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Abstract

Visual-Question-Answering (VQA) requires a VQA system to answer ques-
tions corresponding to visual information. VQA in mathematics abstract di-
agrams containing abstract objects instead of natural images requires diverse
cognitive reasoning skills, posing many challenges to current VQA methods.
Language-vision models whose vision features come from image patch tokens
or object proposals may not efficiently capture and present the informa-
tion about the type and number of objects, which is essential for answering
the mathematical question. Object detection techniques are important for
obtaining object proposals. However, existing object detection models are
trained on natural images, and no dataset is available for fine-tuning object
detection on abstract objects. This study proposes methods for detecting
abstract objects and generating valuable descriptions that can be used to
augment the training and inference process of abstract diagram VQA mod-
els. The experiments show that existing VQA models benefit greatly from
the augmented descriptions. Moreover, Transformer models trained using
only the descriptions without any visual information achieve state-of-the-art
results in IconQA sub-tasks. Furthermore, the proposed abstract object de-
tection method enables future research in abstract diagram VQA models that
use features from object proposals.
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Chapter 1

Introduction

1.1 Background

1.1.1 Visual-Question-Answering on Abstract Diagrams

Visual-Question-Answering (VQA) is an important task requiring systems
to answer natural language questions corresponding to visual information.
Advances in VQA have been witnessed in recent years, with several datasets
proposed. The visual information in these datasets can be categorized into
natural images and abstract diagrams. While many VQA datasets focus on
natural images [3, 83, 18, 26, 24, 73], some work attempts to address the VQA
task in abstract diagrams. As diagrams account for a considerable share of
the visual world, the types of abstract diagrams in VQA datasets are diverse,
including charts and illustrations [28], geometry [47], scientific diagrams [32],
and others [39, 50, 33]. Different types of abstract diagram VQA datasets aim
to evaluate different aspects of VQA systems. Specifically, abstract diagram
VQA in math problems is shown to involve diverse reasoning skills [30] and
has a high potential for the development of educational applications.

In the task of Visual Question Answering (VQA), a model is given an
image along with a natural language question pertaining to the image and
is required to output a response. The objective of VQA is to evaluate a
model’s capability to comprehend both visual and textual inputs and to uti-
lize that comprehension to produce a coherent and appropriate answer. VQA
models typically incorporate a combination of computer vision techniques to
comprehend image content and natural language processing techniques, to
comprehend the question and generate the answer. The VQA task is consid-
ered to be a challenging task due to both visual and textual modalities and
their interactions.

VQA has many publicly available datasets for training and evaluating
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models, such as VQA v2, COCO-QA, and Visual7W. These datasets con-
tain a large number of images and questions along with their answers. The
VQA task has many applications in areas like visual surveillance, autonomous
navigation, and human-computer interaction. The VQA task can be used to
improve the performance of other tasks, such as image captioning and text-
to-image retrieval.

Recent advancements in deep learning techniques, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), have led
to significant improvements in the performance of VQA models. However,
there still exists a gap between human-level performance and the performance
of current VQA models. Future research in VQA can focus on developing
models that can better understand the context, generate more human-like
answers, and can generalize to unseen images and questions [3].

Despite being practical in real-world problems, math abstract diagram
VQA tasks requiring reasoning and math skills are understudied. Lu et al.[51]
proposed IconQA as a dataset for abstract diagram visual reasoning and ques-
tion answering, with questions inspired by math problems for children [53].
Figure 1.1 and 1.2 shows some examples in IconQA dataset. IconQA has
posed many challenges for current VQA methods due to its uniqueness in
questions and visual information. Firstly, the questions require various hu-
man cognitive skills on different levels, ranging from pre-kindergarten to third
grade. Secondly, the visual information contains abstract icons, which are
challenging for many vision-language models pre-trained on natural images
[46, 9, 14, 37].

VQA task in understanding and reasoning about abstract diagrams is a
cognitive task that requires a model to extract and interpret the meaning
of abstract diagrams, and use that understanding to answer questions or
complete other tasks. This task can be divided into two main components:
understanding the meaning of the diagram and reasoning about the diagram.
Understanding the meaning of the diagram involves recognizing the various
elements of the diagram and their relationships to each other, such as rec-
ognizing the different shapes, lines, and colors in the diagram. Reasoning
about the diagram involves using the information in the diagram to answer
questions or make inferences. For example, in an organizational chart, use
the diagram to answer questions about reporting lines or infer the position
of an employee in the company hierarchy.

Research in this area has been focusing on developing models that can
perform this task using computer vision and natural language processing
techniques. These models typically use a combination of CNNs and RNNs
to extract visual features from the diagrams and understand the question
and then use this information to generate a coherent and relevant answer.
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Figure 1.1: Examples in IconQA dataset

However, the task of VQA in understanding and reasoning about abstract
diagrams is still considered to be a challenging task, and there is still a
gap between the human-level performance and the performance of current
models.

Attention-based multi-modal approaches [2, 36, 16, 79] and VQA models
based on Transformers [46, 9, 14, 37] have shown promising results on VQA
tasks with natural images and not involving cognitive reasoning. However,
the performance of these methods is not as efficient when adapting to the
VQA tasks of IconQA. To answer questions requiring reasoning and mathe-
matics skills, the model should be aware of the separate entities in the visual
context, the number, and the properties of these entities. Language-vision
models whose vision features come from image patch tokens [14, 37, 51]
may not be suitable for mathematics problems because the objects in the
visual context are separated, and the patches might not capture these ob-
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Figure 1.2: Examples in IconQA dataset

jects effectively. VQA models using features from image object proposals
[36, 16, 79, 46, 9] relies on effective object detection models like Faster-RCNN
[60] to extract object proposals. However, no data is available for fine-tuning
object detection models to detect abstract icon objects.

1.1.2 Finding information in Scientific Papers

The ability to extract answers from long scientific documents is a challeng-
ing task for intelligent systems. This research examines the application of
retriever-reader methods, commonly used in open-domain QA, to this specific
task. The proposed approach utilizes a single scientific article as a corpus
for retrieval and employs an efficient sliding window technique to improve
the pipeline by dividing the article into fixed-size text blocks. The results
of experimentation on the QASPER dataset, designed for QA in NLP pa-
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pers, show that the proposed method surpasses existing state-of-the-art mod-
els, achieving a new state-of-the-art in the extractive questions subset with
30.43% F1.

QA involves utilizing a given question and context to find the correspond-
ing answer within the context. A variety of datasets have been proposed for
the QA task, including SQUAD [58], HotpotQA [78], WebQuestions [68],
NaturalQuestions [40], and TriviaQA [27]. Dasigi et al. [11] have introduced
QASPER, a dataset specifically designed for QA on NLP papers. The dataset
requires finding an answer to a question about an academic article, given the
complexity and length of the contexts. QASPER comprises four types of an-
swers: extractive, abstractive (free-form answer), yes/no, and unanswerable.
This study focuses specifically on the questions that have extractive answers.

