after deleting the privilege
message M. From inv6, we can derive that there always exists at most one privilege message
in the network. The main reason to be able to construct the lemma is to discharge a sub-case

as follows:

71

open INV .
op s : -> Sys .
ops 1 j p : -> NzNat .

ops pri pril : -> Privilege .

eq pc(s,p) = 15 .
eq (msg(p,pril) \in nw(s)) = true .
eq (j = p) = false .
eq (msg(i,pri) \in nw(s)) = false .
eq (pc(s,j) = cs) = false .
eq pc(s,j) =19 .
red inv2(s,i,j,pri) implies inv2(waitPriv(s,p,pril),i,j,pri)

close
In the sub-case, CafeOBJ returns a term as follows:
true xor (msg(i,pri) \in del(nw(s),msg(p,pril)))

We can use inv6 so that CafeOBJ can return true for the sub-case. Note that this lemma is
inspired from SK-LI 5.

Lastly, inv8 is defined as follows:

op inv8 : Sys NzNat -> Bool
eq inv8(S,I) = not(pc(S,I) = rem or pc(S,I) = 11)
implies (requesting(S,I) = true)

The meaning of the lemma is similar to some confirmed invariants, such as SK-LIs 4.1 and
4.2 and the meaning of this lemma is as follows: when a node is not located at either rem or
11, its requesting is true. However, it took time for us to find that the lemma is crucial.
When we use the lemma, we can discharge the most annoying sub-cases we have encountered.
We construct this lemma by using some features of r-SMGA. Let us consider a sub-case when

proving the induction case recReq(i) as follows:

open INV .
op s : -> 3ys .
ops 1 j p : -> NzNat .
op pri : -> Privilege .

op re : -> Request .
eq (msg(p,re) \in nw(s)) = true .
eq (node(re) = p) = false .

eq (i = p) = false . eq j =p .

72

Table 7.4: A number of likely invariants and its relevance

No. of likely invariants A B C D
17 5 12 12 3

: Numbers of likely invariants that have counterexamples
: Numbers of likely invariants that are confirmed by invariant model checking

: Numbers of likely invariants that are proven by theorem proving

oQw»

: Other invariants that are used as lemmas

eq msg(i,pri) \in nw(s) = false
eq pc(s,p) = cs .
eq requesting(s,p) = false .

red inv2(s,i,j,pri) implies inv2(receiveReq(s,p,re),i,j,pri)

close

where node(_) is defined to get the node from the request message denoted re. “...” are

assumptions that we do not list at all. First, in this sub-case, we make an attempt by using
a simplification of the confirmed invariants based on all assumptions (similarly to what we do
with most lemmas). The assumptions make us construct some likely invariants that are hard or
complicated to verify. After we have analyzed the situation, we found that requesting(s,p)
is the core source of the situation. If requesting(s,p) is true, we can discharge the case;
otherwise, it makes the case become complicated. We have used Pattern matching feature
of -SMGA to search for states that satisfy the condition “requesting is true” and we have
finally constructed inv8 by observing graphical animations of such states (the details of how
to find this lemma are described in Section 7.1.4). To this end, we summarize all properties
of the SK protocol proved and their lemmas used in Table 7.5 and 7.6. Note that we do
not keep the same order with the confirmed invariants. Table 7.4 shows information of a
number of likely invariants and its relevance, such as numbers of such likely invariants that
have counterexamples, are confirmed by model checking, and are proven by theorem proving.

All proof scores of the SK protocol are available at: https://gitlab.com/duydangl2/

skp-cafeobj-cafeinmaude.

7.3 Summary

In this chapter, we have conducted a case study where the SK protocol is used as an example.
In this case study, we mainly show the usefulness of our proposed approach, especially using

proposed guidelines with new features in r-SMGA, where some parts cannot be done by the

73

(11 = (1'g)2d 10 war = (1‘g)od)jou seriduut (en1y = (1‘g)Surysenbar) = (1‘g)g1aur bo BUIWID] OU | ¢TAUI
© os[ej
= (1'g)atrgeaey sorduit ¢ = (1‘g)ad 10 1 = (1'g)od 10 ¢ = ('S)2d = (I‘S)zT1AUI bo BUWIUWII] OU | gTAUI
“(T1 = (1g)od 10 wex = (1‘g)od) serjduur (esyey = (1‘g)Surysenbar) = (1‘g)11AUT bo BUWIWII] OU | TTAUI
“aste] = (1'g)8urgsenbeur seriduat 11 = (1'g)od 10 wer = (T‘g)od = (I‘g)TAUI bo BUWIWD[OU | (JTAUL
" [= 1 serdut (6]
= (r‘g)od 10 Q1 = (r‘g)od 10 21 = (r'g)od 10 9] = (r‘s)od 10 s0 = (r‘g)od) pue (6] =
(1's)od 10 Q1 = (1g)od 10 2 = (1'g)2d 10 9] = (1‘g)2d 10 s0 = ([‘Q)od) = ([‘I'S)EAuUT bo JAUL ‘gAUT | GAUT
* (enay = (1'g)Sumysenboai) sorpdur (17 = (1'g)2d 10 we1 = (1'g)od)jou = (1‘g)gaut bo BUWIWID] OU | QAUI
(61 = (r's)od 10 81 = (r‘g)od 10 21 = (r‘g)od 10 9] = (r‘g)od 10
so = (r‘g)od)jou serduat ((= 1) jou pue (((1‘'S)Atrgeary pue gl = (1‘g)od) 10 6] =
(1's)od 10 Q1 = (1'S)od 10 21 = (1'S)od 10 9] = (1'Q)od 10 80 = (1'G)od)) = ([‘I'S)LAUI DO | GAUI ‘PAUL ‘GAUT ‘ZAUT ‘TAUL | JAUI
+ (((ug'p)Sswr’(g)au)op
ur\ (Tug'r)ssu) jou sordurr (g)mu ur\ (IgT)Ssw = (TUJTIJTS)9aur bo PAUL ‘ZAUL | QAT
(= 1) serdunt (([‘g)AtIgosey
pue (91 = (1's)od 10 L[= (1's)od 10 g1 = (1'§)od 10 6] = (1'$)2d)) = (r‘T'S)gaut bo GAUL ‘TAUL | GAUT
" (((r'g)atrgoaey)jou) sorpdurt (g)mu ur\ (ag7)s8swm = (g’ ‘1°q)pAut bo QAUI ‘CAUL | FAUL
" (= 1) serpdur (fg)atgoney pue (1'S)Atrgosey = ([I')gaut bo pAul | gAul
“((91 = (r‘g)od 10 21 = (r‘g)od 10 Q1 = (r‘g)od 10 QAT
61 = (r‘g)od 10 80 = (r‘g)od)jou) serpdur (§)mu ur\ (LIJ‘7)Ssw = (LIJ‘[‘T°S)gAUT Do | ‘GAUT ‘) AUT ‘QAUT ‘FAUT ‘TAUL | ZAUI
~((r = 1) serdunt
(r*s)atrgoney pue (((1's)amdoaey pue g = (1's)od) 1080 = (1's)2d)) = (£7'S) Taur bo PAUL ‘GAUL ‘ZAUT | TAUI
xequAs rgOoje) | oaoiad 0} pasn (s)ewrmior] PureN

