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Abstract

Core topics in computability and complexity were revisited, in order to generate new
insights. In computability theory, we considered structures of the lambda calculus.
We wanted to obtain a better understanding of the properties of structures of the
lambda calculus, by studying structures more general than the already established
ones.

For this purpose, we introduced a new notion for combinatory algebras, called
reflexivity. Reflexivity can be characterized as the algebraic counterpart of the
Meyer-Scott axiom for combinatory and lambda models. With reflexivity, we defined
strongly reflexive combinatory algebras. Strongly reflexive combinatory algebras can
interpret the lambda calculus, but are more general than lambda algebras.

Strongly reflexive combinatory algebras relate to the known structures in the
following way: they are exactly the retracts of combinatory models, and a strongly
reflexive combinatory algebra that satisfies stability is a lambda algebra.

In algorithmic complexity, we gave an overview of results related to logical depth.
Logical depth is a notion that uses Kolmogorov complexity to capture the amount
of useful information in strings. The definition of logical depth uses a significance
level. We proved that similarly to sophistication, a related definition, logical depth
is unstable with respect to the significance level: the value of logical depth changes
a lot with only small changes to the significance level. For sophistication it was
suggested to interpret the notion as a function in the significance level, because of
this instability.

We showed that interpreting logical depth as a function in the significance level
entails that it is not always possible to straightforwardly compare the logical depth
of two different strings. This makes the usability of the current definition of logical
depth uncertain. We hereby argued that it is necessary to reconsider the basis for
the definition, and clarify the assumptions and requirements behind it.

Keywords: Lambda calculus, combinatory algebra, reflexivity, Kolmogorov com-
plexity, logical depth
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Chapter 1

Introduction

Computability and complexity are underlying to major studies in theoretical com-
puter science. The field computability theory involves topics related to the notion
of a computable function. There are several alternatives to describe computable
functions, such as Turing machines, the lambda calculus, combinatory logic, Post
systems and µ-recursive functions. All these turned out to be provably equivalent.
Algorithmic complexity, or Kolmogorov complexity, uses Turing machines as the
model for computation. The field encompasses the study of the complexity of ob-
jects by considering the amount of information in them. Strings which contain the
most information are called random.

In this dissertation, we revisit core notions in computability and complexity, that
are already accepted or taken for granted. This is done in order to gain new insights
and a deeper understanding of fundamental topics.

1.1 Computability

1.1.1 Background

In the first part of the dissertation, we focus on a topic related to the correspondence
between combinatory logic and the lambda calculus. The combinatory algebra is
a structure for the system of combinatory logic. For computations in combinatory
logic only two specific functions, called combinators, are used. These combinators
are often referred to as k and s. With k and s, it is possible to define a lambda
abstraction, as in the system of the lambda calculus, for combinatory algebras. This
lambda abstraction is denoted with λ∗. However, this abstraction does not respect
the β-equality of the lambda calculus.

1.1.2 Previous situation

There are several known structures for the lambda calculus, based on combinatory
algebras, for which the defined lambda abstraction does respect the β-equality. In
the following, we will outline those.

There is the lambda algebra, which is a combinatory algebra A such that two
conditions hold with respect to the lambda abstraction λ∗: soundness and stability.
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When we add a specific axiom called the Meyer-Scott axiom to a lambda algebra,
we obtain a lambda model, first defined by Scott [37]. Satisfying the Meyer-Scott ax-
iom is equivalent to being weakly extensional with respect to the lambda abstraction
λ∗.

Another structure is the combinatory model : it can be defined as a combinatory
algebra satisfying the Meyer-Scott axiom.

Combinatory models satisfy the soundness condition as mentioned above for
lambda algebras. However, in general, combinatory models do not satisfy stability.
Lambda models can be characterized as combinatory models which satisfy stability.

We have thus identified three structures for the lambda calculus: lambda alge-
bras, lambda models and combinatory models. Note that the combinatory algebra
cannot interpret the lambda calculus in general.

Combinatory algebra Lambda algebra

Combinatory model Lambda model

soundness, stability

Meyer-Scott axiom

stability

Meyer-Scott axiom

In recent years, not much research on this topic has been done. The lambda
model and the combinatory model were defined in the beginning of the 1980s. In
2002, Selinger showed that in a lambda algebra, the lambda abstraction is inter-
preted as a polynomial. Because of the Meyer-Scott axiom, in combinatory models
and in lambda models, the abstraction is interpreted as a function.

1.1.3 Motivation and significance

We revisit the topic of structures for the lambda calculus, with the goal of finding
a more general structure than the three mentioned before. By doing this, we hope
to obtain a better understanding of the properties that are absolutely necessary for
interpreting the lambda calculus.

The observation that underlies this search for a more basic structure is the fol-
lowing. We already have three known structures that can interpret the lambda
calculus, as shown in the diagram. What is missing from these, however, is a struc-
ture that does not satisfy stability, like combinatory models, but interprets lambda
abstractions as a polynomial, like lambda algebras.

In order to reach the goal of gaining a better understanding of the requirements
needed for such a structure, we searched in a bottom-up manner. We started with a
combinatory algebra, and gradually added properties that seemed to be necessary for
interpreting the lambda calculus. The most important property that was introduced,
is reflexivity : an algebraic analogue of the Meyer-Scott axiom. We found this to be
a fundamental property for interpreting the lambda calculus, however, it was not
sufficient. At the end, we indeed found a structure that is the algebraic counterpart
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Combinatory algebras

seven sentences
��

Curry’s axioms

��

Reflexive combinatory algebras

λ†-closures of seven sentences
��

Strongly reflexive combinatory algebras
Meyer–Scott

axiom
uu

stability

))

Combinatory models

stability ))

Lambda algebras

Meyer–Scott
axiom

uu

Lambda models

Figure 1.1: Relationship between various structures

of a combinatory model, where the abstractions are interpreted as polynomials,
without satisfying stability. This structure is called a strongly reflexive combinatory
algebra. We also formulated a finite axiomatization for these structures. Figure 1.1
gives the relationships between the structures.

Axiomatizations for lambda algebras were given by Curry [16] and Selinger [38].
However, these were found using a top-down manner, and it is not easy to explain
why those axioms are necessary for interpreting the lambda calculus. Because of
working in a bottom-up manner, the origins of the axioms for the strongly reflexive
combinatory algebra are clear, and it can thus be explained why these are necessary
for interpreting the lambda calculus. Moreover, these axioms are similar to those
introduced by Selinger, and can hence be used to explain his axiomatization as well.

1.2 Complexity

1.2.1 Background

The notion of Kolmogorov complexity was independently introduced by Chaitin,
Solomonoff and Kolmogorov. We say that the Kolmogorov complexity of a binary
string is the length of the shortest program that computes the string. It has been
used as a definition for the amount of information of binary strings. We can also
use it to define randomness: random strings are those, for which the Kolmogorov
complexity, and thus the shortest program that computes it, has roughly the same
length as the string itself. A random string is incompressible: there is no shorter
way to describe it than just giving the string itself. This is because random strings
are patternless.
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For any string x, there is always a program that computes it. A canonical
program would have the instructions ”print x”. The length of such a program is
the length of x plus a constant. It is therefore that the Kolmogorov complexity of
a string is never larger than the length of the string itself plus a constant. Random
strings thus have the largest Kolmogorov complexity, relative to the length of the
string. This means that random strings contain the most information.

This seems counter-intuitive, since random strings do not seem like they have lots
of information. That is why people have started wondering, whether there is also a
way to capture the amount of useful information in strings. In order to understand
the intuition behind the several approaches to defining useful information, we will
give an example.

Consider the following three sounds: a constant tone at a specific frequency,
random noise, and a recording of Hiromi Uehara playing a piece on the piano. All
three sounds can be described with a binary string. The string that describes the
constant tone has a really low Kolmogorov complexity (low information content). It
can be compressed a lot, since it is only one simple pattern. The string that describes
the noise has a really high Kolmogorov complexity; it cannot be compressed at all.
The string that describes a recording of the piece on the piano can be compressed a
bit, since the music will contain patterns. The compression is however not so simple
as the one for the constant single pitch.

Objects that contain patterns, things that seem to have some form of organiza-
tion, appear all around us. Music, but also this dissertation, our DNA, etc. And
exactly these objects are those that intuitively contain more useful information than
random strings.

1.2.2 Previous situation

There are several different definitions around, that were defined with the aim to
capture this notion of useful information. Here we outline three of these, that all
take a different approach.

The first definition is called effective measure complexity and it is the least well-
known definition of the three. It is defined by Chaitin in [12] and it uses the amount
mutual information between substrings in order to capture the amount of useful
information.

The definition of effective measure complexity takes a string and a natural num-
ber s, and returns a natural number. How much useful information is contained in
the string is then described by the function in s of the effective measure complexity
for a fixed string.

A more well-known definition is the sophistication of Koppel and Atlan [24, 25,
3]. The definition uses two-part descriptions: the assumption is that a program
for a string consists of a part that specifies the noise and a part that specifices the
structure. It is defined for a string x and a natural number s, the significance level.
This significance level was introduced because we cannot be certain about which
two-part description is the ”right” one for the string. The bigger the significance
level, the smaller the chance that the value of sophistication that we have is the
”true” value that represents the amount of structure in the string.
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Later it was shown that sophistication is unstable with respect to the significance
level: the value of sophistication changes a lot for only small changes in the signifi-
cance level [2]. From this it was concluded that sophistication should be interpreted
as a function in the significance level instead, similarly as for the effective measure
complexity.

The final definition that we discuss is logical depth of Bennett [9]. It uses com-
putation time as a measure of the amount of useful information. Logical depth is
defined for a string and again a natural number s, the significance level. This sig-
nificance level was introduced for similar reasons as for sophistication. Other than
that it has to be small, it is not made precise which significance level to pick for
the physical complexity of a string. In a somewhat recent publication, evidence was
given that probably logical depth is also unstable with respect to the significance
level [6].

1.2.3 Motivation and significance

In this work, we focus on the most-used definition logical depth. There are quite
some results that use this definition, however, they are scattered and sometimes
incorrect. We give an overview of the most important results, also relating several
variants of the definition.

We also confirm that logical depth is indeed unstable with respect to the sig-
nificance level. This could mean that logical depth should also be interpreted as a
function in the significance level, as for sophistication. We also explore a problem
that arises when considering logical depth as a function. Namely, we look into how
we should compare the logical depth of two different strings. Even without con-
sidering functions, this was already a bit unclear because of the significance level.
Suppose we are comparing the logical depth of two strings, while interpreting logical
depth as a function in the significance level. The most straightforward way to decide
which string has more useful information, would be to say that the string that has
a higher logical depth than the other for each significance level, has higher logical
depth (and thus more useful information).

We show that such straightforward decisions are not always possible. Namely,
we show that for every length, there are two different strings x and y of that length,
and two significance levels s1 and s2, such that for s1, the string x has a higher
logical depth than y, and for s2 the other string y has a higher logical depth.

1.3 Structure

In Chapter 2, we give the several models of computation that are used in this disser-
tation, together with their history. It starts with the systems of combinatory logic
and the lambda calculus. After defining Turing machines, the notion of Kolmogorov
complexity is given.

In Chapter 3 the background that is needed for the next chapter is given. It
contains previously known results. We outline combinatory algebras and several
structures for the lambda calculus. We also introduce polynomial algebras, and
give the axiomatizations of Curry and Selinger. Chapter 4 is based on joint work
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with Tatsuji Kawai and Hajime Ishihara [19]. We first introduce a structure called a
combinatory pre-model. From this structure, we structurally add more requirements.
One of these requirements is reflexivity. Finally, we arrive at a new structure called
a strongly reflexive combinatory pre-model. We show that strongly reflexive combi-
natory pre-models are sound with respect to the lambda calculus, and we outline
how the structure is related to other structures of the lambda calculus.

Part two of the dissertation starts with Chapter 5. We first discuss the necessary
preliminaries for this part of the dissertation. In Chapter 6, we give the definition of
logical depth, together with several related definitions. We also outline relations be-
tween the different definitions. Afterwards we highlight problems with the definition
of logical depth. This is based on joint work with Akitoshi Kawamura.

Finally, Chapter 7 discusses the results in the dissertation.
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Chapter 2

Historical background and models
of computation

The beginning of the 1900’s was a time when many were concerned with formal
systems. Russel had just formulated his paradox which gives a contradiction in
naive set theory. In naive set theory, every definable collection is a set. But when
we consider the set of all sets that are not members of themselves, R = {x | x 6∈ x},
then we arrive at a contradiction both when R ∈ R and R 6∈ R. This is known as
Russel’s paradox.

It was also a time when Gödel’s incompleteness theorems were not yet published,
which appeared in 1931. A formal system is complete if for every formula of the
system either the formula or the negation is provable in the system. A formal system
is inconsistent if there is a formula, such that both the formula and the negation
are provable in the system. Gödel’s incompleteness theorems only concern formal
systems that can carry out some elementery arithmetic. The first incompleteness
theorem states roughly that any such consistent formal system will always be in-
complete. The second theorem states that such a formal system can never prove
its own consistency. And thus, not knowing of these obstacles, several researchers
were working on mathematical foundations, hoping to create a useful formal system
and also use it to show its own consistency. Some abandoned the sets and worked
on foundations based on functions instead. Combinatory logic and lambda calculus
were results of such efforts.

2.1 Combinatory logic

Schönfinkel was the initiator of combinatory logic as it is know today. He was a mem-
ber of a research group led by Hilbert [10]. Hilbert is mostly known for his program
with which he wanted to solve the problem posed by Russell. Hilbert planned on
formulating a foundation of mathematics and proving its own consistency, while only
using finetary methods. That is, he wanted to restrict mathematics to only using ob-
jects that are ”intuitively present as immediate experience prior to all thought”[20],
without using infinite totalities [42]. Eventually Gödel’s theorems put an end to
this.

At the time, Schönfinkel’s main goal was to reduce the number of primitive
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notions in logic. Specifically, he showed how to eliminate bound variables from
expressions [36].

Schönfinkel based himself on the observation that using functions in a single ar-
gument is enough, as we can successively apply these functions in order to obtain the
same result as with using multi-variable functions. This process is currently known
as ”currying” even though it was initiated by Frege, whom Schönfinkel referred to
in his paper. For example, the process of adding two numbers a and b, can be done
by a function or operation ⊕ that only has one argument. If we apply ⊕ to a, we
get another function ⊕a. When we apply this to b, and thus perform the operation
(⊕a)b, we obtain the result a+ b.

