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Abstract—Extracting reliable speech features is one of the
most fundamental difficulties in emotion recognition systems.
The extraction of spectral features has drawn much research
attention but the extraction of prosody features, studying
emotional cues, was often done by calculating statistics at an
utterance level. However, the detailed prosody of different
linguistic units can contain a large amount of emotion-related
information. In this paper, we propose a novel hierarchical
prosody analysis strategy by wavelet decomposition that models
multi-level emotion transition phenomena. Our approach was
evaluated on the IEMOCAP corpus and performed the best
compared with state-of-the-art alternatives for both categorical
and dimensional emotion recognition tasks, enabling the
advancement of capturing dynamics in emotion expressions.

I. INTRODUCTION

Speech emotion recognition (SER) has attracted increasing
attention in the human-machine interaction research field to
identify a speaker’s emotional state. It can improve many
applications such as speaking assistance, well-being
detection, and many others [1, 2]. Typically, researchers have
treated SER problems as multiple classification tasks of
emotional categories such as happiness, sadness, anger, and
neutral [3, 4]. However, it is often difficult to use a single
categorization scheme to describe the rich emotions that
emerge in a human’s conversation since the intensities of
them may change over time [5, 6]. Recently, the most
popular solution to this limitation is to extend the study of
SER to regression tasks of valence and arousal dimensions
[7–10].

This paper contributes to a non-trivial problem in SER,
namely devising reliable acoustic features to guarantee a
higher category classification performance, and specifically,
to improve the dimension estimation accuracy of valence and
arousal to extract gradual emotional intensities. Previous
studies mostly resolved this problem by studying spectral
features [11, 12]. Among these works, Mel-frequency
cepstral coefficients (MFCCs) were commonly used and have
been improved to perform rather robust SER [13, 14]. Other
spectral features, such as Mel cepstral coefficients [15] and
modulation spectral features [16], have also been proposed.
It is widely thought that spectral features are useful in
recognizing emotional states [17]. Although prosody is
known to significantly contribute to the supra-segmental
characteristics of emotional phenomena [18, 19], prior SER
work has sparsely provided robust features from this domain.

Prosody is affected hierarchically by short- and long-term
dependencies ranging from phonemes to utterance levels
(Here, we define such prosody embodied indifferent terms as
hierarchical prosody; hereafter HiPros) [20–23]. The
importance of HiPros in speech was evident in many areas,
including speech synthesis [24], emotional voice
conversation [22], and intonation analysis and generation
[20]. Unfortunately, limited attempts were working with
HiPros analysis for SER tasks. Most prior studies
investigating speech prosody in terms of statistics at an
utterance-level failed to discern the HiPros phenomena
[19, 21]. Such limitations were likely to hamper SER
performance [17, 25].

These findings inspired numerous works to approach SER
via hierarchically motivated prosodic features. To obtain
these features, conducting a wavelet analysis is suggested to
effectively decompose and model the different prosodic
phenomena at every linguistic level of the speech [20–22].
Recently, numerous means to obtain HiPros features for SER
were developed in [26–28], however, those features were
obtained by discrete wavelet transform (DWT)
decomposition solely on raw and glottal waveforms.

In this study, we demonstrate how our advanced SER
system is superior: 1) we provide an understanding on the
extraction of reliable speech features from the perspective of
HiPros; 2) in contrast to prior work that used the wavelet
coefficients of raw and glottal waveform to define HiPros,
we first apply the wavelet coefficients of F0 and glottal flow
(GF) parameterization to define essential information in
prosody; and 3) we show how HiPros are well suited for
gradual SER.

The rest of the paper is organized as follows. Section 2
introduces our proposed gradual SER architecture. Section 3
describes the HiPros analysis algorithm in the prosody
domains. The results on gradual SER are presented and
discussed in Section 4. Section 5 concludes this paper.

II. THE PROPOSED ARCHITECTURE

Fig. 1 shows a block diagram of the present study’s SER
system. The right block highlights this study’s scope to
introduce a novel algorithm on hierarchical analysis of
speech prosody, with the aim to construct an improved
emotion recognizer for identifying both the categories and
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Fig. 1. Block diagram of emotion recognition system based on the proposed
hierarchical prosodic features.

their location in valence-arousal space to define emotion
intensity.