[000301J MS o1} Jo seryredord parold :G') O[qR],

74

S (g = ug pue r =)

sordunt (g)au ur \ (71 [)ssw pue (g)mu ur \ (U T)ssw = ([T [T'S)0gAut bo OAUT ‘PAUT ‘GAUT | (ZAUL
" ((g)mu ur\ (t1g'r)Ssur)jou sodurt (67 = (1'5)>d grAUl

10 9 = (1'g)od 10 2 = (1°'g)od 10 9] = (1°'g)od 10 s0 = (1'G)od) = (IJ‘[‘T'S)6TAUL Do | ‘GAUT ‘QAUT ‘QAUT ‘GAUI ‘TAUL | GTAUI
T osye] = (['G)AuIgoneT]

sordurt (= 1)jou pue (([‘'Q)emenb ur\) pue (['g)aurgosey = (f1'q)yraur bo PAUL ‘CAUL | QTAUI
((r‘g)atrgeaey)jou sorjdurt (= 1)jou pue (6] = (‘g)od

10 g1 = (1'g)2d 10 4 = (T'g)od 10 91 = (1'g)od 10 80 = (T'g)od) = (['T'g)LTATI DO PAUL ‘GATT ‘ZAUT | /AT
" (I's)Angoaey sordur 6] =

(1'g)od 10 g1 = (1°g)od 10 2] = (1°g)2d 10 9] = (1'g)2d 10 0 = (1'g)od = (1'S)9TAUI bo QAUI ‘)AUL | QTAUL
© osTej]

= (r'g)angoaey sordut (11g)b ur\ pue (g)mu ur\ (LdT)ssw = (1d'fT'g)graut bo QAUL ‘GAUL | GTAUL
S oste] = (['g)AntgoaeT

soridurt (= 1)jou pue ((1‘q)enenb ur\ r) pue (['g)aurgesey = ([1'Q)yraur be PAUL ‘CAUL | FTAUT

xejuds rgoOoeje) | @aoad o) pesn (s)ewruiary pureN

(7o) 0003014 S 03 Jo serpredord paroid :9°) S[qe],

1)

original version (e.g. searching a specific message in the network). Several likely invariants are
found based on our proposed approach and features of r-SMGA. Some invariants that cannot
survive with the search command, show one limitation of our approach, but it can be avoided
by confirming with the search command. We also have conducted a flawed version of the
SK protocol to show that our approach could be applied to defective versions. The results
of this chapter show that our approach can help humans to find true invariants of the SK
protocol where all confirmed invariants (survived with the search command) are proven as true
invariants. One promising result is that our approach can find new likely invariants used as

lemmas when conducting interactive theorem proving.

76

Chapter 8

Evaluation

8.1 Analysis of the Case Studies

Based on the results from case studies, this section analyzes the results with each of proposed
tips (for designing state picture templates and conjecturing likely invariants), accordingly.

For the proposed tips for designing state picture templates, Table 8.1 shows all tips and their
number of uses when conducting case studies in the dissertation. The first column refers to the
names of the tips while the second and the third column refer to the number of the uses of the
tips in the MCS protocol and the SK protocol, respectively. In the table, most proposed tips
are shared for both protocols because both protocols are mutual exclusion protocols. There
are some of the tips that are never used for both protocols but used for other case studies
shown in the Table 8.2. Table 8.2 shows the tips and the number of case studies for which
the tips are used. In the table, SPT-T 5, 7, and 10 are mainly proposed for autonomous
vehicles protocols and then not used for the two protocols in the dissertation. SPT-T 6 is
the tip that is used most frequently because it can be applied for any protocols where they
have at least one variable that can have either of two values, such as Boolean. For us, this
tip is also crucial, especially in finding likely invariants (used with the tips for conjecturing
likely invariants), because (1) this tip is a form of Gestalt principles that helps us to recognize
two groups (two kinds of values, such as Boolean) via animations and the design from this
tip (note that two kinds of values, such as Boolean are the most fundamental value and used
most frequently in systems/protocols), (2) based on the design from the content, this tip also
reduces the complexity of state picture templates (numbers of visual objects) when the number
of observable components (satisfies this tip) increases, and (3) it is inspired to propose SPT-T
8 where observable components can have either of three or more than three values. Note that
each tip is proposed based on the orientation mentioned in Chapter 4, where Gestalt principles
are a main part in this orientation. Table 8.2 also shows that all proposed tips are used to
design state picture templates.

For the proposed tips for conjecturing likely invariants, Table 8.3 shows all tips and their

7

number of uses when conducting case studies in the dissertation. The first column refers to
the names of the tips while the second and the third column refer to the number of the uses
of the tips in the MCS protocol and the SK protocol, respectively. The table says that all tips
are used because the proposed tips are built to help humans to find likely invariants including
simple likely invariants (consist of one or two variables/observable components) using LIC-T 1
& LIC-T 2 (by observing animations from state sequences only) and complex likely invariants
(consist of two or more variables/observable components) using LIC-T 3 & LIC-T 4 (by
utilizing pattern matching feature in r-SMGA). All tips are also used in the other case studies
as shown in Table 8.4. For all case studies, LIC-T 3 is used most frequently because most
likely invariants that consist of two or more observable components are found by this tip. In
particular, when using LIC-T 2 (focus on two observable components), it is not enough to
conjecture likely invariants that have relations of two observable components, such as A = B
or B = A, where A & B and = are two observable components and the implication relation,
respectively, therefore, it is necessary to use LIC-T 3 beside LIC-T 2. For us, LIC-T 3 is
crucial because (1) it is a main part to find complex likely invariants as described in Section 4.4,
(2) its content helps humans to find likely invariants that have a form of implication, and (3)
this tip also helps us to recognize counterexamples in (2). When we use LIC-T 1, most
likely invariants are related to the mutual exclusion property. For the SK protocol, we most
frequently use features of r-SMGA with LIC-T 3 because the features work well for some
observable components of the SK protocol, such as the network (an AC collection of messages).
Note that the features in r-SMGA make the tips more effective as shown in Chapter 7.