Schönfinkel also introduced several combinators : specific functions that use func-
tion application on a single argument only. He then continued to show that we can
create all formulas of predicate logic using the combinators now known as k, s and
a NAND-operator, without using any bound variable [36].

Curry set out on pursuing a similar goal of obtaining a more simplistic foun-
dational system. After discovering Schönfinkel’s work he continued working on a
formal system using the combinators k and s. He also added a rule that is known
as extensionality (see Definition 3.1.10 later).

The formal systems of Schönfinkel and Curry were not so successful (similarly
for the lambda calculus, as we will see). However, combinatory logic is now very
well known as a model of computation.

Before we introduce the theory of Combinatory logic, we outline how variables
are used. There are countably many variables. For each i ∈ N, let xi be a variable.
For each i, j ∈ N with i 6= j, the variables xi and xj are distinct. We will often use
x, y or z to denote any variable.

Definition 2.1.1. Combinatory logic is a theory with the following alphabet.

1. Two constants k and s, also known as combinators.

2. The variable xi for each i ∈ N.

3. The symbol = for equality, the symbol · for application and ( , ) as parenthesis.

The set of terms TCL of combinatory logic is defined inductively as follows.

1. The variable xi ∈ TCL for each i ∈ N.

2. The combinators k, s ∈ TCL.

3. For all terms s, t ∈ TCL, also their application (s · t) ∈ TCL.

Notation 2.1.2. We will often omit the symbol · for application and use the conven-
tion of association to the left. We thus write rst instead of ((r · s) · t)

Definition 2.1.3. The formulae of combinatory logic are s = t for all s, t ∈ TCL.
The axioms and rules for combinatory logic are the following. For all q, r, s, t ∈

TCL:

k) ((k · r) · s) = r

12



s) (((s · r) · s) · t) = (r · t) · (s · t)

refl) r = r

symm) r = s⇒ s = r

trans) r = s ∧ s = t⇒ r = t

cong) q = r ∧ s = t⇒ (q · s) = (r · t)

Definition 2.1.4. For s, t ∈ TCL we write CL ` s = t when we can derive s = t in
combinatory logic using the rules and axioms above.

We give an example of this below.

Example 2.1.5. Let s, t ∈ TCL. Then CT |= s(k(skk))st = st, since

s(k(skk))st = k(skk)t(st)

= skk(st)

= k(st)(k(st))

= st.

It is also possible to define natural numbers in combinator logic. We can do
computations by rewriting terms, only using k and s. Although, written down,
these computations are not so easy for us to follow. The lambda calculus is another
model of computation, somewhat similar to combinatory logic, but more intuitive
in this manner.

2.2 Lambda calculus

Church was also a researcher who wanted to make a formal system based on the
notion of a function, without using bound variables [10]. Underlying to this system
was the (untyped) ”pure lambda-calculus”. Eventually Church’s system was proven
inconsistent by two of his students, Rosser and Kleene [22]. However, the lambda-
calculus turned out to be very useful.

Definition 2.2.1. The lambda calculus is a theory with the following alphabet.

1. The symbol ’.’ and the symbol λ.

2. The variable xi for each i ∈ N

3. The symbol = for equality, the symbol · for application and ( , ) as parenthesis.

The set of terms TΛ of the lambda calculus is defined inductively as follows.

1. The variable xi ∈ TΛ for each i ∈ N.

2. For all t ∈ TΛ and any variable x, the lambda abstraction λx.t ∈ TΛ.

3. For all terms s, t ∈ TΛ, also their application (s · t) ∈ TΛ.

13



Before we can define the formulae and the axioms and rules of the lambda cal-
culus, we need to give two additional definitions. First, we define the set of free
variables for any term.

Definition 2.2.2. For any term t ∈ TΛ, the set FV (t) of all free variables in t is
defined inductively as follows.

1. FV (x) = {x} for any variable x.

2. FV (λx.s) = FV (s) \ {x} for any variable x and any s ∈ TΛ.

3. FV (t1 · t2) = FV (t1) ∪ FV (t2) for any t1, t2 ∈ TΛ.

Using the set of free variables of a term, we can now define how to do substitution
for variables that occur in a term.

Definition 2.2.3. For any terms s, t ∈ TΛ and any variable x, define a term s[x/t]
obtained by substituting all occurrences of x in s by t as follows.

1. x[x/t] ≡ t.

2. y[x/t] ≡ y for any variable y different from x.

3. (λy.r)[x/t] ≡ λy.(r[x/t]) for any r ∈ TΛ and a variable y, such that y is distinct
from x and y 6∈ FV (t).

4. (s1 · s2)[x/t] ≡ s1[x/t] · s2[x/t] for any s1, s2 ∈ TΛ.

Using the above definition, we can proceed to the formulae and axioms and rules
of the lambda calculus.

Definition 2.2.4. The formulae of the lambda calculus are s = t for any s, t ∈ TΛ.
The axioms and rules of the lambda calculus are as follows. For all q, r, s, t ∈ TΛ

and for all variables x:

α) λx.t = λy.t[x/y] when y 6∈ FV (t)

β) ((λx.s)t) = s[x/t]

refl) r = r

symm) r = s⇒ s = r

trans) r = s ∧ s = t⇒ r = t

cong) q = s ∧ r = t⇒ (qr) = (st)

ξ) s = t⇒ λx.s = λx.t

Definition 2.2.5. For any s, t ∈ TΛ, the statement λ ` s = t holds when it is
possible to derive s = t in the lambda calculus using the rules and axioms above.

We can recreate Example 2.1.5 for the lambda calculus (for which the computa-
tion is now much simpler and more intuitive):
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Example 2.2.6. Let s, t ∈ TΛ and let x, y be variables. Then λ ` (λxy.xy)st = st,
since

(λxy.xy)st = (λy.sy)t

= st.

2.3 Turing machines and the Church-Turing the-

sis

Gödel’s incomlpeteness theorems put a halt to Hilbert’s program. However, in
a different way, Hilbert influenced the creation of another model of computation.
Hilbert formulated the Entscheidungsproblem: is it possible to give an algorithm
that determines whether a sentence of first order logic is satisfiable or not? This
was considered one of the biggest, if not the biggest, problem for logicians in the
1930’s.

The first to show the undecidability of the Entscheidungsproblem was Church
in 1936 [13]. Independently it was shown (in a clearer way) by Turing. Turing
was a student in Cambridge, and later ended up being a PhD student of Church.
Inspired by lectures of Newman and the Entscheidungsproblem of Hilbert, Turing
defined a machine for computing and used it to show the undecidability of the
Entscheidungsproblem [40]. This machine of computing later became known as the
Turing machine.

Definition 2.3.1. A Turing machine is a tuple (Γ, Q, δ), with a finite set Γ with
symbols, a finite set Q of states (containing at least a start- and a halting-state),
and a transition function δ : Q× Γk → Q× Γk × {L,R, S}k for some k ∈ N≥1.

The machine has a finite number of tapes (the k in the transition function). A
tape is an infinite line of cells. Each cell contains one symbol from Γ, together with
a tape head that scans one of these cells. The machine also has a register that
contains the state of the machine.

The transition function describes a computational step. The register holds a
state from Q and the machine reads k symbols under the tape heads. According to
the transition function δ, the machine then gets into another state from Q, replaces
the k symbols under the tape heads with k symbols from Γ, and on each tape the
tape head either moves one cell in the left or right direction or stays in the same
position.

At the start of the computation the machine is in the start-state. The input is
a string with symbols from Γ written on the first tape. After several computational
steps, the machine possibly gets into the halting state, with the output written on
the k-th tape.

Definition 2.3.2. For any Turing machine M , any x, y ∈ {0, 1}∗ and any t ∈ N, if
M , given x as input, halts after t steps and outputs y, then M(x) and TM(x) are
defined and equal to y and t respectively.
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Turing stated that any ”effective calculation” can be done by a Turing machine.
Church said the same about the lambda calculus, and not soon after the Turing
machine first appeared it was shown by Church and Turing that Turing machines
and the lambda calculus computed the same functions. Combinatory logic, Post’s
systems the recursive functions defined by Gödel also compute the same functions as
Turing machines. We now refer to the Church-Turing thesis as the statement that
the computable functions are exactly those that Turing machine (or any of these
other models) compute.

2.4 Kolmogorov complexity

The formulation of the Turing machine lead to the emergence of several new research
fields. Especially the universal Turing machine, which was also defined by Turing,
was important for this. The universal Turing machine is a Turing machine that
can simulate the computation of any other Turing machine. By being able to refer
to a single machine for all computations, people could start to study about the
characteristics of the algorithms and the strings that are computed. The notion of
Kolmogorov complexity tries to capture the information content or complexity of a
string. It is defined as the length of the shortest program that produces the string.

Definition 2.4.1. For any x ∈ {0, 1}∗ and any Turing machine M , the Kolmogorov
complexity of x relative to M is defined as

CM(x) = min{|p| : p ∈ {0, 1}∗, M halts on p and M(p) = x},

if there is a p ∈ {0, 1}∗ such that M halts on p and M(p) = x, and otherwise
CM(x) =∞ when such a p does not exist.

Just as different people all defined the notion of computable functions inde-
pendently of each other, Kolmogorov complexity was also defined by three people
independently.

Solomonoff was working on inductive inference, and introduced Kolmogorov com-
plexity to obtain a universal a priori probability [39]. Using universal Turing ma-
chines, Solomonoff showed what is known as the Invariance theorem.

Theorem 2.4.2. There exists a universal Turing machine U , such that for any
Turing machine M , there exists a constant cM such that for all x ∈ {0, 1}∗ and
t ∈ N for which CM(x) <∞,

CU(x) ≤ CM(x) + cM .

This theorem tells us that the Kolmogorov complexity of a string is machine in-
dependent up to an additive constant, and it thus justifies the notion of Kolmogorov
complexity.

Only a year later, Kolmogorov independently introduced the same definition of
Kolmogorov complexity in [23]. He used it as a measure of information content
and randomness. He also proved the Invariance theorem. Chaitin then also defined
Kolmogorov complexity and proved the Invariance theorem a couple of years later.
More history can be found in [31].
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2.5 Physical complexity

The physical complexity of a string is the amount of useful information behind
it. This could also be seen as a measure of the degree of organization. When
Kolmogorov defined Kolmogorov complexity in [23], he already mentioned that the
definition had as a disadvantage. Namely, it does not consider the effort needed to
transform the program into an output. There could be strings that can be produced
by a short programs, but all those need long computations. He wrote that he
would study more about this and publish a paper on it. However, this paper never
appeared.

About 15 years later, Bennett wanted to identify the conditions for physical
systems to evolve into states that have high organization [8]. During this work he
came to define something similarly as Kolmogorov earlier described. He defines the
notion logical depth. Bennett himself discusses several possible definitions that are
closely related to each other. In [41], a definition of Bennet that is similar to logical
depth is related to several other definitions that, again, appeared independently.
In Chapter 6, we will give the definition of logical depth and several other related
definitions.

Another well-known definition is sophistication. It was defined (independently)
by Koppel and Atlan in [24, 25]. This definition, however, takes a completely differ-
ent approach. That is why the relation between sophistication and logical depth is
not as clear-cut as the relation between the different models of computation. Still,
there are several results that relate the two [2].
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Part I

Computability
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Chapter 3

Combinatory algebras and
extensions

3.1 Combinatory algebras

We will define structures that enable us to perform computations in a similar way
as combinatory logic does. The basis of these structures is the following.

Definition 3.1.1. An applicative structure is a structure A = (A, ·), where A is a
set, called the domain of A, and · is a binary operation on A, called the application.

We first outline how terms on any set are defined.

Definition 3.1.2. Let S be a set. The set T (S) of terms over S is inductively
defined as follows:

i) a ∈ T (S) for each a ∈ S.

ii) For any s, t ∈ T (S), also the application (s, t) ∈ T (S).

The terms on A do contain variables (in contrast to what we will define later,
see Definition 3.1.2). Define X = {xi : i ∈ N and i ≥ 1}, a countably infinite
set of distinct variables. Then T (X ∪ A) are the terms on an applicative structure
A = (A, ·).

Note that for an applicative structure A = (A, ·), application on two elements
a, b of A is denoted as a · b, whereas application of two terms s, t ∈ T (X ∪ A) is
denoted as (s, t).

Notation 3.1.3. For any applicative structure A = (A, ·) we will occasionally use
the following notation. We often omit the symbol · for application in A. Following
convention, parentheses are omitted following association to the left. That is, for
any a, b, c ∈ A, the element abc ∈ A is shorthand notation for ((a · b) · c). Where
confusion doesn’t arise, we will similarly abbreviate applications in T (X∪A). So for
any r, s, t ∈ T (X ∪ A), the term ((r, s), t) can be written as rst.

Similarly to Definition 3.1.4, we define the set of free variables for a term of an
applicative structure.
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Definition 3.1.4. For any applicative structure A = (A, ·), for any term t ∈ T (X∪
A), the set FV (t) of all free variables in t is defined inductively as follows.

i) FV (x) = {x} for any variable x.

ii) FV (a) = ∅ for any a ∈ A.

iii) FV (t1, t2) = FV (t1) ∪ FV (t2) for any t1, t2 ∈ T (X ∪ A).

Substitution is also similar as Definition 2.2.3. In this part of the dissertation,
we use ≡ to denote syntactically equal terms.

Definition 3.1.5. For any applicative structure A = (A, ·), for any terms s, t ∈
T (X ∪ A) and for any variable x, define a term s[x/t] obtained by substituting all
occurrences of x in s by t as follows.

i) x[x/t] ≡ t.

ii) y[x/t] ≡ y for any variable y different from x.

iii) (s1, s2)[x/t] ≡ (s1[x/t], s2[x/t]) for any s1, s2 ∈ T (X ∪ A).

Notation 3.1.6. For any n ∈ N, any s, t1, . . . , tn ∈ T(A) and for any variables
x1, . . . , xn, denote s[x1/t1, x2/t2, . . . , xn/tn] ≡ (· · · ((s[x1/t1])[x2/t2]) · · · )[xn/tn].