After receiving emotional speech as input, features are
extracted. To this end, we initially used the COVAREP
Toolkit [18] to extract prosody descriptors from the speech.
DWT was next applied to decompose the prosody descriptors
into multi-resolution levels. The energy and entropy of
wavelet coefficients were then calculated to provide the
robust features. The emotion recognizer, which incorporates
support vector machines (SVMs), finally takes HiPros as
input and maps them into an emotion categories and
dimensions.

III. HIERARCHICAL PROSODY ANALYSIS

A. Prosody descriptors extraction

The most expressive prosody, which is widely considered
for dealing with emotion information extraction, is the F0
counter [20, 21]. However, research on speech production
analysis has recently shown the importance of GF
parameters to para-linguistic information characteristics
[18, 25]. Therefore, we introduced HiPros based on the
DWT decomposition of the F0 and GF parameterization
counters in addition to the raw and glottal waveform. We
extracted 12 commonly used prosody descriptors for SER,
namely F0, normalized amplitude quotient, maximal
dispersion quotient, quasi-open quotient, the difference in
amplitude of the first two harmonics of the differentiated,
parabolic spectral parameter, shape parameter of the
Liljencrants-Fant model of the glottal pulse dynamics (Rd),
confidence value of Rd, spectral tilt/slope of wavelet
responses, GF, GF derivative, and the speech waveform from
the COVAREP Toolkit (v1.4.2) [18]. A detailed description
of these features can be found in [29].

B. Multi-level prosody decomposition

The wavelet analysis is a method that relies on the
introduction of an appropriate basis and characterization of a
signal based on the distribution of amplitude within this
basis [30]. This method of arranging successive wavelets in a
hierarchical scheme is evident in modeling multi-level

prosody phenomena [20–22]. In our approach, we perform a
six-level multi-resolution decomposition based on DWT,
giving parameters of translations by discrete values. These
discrete values, known as wavelet coefficients, measure how
much of the wavelet is at that resolution level, and the
position is included in the speech prosody. Order ten
Daubechies wavelets are used here as mother wavelets.
Among several alternatives, the Daubechies functions were
frequently used in SER and provide better results [31, 32].

The F0, referred to as one of the twelve prosody
descriptors extracted by the COVAREP, was taken as an
example. Fig. 2(a) shows the F0 counters of four emotional
speech utterances in the neutral, happiness, anger, and
sadness states uttered by a single speaker. Fig. 2(b) to (e)
show the wavelet coefficients at different levels after a
six-level multi-resolution analysis. It is clear from these
figures that the wavelet coefficient distribution over the joint
time-level plane is very distinct for all emotions, suggesting
they could be well discriminated from each other. Fig. 2(f)
shows four normalized mean energy (NME, c.f. Section
3.3.1) distributions corresponding to six wavelet resolution
levels, further verifying this finding. The NME for each
decomposition level can be calculated as the corresponding
mean energy normalized by the max-min normalization over
four emotional utterances. The figure indicates that the NME
distribution of four emotions has different trends and varied
with level-number, which confirmed that HiPros can improve
emotion separability. We believe we can associate the
decomposed values with emotions by energy and entropy
analysis.

C. Feature analysis

Wavelet energy features In the following section, the
wavelet coefficient formed by the DWT decomposition of
one of the prosody descriptors is assumed to be given by
Cξ(κ). The energy at each resolution level ξ=−1,−2,...,−6,
will be the mean energy of the detailed signal

Eξ = log10
(
Σ| Cξ(κ) |2/Nξ

)
(1)

where Nξ represents the number of wavelet coefficients at
resolution level ξ. Thus, the total mean energy will be

Eτ = ΣEξ (2)

Then, the relative wavelet energy can be obtained by

pξ = Eξ/Eτ (3)

Due to the fact that Σpξ = 1, the distribution of pξ can be
considered as a time-scale density. This enabled us to detect
and characterize multi-level prosody phenomena in the time
and frequency planes [22, 33].