After theorem proving the confirmed invariants (likely invariants survived with invariant
model checking), most confirmed invariants become properties (true invariants). For the SK
protocol, all confirmed invariants are properties. When conducting theorem proving the con-
firmed invariants of the SK protocol, lemmas are constructed by the confirmed invariants and
the tips with the features of r-SMGA as described in Chapter 7.2. For the MCS protocol,
even though we cannot prove all confirmed invariants by CafeOBJ, we are likely to be able to
prove the remaining confirmed invariants that have not yet been proved by adding auxiliary
variables to the MCS protocol as described in [61]. It shows that when likely invariants found
by our approach are survived with invariant model checking, they are likely to be properties of

protocols/systems under consideration.

8.2 Answer to the Research Question

As mentioned in Chapter 1, we can answer RQ by answering RQ1 and RQ2. Contents from
Chapter 4 and Chapter 5 answer two sub-questions while the results from Chapter 6 and
Chapter 7 show the usefulness of our proposals applied to case studies. Let us summarize the

answers and our contributions.

78

RQ1: How to design state picture templates based on Gestalt principles?
(A1): This study proposes the tips based on Gestalt principles to help humans to design state
picture templates. All tips based on the orientation where Gestalt principles are a main part

are as follows:

Values of observable components should be visual as much as possible and be arranged

based on Gestalt principles, such as common region, proximity, and similarity laws.

When humans use the tips, they can easily recognize which observable components have just
changed based on Gestalt principles, and then can conjecture/find likely invariants based on
such changes of observable components. The results in Section 8.1 show the usefulness of the
tips via non-trivial case studies where Tables 8.1 and 8.2 are some results from case studies
and have been analyzed in Section 8.1. Note that those tips are proposed based on the Gestalt
principles that have been established in the psychology field.
RQ2: How to conjecture/find likely invariants based on graphical animations?

(A2): Based on the state picture templates designed by our proposed tips, this study also
proposes tips for conjecturing/finding likely invariants of state machines. The tips help hu-
mans to focus on values of observable components in the Gestalt principles-based state picture
template and conjecture/find likely invariants based on such values of observable components,
especially likely invariants with a form of implication. Tables 8.3 and 8.4 are some results
from case studies that have been analyzed to show the usefulness of those tips when applying
them to case studies. The results of the case studies also show that when likely invariants can
survive by invariant model checking, they are most likely to be properties of either of the two
mutual exclusion protocols. Therefore, Gestalt principles can help humans to understand state

machines via knowing properties of state machines based on our proposals.

8.3 Limitations

Besides, there are some limitations of our proposed approach and some threats that may affect

to our results. In this section, let us discuss some factors involving to our proposals.

Humans

Humans are a main factor that cannot be ignored in our study because we mainly rely on the
visual perception of humans, especially Gestalt principles about grouping. In our proposed

approach, three tasks require humans:

e Designing a state picture template: as mentioned, it is a non-trivial task [11] and there is
no perfect solution for all protocols in general, therefore, our proposals currently mainly
depend on Gestalt principles established in psychology, which is relied on the visual

perception of humans about grouping.

79

Table 8.1: Tips for designing state picture templates and number of their uses in the MCS
protocol and the SK protocol

Name the MCS protocol the SK protocol
SPT-T 1 1 1
SPT-T 2 1 1
SPT-T 3 1 1
SPT-T 4 3 3
SPT-T 5 0 0
SPT-T 6 3 3
SPT-T 7 0 0
SPT-T 8 3 0
SPT-T 9 3)
SPT-T 10 0 0

e Conjecturing/finding likely invariants via the state picture template: this task mainly
helps humans to conjecture/find likely invariants based on state sequences. Finding likely
invariants based on state sequences is similar to most state-of-the-art approaches men-
tioned in Section 3. Currently, about proposed tips, we do not limit kinds of characteristics
of likely invariants that humans should focus on so that it totally depends on human ob-
servation. Such kinds of characteristics will be analyzed and such task will be a piece of

our future work.

e Verifying guessed likely invariants: this task takes much efforts and time because (1) we
have manually prepared proof scores and (2) finding lemmas for fragments that return
false is a still a non trival task. Invariant Proof Score Generator (IPSG) [64] is a tool that
can automatically generate proof scores and point out sub-cases or fragments that return
false. (1) can be done by using IPGS in the future while (2) is still not

Assessment Methods

Currently, conducting case studies and analyzing results is a current way to to evaluate our
proposals. Conducting usability evaluation involving humans is one possible way however,
this approach that has been pointed out its limitations and difficulties in Chapter 3. For our
knowledge, there is no standard way to evaluate our proposals. Finding assessment methods is

one piece of our future work.

80

Table 8.2: Tips for designing state picture templates and case studies use them

Name Number of case studies
SPT-T 1 5 (SKP [13, 58], MCS [11], Anderson [11]|, LJPL [12], AR [56])
SPT-T 2 5 (SKP [13, 58], MCS [11], Anderson [11]|, LJPL [12], AR [56])
SPT-T 3 | 3 (SKP [13, 58], MCS [11], Anderson [11])
SPT-T 4 5 (SKP [13, 58], MCS [11], Anderson [11])
SPT-T5 |1 (LJPL [12])
SPT-T 6 | 6 (SKP [13, 58], MCS [11], Anderson [11], LJPL [12], AR [56], NSLPK [57, 63))
2 (
1
6 (
2 (

SPT-T 7 LJPL [12], AR [56])

SPT-T 8 MCS [11])

SPT-T 9 SKP [13, 58], MCS [11], Anderson [11], LJPL [12], AR [56], NSLPK [57, 63])
SPT-T 10 LJPL [12], AR [56])

Table 8.3: Tips for conjecturing likely invariants and number of their uses in the MCS protocol
and the SK protocol

Name the MCS protocol the SK protocol
LIC-T 1 5)

LIC-T 2 8 12

LIC-T 3 10 11

LIC-T 4 12 6

Table 8.4: Tips conjecturing likely invariants and case studies use them

Name Number of case studies

LIC-T 1 6 (SKP [58], MCS [11], Anderson [11], LJPL [12], AR [56], NSLPK [57])

LIC-T 2 6 (SKP [58], MCS [11], Anderson [11], LJPL [12], AR [56], NSLPK [57])
)
)

LIC-T 3 6 (SKP [58], MCS [11], Anderson [11], LJPL [12], AR [56], NSLPK [57]
LIC-T 4 6 (SKP [58], MCS [11], Anderson [11], LJPL [12], AR [56], NSLPK [57]

81

Chapter 9

Conclusion and Future Work

9.1 Conclusion

To answer RQ), this dissertation has proposed an approach based on visual information to help
humans to find likely invariants of state machines. There are three contributions to assist the
proposed approach: (1) giving some practical tips for designing state picture templates and
conjecturing likely invariants, (2) providing new features to SMGA, by developing r-SMGA by
integrating Maude with SMGA, to make those tips more effective, and (3) conducting multiple
case studies using our proposals. The previous chapter has answered RQ by answering RQ1
and RQ2, where RQ1 and RQ2 have been answered based on the the results of the case

studies.