QASPER is a unique QA dataset in that it features significantly larger
contexts for the questions than other datasets. Specifically, scientific papers
are often much longer than the token limit of 512 or 1024 that are commonly
used by BERT-like models such as BERT [12], RoBERTa [44], ELECTRA
[10], and ALBERT [41]. This presents a challenge for applying these models
to QASPER. Dasigi et al. [11] suggested QASPER-LED as a solution for
processing long sequences, using Longformer-Encoder-Decoder [4] that can
handle 16K tokens without truncation, but this may not efficiently capture
the meaning of all tokens.

In recent years, Open-domain QA has attracted a lot of attention in the
research community. In this task, the system is only given a question and
must find the answer from a vast collection of documents. A common strat-
egy for this task is to use a two-stage approach, which includes a retriever
and a reader. The retriever’s job is to find relevant documents from the cor-
pus, while the reader’s task is to locate the answer within those documents.
Numerous methods have been proposed for the retriever stage. These meth-
ods can be broadly divided into two categories: Sparse Retrievers and Dense
Retrievers. Sparse Retrievers use traditional methods such as TF-IDF and
BM25. One of the first approaches to combine these retrieval techniques
with neural models for MRC was DrQA [8]. In contrast, Dense Retrievers
use dual-encoders to encode the question and document. Notable examples
include Sentence-BERT [59], DPR [31], and ORQA [42].

In some respects, the task of finding information in a long scientific paper
in QASPER is similar to that of open-domain QA. The use of retrieval tech-
niques in the initial stage of open-domain QA may be beneficial for locating
pertinent information within QASPER. To the best of our knowledge, no
prior studies have examined the effects of open-domain QA retrieval meth-
ods on the QASPER dataset. This paper presents a new approach that
adapts the retriever-reader methodologies of open-domain QA to long scien-
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tific papers within QASPER by treating each document as a large corpus for
retrieval. By doing so, we are able to apply open-domain QA techniques and
develop a retriever-reader pipeline that achieves state-of-the-art performance
on QASPER.

1.2 Objectives

This research aims to propose efficient VQA systems to address the men-
tioned challenges in mathematics abstract diagram VQA in textbooks and
propose a method for effectively finding information in these documents. To
address these challenges in mathematics abstract diagram VQA, we propose
a method to generate descriptions for the mathematics problems from the
visual information. The descriptions are used to augment the training and
inference process of VQA models and guide the models to perform math-
ematics reasoning. All the code and models of the proposed method are
available. The research has the following contributions.

1. We propose a method for generating useful descriptions to augment
the training and inference process of abstract diagram VQA models.
The descriptions provide essential information for the models to an-
swer mathematics questions. The description augmentation process is
model-agnostic and can be applied to any VQA model to enhance its
performance. The experimental results show that the performance of
existing VQA models can benefit greatly from the description augmen-
tation.

2. We develop a set of abstract diagram question-answering models for
mathematics problems using only the generated descriptions without
any visual information. The experiments on IconQA show that the
models achieve competitive results in multi-image-choice sub-tasks and
state-of-the-art results in multi-text-choice sub-tasks, using only the
signals from the descriptions.

3. We proposed an object detection method specially designed for ab-
stract diagrams using Connected-Component Labeling. This method
overcomes the lack of abstract-object detection datasets and enables
future research in abstract diagram VQA, especially VQA models that
use object proposals as the visual features.

4. We proposed a retriever-reader method for finding information in sci-
entific documents and an effective sliding window technique that im-
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proves the pipeline. The experiments of this method are conducted on
QASPER dataset.
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Chapter 2

Related Works

2.1 Question-Answering

Question answering (QA) is a task in natural language processing (NLP) and
information retrieval (IR) that aims to provide accurate and concise answers
to questions posed in natural language. The goal of QA is to extract rel-
evant information from a wide range of sources, including but not limited
to, news, literature, and databases, and present it in a coherent and under-
standable format. There are two main approaches to QA systems: rule-based
and machine learning-based. Rule-based systems rely on pre-defined heuris-
tics and hand-crafted rules to extract information and provide answers. In
contrast, machine learning-based systems utilize statistical models to extract
information and provide answers.

Recent advancements in deep learning techniques, particularly transformer-
based models [12][5][44], have a great impact on the performance of QA sys-
tems. These models are trained on large amounts of text data and have the
ability to understand the context of the question and generate accurate and
coherent answers.

QA systems have many applications, including customer service, personal
assistants, and educational systems. The task of QA is considered challenging
due to the need for logical reasoning to generate accurate answers. Future
research in QA can focus on developing models that can better understand
the context, generate more human-like answers, and generalize to unseen
questions. In customer service, QA systems can be used to provide quick
and accurate answers to customer inquiries, reducing the need for human
customer service representatives. By automating the answering process, QA
systems can handle a large volume of customer queries and provide consistent
and accurate responses. This can lead to improved customer satisfaction
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and reduced costs for the company. For personal assistants, QA systems
can be integrated into personal assistants such as Siri, Alexa, and Google
Assistant to provide users with accurate and personalized answers to their
queries. These systems can answer a wide range of questions, from providing
weather forecasts to recommending restaurants or movies. In education, QA
systems can be used to create educational platforms that provide students
with interactive and personalized learning experiences. These systems can
be used to answer students’ questions in real-time and provide additional
information and resources to support their learning. In business intelligence,
QA systems can be used to extract important information from large datasets
and provide insights to business decision-makers. These systems can be used
to answer questions about sales trends, customer demographics, and other
business-critical data. In healthcare, QA systems can be used to provide
doctors and nurses with quick and accurate answers to medical queries. These
systems can be used to answer questions about treatments, medications, and
patient history, improving the quality of care and reducing the risk of errors.
In research, QA systems can be used to extract information from scientific
literature and assist researchers in finding relevant papers, tracking progress
in specific fields, and gaining new insights.

2.2 Visual-Question-Answering

VQA has gained much interest in the research community, with many VQA
datasets proposed. The first large-scale dataset on VQA was proposed by
Antol et al. [3]. Early works [18, 38, 65, 73] mainly focus on natural images
and the ability to understand the visual and textual contents. Recent works
[26] introduce questions requiring more sophisticated visual and semantic
reasoning.

Besides natural images, abstract diagrams are also common. Many VQA
datasets on abstract diagrams have been proposed to fulfill the requirement
of reasoning between language and diagrams. For example, NLVR [66], Fig-
ureQA [29], and DVQA [28] focus on VQA on scientific diagrams. These
datasets consider various types of figure and question templates. Another
line of work focus on math and science problems with more realistic and
complicated scenarios [63, 34, 61, 62, 47]. Some other works include the task
of providing responses to queries about conceptual illustrations like abstract
VQA [3, 82]. As some datasets often require specific domain knowledge and
make it difficult to separate the visual reasoning and domain knowledge,
IconQA[51] was proposed as a mathematics abstract diagram VQA dataset
that only regards elementary commonsense. The questions in IconQA were
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inspired by math problems for children, requiring diverse reasoning skills and
containing various abstract icon objects. This study focuses on the mathe-
matics abstract diagram VQA tasks in IconQA.