To see which formulas are true in an applicative structure, we define the following.

Definition 3.1.7. A valuation on an applicative structure A is a mapping ρ from
X to A. For a valuation ρ, the interpretation in A is a mapping J·KAρ from T (X ∪A)
to A. It is inductively defined as follows.

Let A be an applicative structure and let ρ be a valuation on A. Then,

i) JxiKAρ = ρ(xi) for all i ∈ N≥1.

ii) JaKAρ = a for all a ∈ A.

iii) J(s, t)KAρ = (JsKAρ · JtKAρ ) for two terms s, t ∈ T (X ∪ A).

For a formula s = t, it is defined that s = t is true in A under the valuation ρ,
or A, ρ |= s = t, if JsKAρ = JtKAρ .

It is defined that s = t is true in A, written as A |= s = t, if A, ρ |= s = t for all
valuations ρ.

Remark 3.1.8. Occasionally we consider the interpretation of a term that does not
contain variables. Then, the interpretation is independent of the valuation. For an
applicative structure A = (A, ·), the interpretation of a t ∈ T (A) is denoted as JtKA.

We will see that the variables in the terms on an applicative are unnecessary and
can be eliminated. As mentioned before, this goal was first set out by Schönfinkel
in [36]. Curry formalized this requirement in the following way [15].
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Definition 3.1.9. An applicative structure A is combinatory complete if for ev-
ery t ∈ T (X ∪ A) and for all n ∈ N and variables x1, x2, . . . , xn, with FV (t) ⊆
{x1, . . . , xn}, there exists an a ∈ A such that

A |= (· · · (a, x1), · · · , xn) = t.

Intuitively this means the following. We can interpret t as a function on n
arguments, and the description of t contains these arguments as variables. But
combinatory completeness ensures that we can always find an element a of A (that
thus does not contain variables), such that a applied to n arguments gives the same
result as the term t where the variables are substituted by these arguments.

However, there could be different elements a1, a2, . . . of A that satisfy this for
the same t ∈ T (X ∪ A). That is, it is possible that for all variables x1, x2, . . . , xn,
with FV (t) ⊆ {x1, . . . , xn}, not only A |= (· · · (a1, x1), · · · , xn) = t, but also A |=
(· · · (a2, x1), · · · , xn) = t, et cetera.

In order to enforce that the element of A that satisfies this is unique, Curry
introduced the following notion [15].

Definition 3.1.10. An applicative structure A = (A, ·) is extensional when for all
a, b ∈ A,

[∀c ∈ A a · c = b · c]⇒ a = b

The following corollary makes clear why extensionality is sufficient.

Corollary 3.1.11. An extensional applicative structure A = (A, ·) is combina-
tory complete if and only if for every t ∈ T (X ∪ A) and for any n ∈ N and all
variables x1, x2, . . . , xn, with FV (t) ⊆ {x1, . . . , xn}, there exists a unique a ∈ A
such that A |= (· · · (a, x1), · · · , xn) = t. That is, for all a, b ∈ A such that A |=
(· · · (a, x1), · · · , xn) = t and A |= (· · · (b, x1), · · · , xn) = t, it holds that a = b.

In order to eliminate the variables and satisfy combinatory completeness, we
only need two specific elements, or combinators [36].

Definition 3.1.12. A combinatory algebra is an applicative structure A = (A, ·, k, s)
with distinct elements k, s ∈ A (also referred to as combinators) such that for all
a, b, c ∈ A

i) (k · a) · b = a,

ii) ((s · a) · b) · c = (a · c) · (b · c).

In order to see that variables can be removed, it is the easiest to consider lambda
abstractions. This is done by structural induction, as first proposed by Rosser in
[35], inspired by [14].

Definition 3.1.13. Let A = (A, ·, k, s) be a combinatory algebra. For any t ∈
T (X ∪ A) and any variable x, define the lambda abstraction λ∗x.t ∈ T (X ∪ A)
inductively as follows.

i) λ∗x.x ≡ ((s, k), k).
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ii) λ∗x.a ≡ (k, a) for any a ∈ (X ∪ A) different from x.

iii) λ∗x.(t1, t2) ≡ ((s, (λ∗x.t1)), (λ∗x.t2)) for any t1, t2 ∈ T (X ∪ A).

Notation 3.1.14. For any n ∈ N and variables x1, . . . , xn, define the repeated lambda
abstraction λ∗x1 · · · xn.t as λ∗x1.(· · · (λ∗xn.t) · · · ).
Remark 3.1.15. When t ∈ T ({x1, . . . , xn} ∪ A) for some n ∈ N, then for all i ∈
{1, . . . , n}, λ∗xi.t ∈ T ({x1, . . . , xn} \ {xi} ∪ A).

We also have the following.

Proposition 3.1.16. Let A = (A, ·, k, s) be a combinatory algebra. For any variable
x, any s, t ∈ T (X ∪ A),

A |= (λ∗x.t, s) = t[x/s].

Proof. By induction on n ∈ N and the structure of t ∈ T (X ∪ A).

This result automatically extends to any number of applications (when using
repeated abstraction and substitution). It shows that combinatory algebras are suf-
ficient for the requirement of combinatory completeness. Moreover, as we will argue
below, combinatory algebras turn out to be necessary for combinatory completeness.
This shows the expressive power of the combinators k and s.

Theorem 3.1.17 ([7, p. 5.1.10]). An applicative structure A is combinatory com-
plete if and only if it can be expanded to a combinatory algebra, by choosing two of
its elements to be the constants k and s.

Proof. Proposition 3.1.16 tells us that every combinatory algebra is combinatory
complete. For the other direction, because of combinatory completeness we can
choose for k an a ∈ A such that for all b, c ∈ A (a · b) · c = b. Similarly for s.

3.2 Lambda algebras and Curry’s equations

As seen in Definition 3.1.13 and Proposition 3.1.16, we can perform a lambda ab-
straction in a combinatory algebra. However, the lambda abstraction λ∗ of combi-
natory algebras does not behave in the same way as λ in the lambda calculus. That
is, there are formulas that are derivable in the lambda calculus using λ but not with
a combinatory algebra using λ∗.

In order to make the interpretation of lambda terms using λ∗ formal, we will
define two mappings between terms of a combinatory algebra and terms of the
lambda calculus. First, we need to extend the definition of the lambda terms,
Definition 2.2.1, to contain constants of a specific combinatory algebra.

Definition 3.2.1. Let A = (A, ·, k, s) be a combinatory algebra. The set of terms
TΛ(A) is defined inductively as follows.

i) xi ∈ TΛ(A) for all i ∈ N.

ii) a ∈ TΛ(A) for all a ∈ A.
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iii) λxi.t ∈ TΛ(A) for all i ∈ N and t ∈ TΛ(A).

iv) (s · t) ∈ TΛ(A) for all s, t ∈ TΛ(A).

For a combinatory algebra A, for any s, t ∈ TΛ(A), we define λ ` s = t similarly
as in Defininition 2.2.5, extending the rules and axioms of Definition 2.2.4 to terms
of TΛ(A).

We now continue to the mappings between terms of a combinatory algebra and
the extended lambda terms.

Definition 3.2.2. Let A be a combinatory algebra. The mapping (·)CL∗ : TΛ(A)→
T (X ∪ A) is defined as follows.

i) xCL∗ = x for variables x.

ii) cCL∗ = c for constants c, .

iii) (s · t)CL∗ = (sCL∗ , tCL∗) for s, t ∈ TΛ(A).

iv) (λx.s)CL∗ = λ∗x.sCL∗ For a term s ∈ TΛ(A).

Similarly define (·)Λ : T (X ∪ A)→ TΛ(A).

i) xΛ = x for variables x.

ii) kΛ = λxy.x and sΛ = λxyz.xz(yz), where k, s ∈ T(A) denote the constants
associated with the similar elements k, s ∈ A.

iii) cΛ = c for constants c ∈ T(A), where c is not k or s.

iv) (s, t)Λ = (sΛ · tΛ) for s, t ∈ T(A).

As mentioned before, there are formulae that are derivable in the lambda calcu-
lus, but not in a combinatory algebra. We will give an example of such a formula.

We have λ ` λy.(λx.x)y = λy.y. However, (λy.(λx.x)y)CL∗ = s(k(skk)))(skk)
and (λy.y)CL∗ = skk .

The problem is that in a combinatory algebra A, when A |= a = b, we cannot
always derive that A |= λ∗x.a = λ∗x.b, but this is true in the lambda calculus (as
the ξ-rule, see Definition 2.2.4).

A specific applicative structure where all formulas of the lambda calculus hold,
is called a lambda algebra:

Definition 3.2.3. A combinatory algebra A is a lambda algebra when for all s, t ∈
T (X ∪ A)

λ ` sΛ = tΛ ⇒ A |= s = t.

Or, alternatively, it can be characterized in the following way.

Lemma 3.2.4. A combinatory algebra A = (A, ·, k, s) is a lambda algebra if and
only if:

1. λ ` s = t⇒ A |= sCL∗ = tCL∗ for all terms s, t ∈ TΛ(A).
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2. k = Jλ∗xy.xKA and s = Jλ∗xyz.xz(yz)KA

Proof. See Lemma 5.2.3 in [7].

Since we can simulate lambda-abstractions using λ∗, we can ask ourselves what
exactly is needed for a combinatory algebra to respect the β-equality of the lambda
calculus.

In the first place, this question was asked with respect to the systems of combi-
natory logic and the lambda calculus, since we can define λ∗ similarly for terms of
TCL. For this purpose, Rosser gave several equations that could be added to combi-
natory logic in order such that the λ∗-abstraction respected the rules of the lambda
calculus. However, Rosser’s equations contained a mistake. In [16], Curry gave five
axioms for this purpose.

He derived these using the following reasoning. Similarly as Proposition 3.1.16,
the β-rule is already satisfied. Then it is thus sufficient to show that the following
holds for any s, t ∈ TCL (cf. the ξ- rule of Definition 2.2.4).

CL ` s = t⇒ CL ` λ∗x.s = λ∗x.t,

where for any s ∈ TCL we define λ∗x.s similarly as in Definition 3.1.13. It satisfies
to find a set of axioms C such that for any axiom A of combinatory logic, also the
formula A′ is true, obtained by applying the ξ-rule to A. For example, we want that
for any variables s, t ∈ TCL, the formula λ∗x.kst = λ∗x.s is true. It is also necessary
that the set of axioms C ensures that the similarly modified axioms C ′ are true.

By looking at what is needed for all this to hold, Curry finds a set of five closed
axioms. Denote CL + C for the theory of combinatory logic that is extended with
the axioms of Curry. For any s ∈ TΛ, denote sCL∗ for the interpretation of the term
in TCL, similarly as in Definition 3.2.2. Then the following holds.

Proposition 3.2.5. For any s, t ∈ TΛ

λ ` s = t⇔ CL + C ` sCL∗ = tCL∗ .

Proof. See [16] or Theorem 7.3.10 in [7].

In particular, the ξ-rule for the lambda calculus is respected, since for any s, t ∈
TCL

CL + C ` s = t⇒ CL + C ` λ∗x.s = λ∗x.t. (3.1)

We can formulate these axioms similarly for combinatory algebras. Our presen-
tation comes from Definition 7.3.6 in [7].

Theorem 3.2.6. A combinatory algebra A = (A, ·, k, s) is a lambda algebra if and
only if it satisfies the following equations.

1. k = Jλ∗xy.kxyKA

2. s = Jλ∗xyz.sxyzKA

3. Jλ∗xy.s(kx)(ky)KA = Jλ∗xz.k(xy)KA
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4. Jλ∗xy.s(s(kk)x)yKA = Jλ∗xyz.xzKA

5. Jλ∗xyz.s(s(s(ks)x)y)zKA = Jλ∗xyz.s(sxz)(syz)KA

Proof. See Theorem 5.2.5 in [7]

This shows that the notion of a lambda algebra can be defined from a combina-
tory algebra by only adding closed equations.

The counterpart of equation (3.1) does not hold. That is, there exists a lambda
algebra A and terms s, t ∈ T (X ∪ A), such that A |= s = t but A 6|= λ∗x.s = λ∗x.t.
In other words, lambda algebras do not respect the ξ-rule of the lambda calculus.
We show this in Section 3.5.2. In the next section we introduce a model that does
respect the ξ-rule of the lambda calculus.

In Section 3.5.3, we will discuss in what different way lambda algebras respect
the ξ-rule.

3.3 Lambda models

In this section and the next one, we introduce two other structures of the lambda
calculus. Namely, the lambda model of Scott and the combinatory model from
Meyer. A crucial axiom for both these structures is the Meyer-Scott axiom. For a
combinatory algebra A = (A, ·, k, s), define 1 to denote the element s(k(skk)) ∈ A.
This element corresponds to the lambda term λxy.xy (see Example 2.1.5).

Definition 3.3.1. Let A = (A, ·, k, s) be a combinatory algebra. The Meyer-Scott
axiom for A is

∀c ∈ A (ac = bc)⇒ 1a = 1b

for all a, b ∈ A.

We explain how the Meyer-Scott axiom relates to the ξ-rule of the lambda cal-
culus. Recall the notion of extensionality (cf. Definition 3.1.10). The following is a
variation of it.

Definition 3.3.2. A combinatory algebra A = (A, ·, k, s) is weakly extensional when
for all variables x and any s, t ∈ T (X ∪ A)

A |= s = t⇒ A |= λ∗x.s = λ∗x.t.

Weak extensionality and the Meyer-Scott axiom are closely related.

Proposition 3.3.3. Let A = (A, ·, k, s) be a lambda algebra. Then A is weakly
extensional if and only if A satisfies the Meyer-Scott axiom.

Proof. See 5.2.9 in [7].

We can now define the lambda model.

Definition 3.3.4 ([37]). A lambda model is a lambda algebra A such that the
Meyer-Scott axiom holds in A.

Proposition 3.3.3 tells us that lambda models are lambda algebras which are
sound with respect to the ξ-rule of the lambda calculus. In Remark 4.6.12 we say
something about the existence of lambda algebras which are not lambda models.
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3.4 Combinatory models

There is a simpler structure than the lambda model, introduced by Meyer in [32],
with an extra combinator that is similar to 1.