Design state picture templates

This contribution has shown that the state picture template is extremely crucial in our approach.
After conducting many case studies, we have summarized our lessons learned as practical tips
and provided them for users to design the state picture template. The tips are mainly built and
evaluated based on Gestalt principles, especially the common region, proximity and similarity
laws. Moreover, we also have provided some more tips for users to conjecture likely invariants.
From those tips, we have built guidelines as a generic way for human users to find likely

invariants more systematically.

Integration of SMGA and Maude

In this contribution, to make the proposed tips more effective, some features are provided
to assist humans to conjecture/find likely invariants. We have integrated SMGA and Maude
so that the revised version (r-SMGA) can use some powerful features of Maude to assist to
find likely invariants based on the proposed guidelines. By using Maude, the pattern matching

feature of SMGA has been revised so that context-free grammars, instead of regular expressions,

82

can be used as patterns, and associative-commutative binary operators can also be used in the
patterns. Some more interactive features have been provided to help users to concentrate on
some visual objects in which users are interested. Special display features are also provided to

display some data structures, such as array and queue.

Conducting the case studies

Two case studies where the MCS protocol and the SK protocol are used as two non-trivial
examples have been conducted to demonstrate the usefulness of our approach. Firstly, for each
protocol, we produce graphical animations based on state picture template designed by our
proposed tips. Using guidelines and features in r-SMGA, several likely invariants are found and
confirmed with invariant model checking (the search command). The confirmed invariants are
also proven by interactive theorem proving. When conducting theorem proving, some likely
invariants are constructed as lemmas by our proposed approach. We have shown that our

approach also works with flawed or defective protocols.

9.2 Future Work

As usual, there are many things left we need to do in the future. There are two directions we aim
to do: (i) keeping revising the current version by supporting some more other visualization for
human users to have various options to visualize observable components, and (ii) finding some
factors affecting animations and/or state picture templates to help human users in designing
state picture templates systematically. Last but not least, we need to conduct more classes of

protocols, such as security protocols to demonstrate the usefulness of our proposed approach.

Support More Visualization Techniques for Observable Components

Tree graphs are a common kind of diagram to visualize pieces of information that link together.
Hernando et al. [65] have proposed a novel method using a tree graph to visualize huge infor-
mation from related documents, such as news. Keywords or sentences are nodes where each
node can be seen as raw texts or related images. There is one main node that is displayed as
a picture containing related texts and images. The other nodes are displayed as raw texts or
displayed in the same way as the main node such that the main node is displayed larger than the
others. Users can observe nodes and navigate the graph to understand the relations between
such nodes. When users navigate the graph, the main node is updated to let users mainly focus
on such node. ABETS [66] is a prototype for checking the correctness of Maude programs. The
main purpose of the work is to improve the diagnosis of erroneous Maude programs. It uses
tree graphs to visualize state sequences when nodes and edges correspond to states and rules,

respectively. If an error occurs, the tool generates a tree graph that contains states which lead

83

to the error. To understand the error, users can observe the paths and click on states to expand
the information of such states displayed as raw texts. One direction of our future work is to
combine both approaches above to r-SMGA where state sequences can be used in the way as
proposed in [66], be displayed in the way as proposed in [65], and be graphically animated by
our approach when users select one concrete state sequence.

Frank et al. [67] have proposed a method to visualize state transition systems. They aim
to let users observe the global properties of protocols by visualizing state spaces. They use
cone, the tree concept [68] to form state transition structures in three dimensions. The main
algorithm of the method focuses on the symmetry property and aims to let users identify the
symmetrical and similar sub-structures in the tree. First, they rank all nodes to make the
systems become hierarchical system structures [69]. Then, they cluster such nodes following
some local properties to reduce the visual complexity of the tree. Based on the clusters, they
aim to visualize the state spaces as a backbone tree in which clusters are visualized as circles
whose sizes are decided by their volumes. Then, users can observe and interact with the tree
by focusing and zooming into some clusters to be able to analyze paths inside. The method
is extended to deal with a large state space [70]. The results of both versions allow users to
observe state spaces of protocols visualized as a backbone tree with the cone tree concept for
each node. Then users can find some global properties of the protocols, such as obtaining
some clusters that do not return to initial nodes after starting some executions. This method
and r-SMGA share the idea to help users find properties or invariants of protocols. r-SMGA
graphically animates state sequences (paths) while this method visualizes whole state spaces.
The idea of the method motivates us to extend r-SMGA so that r-SMGA can give users an
overview of state spaces. Then users can select some paths and graphically animate them by

our approach. One piece of our future work is to extend r-SMGA based on the mentioned ideas.

Factors affecting animations and /or state picture templates

There are many attributes of animations that can help humans to recognize some relations
of visual objects. We investigate two attributes: subitizing and the law of common fate of
the Gestalt principle. In the psychology field, subitizing is a term to introduce the ability
of humans to enumerate a small number of items rapidly and accurately. The terminology
was first used in [71] to distinguish it from counting that is time-consuming and error-prone,
where the subitizing range is fewer than four items and the counting range is more than four
items [72]. Many studies have shown that some factors can expand the subitizing range, such as
grouping [73], bilateral and two-item advantage [74]; and the original subitizing range (1-3) is
still the fastest and the most accurate in the experiments. The law of common fate (LCF) [75] is
one of the Gestalt principles and it is the only one that can deal with dynamic (i.e. animations)
properties instead of static properties [76]. This law states that visual elements that move with

the same velocity (i.e. same speed and same direction) are perceived as the same group. The

84

work |77] has conducted two empirical experiments to demonstrate that LCF is not restricted
to mere motion and some dynamic visual properties (such as luminance and size) have been
affected also. In the second experiment, participants are required to observe some animated
scatterplots representing the change of data and answer some questions related to group, such
as “what patterns do you see?” and “which variable(s) create the most visible patterns?” The
result of the second experiment makes the authors claim that the power of dynamic visual
variables might shift when applied to more realistic visualization scenarios, such as pattern
identification and conjunction search.