Many approaches have been proposed for the VQA tasks. Early meth-
ods often combine visual and textual inputs using attention mechanisms
[36, 49, 48, 17, 79, 16]. As the semantics in the visual context are often
presented by specific objects, some works utilize object proposals to create
the visual features [36, 79, 16]. Inspired by the good performance of Trans-
former models, some works employed pre-trained language-vision models for
the VQA tasks in natural images and obtained noticeable improvement. As
most pre-trained models are trained on natural images and are not efficient
in abstract diagram VQA, Lu et al.[51] introduced the Icon645 dataset for
pre-training backbone networks like ResNet [21] to obtain better visual rep-
resentations from abstract diagrams. Patch-TRM[51] is a cross-modal Trans-
former model employing the image patch strategy and a ResNet pre-trained
on Icon645 to acquire the visual representations. However, features that
come from image patch tokens or object proposals may not efficiently cap-
ture and present the information about the type and number of objects,
which is essential for answering the mathematical question. The description
augmentation proposed in this study aims to capture the important aspects
of the visual information and help answer the mathematical question.

VQA systems have a broad spectrum of utilization across multiple indus-
tries. For image captioning, VQA systems can be used to produce textual
descriptions for visual content, providing a more detailed and comprehensive
understanding of the image content. In robotics, VQA systems can be used
to enhance the capability of robots in identifying objects, navigation, and
manipulation by providing them with the ability to understand and respond
to natural language commands. For surveillance, VQA systems can be used
to enhance the capabilities of surveillance systems by providing them with
the ability to understand and respond to natural language queries about
the content of surveillance images. In human-computer interaction, VQA
systems can be used to improve the performance of human-computer inter-
action systems by providing them with the ability to understand and respond
to natural language queries about images and videos. In augmented reality,
VQA systems can be used in augmented reality systems to furnish users
with pertinent data about the objects in the real-world by answering natu-
ral language queries. In E-commerce, VQA systems can be used to improve
e-commerce systems’ performance by providing customers with the ability
to search for products by asking natural language queries about images and
videos of products.

The potential of VQA systems in education is significant, as it has the
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ability to revolutionize the way students interact with and learn from edu-
cational materials. VQA systems, which are capable of understanding and
responding to natural language queries about images and videos, can be used
to create interactive and personalized learning experiences for students. One
potential application of VQA in education is in the creation of interactive
educational materials. These systems can be utilized to generate natural
language explanations for images and videos, allowing students to interact
with educational materials in a more intuitive and engaging way. This can
aid in the improvement of student comprehension and retention of informa-
tion. Furthermore, the ability of VQA systems to provide context-aware
and personalized explanations can adapt to the diverse abilities of students,
making education more inclusive. Another potential application of VQA in
education is in the creation of virtual tutors. VQA systems can be used to
provide students with real-time feedback and support, answering their ques-
tions and providing additional information and resources to support their
learning. This can help to improve the effectiveness of online and distance
learning, enabling students to receive assistance even when not in a tradi-
tional classroom setting. Additionally, VQA systems can be employed to
create educational games and interactive quizzes, which can make learning
more enjoyable and engaging. This can help to improve student motivation
and engagement, encouraging students to take an active role in their own
learning. The utilization of VQA in education is still in its infancy, but as
technology continues to evolve and improve, it is expected that it will play an
increasingly important role in the field of education. By providing students
with interactive and personalized learning experiences, VQA systems can
help to improve their understanding and retention of information, ultimately
leading to better educational outcomes.

2.3 Finding information in Scientific Papers

The inability of most Transformer-based models to handle long sequences
is a result of the quadratic scaling of the self-attention operation. This has
led to the development of new architectures that can handle these types of
sequences. For example, Beltagy et al. [4] proposed a model that utilizes
an attention mechanism that scales linearly with sequence length, allowing
it to process documents containing thousands of tokens. Ainslie et al. [1]
presented the Extended Transformer Construction (ETC) which addresses
the challenges of scaling input length and encoding structured inputs that
are present in standard Transformer architectures. Zaheer et al. [80] further
extended ETC to more generic scenarios where there may be no prior domain
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knowledge about the structure of the source data, referred to as BigBird.
However, the ability of these models to capture semantics may not be as
efficient when dealing with shorter sequences due to the sheer volume of
information they have to process.

Retriever-Reader is a prevalent approach in current open-domain question
answering systems. A Retriever, usually considered an Information Retrieval
(IR) system, is responsible for identifying and retrieving relevant documents
related to the given question. The Reader, typically a neural Machine Read-
ing Comprehension (MRC) model, then extracts the final answer from the
retrieved documents.

Traditionally, DrQA employed sparse retrievers (TF-IDF, BM25) to iden-
tify relevant documents. However, recent advancements have proposed dense
retrievers, which represent both text as dense vectors. There are two main
strategies, shared parameters [59][54] or two distinct encoders [31][19][42][64].

In addition to retrievers, Transformers-based re-rankers have also been
implemented in retrieval-based QA systems [25][52][74][55][56][77][35][15]. One
popular approach for re-rankers is the Cross-encoder.
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Chapter 3

Proposed Method

3.1 Description Augmentation for VQA in Math-

ematics Abstract Diagram

3.1.1 Problem formulation

The proposed method aims to solve the three abstract diagram VQA sub-
tasks in IconQA [51]. The three tasks involve reasoning and basic mathemat-
ics skills from pre-kindergarten to third grade. Figure 3.1 shows examples of
the dataset.

In task multi-image-choice, a question is given in natural language along
with N candidate images (1 ≤ N ≤ 5) and a context image. The context
image is optional and can be absent for some questions. The system has to
choose the correct image from N images that best answer the given question.
The multi-text-choice sub-task is similar to multi-image-choice sub-task but
the candidate answers are texts instead of images. For each problem, the
system is given a natural language question along with N text options(1 ≤
N ≤ 5) and a context image. Different from the multi-image-choice sub-task,
the context image is always given. The system has to choose the correct
answer from N text options that best answers the given question. In the fill-
in-the-blank task, the system is given a question along with a visual context
and is required to output a short text-based answer for the given question.

3.1.2 Object Detection for Abstract Diagram

Intuitively, to solve abstract diagram mathematics problems like those in
Figure 3.1, we first need to identify each object in the visual information.
The information about the class, position and numbers of the objects is es-
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Sub-task: fill-in-the-blank (Free-response)

Sub-task: multi-image-choice

Sub-task: multi-text-choice

Are there fewer rabbits than carrots?

Which group has fewer?

How many triangles are there?