Wavelet entropy features The Shannon entropy
introduces a useful criterion for analyzing and comparing
probability distribution, which provides a measure of the
information of any distribution. We first defined the
normalized total wavelet entropy, which provides a measure
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(c) Anger (1.5,4.5)
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(d) Happiness (4,4)
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Fig. 2. F0 at a six-level wavelet decomposition by DWT for four emotions
(valence, arousal) from a single speaker.

of order/disorder of an emotional speech derived from the
relative wavelet energy (c.f. Eq. 3) and is given by

WE(τ,nor) = −
∑

pξ ∗ log pξ (4)

In particular, to capture the dynamical changes within the
emotional state of speech, this study additionally defined
three time-varying (TVR) entropy-related features. The TVR
wavelet entropy is defined as

S(tvr,ξ) = −Σ| Cξ(κ) |2 ∗ log | Cξ(κ) |2 (5)

and the total WE and relative WE are given by

S(tvr,τ) = ΣS(tvr,ξ) (6)

p(tvr,ξ) = S(tvr,ξ)/S(tvr,τ) (7)

Finally, we extract a total of 324 acoustic features on the
basis of the wavelet analysis of 12 prosody descriptors of the
speech signal. Each descriptor consists of 13 wavelet energy-
and 14 entropy-related features at a six-level wavelet
decomposition.

IV. EXPERIMENTAL RESULT

A. Experimental setup

Dataset We evaluated our method on the Interactive
Emotional Dyadic Motion Capture (IEMOCAP) corpus [34].
This corpus contains five sessions, where each session has
utterances from one male and one female speaker. Overall,
there are 10 unique speakers. We selected four emotions of
angry, happy, neutral and sad. To be consistent with previous

work, we merged excitement with happiness and considered
it as happy. Moreover, to study gradual emotion intensity, we
included valence (1-negative, 5-positive) and arousal (1-calm,
5-excited) dimensions, which scaled from 1 to 5.

Baselines We conducted experiments on seven separate
baselines to show the usefulness of the proposed HiPros
from four domains. First, we included a typical prosody
baseline by using the OpenSMILE
prosodyShsViterbiLoudness configuration. Second, a spectral
benchmark was given by 12 MFCCs, along with the delta,
and delta-delta extracted from 25-ms frames with a 5-ms
shift, in terms of statistics of mean, standard deviation,
skewness, and kurtosis. Third, four commonly used
OpenSMILE sets of IS11 speaker state, IS12 speaker trait,
IS13 ComParE, and ComParE 2016 were referred in
combined domains, which explored F0, energy, spectral,
MFCC, duration, voice quality (the zero-crossing rate, jitter,
shimmer, and harmonicsto-noise ratio), spectral harmonicity,
and psychoacoustic spectral sharpness. Finally, we followed
prior wavelet analysis schemes [26–28] on raw and glottal
waveforms and presented a baseline in the wavelet domain.

Emotion recognizer and evaluation metrics The
WEKA’s SVM of C-SVC and nu-SVR algorithms with linear
kernels were used to perform category classification and
dimension estimation, respectively [35]. This was because
the SVM is simple and confirmed to be well-validated after
being tested on both classification and regression tasks. It is
also one of the most commonly used choices in SER [16].
The features from training and testing data were scaled to
[0,1] by max-min normalization before applying the SVM.
All results obtained on the IEMOCAP corpus were presented
by leave-one-speaker-out (LOSO) validation. The weighted
and unweighted accuracies (WA and UA, respectively) were
determined to assess the category classification performance.
Moreover, the Pearson correlation coefficients (CC) and
mean absolute error (MAE) were included to evaluate the
estimation accuracy of emotion dimensions.

B. Experimental results and discussions

Table I details the results obtained by the proposed HiPros
and seven baselines, and includes the recognition rate for
categories; and the CC and MAE for valence and arousal
dimensions. The RIR indicates the relative percentage
improvement of the accuracy rate and the RRR refers to the
relative percentage reduction of the error rate obtained by
our study to the baseline work (base) with a ground truth
equals to 1/0 and the metric sets to CC/MAE, which was
calculated as:

< =
proposedmetric − basesmetric
groundTruth− basesmetric

∗ 100% (8)

where <∈ {RRR,RIR} and metric ∈ {CC,MAE}.
Our proposed HiPros achieved the best accuracy in overall

classification, reaching up to 56.81% WA and 57.57% UA. It
achieved an absolute increase of 8.6% WA and 9.85% UA
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TABLE I
RECOGNITION RESULTS ON CATEGORICAL CLASSIFICATION AND DIMENSIONAL ESTIMATION FOR THE PROPOSED AND BASELINE FEATURES; BOLDFACE
INDICATES THE BEST PERFORMANCE IN EACH CASE. * INDICATES THAT THE ESTIMATION RESULTS DIFFER SIGNIFICANTLY BETWEEN THE HIPROS AND