Definition 3.4.1 ([32]). A combinatory model is defined as a combinatory algebra
A = (A, ·, k, s, e) with an additional element e ∈ A such that for all a, b ∈ A:

i) eab = ab

ii) ∀c ∈ A(ac = bc)⇒ ea = eb

The equation (ii) is similar to the Meyer-Scott axiom (and hence it’s name).
In Section 4.4, it will become clear in what way combinatory models are sound

with respect to the lambda calculus.
We discuss the relationship between combinatory models and lambda models.

It turns out that lambda models are precisely the combinatory models that satisfy
some extra requirements. Before we can outline this, we first need to define an
iteration of the combinator e.

Definition 3.4.2 ([37]). Let A = (A, ·, k, s, e) be a combinatory model. For each
n ∈ N≥1 we define εn ∈ A inductively as follows

ε1 = e, εn+1 = s(ke)(s(kεn)).

The workings of εn for n ∈ N≥1 can best be understood according to the following
(see Section 6 in [32]).

Lemma 3.4.3. Let A = (A, ·, k, s, e) be a combinatory model. For all n ∈ N and
for all a, b ∈ A,

εn+1ab = εn(ab)

In particular, for all n ∈ N and a1, . . . an ∈ A,

i) εna1 · · · an = e(a0 · · · an),

ii) εna1 · · · an+1 = a0 · · · an+1.

We define a special class of combinatory models.

Definition 3.4.4. A combinatory model A = (A, ·, k, s, e) is stable if it satisfies the
following equations.

ε2k = k, ε3s = s, ε2e = e.

Because of stability, the e-combinator can be removed when it is applied to other
combinators.

Lemma 3.4.5. Let (A, ·, k, s, e) be a combinatory model. Then the following impli-
cations hold.

1. ε2k = k⇔ ek = k ∧ e(ka) = ka for all a ∈ A.
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2. ε3s = s⇔ es = s ∧ e(sa) = sa ∧ e(sab) = sab for all a b ∈ A.

3. ε2e = e⇔ ee = e.

Proof. See Lemma 5.6.5 in [7].

A stable combinatory model fixes a unique interpretation for the combinators k
and s, determined by e.

Proposition 3.4.6. When (A, ·, k, s, e) is a stable combinatory model, then for any
other stable combinatory model (A, ·, k′, s′, e),

k = k′ s = s′.

Proof. From Proposition 5.6.6 in [7].

Lambda models are stable combinatory models.

Theorem 3.4.7 ([7, p. 5.6.6]). For a combinatory model A = (A, ·, k, s, e), the
following are equivalent.

1. A is a stable combinatory model.

2. (A, ·, k, s) is a lambda model and e = 1.

Proof. See Proposition 5.6.6 in [7]

Remark 3.4.8. From Theorem 3.4.7 and Proposition 3.4.6, we thus have that lambda
models are the models of the lambda calculus which respect the ξ-rule of the lambda
calculus, and which can uniquely identify the combinators k and s. Lambda algebras
also uniquely identify the combinators k and s, as can be seen from equation (2) from
Lemma 3.2.4. In Section 4.6, we will see that lambda algebras can be characterized
as a certain class of stable combinatory algebras.

It is possible to make a combinatory model stable by redefining the combinators.

Proposition 3.4.9. If (A, ·, k, s, e) is a combinatory model, then (A, ·, ε2k, ε3s, ee)
is a lambda model.

Proof. See 5.6.6 in [7]

3.5 Lambda algebras and polynomial algebras

As mentioned before, lambda algebras do not generally respect the ξ-rule of the
lambda calculus. Selinger observed in [38] that this is due to the way we interpret
free variables in a model. Usually, as in Definition 3.1.7, the variables are interpreted
as elements of the domain of a lambda algebra. We can also consider a different
interpretation, where the variables are interpreted as indeterminates, variables in
the context of polynomials. In this setting, lambda abstractions are interpreted as
polynomials and the lambda algebra respects the ξ-rule of the lambda calculus.

In this section we first define polynomial algebras. We then use these to define the
alternative interpretation as introduced by Selinger, and we show how the lambda
algebra respects the ξ-rule using this interpretation. We then give an alternative
characterization of lambda algebras, also proposed by Selinger.
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3.5.1 Polynomial algebras

A polynomial algebra is an combinatory algebra to which indeterminates are added
to the domain. These indeterminates are distinct from the other elements. For
discussing the properties of polynomial algebras we often consider homomorphisms
between these. We therefore also define the notion of a homomorphism between
applicative structures and combinatory algebras.

Definition 3.5.1. Let A = (A, ·A) and B = (B, ·B) be applicative structures. A
homomorphism between A and B is a function f : A→ B such that for any a, b ∈ A,

f(a ·A b) = f(a) ·B f(b).

For combinatory algebras A = (A, ·A, kA, sB) and B = (B, ·B, kB, sB), a homo-
morphism between A and B has the additional requirement that f(kA) = kB and
f(sA) = sB.

Two applicative structures or two combinatory algebras are isomorphic when
there exists a bijective homomorphism between them.

For polynomial algebras we use a specific equivalence relation, instead of equality,
to define how the combinators k and s operate on the elements of this domain with
variables. And thus, before giving the definition of polynomial algebras, we repeat
the definition of quotient sets.

Definition 3.5.2. Let A = (A, ·) be an applicative structure. A congruence relation
on A is an equivalence relation ∼ on A (that is, the relation is reflexive, transitive
and symmetric), such that for each a, b, c, d ∈ A

a ∼ b ∧ c ∼ d⇒ a · c ∼ b · d.

Definition 3.5.3. Let ∼ be an equivalence relation over a set S, and let 〈s〉 denote
the equivalence class for a s ∈ S under ∼. Then the quotient set S/∼ is defined as
S/∼ = {〈s〉 : s ∈ S}.

Let A = (A, ·) be an applicative structure, and let ∼ be a congruence relation
on A. Then the quotient of A by ∼, denoted as A/∼, is an applicative structure
(A/∼, ∗), where for any a, b ∈ A and 〈a〉, 〈b〉 ∈ A/∼ it is defined that 〈a〉 ∗ 〈b〉 =
〈a · b〉. Define the homomorphism π∼ : A→ A/∼ as π∼(a) = 〈a〉 for all a ∈ A.

We go back to defining polynomial algebras. We first outline how equality is
defined in those structures. For any set S, we denote (T (S), •) for the applicative
structure where s • t = (s, t) for any s, t ∈ T (S).

Definition 3.5.4. Let A = (A, ·, k, s) be a combinatory algebra. Define ≈X to be
the smallest congruence relation on (T (X ∪ A), •), such that for all a, b ∈ A and all
r, s, t ∈ T (X ∪ A) the following holds.

i) (a, b) ≈X a · b

ii) ((k, s), t) ≈X s

iii) (((s, r), s), t) ≈X ((r, t), (s, t))
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Denote 〈t〉X for the equivalence classes of a t ∈ T (X ∪ A) under ≈X.

Definition 3.5.5. Let A = (A, ·, k, s) be a combinatory. The polynomial algebra
A[X] of A over X is a combinatory algebra (A[X], ∗X, 〈k〉X, 〈s〉X), where A[X] = T (X ∪
A)/≈X and for all s, t ∈ T (X ∪ A),

〈s〉X ∗X 〈t〉X = 〈(s, t)〉X.

Define the homomorphism σA : A→ A[X] by σA(a) = 〈a〉X for any a ∈ A.

3.5.2 Lambda algebras and lambda models

With polynomial algebras, we can actually give another relation between lambda
algebras and lambda models.

Proposition 3.5.6. A combinatory algebra A is a lambda algebra if and only if A[X]
is a lambda model.

Proof. From the Lambda Algebra Theorem in [32].

We can also show that there exist lambda algebras that are not weakly exten-
sional. This follows from a result by Plotkin [34].

Theorem 3.5.7. There exists a lambda algebra A = (A, ·, k, s), and q, r ∈ A, such
that A |= (q, x) = (r, x), but (q, x) 6≈X (r, x).

Proof. See [34].

Corollary 3.5.8. There exists a lambda algebra A = (A, ·, k, s) and s, t ∈ T (X∪A),
such that A |= s = t, but A 6|= λ∗x.s = λ∗x.t.

Proof. Let A be the lambda algebra from Theorem 3.5.7, and let q, r ∈ A are
similarly from that theorem. Then A |= (q, x) = (r, x), but (q, x) 6≈X (r, x). Let s =
(q, x) and t = (r, x). Then A |= s = t . Now assume, towards a contradiction, that
A |= λ∗x.s = λ∗x.t. We will show that this implies (q, x) ≈X (r, x), a contradiction.

Note that λ∗x.s and λ∗x.t ∈ T (A) and thus, by definition, Jλ∗x.sKA = Jλ∗x.rKA.
Then also (q, x) ≈X Jλ∗x.sKA · x ≈X Jλ∗x.rKA · x ≈X (r, x).

3.5.3 The absolute interpretation

Originally, for a combinatory algebra A = (A, ·, k, s), we consider equality for two
terms s, t ∈ T (X ∪ A) by interpreting those terms for a valuation that maps the
variables to elements of A. With polynomial algebras, we can instead choose to
consider the relation s ≈X t, as is done by Selinger in [38]. He calls this the absolute
interpretation.

Lambda algebras now respect the ξ-rule of the lambda calculus in the following
way.

Proposition 3.5.9. For any lambda algebra (A, ·, k, s) and any s, t ∈ T (X ∪ A),

s ≈X t⇒ λ∗x.s ≈X λ
∗x.t
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Proof. Lemma 5 in [38].

The following is also true for lambda algebras.

Proposition 3.5.10. For any lambda algebra A = (A, ·, k, s) and any s, t ∈ T (X ∪
A),

s ≈X t⇒ A |= s = t.

Proof. Corollary 2 in [38].

By Proposition 3.3.3, we know that lambda models are weakly extensional, in
contrast to lambda algebras, and thus do respect the ξ-rule using the original in-
terpretation. From this, it can be deduced that any equation that is satisfied in a
lambda model, is also satisfied absolutely.

Proposition 3.5.11. Let A = (A, ·, k, s) be a lambda model. For any s, t ∈ T (X ∪
A),

A |= s = t⇔ s ≈X t.

Proof. Proposition 6 in [38].

And thus, in lambda models, the polynomials are determined by their behaviour
as a function. Where in lambda algebras the lambda abstraction is interpreted as a
polynomial, in lambda models the lambda abstraction is interpreted as a function.
This is thus due to the Meyer-Scott axiom. The same holds for combinatory models.
In Proposition 4.4.10, we will specify this.

We can use the absolute interpretation to give another characterization of lambda
algebras. Recall that 1 denotes the term s(k(skk)) in a combinatory algebra A.

Theorem 3.5.12. Let A = (A, ·, k, s) be a combinatory algebra. Then A s a lambda
algebra if and only if it satisfies the following equations for all r, s, t ∈ T (X ∪ A).

1. 1k = k

2. 1s = s

3. (1, (k, t)) ≈X (k, t)

4. (1, (s, t)) ≈X (s, t)

5. (1, ((s, s), t)) ≈X ((s, s), t)

6. (s(s(kk), s), t) ≈X (1, s)

7. (s(s(s(ks), r), s), t) ≈X (s((s, r), t), ((s, s), t))

8. ((s, (k, s)), (k, t)) ≈X (k, (s, t))

9. ((s, (k, t)), skk) ≈X (1, t)

Proof. Theorem 3 in [38].
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3.6 Summary

So far we have seen three structures for the lambda calculus. When A = (A, ·, k, s)
is a lambda algebra, then by definition for all s, t ∈ T (X ∪ A),

λ ` sΛ = tΛ ⇒ A |= s = t.

Alternatively, lambda algebras are sound with respect to the lambda calculus in
another way. Recall Lemma 3.2.4.

Lemma 3.2.4. A combinatory algebra A = (A, ·, k, s) is a lambda algebra if and
only if:

1. λ ` s = t⇒ A |= sCL∗ = tCL∗ for all terms s, t ∈ TΛ(A).

2. k = Jλ∗xy.xKA and s = Jλ∗xyz.xz(yz)KA

In lambda algebras, the lambda abstraction is interpreted as a polynomial.
Equality on polynomials respects the ξ-rule of the lambda calculus.

Proposition 3.5.9. For any lambda algebra (A, ·, k, s) and any s, t ∈ T (X ∪ A),

s ≈X t⇒ λ∗x.s ≈X λ
∗x.t

When we add the Meyer-Scott axiom to a lambda algebra, then it becomes
a lambda model. By Proposition 3.3.3, we know that for a lambda model A =
(A, ·, k, s), for all s, t ∈ T (X ∪ A),

A |= s = t⇒ A |= λ∗x.s = λ∗x.t.

In lambda models, the lambda abstraction is interpreted as a function. To be
precise, all polynomials are determined by their behaviour as a function.

Proposition 3.5.11. Let A = (A, ·, k, s) be a lambda model. For any s, t ∈ T (X ∪
A),

A |= s = t⇔ s ≈X t.

In lambda algebras only the right to left direction holds. Lambda algebras can
also be characterized as the retracts of lambda models (see Definition 4.2.8 and
Remark 4.4.13 later).

Combinatory models also satisfy the Meyer-Scott axiom (albeit using the com-
binator e). And thus, in combinatory models the lambda abstraction is also in-
terpreted as a function. Combinatory models that satisfy stability (cf. Definition
3.4.4) are lambda models.
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Chapter 4

Reflexive combinatory algebras

In the previous section, known structures for the lambda calculus and their prop-
erties are outlined. In this chapter we revisit this topic. We define reflexivity for
combinatory algebras, which turns out to be important for interpreting the lambda
calculus, but not sufficient. We also define a structure called a strongly reflexive
combinatory algebra, which can interpret the lambda calculus, and is the equational
counterpart of the combinatory model.

It relates to the structures of the previous chapter in the following way. A
strongly reflexive combinatory algebra that is stable (similarly to Definition 3.4.4)
is a lambda algebra. And a strongly reflexive combinatory algebra that satisfies the
Meyer-Scott axiom is a combinatory model. Moreover, strongly reflexive combina-
tory algebras are the retracts (see Definition 4.2.8) of combinatory models. Figure
4.1 displays these relationships.

In what follows we outline the structure of the chapter together with our ap-
proach. Sections 4.1 and 4.2 are used for defining combinatory pre-models, an
extension of combinatory algebras with two extra combinators, and the related poly-
nomial algebras. We also give the necessary preliminaries for obtaining the rest of
the results.