Yes No

Figure 3.1: Examples of three sub-tasks in IconQA

sential in solving the problem. Therefore, the first part of the proposed
system is the object detection component. This component aims to detect
the objects in the provided visual information. Unlike VQA in natural im-
ages [3, 83, 18, 26, 24, 73] or abstract scenes [82] where every detail in the
image is connected to each other, VQA in mathematics abstract diagrams
like IconQA [51] has separate abstract icon objects. Although object de-
tection methods [60, 20, 7] can be used to detect the objects in the visual
information, the pre-trained models of these methods are trained on natural
images and are not inadequate for the detection of abstract icons. Lu et
al. [51] propose Icon645, an icon dataset containing 377 classes, for training
icon classification models. However, to our knowledge, no dataset with anno-
tated bounding boxes is available for fine-tuning object detection models on
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abstract icons. One important property of the visual information in mathe-
matics abstract diagram VQA is that the objects usually appear on the same
simple background and are separate from each other. Leveraging this prop-
erty, we propose using Connected-Component Labeling, a connected regions
detecting technique for binary images, to detect the object in the visual infor-
mation. Many algorithms are available for Connected Component Labeling
[23, 69, 22]. For the proposed system, we implement a simple algorithm that
identifies the connected components and the corresponding bounding boxes.
Algorithm 1 shows how to identify all connected components of a given pixel
in an image. The input of the algorithm is an image and a pixel position (row
index and column index). The algorithm outputs the top-left and bottom-
right coordinates of the bounding box containing all connected components.
Algorithm 2 shows how to detect objects in an image using the connected
components identified by Algorithm 1. The input is an image and the output
is the bounding boxes of detected objects.

Algorithm 1 Identify connected components of a given pixel

Require: image, row, column (position of the given pixel)
top, bottom ← row
left, right ← column
direction ← [(−1, 0), (1, 0), (0,−1), (0, 1)]
queue ← []
queue.push((row, column))
while queue do

current row, current column ← queue.pop()
for d r, d c in direction do

new row ← current row + d r
new column ← current column+ d c
if image[new row, new column] is valid then

image[new row, new column] ← invalid
top ← min(new row, top)
bottom ← max(new row, bottom)
left ← min(new column, left)
right ← max(new column, right)
queue.push((new row, new column))

end if
end for

end while
return top, left, bottom, right
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Algorithm 2 Object detection via connected-component labeling

Require: image
bounding boxes ← []
for row ← 0 to image.height do

for col ← 0 to image.width do
if image[row, col] is valid then

bbox ← get connect components(image, row, col)
bounding boxes.append(bbox)

end if
end for

end for
return bounding boxes

3.1.3 Description Generation

Figure 3.2 shows the overall description generation process. Given an in-
put image, the generation process will output the corresponding description.
First, the Connected-Component Labeling is applied to detect separate ob-
jects in the input image. Specifically, the top-left and bottom-right coor-
dinates of the bounding boxes of objects are returned from the Connected-
Component Labeling component. Each object in the image is cropped using
these coordinates and fed to a ResNet model[21]. This ResNet model is pre-
trained on Icon645 dataset [51] for icon classification. After the classification
step, the names of the object classes are collected for description creation.
The classes with the same name are then grouped together. For each class,
the description is created using the pattern ¡number of object¿ ¡class name¿.
These descriptions are then concatenated to form the final description for the
input image. For example, if the collection of class names after the classifi-
cation step is {rabbit, rabbit, carrot, carrot, carrot}, the final description will
be 2 rabbits, 3 carrots. The generated descriptions can be used to augment
the information in the original problem to train vision-language VQA mod-
els. Moreover, the descriptions can also be used to train question-answering
models without using visual information. Both of these approaches are shown
in the experiments.

3.1.4 Description Augmentation for VQA Models

The generated descriptions can be used to augment the training and infer-
ence process of existing VQA models and enhance the performance of these
models. Naturally, there are two sources of information in a training exam-

16



Sub-task: fill-in-the-blank (Free-response)

Sub-task: multi-image-choice

Sub-task: multi-text-choice

Are there fewer rabbits than carrots?

Which group has fewer?

How many triangles are there?

Yes No ResNet Rabit
Rabit
Rabbit

Description: There are 2 rabbits, 3 carrots

Which group has fewer?

No

Are there fewer rabbits than carrots?

Yes

How many triangles are there?

2 rabbits, 3 carrots3 leaves 2 bugs 30 triangles

Object Detection via
Connected-Component Labeling

Input visual context

Classification

Figure 3.2: Description Generation Process

ple: the textual information from the question and the visual information
from the diagram. Most VQA models process textual and visual information
separately. Therefore, a straightforward way to augment the training process
using the generated descriptions is to concatenate the descriptions and the
questions. The resulting sequences after concatenation are used as the new
questions for training. The same approach is used in the inference process;
The generated description and the question are concatenated before being fed
to the VQA model for answer prediction. Wallace et al. [70] discovered that
many token embedding methods, including Transformers like BERT[13], can
naturally encode numeracy and perform numerical reasoning to some degree.
As a result, questions augmented with generated descriptions may provide
helpful information for VQA in the training and inference process. The ex-
periments show that the performance of existing VQA models can benefit
significantly from the description augmentation.

3.1.5 Description-based Models

We developed different models to evaluate the effectiveness of the descrip-
tions in answering the mathematics questions. These models only use the
generated descriptions and do not consider the original visual information
from the problems. We refer to these models as description-based models. As
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Cross Entropy Loss

<CLS> Question + Description <SEP> Answer 0 <SEP>

Transformer Linear Label

Logit0

<CLS> Question + Description <SEP> Answer 1 <SEP>

<CLS> Question + Description <SEP> Answer 2 <SEP>

Logit1

Logit2

(a) Textual multiple-choice question-answering model, used for multi-image-choice
and multi-text-choice tasks

Cross Entropy Loss

<CLS> Question + Description <SEP> Transformer Linear
Label

Logit1

Logit2

LogitN

N possible 
answer class

...

(b) Multi-class classification model used for fill-in-the-blank task by choosing one
from all possible N answers from the training set.

<s> Question + Description </s> Seq2Seq Transformer Text answer

(c) Sequence-to-sequence text generation approach for fill-in-the-blank task

Figure 3.3: Models for mathematics abstract diagram VQA using only the
generated descriptions. No visual information is used.

the images are replaced by the generated descriptions, the tasks multi-image-
choice, multi-text-choice can now be both viewed as textual multiple-choice
question-answering task, and the task fill-in-the-blank can be viewed as con-
ditional text generation task.

We developed a Transformer-based multiple-choice question-answering
model for the multi-image-choice and multi-text-choice tasks. The model
only uses the textual information from the descriptions and does not con-
sider the visual information. The architecture of the model is depicted in
Figure 3.3a, where the input comprises the question, the generated descrip-
tion, and a maximum of five answer options, represented by N (1 ≤ N ≤ 5).
The model outputs the score for each option, and the option with the high-
est score is chosen as the answer. Our model follows the approach of fine-
tuning BERT[13] on the SWAG dataset [81]. A linear layer is stacked on the
Transformer model to work as a multiple-choice classification head. For each
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example, with the condition 1 ≤ N ≤ 5, we construct five input sequences
by concatenating the question, the descriptions, and an answer option. The
separate-token SEP and the classification-token CLS are added to the se-
quences. Each sequence is then tokenized and fed to the Transformer model
separately. The multiple-choice classification head outputs a logit for each
answer option. A cross-entropy-loss is then calculated using the logits and
the answer label.