BASELINES (p < 0.05)

Domain Feature
Categorical Emotion Dimensional Emotion

classification valence estimation arousal estimation
WA UA CC RIR(%) MAE RRR(%) CC RIR(%) MAE RRR(%)

Prosody prosodyShsViterbiLoudness 48.21 47.72 0.37 7.94 0.16 – 0.65 11.42 0.12 8.33
Spectral MFCC 30.05 25.47 0.06 38.30 0.18 11.11 0.02 68.37 0.16 31.25

Combined

IS11 speaker state 56.48 57.53 0.36 9.38 0.20 20.00 0.47 41.51 0.16 31.25
IS12 speaker trait 55.80 56.72 0.32 14.71 0.23 30.43 0.42 46.55 0.18 38.89
IS13 ComParE 56.26 57.13 0.25 22.67 0.27 40.74 0.38 50.00 0.21 47.62
ComParE 2016 55.75 56.63 0.29 18.31 0.26 38.46 0.35 52.31 0.22 50.00

Wavelet Ref. [26–28] 50.52 50.87 0.34 12.12 0.16 – 0.64 13.89 0.12 8.33
Proposed 56.81 57.57 0.42 – 0.16* – 0.69 – 0.11* –

higher than the prosody baseline of
prosodyShsViterbiLoudness, suggesting that studying
multi-level prosody phenomena by the wavelets indeed
contributes to SER tasks. The HiPros also appeared to be
superior compared with the previous wavelet-based features
[26, 28], and improved the baseline accuracy from 50.52% to
56.81% WA and 50.87% to 57.57 % UA. This improvement
further establishes the fact that HiPros are needed to explore
in more robust prosody domains rather than simple raw and
glottal waveforms. Also, by comparing the results by the
HiPros with those by MFCCs, the SER performance gaps
that appeared between the prosody and spectral features in
prior work were narrowed by this study. Moreover, the
HiPros offered a better performance even relative to the four
widespread-use OpenSMILE sets in combined domains.

Most importantly, the advantage of this present study was
most notable in estimating the valence and arousal
dimensions, which can significantly improve the
identification of gradual emotion transitions. As shown in
Table I, the HiPros achieved the best accuracy in both
estimation of arousal and valence, reaching CCs of up to
0.68 and 0.43, and MAEs of low to 0.11 and 0.16,
respectively. In comparison with the seven baselines, HiPros
provided valence RIRs of [7.94%,38.30%], arousal RIRs of
[11.42%,68.37%], valence RRRs of [11.11%,40.74%], and
arousal RRRs of [8.33%,50.00%]. For a fair comparison, we
compared this approach with state-of-the-art deep
learning-based SER systems to identify gradual emotion
intensity using other works for general bench-marking. In
[36], valence and arousal CC values of 0.36 and 0.49,
respectively, were reported by using the MLP with GeMAPS
features. Abdelwahab et al. [37] used the IS13 ComParE to
obtaine valence and arousal CC values of 0.25 and 0.50,
respectively. However, no information was provided
regarding MAE values. The performance of the proposed
SER system appears to be consistently superior to other
alternatives; this clearly reflects the efficiency of the HiPros
being more competent than existing features in performing
emotion intensity tracking tasks, even by using a simple
SVM algorithm.

Moreover, arousal commonly received higher correlations
than valence for all attempts. This result was consistent with

the evaluations conducted by humans because the valence
dimension was labelled to be associated with not only the
audio modal but also other modals such as visual expression
and linguistics [8, 25]. With possible refinements in our
future work, the performance of the HiPros can be further
improved by combining other modals for SER.

V. CONCLUSION

We introduced advancements in devising robust prosodic
features for gradual SER. The advancements were mainly
based on DWT applications to decompose the multi-level
prosodic phenomena present in an emotional speech. The
results of our experiments demonstrated that the proposed
features could perform better in classifying emotions and
estimating emotion dimensions under LOSO conditions on
the IEMOCAP corpus compared with state-of-the-art
features. These findings suggest that the proposed method
enables tracking dynamics of emotional states along the time
plane. Further work may include automatic emotion
estimation integration into man-machine interactions, such as
affective speech-to-speech translation systems.
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