When a protocol/system, such as one of all case studies we have conducted, is graphically
animated, the number of active entities, such as processes and nodes, is a few, such as three. Our
way to visualize each state of the protocol allows us to immediately recognize how many nodes
there are at each location, such as cs (Critical Section), without counting the nodes because
of subitizing. r-SMGA makes it possible for human users to rely on subitizing so as to find
likely invariants, although we heavily depend on state picture templates. This illustrates how
important state picture templates are [11]. Some non-invariant characteristics (e.g. liveness
characteristics), such as eventual characteristics, can be perceived in a similar way to LCF,
where a group or a pattern can be regarded as a characteristic. LCF can be one possible factor

to guide human users in conjecturing liveness characteristics.

85

Bibliography

1]

2l

13l

4]

[5]

(6]

7]

8]

M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. Dynamically discovering likely
program invariants to support program evolution. IEEFE Transactions on Software Engi-
neering, 27(2):99-123, 2001, doi:10.1109/32.908957.

Toh Ne Win and Michael D. Ernst. Verifying Distributed Algorithms via Dynamic Analysis

and Theorem Proving. Technical Report 841, MIT Laboratory for Computer Science,
Cambridge, MA, May 25, 2002.

Marat Boshernitsan, Roongko Doong, and Alberto Savoia. From Daikon to Agita-
tor: Lessons and Challenges in Building a Commercial Tool for Developer Testing.
In Proceedings of the 2006 International Symposium on Software Testing and Analy-
sis, page 169-180, New York, NY, USA, 2006. Association for Computing Machinery,
doi:10.1145/1146238.1146258.

Y. Kataoka, M.D. Ernst, W.G. Griswold, and D. Notkin. Automated support for program
refactoring using invariants. In Proceedings IEEE International Conference on Software
Maintenance. ICSM 2001, pages 736-743, 2001, doi:10.1109/ICSM.2001.972794.

M. Harder, J. Mellen, and M.D. Ernst. Improving test suites via operational abstraction. In
25th International Conference on Software Engineering, 2003. Proceedings., pages 60-71,
2003, doi:10.1109/ICSE.2003.1201188.

K. W. Brodlie, L. Carpenter, R. A. Earnshaw, J. R. Gallop, R. J. Hubbold, A. M. Mumford,
C. D. Osland, and P. Quarendon. Scientific Visualization: Techniques and Applications.
Springer-Verlag, Berlin, Heidelberg, 1992, doi:10.1007/978-3-642-76942-9.

Johan Wagemans, James H. Elder, Michael Kubovy, Stephen E. Palmer, Mary A. Pe-
terson, Manish Singh, and Riidiger von der Heydt. A Century of Gestalt Psychology in

Visual Perception: I. Perceptual Grouping and Figure—ground Organization. Psychological
Bulletin, 138(6):1172-1217, 2012, doi:10.1037,/a0029333.

Johan Wagemans, Jacob Feldman, Sergei Gepshtein, Ruth Kimchi, James R. Pomerantz,

Peter A. van der Helm, and Cees van Leeuwen. A century of Gestalt Psychology in

86

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Visual Perception: II. Conceptual and Theoretical Foundations. Psychological Bulletin,
138(6):1218-1252, 2012, doi:10.1037/a0029334.

Colin Ware. Information Visualization: Perception for Design. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2004.

Tam Thi Thanh Nguyen and Kazuhiro Ogata. Graphical Animations of State Ma-
chines. In 15th DASC, pages 604-611, 2017, doi:10.1109/DASC-PICom-DataCom-
CyberSciTec.2017.107.

Dang Duy Bui and Kazuhiro Ogata. Better State Pictures Facilitating State Machine
Characteristic Conjecture. Multimedia Tools and Applications, 81(1):237-272, 2022,
doi:10.1007/s11042-021-10992-7.

Dang Duy Bui, Win Hlaing Hlaing Myint, Duong Dinh Tran, and Kazuhiro Ogata. Graph-
ical Animations of the Lim-Jeong-Park-Lee Autonomous Vehicle Intersection Control Pro-
tocol. JVLC, 2022(1):1-15, 2022, doi:10.18293/JVLC2022-N1-004.

Dang Duy Bui and Kazuhiro Ogata. Graphical Animations of the Suzuki-
Kasami Distributed Mutual Exclusion Protocol. JVLC, 2019(2):105-115, 2019,
doi:10.18293 /JVLC2019-N2-012.

Manuel Clavel, Francisco Durén, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet, José
Meseguer, and Carolyn Talcott, editors. All about Maude - a High-Performance Logical
Framework: How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350
of LNCS. Springer-Verlag, Berlin, Heidelberg, 2007, doi:10.1007 /978-3-540-71999-1.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchroniza-
tion on Shared-Memory Multiprocessors. ACM Trans. Comput. Syst., 9(1):21-65, 1991,
doi:10.1145/103727.103729.

Ichiro Suzuki and Tadao Kasami. A Distributed Mutual Exclusion Algorithm. ACM Trans.
Comput. Syst., 3(4):344-349, 1985, doi:10.1145/6110.214406.

Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report. World Scientific, Singapore,
1998, doi:10.1142/3831.

Kazuhiro Ogata and Kokichi Futatsugi. Compositionally Writing Proof Scores of In-
variants in the OTS/CafeOBJ Method. J. Univers. Comput. Sci., 19(6):771-804, 2013,
d0i:10.3217/jucs-019-06-0771.

Adam Naumowicz and Artur Kornitowicz. A Brief Overview of Mizar. In Theorem Proving
in Higher Order Logics, pages 67-72, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg,
doi:10.1007/978-3-642-03359-9 5.

87

[20]

[21]

[22]

23]

[24]

[26]

27]

28]

John Harrison. HOL Light: An Overview. In Theorem Proving in Higher Order Logics,
pages 6066, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg, doi:10.1007/978-3-642-
03359-9 4.

Krystof Hoder and Andrei Voronkov. Sine Qua Non for Large Theory Reasoning. In Au-
tomated Deduction — CADE-23, pages 299-314, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg, doi:10.1007/978-3-642-22438-6 23.

Alex Roederer, Yury Puzis, and Geoff Sutcliffe. Divvy: An ATP Meta-system Based on
Axiom Relevance Ordering. In Automated Deduction — CADE-22, pages 157-162, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg, doi:10.1007/978-3-642-02959-2 13.

Cezary Kaliszyk, Josef Urban, and Jifi Vyskod¢il. Efficient Semantic Features for Au-
tomated Reasoning over Large Theories. In Proceedings of the 24th International
Conference on Artificial Intelligence, 1JCAI’15, page 3084-3090. AAAI Press, 2015,
doi:10.5555/2832581.2832679.