Since we can define a lambda abstraction for combinatory algebras that is sound
with respect to the β-rule (cf. Proposition 3.1.16), the problem with interpreting
the lambda calculus is the ξ-rule. We first consider polynomials and thus lambda
abstractions using only one variable. There exists a mapping from the terms of a
combinatory pre-model A to its polynomial algebra, ϕ : a 7→ ax, which is surjective
because of combinatory completeness (Definition 3.1.9). The inverse function can
be defined using the λ∗-abstraction, as can be seen by Proposition 3.1.16.

We want that the lambda abstraction respects the equality on polynomials (that
is, when the ξ-rule is respected using the absolute interpretation). The equality of
the polynomial algebra A[x] is defined by equations using indeterminates (cf. Defi-
nition 3.5.4), and thus we cannot easily use these for an axiomatisation. However,
since ϕ is surjective, we can define an equivalence relation ∼ on A, such that a ∼ b
if and only if ϕ(a) = ϕ(b). In Section 4.2.4, we show how the quotient of A with
respect to ∼ gives a combinatory pre-model that is isomorphic to A[x]. The relation
∼ is generated by equations on the elements of A, without using indeterminates.

Using an algebraic analogue of the Meyer-Scott axiom, called reflexivity, we show
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Figure 4.1: Relationship between various structures

in Section 4.3 that a combinatory pre-model has a defined lambda abstraction, de-
noted as λ†, as a well-defined operation on polynomials with one indeterminate,
exactly when it satisfies seven universal sentences. These seven universal sentences
are derived from requiring that the combinator e respects the equations that gen-
erate ∼. When we take the λ†-closures of these universal sentences, we obtain
the requirements for a combinatory pre-model to have the λ†-abstraction as a well-
defined operation on polynomials with any number of indeterminates. This gives
us the notion of a strongly reflexive combinatory pre-model, and this is outlined in
Section 4.4.

In Section 4.5, we discuss how to construct a cartesian closed category with
a reflexive object from algebraic combinatory models, as was previously done for
lambda algebras. In Section 4.6, it is shown that lambda algebras can be obtained
from algebraic combinatory models by adding stability.

4.1 Combinatory pre-models

The elements i and e are commonly defined in terms of k and s as i = skk and e =
s(ki) (cf. 1 from Definition 3.3.1). However, in the rest of this chapter, the constants
i and e play a large role. We therefore define an extension of the combinatory
algebra, where these are included as primitives. This has several benefits. Namely,
the constants will appear in definitions, and by fixing them as primitives we secure
the interpretation of these definitions. It also entails a generalization of the results,
since any result that contains e or i in the statement will be valid for other definitions
of e or i, as is the case for k and s. Additionally, the inclusion of e as a primitive is
more natural when considering relations with combinatory models, where e is also
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taken as primitive (cf. Definition 3.4.1).

Definition 4.1.1. A combinatory pre-model is defined as an applicative structure
A = (A, ·, k, s, i, e) with distinct elements k, s, i, e ∈ A such that for all a, b, c ∈ A

i) kab = a,

ii) sabc = ac(bc),

iii) ia = a,

iv) eab = ab.

Note that any combinatory pre-model is also a combinatory algebra. A homo-
morphism between combinatory pre-models is defined similarly as for combinatory
algebras (cf. Definition 3.5.1), and should additionally map the appropriate combi-
nators i and e to each other.

Since we introduced the combinator i, which takes on the same role as skk, we
redefine the λ∗-abstraction from Definition 3.1.13, specifically the definition of λ∗x.x
for a variable x. We keep using the same notation λ∗ for the abstraction for terms
of a combinatory pre-model.

Definition 4.1.2. Let A = (A, ·, k, s, i, e) be a combinatory pre-model. For any
variable x and any t ∈ T (X ∪ A), define the lambda abstraction λ∗x.t ∈ T (X ∪ A)
inductively as follows:

i) λ∗x.x ≡ i.

ii) λ∗x.a ≡ (k, a) for any a ∈ (X ∪ A) different from x.

iii) λ∗x.(t1, t2) ≡ ((s, (λ∗x.t1)), (λ∗x.t2)) for any t1, t2 ∈ T (X ∪ A).

In Section 3.5 we gave the definition of a polynomial algebra based on a combina-
tory algebra. This definition can be extended to combinatory pre-models, by adding
the equations for i and e to the equivalence relation. For this definition we will use
the same notation as before. Since from now on we will solely be using combinatory
pre-models instead of combinatory algebras, this should cause no confusion. We
define polynomial algebras over a finite number of indeterminates.

Definition 4.1.3. Let A = (A, ·, k, s, i, e) be a combinatory pre-model. For any
n ∈ N≥1, let ≈x1...xn be the smallest congruence relation on (T ({x1, . . . , xn}∪A), •),
such that for all a, b ∈ A and all r, s, t ∈ T ({x1, . . . , xn} ∪ A) the following holds.

i) (a, b) ≈x1...xn a · b

ii) ((k, s), t) ≈x1...xn s

iii) (((s, r), s), t) ≈x1...xn ((r, t), (s, t))

iv) (i, a) ≈x1...xn a

v) ((e, a), b) ≈x1...xn (a, b)
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Denote 〈t〉n for the equivalence classes of a t ∈ T ({x1, . . . , xn}∪A) under ≈x1...xn .
The polynomial algebra A[x1, . . . xn] of A over the indeterminates x1, . . . , xn is a
combinatory pre-model (A[x1, . . . , xn], ∗n, 〈k〉n, 〈s〉n, 〈i〉n, 〈e〉n), where it is defined
that A[x1, . . . , xn] = T ({x1, . . . , xn} ∪ A)/≈x1...xn and

〈s〉n ∗n 〈t〉n = 〈(s, t)〉n,

for all s, t ∈ T ({x1, . . . , xn} ∪A). Define the homomorphism ηnA : A→ A[x1, . . . , xn]
by ηnA(a) = 〈a〉n for all a ∈ A.

4.2 Properties of polynomial algebras

This section discusses mostly general knowledge on polynomial algebras. We start
by showing the existence of unique homomorphisms from polynomial algebras to
combinatory pre-models, and then use these results to establish relations between
polynomial algebras with a different number of indeterminates.

4.2.1 Homomorphisms and substitution

The next lemma shows that for a homomorphism between applicative structures and
a relation on the domain, there exists a natural homomorphism with the quotient
as the domain.

Lemma 4.2.1. Let A = (A, ·A) and B = (B, ·B) be applicative structures. Let
∼ be a congruence relation on A, and let f : A → B be a homomorphism between
combinatory pre-models, such that f(a) = f(b) for all a, b ∈ A with a ∼ b. Then
there exists a unique homomorphism f̃ : A/∼ → B such that f̃ ◦ π∼ = f . That is,
the following diagram commutes.

A B

A/∼

π∼

f

f̃

Proof. Define f̃ by f̃(〈a〉) = f(a) for all a ∈ A. Then f̃ is well-defined, since for
b, c ∈ 〈a〉 we have that f(b) = f(c). We also have that f̃ is a homomorphism, since
for any a, b ∈ A,

f̃(〈a〉 ∗ 〈b〉)
=f̃(〈a ·A b〉)
=f(a ·A b)
=f(a) ·B f(b) since f is a homomorphism

=f̃(〈a〉) ·B f̃(〈b〉).

For showing the uniqueness of f̃ , assume that there is a g : A/∼ → B such that
g ◦ π∼ = f . Then for any a ∈ A, we have g(π∼(a)) = g(〈a〉) = f(a), and thus
g = f̃ .
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Using the homomorphism in the quotient, we can define a homomorphism in the
polynomial algebra.

Proposition 4.2.2. Let A = (A, ·A, kA, sA, iA, eA) and B = (B, ·B, kB, sB, iB, eB)
be combinatory pre-models and let f : A → B be a homomorphism between them.
For any n ∈ N≥1 and for all b1, . . . , bn ∈ B, there exists a unique homomorphism
f̃ : A[x1, . . . , xn]→ B such that f̃ ◦ηnA = f and f̃(〈xi〉n) = bi for each i ∈ {1, . . . , n}.
And thus the following diagram commutes.

A B

A[x1, . . . , xn]

ηnA

f

f̃

Proof. Let A and B be two combinatory pre-models as in the statement of the
proposition. Let f : A→ B be a homomorphism, let n ∈ N and let b1, . . . , bn ∈ B.
Define A′ to be the combinatory pre-model (T ({x1, . . . , xn} ∪A), •, kA, sA, iA, eA),
where s • t = (s, t) for any s, t ∈ T ({x1, . . . , xn} ∪ A).

Define fb : A′ → B inductively as follows.

1. fb(xi) = bi for each i ≤ n,

2. fb(a) = f(a) for a ∈ A,

3. fb((s, t)) = fb(s) ·B fb(t) for s, t ∈ T ({x} ∪ A).

It is clear that fb is a homomorphism between the combinatory pre-models A′ and B.
We show that s ≈x1...xn t implies fb(s) = fb(t) for any s, t ∈ T ({x1, . . . , xn} ∪ A).
We do this by showing that fb respects the relation ≈x1...xn , by induction on the
axioms for ≈x1...xn .

First consider equation (i) of Definition 4.1.3. For a, b ∈ A:

fb((a, b)) = f(a) ·B f(b) = f(a ·A b) = fb(a ·A b)

For showing that equation (ii) holds, let s, t ∈ T ({x1, . . . , xn} ∪ A). Then,

fb(((kA, s), t)) = (fb(kA) ·B fb(s)) ·B fb(t) fb homomorphism

= (kB ·B fb(s)) ·B fb(t) fb homomorphism

= fb(s) by rule of kB in B.

The other axioms follows similarly. We now have for s, t ∈ T ({x1, . . . , xn}∪A),
that s ≈x1...xn t implies that fb(s) = fb(t). And thus fb satisfies the requirements
of the function f in Lemma 4.2.1. From that lemma we deduce that there exists
a unique homomorphism f̃ : A[x1, . . . , xn] → B such that f̃ ◦ π≈x1...xn

= fb, (recall
that π≈x1...xn

: T ({x1, . . . , xn} ∪ A) → T ({x1, . . . , xn} ∪ A)/≈x1...xn is defined as
π≈x1...xn

(s) = 〈s〉n for any s ∈ T ({x1, . . . , xn} ∪ A)).

And thus f̃(〈xi〉n) = f̃(π≈x1...xn
(xi)) = fb(xi) = bi for any i ≤ n. For a ∈ A, we

have f̃(ηnA(a)) = f̃(〈a〉n) = f̃(π≈x1...xn
(a)) = fb(a) = f(a), and thus f̃ ◦ ηnA = f .

Note that the above proposition is similar to the substitution of variables, when
f is a homomorphism from a combinatory algebra to itself.
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4.2.2 The category of combinatory pre-models

Instead of adding several indeterminates at once, we can also consider adding them
one by one. We outline this below.

Notation 4.2.3. For any combinatory pre-model A = (A, ·, k, s, i, e), we denote TA
as the combinatory algebra A[x] for some variable x. The set TA denotes A[x] =
T ({x} ∪ A)/≈x. For any n ∈ N≥1, let T nA be the n-time iteration of T over A.
That is, T nA = (· · · (A[x])[x] · · · )[x] for some variable x. Let T 0 = A.

We can keep using the same variable x for the iteration of T nA for some n ∈ N,
since with every iteration the equivalence classes are taken over the previous ones.
For a variable x, we will thus have the elements 〈x〉1, 〈〈x〉1〉1, etc. The combinatory
pre-models for a different choice of variable are isomorphic.

We show that we can interpret the T from the above notation as a functor on
the category of combinatory pre-models, with combinatory pre-models objects and
homomorphisms as morphisms.

Proposition 4.2.4. Let A and B be two combinatory pre-models and let x be a
variable. For their polynomial algebras TA = A[x] and TB = B[x], denote 〈·〉A1
for the equivalence classes in A[x], and similarly 〈·〉B1 for the equivalence classes in
B[x]. For any homomorphism f : A → B, there exists a unique homomorphism

Tf : TA → TB such that Tf ◦ η1
A = η1

B ◦ f , and Tf(〈x〉A1 ) = 〈x〉B1 . That is, the
following diagram commutes.

A B

TA TB

η1A

f

η1B

Tf

Proof. Let A, B and the homomorphism f be as in the statement of the lemma.
We have that η1

B ◦ f is a homomorphism from A to TB. By Proposition 4.2.2, using
η1
B ◦ f : A → TB as the homomorphism in the assumption of the statement, we

have that there exists a unique Tf : TA → TB such that Tf ◦ η1
A = η1

B ◦ f , and
Tf(〈x〉A1 ) = 〈x〉B1 .

It turns out that these two ways of achieving a polynomial algebra with n inde-
terminates are equivalent.

Proposition 4.2.5. For any combinatory pre-model A = (A, ·, k, s, i, e) and for
any n ∈ N≥1 the combinatory algebras A[x1, . . . , xn] and T nA are isomorphic.

Proof. The statement can be shown by induction on n. We will only show the case
for n = 2.

Let A be a combinatory pre-model, and let x and y be distinct variables. Without
loss of generality, we let T 2A = (A[x])[y]. To prove the statement, we will show the
existence of two homomorphisms f and g such that f ◦ g = id(A[x])[y] and g ◦ f =
idA[x,y].

We define f by using Proposition 4.2.2. First, recall that η2 : A → A[x, y] is a
homomorphism with η2(a) = 〈a〉2 for all a ∈ A. Consider the polynomial algebra
(A[x])[y]. Then η1

TA ◦ η1
A : A→ (A[x])[y], with (η1

TA ◦ η1
A)(a) = 〈〈a〉1〉1 for all a ∈ A.
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By Proposition 4.2.2, we now have that there exists a unique f : A[x, y] →
(A[x])[y], such that f(〈x〉2) = 〈〈x〉1〉1 and f(〈y〉2) = 〈y〉1 and f ◦ η2 = η1

TA ◦ η1
A.

That is, the following diagram commutes.