The task of ”fill-in-the-blank” requires the model to utilize solely textual
information from the provided descriptions, without taking visual informa-
tion into account. Two approaches were employed in the development of
models for this task. The first approach treated the problem as a multiple-
class classification task, where the model outputs its response by choosing
one option from the possible responses in training data. The overall archi-
tecture of the model, as shown in Figure 3.3b, is similar to the approach
of Devlin et al.[13] in the GLUE task [71]. A linear layer, which acts as a
sequence classification head, was added to the Transformer model and out-
puts a logit for each answer class. The logits and the answer label are then
used to calculate the cross-entropy-loss. In the second approach, the problem
was viewed as a conditional sequence generation task, and the sequence-to-
sequence approach of BART [43] was employed. The overall architecture
of this method is shown in Figure 3.3c. The input sequence is formed by
combining the question and the description, which is then fed to the BART
model to generate the text answer.

3.2 Finding information in scientific papers

We also propose a retriever-reader method for finding information in scientific
documents. The proposed method for information retrieval in scientific doc-
uments is a combination of a retriever and a reader, with the incorporation
of a sliding window technique to enhance the efficiency of the pipeline. This
approach is tailored to addressing open-domain questions and involves break-
ing the process down into two separate stages: identifying relevant passages
and extracting the final answer.

In the passage retrieval phase, a corpus comprising of an article is utilized,
and a retriever is employed to identify the pertinent passages in response
to a question Q = (q1, ..., q|Q|). The methodology adopted in this phase
is in accordance with the approach outlined in the studies conducted by
Karpukhin et al. in [31] and Wang et al. in [74], which involves breaking
down the text into smaller, non-overlapping segments of a specific word count,
referred to as passages, P = [P1, ..., Pi, ..., Pm], where Pi = (p1i , p

2
i ..., p

|pi|
i ) is
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the i-th passage, Pi ∈ A, Pi ∈ A, and qk ∈ Q and pji ∈ Pi are corresponding
words and serves as the basic units of retrieval.

In the answer extraction phase, only questions that have extractive an-
swers are considered, and a machine reading comprehension model, known
as a reader, is employed to identify the specific answer within the rele-
vant passages identified in the passage retrieval phase. Given a question
Q = (q1, ..., q|Q|) and a context passage C = (c1, c2, ..., cn). The answer
extraction phase utilizes a reader to identify the specific text within the rel-
evant passages that answers the question. This process involves pinpointing
a specific text span, represented as (ci, ci+1, ...cj) within the context that is
determined to be the answer. The experiments carried out with this method
only consider the passage that was assigned the highest relevance score dur-
ing the retrieval phase. The overall approach is depicted in a diagram in
Figure 3.4.

Retrieval Result P

Retrieval Corpus A

Long
Scientific

Article

Passage A1

Passage A2

Passage An

...

RETRIEVER
or

RERANKER

Passage P1

Passage Pm

READERAnswer
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et
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A
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se

...
Sliding window

Extract answer span

Figure 3.4: Retriever-Reader approach on long scientific articles

To preprocess articles, we divide them into disjoint text blocks of WW
words, known as passages. However, this method may cause loss of context
for answer spans near the boundary. We employ a sliding window technique,
inspired by Wang et al. [74], with a stride of S=50 for all experiments. We
also experiment with various values of WW to determine the optimal value.

For the retriever component, we investigate two types of approaches: re-
trieving and re-ranking. The retrieval process employs a TF-IDF indexing
system to identify the passages within an article that are most relevant to
a given question. This is done by calculating the cosine similarity between
the question and each passage, which allows the system to identify the top
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most relevant passages. The re-ranking approach, on the other hand, utilizes
a Transformer cross-encoder model to generate a score between 0 and 1 for
each question-passage pair, indicating the level of relevance of the passage to
the question.

The reader component of our system utilizes Transformer-based models.
The retriever-reader approach allows us to use any cutting-edge Transformer-
based model for QA, without the limitation of handling long sequences. As
mentioned earlier, the goal of the reader is to identify a specific text segment
(ci, ci+1, ...cj) from C = (c1, c2, ..., cn) that answers the question. Our ap-
proach for extracting the answer to a question utilizes a pre-trained Trans-
former model, following the methodology outlined by Wolf et al. in their
work [76]. This includes adding a linear layer to the model’s output, which
allows us to calculate the likelihood of a given token being the start or end
of the text span that answers the question. Specifically, we calculate span
start probabilities Pstarti and span end probabilities Pendi for ci. For each
span (ci, ci+1, ...cj), a score is calculated using Pstarti and Pendj; The text
segment with the maximum score is chosen as the response to the inquiry.
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Chapter 4

Experimentation and
Evaluation

4.1 Description Augmentation for VQA in Math-

ematics Abstract Diagram

4.1.1 Experimental Setup

Method
Sub-tasks (3) Reasoning skills (13)

Img. Txt. Blank Geo. Cou. Com. Spa. Sce. Pat. Tim. Fra. Est. Alg. Mea. Sen. Pro.

Human 95.69 93.91 93.56 94.63 97.63 94.41 93.31 92.73 95.66 97.94 97.45 87.51 96.29 86.55 97.06 85.67

Top-Down[2] 75.92 68.51 73.03 80.07 65.01 80.65 45.78 58.22 55.01 68.28 72.43 99.54 50.00 99.46 84.54 83.75
BAN[36] 76.33 70.82 75.54 79.99 67.56 82.12 53.20 66.92 55.67 66.50 73.77 97.06 47.46 96.50 82.12 82.45
ViLBERT[46] 76.66 70.47 77.08 80.05 71.05 75.60 49.46 58.52 62.78 66.72 74.09 99.22 50.62 99.07 81.78 70.94
MCAN[79] 77.36 71.25 74.52 79.86 68.94 82.73 49.70 62.49 54.79 68.00 76.20 99.08 47.32 98.99 83.25 84.87
DFAF[16] 77.72 72.17 78.28 81.80 70.68 81.69 51.42 67.01 56.60 67.72 77.60 99.02 50.27 98.83 84.11 85.70
UNITER[9] 78.71 72.39 78.53 81.31 71.01 83.67 48.34 61.25 60.81 69.77 78.37 99.41 49.18 99.38 86.10 87.84
ViT[14] 79.15 72.34 78.92 82.60 70.84 82.12 54.64 68.80 58.46 68.66 77.41 98.95 51.10 98.76 84.72 86.07
ViLT[37] 79.67 72.69 79.27 82.61 71.13 84.95 53.38 66.72 59.22 69.99 75.81 99.02 50.55 98.91 86.10 87.65
Patch-TRM[51] (Reproduced) 79.04 67.37 79.47 78.65 74.59 74.09 53.52 58.27 54.46 75.49 81.49 97.19 53.23 97.13 91.28 75.02
Patch-TRM[51] (From paper) 82.66 75.19 83.62 81.87 77.81 87.00 55.62 62.39 68.75 77.98 82.13 98.24 56.73 97.98 92.49 95.73

Models using description augmentation

Patch-TRM (Desc augment) (1) 80.74 70.74 84.14 82.32 75.82 78.33 53.94 62.05 61.19 75.87 81.49 98.69 55.01 98.45 92.57 75.86
Description-based Model (2) 78.72 78.23 68.64 85.99 83.50 75.67 67.06 76.65 63.33 67.83 61.77 67.84 73.21 61.77 86.79 74.09