Sarah M. Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep Network
Guided Proof Search. In LPAR-21, 21st International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, Maun, Botswana, May 7-12, 2017, volume 46
of EPiC Series in Computing, pages 85-105. EasyChair, 2017, doi:10.29007 /8mwc.

Karel Chvalovsky, Jan Jakubtuv, Martin Suda, and Josef Urban. ENIGMA-NG: Efficient
Neural and Gradient-Boosted Inference Guidance for E. In Automated Deduction — CADE
27, pages 197-215, Cham, 2019. Springer International Publishing, doi:10.1007/978-3-030-
29436-6 12.

Maxwell Crouse, Ibrahim Abdelaziz, Bassem Makni, Spencer Whitehead, Cristina Corne-
lio, Pavan Kapanipathi, Kavitha Srinivas, Veronika Thost, Michael Witbrock, and Achille
Fokoue. A Deep Reinforcement Learning Approach to First-Order Logic Theorem Proving.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(7):6279-6287, May 2021.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise Selection for Theorem
Proving by Deep Graph Embedding. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, page 2783-2793, Red Hook, NY,
USA, 2017. Curran Associates Inc., doi:10.5555/3294996.3295038.

Cezary Kaliszyk, Frangois Chollet, and Christian Szegedy. HolStep: A Machine Learning
Dataset for Higher-order Logic Theorem Proving. In International Conference on Learning

Representations, 2017.

Alexander A. Alemi, Frangois Chollet, Niklas Een, Geoffrey Irving, Christian Szegedy,
and Josef Urban. DeepMath - Deep Sequence Models for Premise Selection. In Pro-

88

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[38]

ceedings of the 30th International Conference on Neural Information Processing Sys-
tems, NIPS’16, page 2243-2251, Red Hook, NY, USA, 2016. Curran Associates Inc.,
doi:10.5555/3157096.3157347.

Stephen J. Garland, Nancy A. Lynch, and Mandana Vaziri. IOA: A Language for Speci-
fying, Programming, and Validating Distributed Systems , 1997.

Stephen J. Garland and John V. Guttag. A Guide to LP, The Larch Prover, 1991.

Masahiro Nakano, Kazuhiro Ogata, Masaki Nakamura, and Kokichi Futatsugi.
Créme: an Automatic Invariant Prover of Behavioral Specifications. International
Journal of Software Engineering and Knowledge Engineering, 17(06):783-804, 2007,
doi:10.1142/S0218194007003458.

Weikun Yang, Grigory Fedyukovich, and Aarti Gupta. Lemma Synthesis for Automating
Induction over Algebraic Data Types. In Principles and Practice of Constraint Program-
ming, pages 600-617, Cham, 2019. Springer International Publishing, doi:10.1007/978-3-
030-30048-7 _35.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,
Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek
Udupa. Syntax-guided Synthesis. In 2013 Formal Methods in Computer-Aided Design,
pages 1-8, 2013, doi:10.1109/FMCAD.2013.6679385.

Bernhard Gleiss, Laura Kovacs, and Lena Schnedlitz. Interactive Visualization of Satu-
ration Attempts in Vampire. CoRR, abs/2001.04100, 2020, doi:10.1007/978-3-030-34968-
4 28

Laura Kovacs and Andrei Voronkov. First-Order Theorem Proving and Vampire. In Com-
puter Aided Verification, pages 1-35, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg,
doi:10.1007/978-3-642-39799-8 1.

Jan Perha¢ and Zuzana Bilanovia. Another Tool for Structural Operational Semantics
Visualization of Simple Imperative Language. In 2020 18th International Conference
on Emerging eLearning Technologies and Applications (ICETA), pages 513-518, 2020,
doi:10.1109/ICETA51985.2020.9379205.

Xiaohong Chen and Grigore Rogu. K: A Semantic Framework for Programming Lan-
guages and Formal Analysis. In Engineering Trustworthy Software Systems: 5th Interna-
tional School, SETSS 2019, Chongqing, China, April 21-27, 2019, Tutorial Lectures, page
122-158, Berlin, Heidelberg, 2019. Springer-Verlag, doi:10.1007/978-3-030-55089-9 4.

89

[39]

[40]

|41]

42]

[43]

[46]

[47]

48]

[49]

Ivan Beschastnikh, Perry Liu, Albert Xing, Patty Wang, Yuriy Brun, and Michael D.
Ernst. Visualizing Distributed System Executions. ACM Trans. Softw. Eng. Methodol.,
29(2), 2020, doi:10.1145/3375633.

Cyrille Artho, Klaus Havelund, and Shinichi Honiden. Visualization of Con-
current Program Executions. In 31st Annual International Computer Software
and Applications Conference (COMPSAC 2007), volume 2, pages 541-546, 2007,
doi:10.1109/COMPSAC.2007.236.

Tam Thi Thanh Nguyen and Kazuhiro Ogata. A Way to Comprehend Counterex-
amples Generated by the Maude LTL Model Checker. 1In 2017 International Con-
ference on Software Analysis, Testing and FEvolution (SATE), pages 53-62, 2017,
do0i:10.1109/SATE.2017.15.

Cyrille Artho, Monali Pande, and Qiyi Tang. Visual Analytics for Concurrent Java Exe-
cutions. In 2019 34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pages 1102-1105, 2019, doi:10.1109/ASE.2019.00112.

Jeff Magee, Nat Pryce, Dimitra Giannakopoulou, and Jeff Kramer. Graphical Animation
of Behavior Models. In Proceedings of the 22nd International Conference on Software Engi-
neering, page 499-508, New York, NY, USA, 2000. Association for Computing Machinery,
doi:10.1145/337180.337368.

Sheelagh Carpendale. Fvaluating Information Visualizations, pages 19-45. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

Tobias Isenberg, Petra Isenberg, Jian Chen, Michael Sedlmair, and Torsten Moller. A
Systematic Review on the Practice of Evaluating Visualization. IEEE Transactions on Vi-
sualization and Computer Graphics, 19(12):2818-2827, 2013, doi:10.1109/TVCG.2013.126.

L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz. A Systematic Literature Review of
Software Visualization Evaluation. Journal of Systems and Software, 144:165-180, 2018,
doi:10.1016/j.jss.2018.06.027.

Kelly Caine. Local Standards for Sample Size at CHI. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, page 981-992, New York, NY, USA,
2016. Association for Computing Machinery, doi:10.1145/2858036.2858498.

Martin Schmettow. Sample Size in Usability Studies. Commun. ACM, 55(4):64-70, 2012,
doi:10.1145/2133806.2133824.

Wonil Hwang and Gavriel Salvendy. Number of People Required for Usability Evaluation:
The 10+/-2 Rule. Commun. ACM, 53(5):130-133, 2010, doi:10.1145/1735223.1735255.