A (A[x])[y]

A[x, y]

η2

η1TA◦η
1
A

f

We have f(〈a〉2) = f(η2(a)) = (η1
TA ◦ η1

A)(a) = 〈〈a〉1〉1 for a ∈ A. We show, by
induction on the structure of terms in T ({x} ∪ A), that for all s ∈ T ({x} ∪ A)

f(〈s〉2) = 〈〈s〉1〉1. (4.1)

We already have that f(〈x〉2) = 〈〈x〉1〉1 and f(〈a〉2) = 〈〈a〉1〉1 for a ∈ A. Assume
that for s, t ∈ T ({x} ∪ A), we have f(〈s〉2) = 〈〈s〉1〉1 and similarly for t. Then,

f(〈s, t〉2) = f(〈s〉2) ∗1 f(〈s〉2) since f is a homomorphism

= 〈〈s〉1〉1 ∗1 〈〈s〉1〉1
= 〈(〈s〉1, 〈t〉1)〉1
= 〈〈(s, t)〉1〉1 by eq. (i) of Def. 4.1.3

And thus we have shown that equation (4.1) holds for all s ∈ T ({x} ∪ A).
We define g : (A[x])[y]→ A[x, y] inductively as follows.

1. g(〈y〉1) = 〈y〉2,

2. g(〈〈s〉1〉1) = 〈s〉2 for 〈s〉1 ∈ A[x],

3. g(〈(s, t)〉1) = g(〈s〉1) ∗2 g(〈t〉1) for s, t ∈ T ({y} ∪ A[x]).

Now that we have obtained the homomorphisms f and g, we will show that they
are each others inverse. We first show that f(g(〈s〉1)) = 〈s〉1 for all 〈s〉1 ∈ (A[x])[y].
We use induction on s ∈ T ({y} ∪ A[x]).

We have f(g(〈y〉1)) = f(〈y〉2) = 〈y〉1. For 〈t〉1 ∈ A[x], we have f(g(〈〈t〉1〉1)) =
f(〈t〉2) = 〈〈t〉1〉1, where the last equality follows from equation (4.1).

Since f ◦ g is a homomorphism, we can conclude that f(g(〈s〉1)) = 〈s〉1 for all
〈s〉1 ∈ (A[x])[y].

We now argue that also g(f(〈s〉2)) = 〈s〉2 for all 〈s〉2 ∈ A[x, y], by induction on
s ∈ T ({x, y} ∪ A).

We have g(f(〈x〉2)) = g(〈〈x〉1〉1) = 〈x〉2, and g(f(〈y〉2)) = g(〈y〉1) = 〈y〉2. For
a ∈ A, we have g(f(〈a〉2)) = g(〈〈a〉1〉1) by equation (4.1), and g(〈〈a〉1〉1) = 〈a〉2.

Again, since g ◦ f is a homomorphism, we thus have g(f(〈s〉2)) = 〈s〉2 for all
〈s〉2 ∈ A[x, y].
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4.2.3 Infinitely many indeterminates

When we consider polynomial algebras over X, we obtain similar results. Recall
Proposition 4.2.2.

Proposition 4.2.6. Let A = (A, ·A, kA, sA, iA, eA) and B = (B, ·B, kB, sB, iB, eB)
be combinatory pre-models. For any homomorphism f : A→ B, and any (countably
infinite) sequence (bn)n≥1 of elements in B, there exists a unique homomorphism
f̃ : A[X]→ B such that f̃ ◦ σA = f and f̃(〈xn〉X) = bn for each n ≥ 1.

Proof. Analogously to the proof of Proposition 4.2.2.

We will show how the polynomial algebras with finitely and infinitely many
indeterminates are related. It is useful to first introduce a result that is analogous
to Proposition 3.1.16.

Proposition 4.2.7. Let A = (A, ·, k, s) be a combinatory algebra. For any n ∈
N,and for any t, s ∈ T (X ∪ A),

(λ∗x.t, s) ≈X t[x/s].

Proof. By induction on the structure of t ∈ T (X ∪ A).

Recall the definition of a retract.

Definition 4.2.8. For two objects X and Y in a category, X is a retract of Y when
there exists morphisms f : X → Y and g : Y → X such that g ◦ f = idX .

For the following proposition, recall Definition 4.2.8.

Proposition 4.2.9. Let A be a combinatory pre-model, and let x be a variable.
Then the following holds.

1. A and A[x1, . . . , xn] are retracts of A[x] for each n ∈ N≥1.

2. A and A[x1, . . . , xn] are retracts of A[X] for each n ∈ N≥1.

3. (A[X])[x] is isomorphic to A[X].

Proof. 1. Let A be a combinatory pre-model and let x be a variable. We first show
that A is a retract of A[x]. Then, using induction and the functor T (cf. Proposition
4.2.5), we can show that T nA and thus A[x1, . . . , xn] is a retract of TA and thus
A[x] for each n ∈ N≥1.

Consider Proposition 4.2.2. Let a be some element of A. By the proposition,
using the identity on A, we can conclude that there exists a unique homomorphism
idA : A[x]→ A such that idA(〈x〉1) = a and idA ◦ η1

A = idA. From the latter we can
conclude that A is a retract of A[x] and thus also TA.

Now for the induction, assume that x and y are distinct variables. We start
by showing that A[x, y] and thus also T 2A is a retract of TA. We will show the
existence of homomorphisms f and g such that g ◦ f = idA[x,y]. Define the following
(cf. Section 6.2 in [7]).
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t = k, f = λ∗xy.y, pair = λ∗xyz.zxy.

By Proposition 4.2.2, using η1
A : A→ A[x] as the homomorphism in the assump-

tion of the statement, we have that there exists a unique f : A[x, y] → A[x], such
that f(〈x〉2) = 〈(x, t)〉1 and f(〈y〉2) = 〈(x, f)〉1 and f ◦ η2 = η1

A. See below.

A A[x]

A[x, y]

η2

η1A

f

Again from Proposition 4.2.2, now using η2 : A → A[x, y] as the homomorphism in
the assumption, we have that there exists a unique g : A[x] → A[x, y], such that
g(〈x〉1) = 〈((pair, x), y)〉2 and g ◦ η1

A = η2.

A A[x, y]

A[x]

η2

η1A

g

We argue that g◦f = idA[x,y]. First, we show that g(f(〈x〉2)) = 〈x〉2 and g(f(〈y〉2)) =
〈y〉2.

g(f(〈x〉2)) = g(〈(x, t)〉1)

= g(〈x〉1) ·2 g(〈t〉1)

= 〈((pair, x), y)〉2 ·2 g(η1
A(t))

= 〈((pair, x), y)〉2 ·2 η2(t)

= 〈((pair, x), y)〉2 ·2 〈t〉2
= 〈(((pair, x), y), t)〉2
= 〈x〉2 cf. Prop. 4.2.7

g(f(〈y〉2)) = g(〈(x, f)〉1)

= 〈(((pair, x), y), f)〉2 similarly as for the previous case

= 〈y〉2 cf. Prop. 4.2.7

g(f(〈a〉2)) = g(f(η2(a)))

= g(η1
A(a))

= η2(a)

= 〈a〉2

Since g ◦ f is a homomorphism, we can conclude that g(f(〈s〉2)) = 〈s〉2 for all
s ∈ T ({x, y} ∪ A) and thus g ◦ f = idA[x,y].

For the induction step, assume that for some n ∈ N, we have that T nA is a
retract of TA. Let f : T nA→ A and g : A→ T nA such that g ◦ f = idTnA.
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When we substitute A by T nA, from the fact that A is a retract of TA we obtain
that T nA is a retract of T n+1A. Let f ′ : T n+1A→ T nA and g′ : T nA→ T n+1A such
that g′ ◦ f ′ = idTn+1A. Then (g′ ◦ g) ◦ (f ◦ f ′) = idTn+1A.
2. Let A be a combinatory pre-model, let n ∈ N and let x1, . . . , xn be distinct vari-
ables. Define a countably infinite sequence (yn)n≥1 of elements in T ({x1, . . . , xn} ∪
A), where for all i ≤ n we have yi = xi, and for all i > n we have yi = xn. We
also have that ηnA : A→ A[x1, . . . , xn], and thus, by Proposition 4.2.6, there exists a
unique f : A[X] → A[x1, . . . , xn], such that f ◦ σA = ηnA and f(〈xi〉1) = 〈yi〉n for all
i ∈ N≥1.

On the other hand, since σA : A→ A[X], by Proposition 4.2.2 we have that there
exists a uniqye g : A[x1, . . . , xn] → A[X], such that g ◦ ηnA = σA and g(〈xi〉n) = 〈xi〉1
for each i ∈ N with i ≤ n.

Since f ◦g is a homomorphism, from the above we can conclude, using induction
on terms of T ({x1, . . . , xn}∪A), that for any s ∈ T ({x1, . . . , xn}∪A), we have that
f(g(〈s〉n)) = 〈s〉n, and thus f ◦ g = idA[x1,...,xn].
3. Let A be a combinatory pre-model and let x be a variable. We show the existence
of two homomorphisms f and h, such that f ◦ h = id(A[X])[x] and h ◦ f = idA[X].

Note that η1
A[X] ◦ σA : A → (A[X])[x], where η1

A[X] : A[X] → (A[X])[x] such that

η1
A[X](〈s〉X) = 〈〈s〉X〉1 for all 〈s〉X ∈ A[X]. From Proposition 4.2.2, using η1

A[X] ◦ σA as
the homomorphism in the assumption of the statement, we obtain that there is a
unique f : A[X] → (A[X])[x], such that f(〈x1〉X) = 〈x〉1 and f(〈xi〉X) = 〈〈xi−1〉X〉1 for
i ∈ N with i ≤ 2, and f ◦ σA = η1

A[X] ◦ σA.

From the homomorphism σA : A → A[X] and Proposition 4.2.6, we obtain that
there exists a unique g : A[X] → A[X] such that g(〈xi〉X) = 〈xi+1〉X for i ∈ N with
i ≥ 1, and g ◦ σA = σA.

Using Proposition 4.2.2, where we use this g as the homomorphism in the
assumption, we have that there exists a unique h : (A[X])[x] → A[X], such that
h(〈x〉1) = 〈x1〉X, and h ◦ η1

A[x] = g.

We argue that f ◦ h = id(A[X])[x], by induction on T ({x} ∪ A[X]). We do this by
first showing that for all 〈s〉X ∈ A[X], we have f(h(〈〈s〉X〉1)) = 〈〈s〉X〉1, again using
induction on terms. In the following, let a ∈ A and let i ∈ N≥1.

f(h(〈〈xi〉X〉1)) = f(h(η1
A[X](〈xi〉X)))

= f(g(〈xi〉X))
= f(〈xi+1〉X)
= 〈〈xi〉X〉1

f(h(〈〈a〉X〉1)) = f(h(η1
A[X](〈a〉X)))

= f(g(〈a〉X))
= f(g(σA(a)))

= f(σA(a))

= η1
A[X](σA(a))

= 〈〈a〉X〉1
Since f ◦ h is a homomorphism, we can conclude that f(h(〈〈s〉X〉1)) = 〈〈s〉X〉1 for

all 〈s〉X ∈ A[X].
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Also we have that f(h(〈x〉X)) = f(〈x1〉X) = 〈x〉1. And thus, similarly as before,
since f ◦ h is a homomorphism, we can conclude that f(h(〈s〉1)) = 〈s〉1 for all
〈s〉1 ∈ T ({x} ∪ A[X]). Showing that h ◦ f = idA[X] is done similarly.

Remark 4.2.10. From Proposition 4.2.9.(2), for any combinatory pre-model A, we
have s ≈X t⇔ s ≈x1...xn t for any n ∈ N and any s, t ∈ T ({x1, . . . , xn} ∪ A).

4.2.4 An alternative representation of polynomial algebras

This section will be used for giving an alternative representation of polynomial
algebras, without using indeterminates. By defining a specific relation and taking
the quotient, we will define a specific combinatory pre-model and then show that it
is isomorphic to the polynomial algebra.

Similar approaches have been outlined before in more specific settings, for exam-
ple in Chapter 6, Section 3 of [27] or in Section 2.1 of [38]. We will say more about
this in Remark 4.3.6 later.

We give the results in a general setting. Let A = (A, ·, k, s, i, e) be a combinatory
pre-model, let x be a variable and let A[x] be the polynomial algebra of A in x. We
begin with the observation that a function f : A→ A[x] defined by f(a) = 〈(a, x)〉1
is surjective, since for each 〈t〉1 ∈ A[x] we have 〈(λ∗x.t, x)〉1 = 〈t〉1 (cf. Proposition
4.2.7).

Define an equivalence relation ∼ on A by a ∼ b iff f(a) = f(b) for all a, b ∈ A.
Denote [·] for the equivalence classes of A/∼. Recall Definition 3.5.3. We define
π∼ : A→ A/∼ by π∼(a) = [a].

Similarly to Lemma 4.2.1, there is a unique f̃ : A/∼ → A[x] such that f̃ ◦π∼ = f ,

defined by f̃([a]) = f(a) for all a ∈ A. Similarly to f , the function f̃ is surjective.
It is also injective by the definition of ∼.

We want to find an inverse function to f̃ , since we are looking for a structure that
is isomorphic to A[x]. For this function, we will use the λ∗-abstraction. Note that
we have 〈(λ∗x.t, x)〉1 = 〈t〉1 for any t ∈ T ({x} ∪ A), as mentioned before. However,
taking the λ∗-abstraction still gives a term in T (X ∪ A). And thus we will use the
interpretation as discussed in Remark 3.1.8. Then the inverse g̃ of f̃ can thus be
defined by g̃(〈t〉1) = [Jλ∗x.tKA] for every 〈t〉 ∈ A[x].

This inverse function induces a combinatory pre-model

(A/∼, �, [kk], [ks], [ki], [ke]),

where [a] � [b] = [sab].
We define this combinatory pre-model more formally, where we define the equiv-

alence relation ∼ (later denoted as ∼1) without using A[x].

Definition 4.2.11. Let A = (A, ·, k, s, i, e) be a combinatory pre-model. Define
an applicative structure A1 = (A, ·1), where a ·1 b = sab for all a, b ∈ A. For each
a ∈ A, define a1 = ka. Define ∼1 as the smallest congruence relation on A1 for
which the following relations hold for all a, b, c ∈ A.

i) k1 ·1 a ·1 b ∼1 a,
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ii) s1 ·1 a ·1 b ·1 c ∼1 (a ·1 c) ·1 (b ·1 c),

iii) i1 ·1 a ∼1 a,

iv) e1 ·1 a ·1 b ∼1 a ·1 b,

v) (ka) ·1 (kb) ∼1 k(ab),

vi) (ka) ·1 i ∼1 a.