Table 4.1: Accuracy on IconQA test set. Patch-TRM (Reproduced) is
from reproducing experiments using the provided code, used for comparison.
Patch-TRM (From paper) is taken from the cited paper, used for reference.
The proposed description augmentation method is evaluated in two settings:
(1) Description augmentation for existing VQA models. (2) Description-
based models using only the descriptions without visual information.
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Model Training data
Sub-tasks

multi-image-choice multi-text-choice fill-in-the-blank

RoBERTa-Large multi-image-choice 78.72 51.88 -
RoBERTa-Base multi-image-choice 78.63 48.37 -
BERT-Base multi-image-choice 78.61 44.25 -

RoBERTa-Large multi-text-choice 39.61 78.23 -
RoBERTa-Base multi-text-choice 41.23 77.23 -
BERT-Base multi-text-choice 43.71 78.02 -

RoBERTa-Large multi-image-choice + multi-text-choice 78.51 78.29 -
RoBERTa-Base multi-image-choice + multi-text-choice 79.01 77.87 -
BERT-Base multi-image-choice + multi-text-choice 78.13 78.28 -

BART-Large fill-in-the-blank - - 68.64
BART-Base fill-in-the-blank - - 68.61
RoBERTa-Large fill-in-the-blank - - 68.69
RoBERTa-Base fill-in-the-blank - - 67.29
BERT-Base fill-in-the-blank - - 66.36

Table 4.2: Accuracy on IconQA test set of different description-based models

Benchmarks and Baselines

All of the experiments are conducted on the IconQA dataset [51]. IconQA
contains three sub-tasks as described in Section 3.1.1. Table 4.4 shows the
overall information of IconQA. The questions in IconQA require different
cognitive and mathematics skills that can be categorized into 13 groups
listed in Table 4.3. We compare the proposed method with strong base-
lines in attention-based and Transformer-based vision-language approaches.
Specifically, for attention-based methods, the baselines include Top-down at-
tention [2], BAN [36], DFAF [16], and MCAN [79]. For Transformer-based
vision-language approach, the baselines include VilBERT[46], UNITER [9],
ViT [14], and ViLT [37]. The performance of these attention-based and
Transformer-based methods is taken from the work of Lu et al. [51] for
comparison. The proposed method is also compared with Patch-TRM[51], a
cross-modal Transformer model employing a ResNet pre-trained on Icon645[51].
We reproduced the results of Patch-TRM from the provided code from the
work of Lu et al. [51] and used the reproduced results for comparison. We
also conducted experiments on Patch-TRM trained with description aug-
mentation to evaluate the impacts of the augmented descriptions on the
performance of existing VQA models.

Implementation Details

The proposed components, including the Connected-Component Labeling
object detection and description-based models, are implemented using Python
and PyTorch. The description-based multiple-choice (for multi-image-choice,
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multi-text-choice tasks) and multi-class classification model (for fill-in-the-
blank task) used RoBERTa-Base, RoBERTa-Large[45], BERT[13] as its Trans-
former component. The description-based sequence-to-sequence text gener-
ation (for fill-in-the-blank task) used BART-Large, BART-Base [43] as its
Transformer component. The implementation of Transformer models follows
the work of Wolf et al. [75]. The code and models are available.

Skill types Description

Geometry Recognize shapes, symmetry, transformations
Counting Identify the number of shapes, objects
Comparing Compare attributes of objects
Spatial Identify spatial positions and relations
Scene Comprehend abstract scenes
Pattern Recognize different patterns
Time Recognize clock time, event time
Fraction Understand fractions
Estimation Estimate big numbers, sizes
Algebra Conduct algebraic operations
Measurement Measure lengths, widths, heights
Commonsense Contain external knowledge
Probability Fulfill operations of probability/statistics

Table 4.3: Reasoning skill categories in IconQA

Tasks All Train Val Test

Multi-image-choice 57,672 34,603 11,535 11,535
Multi-text-choice 31,578 18,946 6,316 6,316
Filling-in-the-blank 18,189 10,913 3,638 3,638

All 107,440 64,462 21,489 21,489

Table 4.4: Overall of IconQA dataset

4.1.2 Results

Table 4.1 shows the performance of the baselines and the proposed method
on the IconQA test set. The proposed description augmentation method is
evaluated in two settings. In the first setting, the generated descriptions
are used to augment the training and inference process of the existing VQA
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model Patch-TRM [51], as described in Section 3.1.4. In the second setting,
we evaluated description-based models using only the generated descriptions
without any visual information, as described in Section 3.1.5. The result
suggests that the performance of Patch-TRM can benefit noticeably from the
description augmentation. Moreover, the result indicates that the proposed
description-based models achieved competitive results in multi-image-choice
sub-tasks and state-of-the-art results in multi-text-choice sub-tasks, using
only the signals from the descriptions.

To gain a deeper understanding of the impact that the generated de-
scriptions have on different reasoning skills, we visualize the accuracy of
the models on 13 skill categories in Figure 4.1. Figure 4.1a compares the
Patch-TRM model [51] and our description-based model described in Sec-
tion 3.1.5. While the Patch-TRM used both the textual and visual infor-
mation from the problem, the description-based model only considered the
textual information from the descriptions. The result suggests that while
the Patch-TRM shows strong performance on skills that require recognizing
visual properties of objects (Commonsense, Measurement, Estimation, Frac-
tion), the description-based model outperforms in mathematics skills that
require knowing the properties and quantities of objects (Counting, Compar-
ing, Algebra, Pattern). Surprisingly, the description-based model also out-
performs Patch-TRM in the Spatial skill which requires identifying spatial
positions and relations.

We experiment on different aspects of the proposed description-based
models and report the results in Table 4.2. As we only consider the textual
descriptions, themulti-image-choice andmulti-text-choice sub-tasks can both
be seen as multiple-choice question-answering and can be used to jointly train
a model. Although it is evident in the result that models trained on one sub-
task can have some knowledge of the other sub-task, the result indicates no
significant difference between jointly training the two sub-tasks and train-
ing them separately. Moreover, the two approaches for fill-in-the-blank task,
using multi-class classification and sequence-to-sequence text generation, wit-
ness approximately the same result in performance. The result also shows
that the choice of Transformer models (RoBERTa-Large, RoBERTa-Base,
BERT-Base) has little impact on the performance.

We analyze some examples of the generated descriptions to gain a deeper
understanding of the generation process. We randomly sample 100 examples
and report the three most common cases in Figure 4.2. Figure 4.2a shows
an example where the description is correct and provides useful information
to answer the question. This example is the type of descriptions we aim to
generate. Figure 4.2b shows a flawed example where the number of objects is
correct, but the object class is wrong. In this example, the proposed object
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detection method works correctly, but the ResNet classification model fails
to classify the correct class. These flawed examples still provide some help-
ful information and can be improved by enhancing the classification model.
Figure 4.2c shows some bad examples where the descriptions do not contain
any useful information to answer the questions. This problem often comes
from overlapping objects in the image or the nature of the question requiring
a more sophisticated description. There are fruitful areas for future research
regarding this problem.