90

[50]

[51]

[52]

[53]

[54]

[56]

[58]

D. Todorovic. Gestalt Principles. Scholarpedia, 3(12):5345, 2008,
do0i:10.4249/scholarpedia.5345. revision #91314.

K.V. Nesbitt and C. Friedrich. Applying Gestalt Principles to Animated Visualizations of
Network Data. In Proceedings Sizth International Conference on Information Visualisa-
tion, pages 737-743, 2002, doi:10.1109/1V.2002.1028859.

Frédéric Cao. Application of the Gestalt Principles to the Detection of Good Continuations
and Corners in Image Level Lines. Computing and Visualization in Science, 7(1):3-13,
2004, doi:10.1007/s00791-004-0123-6.

A. Desolneux, L. Moisan, and J.-M. More. A Grouping Principle and Four Applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(4):508-513, 2003,
doi:10.1109/TPAMI.2003.1190576.

Mehmet Yalcinkaya and Vishal Singh. Exploring the Use of Gestalt’s Principles in Im-
proving the Visualization, User Experience and Comprehension of COBie Data Exten-
sion. Engineering, Construction and Architectural Management, 26(6):1024-1046, 2019,
doi:10.1108 /ECAM-10-2017-0226.

Jeffery Garae, Ryan K.L. Ko, and Sivadon Chaisiri. UVisP: User-centric Visualization
of Data Provenance with Gestalt Principles. In 2016 IEEE Trustcom/BigDataSE/ISPA,
pages 1923-1930, 2016, doi:10.1109/TrustCom.2016.0294.

Dang Duy Bui, Minxuan Liu, and Kazuhiro Ogata. Graphical Animations of an Au-
tonomous Vehicle Merging Protocol. In The 28th International DMS Conference on Visu-
alization and Visual Languages, DMSVIVA 2022, KSIR Virtual Conference Center, USA,
June 29-30, 2022, pages 16-22. KSI Research Inc., 2022, doi:10.18293/DMSVIVA21-004.

Thet Wai Mon, Dang Duy Bui, Duong Dinh Tran, and Kazuhiro Ogata. Graphical An-
imations of the NSLPK Authentication Protocol. In Shi-Kuo Chang, editor, The 27th
International DMS Conference on Visualization and Visual Languages, DMSVIVA 2021,
KSIR Virtual Conference Center, USA, June 29-30, 2021, pages 29-35. KSI Research Inc.,
2021, doi:10.18293/DMSVIVA21-005.

Dang Duy Bui, Duong Dinh Tran, Kazuhiro Ogata, and Adrian Riesco. Integration of
SMGA and Maude to Facilitate Characteristic Conjecture. In The 28th International
DMS Conference on Visualization and Visual Languages, DMSVIVA 2022, KSIR Vir-
tual Conference Center, USA, June 29-30, 2022, pages 45-54. KSI Research Inc., 2022,
do0i:10.18293 /DMSVIVA22-006.

Rubén Rubio. Maude as a Library: an Efficient All-purpose Programming Inter-
face. In 1/th WRLA, pages 274-294, Cham, 2022. Springer International Publishing,
doi:10.1007/978-3-031-12441-9 14.

91

[60]

[61]

[62]

|63]

|64]

|65]

|66]

67]

Tam Thi Thanh Nguyen and Kazuhiro Ogata. Graphically Perceiving Characteristics of
the MCS Lock and Model Checking Them. In 7th SOFL+MSVL, volume 10795 of Lecture
Notes in Computer Science, pages 3-23. Springer, 2017, doi:10.1007/978-3-319-90104-6 1.

Duong Dinh Tran, Dang Duy Bui, and Kazuhiro Ogata. Simulation-Based Invariant Ver-
ification Technique for the OTS/CafeOBJ Method. IEEE Access, 9:93847-93870, 2021,
doi:10.1109/ACCESS.2021.3093211.

Duong Dinh Tran, Dang Duy Bui, Parth Gupta, and Kazuhiro Ogata. Lemma Weaken-
ing for State Machine Invariant Proofs. In 2020 27th Asia-Pacific Software Engineering
Conference (APSEC), pages 21-30, 2020, doi:10.1109/APSEC51365.2020.00010.

Thet Wai Mon, Dang Duy Bui, Duong Dinh Tran, Canh Minh Do, and Kazuhiro Ogata.
Graphical Animations of the NSLPK Authentication Protocols. J. Vis. Lang. Comput.,
2021(2):39-51, 2021, doi:10.18293/jv1c2021-n2-005.

Duong Dinh Tran and Kazuhiro Ogata. Ipsg: Invariant proof score generator. In 2022
IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), pages
10501055, 2022, doi:10.1109/COMPSAC54236.2022.00164.

A. Hernando, J. Bobadilla, F. Ortega, and A. Gutiérrez. Method to Interactively Visualize
and Navigate Related Information. Fxpert Systems with Applications, 111:61-75, 2018,
d0i:10.1016/j.eswa.2018.01.034.

Maria Alpuente, Demis Ballis, Francisco Frechina, and Julia Sapina. Debugging Maude
Programs via Runtime Assertion Checking and Trace Slicing. J. Log. Algebraic Methods
Program., 85(5):707-736, 2016, doi:10.1016/j.jlamp.2016.03.001.

Frank van Ham, Huub van de Wetering, and Jarke J. van Wijk. Interactive Visualization of
State Transition Systems. IEEE Transaction on Visual and Computer Graphics, 8(4):319—
329, 2002, doi:10.1109/TVCG.2002.1044518.

George G Robertson, Jock D Mackinlay, and Stuart K Card. Cone Trees: Animated 3D
Visualizations of Hierarchical Information. In Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 189-194, 1991.

Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for Visual Understanding
of Hierarchical System Structures. IEEFE Transactions on Systems, Man, and Cybernetics,
11(2):109-125, 1981, doi:10.1109/TSMC.1981.4308636.

Jan Groote and Frank Ham. Interactive Visualization of Large State Spaces. STTT,
8:77-91, 02 2006, doi:10.1007/s10009-005-0198-5.

92

[71]

[72]

73]

[74]

[75]

[76]

[77]

E. L. Kaufman, M. W. Lord, T. W. Reese, and J. Volkmann. The Discrimination of Visual
Number. The American Journal of Psychology, 62(4):498-525, 1949, doi:10.2307/1418556.

Lana M Trick and Zenon W Pylyshyn. Why Are Small and Large Numbers Enumer-
ated Differently? A Limited-capacity Preattentive Stage in Vision. Psychological review,
101(1):80, 1994, doi:10.1037/0033-295x.101.1.80.