Let (A/∼1, �) be the quotient of A1 by ∼1. Denote [·] for the equivalence classes in
A/∼1.

Define Ā1 as the combinatory pre-model (A/∼1, �, [k1], [s1], [i1], [e1]).

It is straightforward to check that Ā1 is indeed a combinatory pre-model. The
equations (v) and (vi) might seem strange at first, but their need will become clear
when we consider the previously mentioned function g̃. Namely, equation (v) ensures
that λ∗x.(a, b) = λ∗x.ab for all a, b ∈ A. Equation (vi) is needed for ensuring that g̃
is indeed the inverse of f̃ , since it gives us that λ∗x.(a, x) = a for any a ∈ A. This
will all be outlined in detail in the proof of the following theorem.

Theorem 4.2.12. For any combinatory pre-model A and variable x, the combina-
tory pre-models Ā1 and A[x] are isomorphic.

Proof. Let A = (A, ·, k, s, i, e) be a combinatory pre-model. We will give two func-
tions f̃ and g̃ and then argue that f̃ ◦ g̃ = idA[x] and g̃ ◦ f̃ = idĀ1

.
Let (T ({x} ∪ A), •) be an applicative structure where for all s, t ∈ T ({x} ∪ A)

we have s • t = (s, t).
We define a function f : A1 → ((T ({x}∪A), ∗1) as f(a) = 〈(a, x)〉1 for all a ∈ A.

Then f is a homomorphism, since for all a, b ∈ A, we have

f(a ·1 b) = f(sab)

= 〈(sab, x)〉1
= 〈(((s, a), b), x)〉1 by Def. 4.1.3 eq. (i)

= 〈((a, x), (b, x))〉1 by Def. 4.1.3 eq. (iii)

= 〈(a, x)〉1 ∗1 〈(b, x))〉1
= g(a) ∗1 g(b)

By induction on how ∼1 is defined, we will show that a ∼1 b⇒ f(a) = f(b) for
all a, b ∈ A. By Lemma 4.2.1 we will then have that there exists a homomorphism
f̃ : (A/∼1, �) → ((T ({x} ∪ A), ∗1). We only show the case for Definition 4.2.11
equation (i). The rest follows similarly. In the following, let a, b ∈ A.

f(k1 ·1 a ·1 b) = f(s(s(kk)a)b)

= 〈(s(s(kk)a)b, x)〉1
= 〈(((s, ((s, (kk)), a)), b), x)〉1 by Def. 4.1.3 eq. (i)

= 〈(a, x)〉1 by Def. 4.1.3 eq. (ii) and (iii)

= f(a)
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And thus, by Lemma 4.2.1, there exists a unique f̃ : (A/∼1, �) → ((T ({x} ∪
A), ∗1), such that f̃ ◦ π∼1 = f . Then f̃ extends naturally to a homomorphism
f̃ : Ā1 → A[x], with

f̃([a]) = 〈(a, x)〉1
for all [a] ∈ A/∼1, since from f̃ ◦ π∼1 = f we obtain that the combinators of both
combinatory pre-models get mapped to each other.

We define a homomorphism g, which will extend similarly into a homomorphism
g̃, and then show that g̃ is the inverse of f .

As argued before, we define g as g(t) = [Jλ∗x.tK] for all t ∈ T ({x} ∪ A).
Note that for any a, b ∈ T (A), we have

J(a, b)KA = JaKA · JbKA (4.2)

And thus g is a homomorphism, since for all s, t ∈ T ({x} ∪ A),

g((s, t)) = [Jλ∗x.(s, t)KA]

= [J((s, (λ∗x.s)), (λ∗x.t))KA]

= [J(λ∗x.s)KA ·1 J(λ∗x.t)KA] by eq. (4.2)

= [Jλ∗x.sKA] � [Jλ∗x.tKA]

= g(s) � g(t)

We again show that t ≈x s ⇒ g(t) = g(s) for all t, s ∈ T ({x} ∪ A), for the
purpose of using Lemma 4.2.1.

Recall Definition 4.1.3. In the following, let a, b ∈ A and let s, t ∈ T ({x} ∪ A).

g((a, b)) = [Jλ∗x.(a, b)KA]

= [Js(λ∗x.a)(λ∗x.b)KA]

= [Jλ∗x.aKA] � [Jλ∗x.bKA]

= [ka] � [kb]

= [(ka) ·1 (kb)]

= [k(ab)] by Def. 4.2.11 eq. (v)

g(((k, s), t)) = [Jλ∗x.((k, s), t)KA]

= ([Jλ∗x.kKA] � [Jλ∗x.sKA]) � [λ∗x.tKA] similarly as before

= ([k1] � [Jλ∗x.sKA]) � [λ∗x.tKA]

= [k1]

= g(k)

The equations for s, i and e follow similarly to the one for k.
And thus, t ≈x s ⇒ g(t) = g(s) for all t, s ∈ T ({x} ∪ A), and by Lemma

4.2.1 we then get a homomorphism g̃ : (T ({x} ∪A)/ ≈x, ∗1)→ (A/∼, ∗1) such that
g̃ ◦ π≈x = g. We thus have that

g̃(〈t〉1) = [Jλ∗x.tKA]
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for all 〈t〉1 ∈ A[x]. This again naturally extends to a homomorphism g̃ : A[x]→ Ā1.

We now argue that f̃ and g̃ are each others inverses. Let 〈t〉1 ∈ A[x]. Then,

f̃(g̃(〈t〉1)) = f̃([Jλ∗x.tKA])

= 〈(Jλ∗x.tKA, x)〉1
= 〈(λ∗x.t, x)〉1 by Def. 4.1.3 eq. (i)

= 〈t〉1 by Prop. 3.1.16

For any [a] ∈ A/∼1, we have

g̃(f̃([a])) = g̃(〈(a, x)〉1)

= [Jλ∗x.(a, x)KA]

= [s(ka)(i)]

= [(ka) ·1 i]

= [a] by Def. 4.2.11 eq. (vi)

From the proof of Theorem 4.2.12, we can derive the following correspondence.

Proposition 4.2.13. For any combinatory pre-model A = (A, ·, k, s, i, e) and any
variable x, we have

a ∼1 b⇔ (a, x) ≈x (b, x)

for all a, b ∈ A.

The following Corollary is an immediate consequence to this proposition.

Corollary 4.2.14. For any combinatory pre-model A = (A, ·, k, s, i, e), we have

ea ∼1 a

for all a ∈ A.

4.3 Reflexivity

4.3.1 Different characterizations

We introduce an algebraic analogue of the Meyer-Scott axiom (cf. Definition 3.3.1).
We will see later (Proposition 4.3.13 and Theorem 4.4.2) how this relates to different
forms of weak extensionality.

Definition 4.3.1. A combinatory pre-model A = (A, ·, k, s, i, e) is reflexive if

a ∼1 b⇒ ea = eb

for all a, b ∈ A.
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From Proposition 4.2.13 we obtain an equivalent definition.

Corollary 4.3.2. A combinatory pre-model A = (A, ·, k, s, i, e) is reflexive if and
only if

(a, x) ≈x (b, x)⇒ ea = eb

for any variable x and a, b ∈ A.

It turns out that for any combinatory pre-model A = (A, ·, k, s, i, e) we can
characterize the reflexivity of A by a set of simple universal sentences on the elements
of A, because the relation ∼1 is generated from equations on the elements of A
(cf. Definition 4.2.11). We proceed as follows. For a combinatory pre-model A =
(A, ·, k, s, i, e), we define a function f : A→ A as f(a) = ea for a ∈ A. We want to
extend this to a homomorphism between applicative structures, and see under what
condition this f preserves the relation ∼1 (that is, when a ∼1 b ⇒ f(a) = f(b) for
a, b ∈ A). Note that f maps to the set {ea : a ∈ A}. We therefore first define the
following.

Definition 4.3.3. Let A = (A, ·, k, s, i, e) be a combinatory pre-model. Let

eA = {ea : a ∈ A}.

Define an applicative structure (eA, ·e) where

ea ·e eb = e(ea ·1 eb)

for all ea, eb ∈ eA.

Note that ·e is indeed an operation on eA.
To find the necessary equations, we simply give the appropriate counterparts of

the conditions of Definition 4.2.11. However, we also required that∼1 is a congruence
relation (cf. Definition 3.5.2). And thus, for some combinatory pre-model A =
(A, ·, k, s, i, e), we need that

ea = eb ∧ ec = ed⇒ e(a ·1 b) = e(b ·1 d)

for all a, b, c, d ∈ A. Since ·e is an operation on eA, we have that ea = eb and
ec = ed implies that ea ·e ec = eb ·e ed for all a, b, c, d ∈ A. And thus it is sufficient
to require that ea ·e eb = e(a ·1 b) for all a, b ∈ A. Note that this ensures that
the defined f is a homomorphism between applicative structures. We arrive at the
following proposition.

Proposition 4.3.4. A combinatory pre-model A = (A, ·, k, s, i, e) is reflexive if and
only of it satisfies the following equations for each a, b, c ∈ A.

1. e(k1 ·1 a ·1 b) = ea,

2. e(s1 ·1 a ·1 b ·1 c) = e(a ·1 c ·1 (b ·1 c)),

3. e(i1 ·1 a) = ea,

4. e(e1 ·1 a ·1 b) = e(a ·1 b),
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5. e((ka) ·1 (kb)) = e(k(ab)),

6. e((ka) ·1 i) = ea,

7. e((ea) ·1 (eb)) = e(a ·1 b).

Proof. We argued before that when an applicative structure A as in the statement
satisfies the equations, then A is reflexive.

Now assume that A is reflexive. From Definition 4.2.11, it is clear that the
equations (1)- (6) hold. From Corollary 4.2.14, we have ea ·1 eb ∼1 a ·1 b for all
a, b ∈ A. This implies equation (7).

Let A = (A, ·, k, s, i, e) be a combinatory pre-model. We go back to the homo-
morphism f : (A, ·1) → (eA, ·e) defined earlier. By Lemma 4.2.1, this extends to a
unique homomorphism f̃ : (A/∼1, ·1)→ (eA, ·e), and in turn this naturally extends
to a homomorphism between combinatory pre-models Ā1 (Definition 4.2.11) and
(eA, ·e, ek1, es1, ei1, ee1).

From the proof of Proposition 4.3.4 we thus have the following.

Corollary 4.3.5. Let A = (A, ·, k, s, i, e) be a reflexive combinatory pre-model. Let
Ae = (eA, •e, ek1, es1, ei1, ee1), where ea •e eb = e(a ·1 b) for all a, b ∈ A. Then Ae

is isomorphic to Ā1 and A[x].

Proof. Since A is reflexive, by Corollary 4.2.14, we have that eA = {a ∈ A : a = ea}.
Then •e is a well-defined operation on eA, and the isomorphisms follow from the
arguments before Proposition 4.3.4 and its proof, and from Theorem 4.2.12.

Remark 4.3.6. In the literature we can find constructions similar to Ae [27, 17,
38]. For example, in [27, Ch. 3 Sec. 6], Krivine deduces some of Curry’s axioms
(cf. Theorem 3.2.6) by considering a combinatory algebra A = (A, ·, k, s) and an
applicative structure B = (1A, �, kk, ks), where 1A = {1a : a ∈ A} and a � b = sab
for all a, b ∈ 1A (recall that 1 = skk). For this purpose he assumed a weak form of
stability (cf. 3.4.4):

∀a, b ∈ A[e(ka) = ka ∧ e(sab) = sab].

He then argued that what is needed further for an isomorphism between B and A are
the equations (1), (2) and (5) of Proposition 4.3.4, only without e in front of both
sides. Selinger showed in [38, Prop. 4] that for a lambda algebra A = (A, ·, k, s) and
a variable x, the structures B and A[x] are isomorphic, where stability was assumed
since lambda algebras are stable (cf. Remark 3.4.8). Our result gives thus gives a
more general result, when including i and e and not assuming any form of stability.

We state some more properties of the notion of reflexivity.
The seven equations of Proposition 4.3.4 are all universal sentences. Therefore

we have the following corollary, where a substructure of a combinatory pre-model
A = (A, ·, k, s, i, e) is a subset B ⊆ A, which is closed under · and contains k, s, i
and e.

Corollary 4.3.7. Reflexivity is closed under substructures and homomorphic im-
ages. In particular, it is closed under retracts.
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This entails that reflexivity is also preserved under adding more indeterminates
to polynomial algebras.

Proposition 4.3.8. For any combinatory pre-model A, any n ∈ N≥1 and any vari-
able x, if A[x] is reflexive, then also A[x1, . . . , xn] and A.

Proof. From Proposition 4.2.9 and Corollary 4.3.7.

Note that it is not necessarily the case for a combinatory pre-model A and a
variable x, that A[x] is reflexive when A is.

4.3.2 An alternative lambda abstraction

Next, we introduce an alternative lambda abstraction mechanism, different from λ∗

(cf. Definition 4.1.2). Using the new abstraction mechanism, we can characterize
reflexivity by A[x] being preserved by this abstraction.

Definition 4.3.9. Let A = (A, ·, k, s, i, e) be a combinatory pre-model. For any
t ∈ T (X ∪ A) and any variable x, define the lambda abstraction λ†x.t ∈ T (X ∪ A)
inductively as follows:

i) λ†x.x ≡ (e, i).

ii) λ†x.a ≡ (e, (k, t)) for any a ∈ (X ∪ A) with a 6≡ x.

iii) λ†x.(a, x) ≡ (e, a) for any a ∈ (X ∪ A) with a 6≡ x.

iv) λ†x.(t1, t2) ≡ (e, ((s, λ†x.t1), λ†x.t2)) if t1 ≡ x or t1 6∈ (X ∪ A) or t2 6≡ x.

For any n ∈ N and variables x1, . . . , xn, define the repeated lambda abstraction
λ†x1 · · · xn.t as λ†x1.(· · · (λ†xn.t) · · · ).

Remark 4.3.10. Similarly to Remark 3.1.15, we have that for some n ∈ N≥1, if
t ∈ T ({x1, . . . , xn}∪A) and i ∈ {1, . . . , n}, then λ†xi.t ∈ T ({x1, . . . , xn} \ {xi}∪A).