4.2 Finding information in Scientific Papers

4.2.1 Experimental setup

Dataset

In this research, we evaluate our method using the QASPER dataset[11]
which comprises of a total of 5049 questions and 1585 NLP papers. The
QASPER questions were created by individuals who only read the title and
abstracts of the papers, and a separate group of individuals provided the
answers. The dataset is divided into four categories: extractive, abstractive,
yes/no, and unanswerable. Our study concentrates on the extractive category
which accounts for 51.8% of the entire dataset.

Baselines

In this study, we evaluate the performance of our proposed method against
other state-of-the-art models in the QASPER dataset [11]. Specifically, we
compare our results to those obtained by DocHopper [67] and QASPER-
LED [11]. DocHopper is an iterative model that navigates through different
sections of hierarchical documents to answer complicated queries. An alter-
nate approach we examine is QASPER-LED, a model constructed using the
Longformer architecture [4], which can handle input sequences of up to 16,000
tokens. Additionally, we compare our method against the ETC reader [1],
a highly-regarded model for handling long sequences with a maximum input
length of 4096 tokens. The performance results for the ETC reader on the
QASPER dataset are sourced from the research of Sun et al. [67] and were
evaluated using two distinct techniques: sequential reading and retrieval with
a BM25 retriever. The official QASPER evaluation metric, F1 score, is used
to assess performance. The F1 score takes into consideration the token-level
overlap between the predicted and gold answers, and is calculated using the
following formula.
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Precision =
Count of correct token predictions

Count of token predictions

Recall =
Count of correct token predictions

Count of tokens in gold answer

F1 =
2 . Precision . Recall

Precision + Recall

Implementation details

In the course of our experimentation, we selected TF-IDF as a sparse retrieval
method and Transformer-based Cross-encoder as a re-ranking approach for
comparative analysis. The implementation of the TF-IDF retriever was car-
ried out using the Scikit-learn library[57]. The Cross-encoder re-ranking
model was implemented utilizing the SBERT[59] and Transformers[76] pre-
trained model built on MiniLM[72] and fine-tuned on the MSMARCO[6]
dataset. The readers were constructed using the Transformers library[76]
and pre-trained models RoBERTa[44] and ELECTRA[10]. In certain exper-
iments, we also introduced the Oracle setting as a performance upper bound
for the retrievers. The Oracle setting involves the use of passages containing
the gold answers as system input rather than the entire article, taken from
the annotated evidence in QASPER.

4.2.2 Experimental Results

Method analysis

A series of tests were conducted on the QASPER development dataset to
evaluate various aspects of the proposed method. One set of experiments
looked at how different window sizes impacted the retrieval phase and over-
all QA pipeline. The results, shown in Figure 4.3, demonstrate how varying
the window size and number of retrieved passages affects retrieval accuracy,
which is measured as the percentage of retrieval results that include at least
one correct answer. Another set of experiments, illustrated in Figure 4.4,
shows the performance of RoBERTa and ELECTRA readers, using large
versions of both models. The highest performance for RoBERTa and ELEC-
TRA readers was seen with a window size of 150, resulting in F1 scores of
28.66% and 30.43%, respectively. The pipeline’s performance was found to
be higher when using the sliding window technique, as seen in both readers
at all window sizes.
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In our second series of experiments, we evaluated the effectiveness of
three distinct methods of retrieval, specifically the Sparse Retriever, Dense
Retriever, and Cross-encoder Re-ranker. To gauge the impact of each ap-
proach on the overall QA performance, we plotted the results in Figure 4.5
using the ELECTRA reader for all the experiments. As previously mentioned
in the methodology section, the ”Oracle” represents the highest achievable
performance for the retrievers. Our findings indicate that the Re-ranker con-
sistently outperforms the Sparse Retriever and Dense Retriever across all
window sizes, with a significant gap between the Re-ranker and the Oracle,
suggesting room for further improvement in the retrieval stage. Addition-
ally, we compared the retrieval accuracy of the three retrievers at different
numbers of retrieved passages in Figure 4.6 and found that the Re-ranker
continued to perform better than the other two retrievers, with accuracy
increasing as the number of passages increased.

Comparison with competitive methods

We evaluate the performance of our method against state-of-the-art models
on the QASPER development set, as presented in Table 4.5. Our approach
demonstrates superior performance in comparison to other state-of-the-art
models, such as ETC[1], QASPER-LED[11], and DocHopper[67], which are
specifically designed to handle long sequences. These results illustrate the ef-
fectiveness of our retriever-reader approach and its ability to effectively utilize
high-performance Transformer-based models such as RoBERTa, ELECTRA,
regardless of sequence length.

Method F1 Score

Retrieval + ETC 18.70
Sequential (ETC) 24.60
QASPER-LED 26.10
DocHopper 29.60

Proposed method
- MiniLM Re-ranker
- ELECTRA Reader
- Sliding window (W=150)

30.43

Table 4.5: Assessment of the proposed method against current state-of-the-
art techniques on the QASPER development set, specifically the extractive
question subset
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Retriever Reader
Sliding

Windows

Similarity

Score
F1 Score

Re-ranker

(MiniLM)

RoBERTa � - 28.66

ELECTRA � - 30.43

Sparse Retriever

(TF-IDF)

RoBERTa � Cosine 19.95

ELECTRA � Cosine 20.03

Dense Retriever

(MPNet)

RoBERTa � Cosine 18.78

ELECTRA � Cosine 19.16

Without sliding window

Re-ranker

(MiniLM)

RoBERTa - - 27.88

ELECTRA - - 28.43

Sparse Retriever

(TF-IDF)

RoBERTa - Cosine 18.34

ELECTRA - Cosine 18.89

Dense Retriever

(MPNet)

RoBERTa - Cosine 18.45

ELECTRA - Cosine 18.53

Dot product similarity score

Sparse Retriever

(TF-IDF)

ELECTRA � Dot product 20.03

RoBERTa � Dot product 19.95

Dense Retriever

(MPNet)

RoBERTa � Dot product 18.78

ELECTRA � Dot product 19.16

Dual-encoder

DPR[31]
ELECTRA � Dot product 20.13

ELECTRA � Cosine 18.86

Oracle

Re-ranker

(MiniLM)
ELECTRA � - 54.85

Sparse Retriever

(TF-IDF)
ELECTRA � Cosine 54.07

Dense Retriever

(MPNet)
ELECTRA � Cosine 53.29

Table 4.6: An examination of individual components through removal and
substitution
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Ablation study

An evaluation was conducted to determine the significance of various features
of the proposed method. Four specific areas were examined: the impact of
the sliding window technique, the use of similarity scores in the Sparse Re-
triever and Dense Retriever, the effect of different architectures in the Dense
Retrievers, and the upper-bound performance of the retrievers. The results
of this study are summarized in Table 4.6. The first set of results compares
the standard method. The second set of experiments looked at the perfor-
mance without the sliding window technique, and it was determined that
using a sliding window resulted in improved performance. In the third set of
experiments, the dot product score was used instead of the cosine similarity
score to compare the question and passage vectors in the Sparse Retriever
and Dense Retriever. It was found that the results were similar regardless
of which similarity score was used. The fourth set of experiments evaluated
DPR[31], which is a dual-encoder architecture that uses two distinct param-
eterized encoders as opposed to shared parameters in the standard setting.
The results showed that DPR is comparable to MPNet Dense Retriever and
that the dot product score is more effective than the cosine similarity score
in DPR. The final set of results represents the upper-bound performance of
the retrievers, known as the Oracle setting.
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(a) Comparison between Patch-TRM and Description-based Transformer.
Description-based Transformer only considers the information from the descrip-
tions (no visual information used).