Paula Maldonado Moscoso, Elisa Castaldi, David Burr, Roberto Arrighi, and Giovanni
Anobile. Grouping Strategies in Number Estimation Extend the Subitizing Range. Scien-
tific reports, 10:14979, 09 2020, doi:10.1038 /s41598-020-71871-5.

Henry Railo. Bilateral and Two-item Advantage in Subitizing. Vision Research, 103:41-48,
2014, doi:10.1016/j.visres.2014.07.019.

Kurt Koffka. Perception: An Introduction to the Gestalt Theory. Psychological Bulletin,
19:531-585, 1922, doi:10.1037,/h0072422.

Johan Wagemans, James H. Elder, Michael Kubovy, Stephen E. Palmer, Mary A. Pe-
terson, Manish Singh, and Riidiger von der Heydt. A Century of Gestalt Psychology in
Visual Perception: 1. Perceptual Grouping and Figure-ground Organization. Psychological
bulletin, 138 6:1172-217, 2012, doi:10.1037/a0029333.

Amira Chalbi, Jacob Ritchie, Deokgun Park, Jungu Choi, Nicolas Roussel, Niklas
Elmqvist, and Fanny Chevalier. Common Fate for Animated Transitions in Visualiza-
tion. IEEFE Transactions on Visualization and Computer Graphics, 26(1):386-396, 2020,
d0i:10.1109/TVCG.2019.2934288.

93

First-author Publications

1]

2|

13l

[5]

6]

17l

Dang Duy Bui and Kazuhiro Ogata. Graphical Animations of the Suzuki-Kasami Dis-
tributed Mutual Exclusion Protocol. J. Vis. Lang. Comput., 2019(2):105-116, 2019, doi:10-
18293/JVLC2019-N2-012.

Dang Duy Bui and Kazuhiro Ogata. Better State Pictures Facilitating State Machine Char-
acteristic Conjecture. Multim. Tools Appl., 81(1):237-272, 2022, doi:10.1007/s11042-021-
10992-z.

Dang Duy Bui, Win Hlaing Hlaing Myint, Duong Dinh Tran, and Kazuhiro Ogata. Graph-

ical Animations of the Lim-Jeong-Park-Lee Autonomous Vehicle Intersection Control Pro-
tocol. J. Vis. Lang. Comput., 2022(1):1-15, 2022, doi:10.18293/JVLC2022-N1-004.

Dang Duy Bui and Kazuhiro Ogata. Graphical Animations of the Suzuki-Kasami Dis-
tributed Mutual Exclusion Protocol. In Joseph J. Pfeiffer Jr., editor, The 25th Inter-
national DMS Conference on Visualization and Visual Languages, DMSVIVA 2019, Ho-
tel Tivoli, Lisbon, Portugal, July 8-9, 2019, pages 125-137. KSI Research Inc., 2019,
do0i:10.18293/DMSVIVA2019-012.

Dang Duy Bui and Kazuhiro Ogata. Better State Pictures Facilitating State Machine Char-

acteristic Conjecture. In Shi-Kuo Chang, editor, The 26th International DMS Conference
on Visualization and Visual Languages, DMSVIVA 2020, KSIR Virtual Conference Center,
USA, July 7-8, 2020, pages 7-12. KSI Research Inc., 2020, doi:10.18293/DMSVIVA20-007.

Dang Duy Bui, Minxuan Liu, and Kazuhiro Ogata. Graphical Animations of an Au-

tonomous Vehicle Merging Protocol. In The 28th International DMS Conference on Visu-
alization and Visual Languages, DMSVIVA 2022, KSIR Virtual Conference Center, USA,
June 29-30, 2022, pages 16-22. KSI Research Inc., 2022, doi:10.18293/DMSVIVA22-009.

Dang Duy Bui, Duong Dinh Tran, Kazuhiro Ogata, and Adrian Riesco. Integration of

SMGA and Maude to Facilitate Characteristic Conjecture. In The 28th International
DMS Conference on Visualization and Visual Languages, DMSVIVA 2022, KSIR Vir-
tual Conference Center, USA, June 29-30, 2022, pages 45-54. KSI Research Inc., 2022,
d0i:10.18293/DMSVIVA22-006.

94

Other Co-author Publications

1]

2|

13l

4]

[5]

Thet Wai Mon, Dang Duy Bui, Duong Dinh Tran, Canh Minh Do, and Kazuhiro Ogata.
Graphical Animations of the NSLPK Authentication Protocols. J. Vis. Lang. Comput.,
2021(2):39-51, 2021, doi:10.18293/jv1c2021-n2-005.

Duong Dinh Tran, Dang Duy Bui, and Kazuhiro Ogata. Simulation-Based Invariant Ver-
ification Technique for the OTS/CafeOBJ Method. IFEE Access, 9:93847-93870, 2021,
doi:10.1109/ACCESS.2021.3093211.

Duong Dinh Tran, Dang Duy Bui, Parth Gupta, and Kazuhiro Ogata. Lemma Weak-

ening for State Machine Invariant Proofs. In 27th Asia-Pacific Software Engineering
Conference, APSEC 2020, Singapore, December 1-4, 2020, pages 21-30. IEEE, 2020,
do0i:10.1109/APSEC51365.2020.00010.

Minxuan Liu, Dang Duy Bui, Duong Dinh Tran, and Kazuhiro Ogata. Formal Specification
and Model Checking of an Autonomous Vehicle Merging Protocol. In 21st IEEE Inter-
national Conference on Software Quality, Reliability and Security, QRS 2021 - Compan-
ion, Hainan, China, December 6-10, 2021, pages 333-342. IEEE, 2021, doi:10.1109/QRS-
C55045.2021.00057.

Thet Wai Mon, Dang Duy Bui, Duong Dinh Tran, and Kazuhiro Ogata. Graphical An-
imations of the NSLPK Authentication Protocol . In Shi-Kuo Chang, editor, The 27th
International DMS Conference on Visualization and Visual Languages, DMSVIVA 2021,
KSIR Virtual Conference Center, USA, June 29-30, 2021, pages 29-35. KSI Research Inc.,
2021, doi:10.18293/DMSVIVA21-005.

Win Hlaing Hlaing Myint, Dang Duy Bui, Duong Dinh Tran, and Kazuhiro Ogata. Graph-

ical Animations of the Lim-Jeong-Park-Lee Autonomous Vehicle Intersection Control Pro-
tocol . In Shi-Kuo Chang, editor, The 27th International DMS Conference on Visualization
and Visual Languages, DMSVIVA 2021, KSIR Virtual Conference Center, USA, June 29-
30, 2021, pages 22-28. KSI Research Inc., 2021, doi:10.18293/DMSVIVA21-004.

95