(b) Comparison between Patch-TRM model with and without description aug-
mentation

Figure 4.1: Accuracy on 13 skill categories in IconQA test set
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Are there enough pairs of socks for every pair of shoes?

Description: 4 shoe, 4 sock

(a) Good example where the description is correct and provides useful information
to answer the question

How many turtles are there?

Description: 9 dinosaur

(b) Flawed example where the number of objects is correct but the class is wrong,
still provides some information

Which picture shows the grapes inside the refrigerator?

Description: 1 paper Description: 1 paper

On which color is the spinner
more likely to land?

Description: 1 clock

What time does the clock show?

Description: 1 clock

(c) Bad examples where the descriptions do not contain any useful information to
answer the questions

Figure 4.2: Examples of description generation on IconQA dataset
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Figure 4.3: Effect of various number of retrieved passages and window size
on the accuracy of Retrieval. Contrasting the performance of the Sparse
Retriever utilizing TF-IDF and the Cross-encoder (CE) with diverse window
size W ∈ {100, 150, 200}

(a) RoBERTa reader (b) ELECTRA reader

Figure 4.4: Investigation of the impact of utilizing a sliding window technique
on the performance of end-to-end question answering with various reader
models
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Figure 4.5: Examination of the effects of various window sizes on the perfor-
mance of different retriever methods

Figure 4.6: Evaluation of retrieval techniques at varying levels of retrieved
passages. The solid lines indicate accuracy when at least one of the retrieved
passages contains the correct answer (One). The dashed lines indicate the
accuracy when all retrieved passages contain the correct answer (All)
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Chapter 5

Conclusions

5.1 Conclusions

The primary objective of this research is to address the challenges associated
with Visual Question Answering (VQA) systems in the domain of math-
ematics abstract diagrams found in textbooks and to propose an effective
method for finding information in these documents. To achieve this goal, we
have proposed an efficient method for generating helpful descriptions that
can be utilized to augment the training and inference process of VQA mod-
els in mathematics abstract diagrams. This method aims to improve the
performance of VQA systems by providing them with additional contextual
information about the image. Furthermore, we have proposed an efficient
method for detecting abstract objects using connected-component labeling.
To evaluate the effectiveness of the proposed method, we have developed
description-based models that utilize only the generated descriptions without
any visual information. The experimental results demonstrate that models
trained only on the descriptions can achieve state-of-the-art results in the
IconQA multi-text-choice subtask and outperform current VQA systems on
skills requiring knowledge of the properties and quantities of objects. Fur-
thermore, VQA systems trained and inferred with augmented descriptions
show substantial improvements in mathematics abstract diagram problems.

In addition, our method tackles the task of answering questions in long
scientific documents by adjusting the retriever-reader approach used in open-
domain QA. We employ efficient transformer-based readers to overcome ob-
stacles presented by lengthy sequences. Additionally, we implement a tech-
nique that partitions scientific articles into fixed-size portions, which im-
proves the performance of the retriever-reader pipeline. Our study shows
that the Cross-encoder Re-rankers are more effective than Sparse Retrievers
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when working with scientific articles and that a window size of 150 words
provides optimal results. The QASPER dataset’s experiments indicate that
our approach exceeds existing leading models. This study paves the way for
future research on developing efficient retrievers and readers for QA on long
scientific documents, with no limitations in processing extensive sequences.

5.2 Publications

5.2.1 Publications related to the thesis

• Dieu-Hien Nguyen, Nguyen-Khang Le, and Minh Le Nguyen (2022).
“Exploring Retriever-Reader Approaches in Question-Answering on Sci-
entific Documents”. In: Recent Challenges in Intelligent Information
and Database Systems. ACIIDS 2022. Communications in Computer
and Information Science, vol 1716.

• Nguyen-Khang Le, Dieu-Hien Nguyen, and Minh Le Nguyen. “An
Effective Description Augmentation Approach for Visual Question An-
swering in Mathematics Abstract Diagram”. (Submitted to The 32nd
International Joint Conference on Artificial Intelligence (IJCAI) 2023)

5.2.2 Other publications

• Nguyen-Khang Le, Dieu-Hien Nguyen, Tung Le Thanh, and Minh
Le Nguyen. “VIMQA: A Vietnamese Dataset for Advanced Reasoning
and Explainable Multi-hop Question Answering”. In: Proceedings of
the Thirteenth Language Resources and Evaluation Conference, pages
6521–6529. 2022.

• Nguyen-Khang Le, Dieu-Hien Nguyen, Thi-Thu-Trang Nguyen, Minh
Phuong Nguyen, Tung Le, and Minh Le Nguyen. “A Novel Pipeline to
Enhance Question-Answering Model by Identifying Relevant Informa-
tion”. In: SCIDOCA 2021 post-proceedings (Accepted)

• Chau Nguyen, Nguyen-Khang Le, Dieu-Hien Nguyen, Minh Phuong
Nguyen, and Minh Le Nguyen (2022). “A Legal Information Retrieval
System for Statute Law”. In: Recent Challenges in Intelligent In-
formation and Database Systems. ACIIDS 2022. Communications in
Computer and Information Science, vol 1716.

• Chau Nguyen, Minh-Quan Bui, Dinh-Truong Do, Nguyen-Khang
Le, Dieu-Hien Nguyen, Thu-Trang Nguyen, Ha-Thanh Nguyen, Vu
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Tran, Le-Minh Nguyen, Ngoc-Cam Le, Thi-Thuy Le, Minh-Phuong
Nguyen,Tran-Binh Dang, Truong-Son Nguyen, Viet-Anh Phan, Thi-
Hai-Yen Vuong, Minh-Tien Nguyen, Tung Le, and Tien-Huy Nguyen,
“ALQAC 2022: A Summary of the Competition”. In: 2022 14th In-
ternational Conference on Knowledge and Systems Engineering (KSE).
2022, pp. 1-5.

• Quan Minh Bui, Chau Nguyen, Dinh-Truong Do, Nguyen-Khang
Le, Dieu-Hien Nguyen, Thi-Thu-Trang Nguyen, Minh-Phuong Nguyen,
and Minh Le Nguyen. “JNLP team: Deep Learning Approaches for
Tackling Long and Ambiguous Legal Documents in COLIEE 2022”.
In: JURISIN 2022 post-proceedings (LNAI) (Accepted)

• Dieu-Hien Nguyen, Nguyen-Khang Le, and Minh Le Nguyen. “Vi-
WiQA: Efficient End-to-end VietnameseWikipedia-based Open-domain
Question-Answering Systems for Single-hop and Multi-hop Questions”.
(Submitted to Information Processing & Management Journal)
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