Recall Definition 3.1.5 and Proposition 3.1.16.

Proposition 4.3.11. Let A = (A, ·, k, s, i, e) be a combinatory pre-model. For any
variable x and for any t, s ∈ T (X ∪ A),

(λ†x.t, s) ≈X t[x/s].

Proof. Similarly to Proposition 4.2.7, this follows easily from induction on the struc-
ture of t ∈ T (X ∪ A).

We can see that in the sense of Proposition 4.2.7 and Proposition 4.3.11, the
abstractions λ∗ and λ† are similar. Nevertheless, the λ†-abstraction satisfies some
properties that the λ∗-abstraction does not need to satisfy. An example is the
following lemma, which will turn out to be of importance later on.
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Lemma 4.3.12. Let A = (A, ·, k, s, i, e) be a reflexive combinatory pre-model and
let x be a variable. Then

eJλ†x.tKA = Jλ†x.tKA

for each t ∈ T ({x} ∪ A).

Proof. Let A and x be as in the statement. Since A is reflexive, from Corollary
4.2.14, we have that (e, (e, a)) = (e, a) for all a ∈ A. The statement then follows
from induction on t ∈ T (X ∪ A), using Definition 4.3.9.

We can now use λ†-abstraction to characterize reflexivity.

Proposition 4.3.13. Let A be a combinatory pre-model and let x be a variable.
Then A is reflexive if and only if

s ≈x t⇒ Jλ†x.sK = Jλ†x.tK

for all s, t ∈ T ({x} ∪ A)

Proof. Let A and x be as in the statement of the proposition. First, suppose that A is
reflexive. Let s, t ∈ T ({x} ∪ A) and suppose that s ≈x t. From Proposition 4.3.11,
Remark 4.2.10 and equation (i) of Definition 4.1.3, we have that (Jλ†x.sK, x) ≈x

(λ†x.s, x) ≈x s[x/x] ≈x s ≈x t ≈x (λ†x.t, x) ≈x (Jλ†x.tK, x). Since A is reflexive, from
Corollary 4.3.2, we obtain that eJλ†x.sK = eJλ†x.tK. Then Lemma 4.3.12 gives us
that Jλ†x.sK = Jλ†x.tK.

Now suppose that s ≈x t⇒ Jλ†x.sK = Jλ†x.tK for all s, t ∈ T ({x} ∪ A). We will
use Corollary 4.3.2 to argue that A is reflexive, namely, by showing that (a, x) ≈x

(b, x) ⇒ ea = eb for any a, b ∈ A. Assume that (a, x) ≈x (b, x) for some a, b ∈ A.
Then by assumption Jλ†x.(a, x)K = Jλ†x.(b, x)K. From Definition 4.3.9.iii), we then
obtain ea = J(e, a)K = J(e, b)K = eb.

Thus, reflexivity can be described as the requirement that the mapping t 7→ λ†x.t
is well-defined for polynomials with one indeterminate. Or, using similar terminology
as before, that equality on polynomials with one indeterminate respects the ξ-rule
of the lambda calculus.

If we assume the polynomial algebra with n indeterminates to be reflexive, we get
that the mapping t 7→ λ†x.t is well-defined for polynomials with n indeterminates.
This is formulated in the following proposition, where we use the isomorphism of
a polynomial algebra A[x1, . . . , xn] with T nA (cf. Proposition 4.2.5) to give an
alternative formulation of Proposition 4.3.13 and Corollary 4.3.2.

Proposition 4.3.14. For any combinatory pre-model A = (A, ·, k, s, i, e) and any
n ∈ N≥1, the following are equivalent.

1. A[x1, . . . , xn] is reflexive.

2. For all s, t ∈ T ({x1, . . . , xn+1} ∪ A),

s ≈x1...xn+1 t⇒ λ†xn+1.s ≈x1...xn λ
†xn+1.t.
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3. For all s, t ∈ T ({x1, . . . , xn} ∪ A),

(s, xn+1) ≈x1...xn+1 (t, xn+1)⇒ (e, s) ≈x1...xn (e, t).

Proof. Let A be a combinatory pre-model as in the statement of the lemma, let
n ∈ N, and let x1, . . . , xn+1 be distinct variables. From Proposition 4.2.5, we have
that there exists an isomorphism f : A[x1, . . . , xn]→ T nA. Define a homomorphism
ϕ : T ({x1, . . . , xn+1} ∪ A)→ T ({x} ∪ T nA) inductively as follows.

1. ϕ(xn+1) = x,

2. ϕ(s) = f(s) for s ∈ T ({x1, . . . , xn} ∪ A),

3. ϕ((s, t)) = (ϕ(s), ϕ(t)) for s, t ∈ T ({x1, . . . , xn+1} ∪ A).

Note that ϕ is surjective. We claim that for all t ∈ T ({x1, . . . , xn+1} ∪ A), we have

f(λ†xn+1.t) = λ†x.ϕ(t). (4.3)

We do this by induction on the structure of t ∈ T ({x1, . . . , xn+1} ∪A), following
Definition 4.3.9. Note that, since f is an isomorphism, we have that T nA is the
combinatory pre-model (T nA, ∗1, f(k), f(s).f(i), f(e)).

First assume that t ≡ xn+1. Then f(λ†xn+1.t) = (f(e), f(i)) = λ†x.x = λ†x.ϕ(t).
If t ∈ (X ∪ A) with t 6≡ xn+1, then we have f(λ†xn+1.t) = (f(e), (f(k), f(t))) =

(f(e), (f(k), ϕ(t))) = λ†x.ϕ(t).
The case for t ≡ (a, xn+1) for an a ∈ (X ∪ A) with a 6≡ xn+1 and the induction

step follow similarly.
(1 → 2) Assume that A[x1, . . . , xn] is reflexive. Also assume that for some s, t ∈
T ({x1, . . . , xn+1} ∪ A), we have s ≈x1...xn+1 t. Since ϕ is a homomorphism, we also
have that ϕ(s) ≈x ϕ(t). Since T nA is isomorphic to A[x1, . . . , xn], also T nA is re-
flexive. And thus, from Proposition 4.3.13, we have that Jλ†x.ϕ(s)K = Jλ†x.ϕ(t)K.
Equation (4.3) then tells us that f(λ†xn+1.s) = f(λ†xn+1.t). Since f is a homomor-
phism, we conclude that λ†xn+1.s ≈x1...xn λ

†xn+1.t.
(2 → 1) Following the statement, assume that s ≈x1...xn+1 t ⇒ λ†xn+1.s ≈x1...xn

λ†xn+1.t for all s, t ∈ T ({x1, . . . , xn+1} ∪ A). We show that ϕ(s) ≈x ϕ(t) ⇒
Jλ†x.ϕ(s)K = Jλ†x.ϕ(t)K for all s, t ∈ T ({x1, . . . , xn+1} ∪ A), which is enough to
show that T nA and thus also A[x1, . . . , xn] is reflexive, using Proposition 4.3.13 and
the fact that ϕ is surjective.

Assume that ϕ(s) ≈x ϕ(t). Since ϕ is a homomorphism, we also have that
s ≈x1...xn+1 t and thus λ†xn+1.s ≈x1...xn λ†xn+1.t. Since f is a homomorphism, we
then also have that f(λ†xn+1.s) = f(λ†xn+1.t), and then we are done by equation
(4.3).
(1 ↔ 3) From Proposition 4.2.5, we have that A[x1, . . . , xn] is reflexive iff T nA is
reflexive. From Corollary 4.3.2 and the fact that f is surjective, we have that this
holds iff

(f(s), x) ≈x (f(t), x)⇒ f(e) ∗1 f(s) = f(e)∗1

for all s, t ∈ T ({x}∪ T nA). By definition of ϕ and since f is a homomorphism, one
can easily see that the latter holds iff

ϕ(s, xn+1) ≈x ϕ(t, xn+1)⇒ f((e, s)) = f((e, t))
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for all s, t ∈ T ({x1, . . . , xn} ∪ A). Since ϕ and f are homomorphisms, this holds iff

(s, xn+1) ≈x1...xn+1 (t, xn+1)⇒ (e, s) ≈x1...xn (e, t)

for all s, t ∈ T ({x1, . . . , xn} ∪ A).

4.4 Strong reflexivity

In this section, we introduce strong reflexivity. We first give the definition and
discuss some immediate results. Then we outline the relation of strongly reflexive
combinatory pre-models with combinatory models.

4.4.1 Definition and basics

As said before, and as can be seen from Proposition 4.3.13, reflexivity can be seen as
the mapping t 7→ λ†x.t being well-defined for polynomials with one indeterminate.
Respecting the ξ-rule of the lambda calculus, using the λ†-abstraction, amounts
to the mapping t 7→ λ†x.t being well-defined for polynomials with any number of
indeterminates. It turns out that for this, it is sufficient if the polynomial algebra
with one indeterminate is reflexive.

Definition 4.4.1. A combinatory pre-model A = (A, ·, k, s, i, e) is strongly reflexive
if A[x] is reflexive.

We only need the polynomial algebra with one indeterminate to be reflexive,
because this implies that the polynomial algebra with any number of indeterminates
is reflexive, as was stated in Proposition 4.3.8

We will give an alternative of Proposition 4.3.14, that states that strong reflex-
ivity is sufficient for the mapping t 7→ λ†x.t to be well-defined for polynomials with
any number of indeterminates.

Theorem 4.4.2. For any combinatory pre-model A = (A, ·, k, s, i, e) and any n ∈
N≥1, the following are equivalent.

1. A is strongly reflexive.

2. For all s, t ∈ T (X ∪ A),

s ≈X t⇒ λ†x.s ≈X λ
†x.t.

3. For all s, t ∈ T (X ∪ A),

(s, x) ≈X (t, x)⇒ (e, s) ≈X (e, t).

Proof. Let A = (A, ·, k, s, i, e) be a combinatory pre-model. Note that for any
n ∈ N, if A[x1, . . . , xn] is reflexive, then also A[x]. Thus, with Proposition 4.3.8,
we have that A is strongly reflexive if and only if A[x1, . . . , xn] is reflexive for any
n ∈ N.

Also for any s, we have s ∈ T (X ∪ A) if and only if there exists an n such that
s ∈ T ({x1, . . . , xn} ∪ A).

This, together with Remark 4.2.10 and Proposition 4.3.14, proves the theorem
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Similarly to reflexivity (cf Proposition 4.3.4, we can characterize strong reflexivity
with seven equations. These are obtained by taking the λ†-closures of both sides of
the equations of 4.3.4.

In the theorem below, we will abbreviate the notation for application of terms,
as in Notation 3.1.3.

Theorem 4.4.3. A combinatory pre-model A = (A, ·, k, s, i, e) is strongly reflexive
if and only if it satisfies the following equations.

i) λ†xy.e(s(s(kk)x)y) = λ†xy.ex,

ii) λ†xyz.e(s(s(s(ks)x)y)z) = λ†xyz.e(s(sxz)(syz)),

iii) λ†x.e(s(ki)x) = λ†x.ex,

iv) λ†xy.e(s(s(ke)x)y) = λ†xy.e(sxy),

v) λ†xy.e(s(kx)(ky)) = λ†xy.e(k(xy)),

vi) λ†x.e(s(kx)i) = λ†x.ex,

vii) λ†xy.e(s(ex)(ey)) = λ†xy.e(sxy).

Proof. Let A = (A, ·, k, s, i, e) be a combinatory pre-model. First, assume that A is
strongly reflexive. Then by Proposition 4.3.8, also A is reflexive, and A[x1, . . . , xn]
is reflexive for any n. From the reflexivity of A, we have that the seven equations
of Proposition 4.3.4 hold. Then by the reflexivity of A[x1, . . . , xn] for n ≤ 2, and
by repeated application of Proposition 4.3.14, we can show how to obtain the seven
equations as in the statement of the theorem. We will show how to derive equation
(i) from the theorem. The rest of the equations follow similarly. Since A[x, y] is
reflexive, we have from Proposition 4.3.4 equation (1) that

(e, ((s, ((s, (k, k)), x)), y)) ≈x,y (e, x).

We also have that A[x] is reflexive, and thus, by Proposition 4.3.14, we have

λ†y.(e, ((s, ((s, (k, k)), x)), y)) ≈x λ
†y.(e, x).

Since also A is reflexive, by repeating the previous argument, we obtain

λ†xy.(e, ((s, ((s, (k, k)), x)), y)) = λ†xy.(e, x).

Now for the other direction, assume that A satisfies the seven equations from
the theorem. We have that η1

A (cf. Definition 3.5.5) is a homomorphism from A
to A[x]. Then A[x] also satisfies the seven equations. From these, we show how
to obtain that A[x] also satisfies the seven equations from Proposition 4.3.4, which
implies that A[x] is reflexive (and thus A is strongly reflexive). We show how to do
this for equation 1. In A[x], we have that

λ†xy.e(s(s(kk)x)y) = λ†xy.ex.

Let a, b ∈ T ({x} ∪ A)/≈x. If we apply both sides of the equation with a and b, we
obtain that

e(k1 ·1 a ·1 b) = ea.

The other equations follow similarly.
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The equations of Theorem 4.4.3 are closed : they only consist of equations of
elements of A, that are made up from applications between the combinators k, s, i
and e. This ensures the following.

Corollary 4.4.4. If A is strongly reflexive, B is a combinatory pre-model and
f : A→ B is a homomorphism, then B is also strongly reflexive.

4.4.2 Interpreting the lambda calculus

We will show that strongly reflexive combinatory pre-models are sound with respect
to the lambda calculus. We first define a way of interpreting lambda-terms in
combinatory pre-models, using the λ†-abstraction. Recall Definition 3.2.1 and 3.2.2.

Definition 4.4.5. Let A be a combinatory pre-model. Define the mapping (·)CL† :
TΛ(A)→ T (X ∪ A) as follows:

i) (xi)CL† = xi for any i ∈ N.

ii) (a)CL† = a for any a ∈ A.

iii) (s · t)CL† = (sCL† , tCL†) for any s, t ∈ TΛ(A).

iv) (λx.s)CL† = λ†x.(s)CL† for any s ∈ TΛ(A).

As with lambda algebras (cf. Proposition 3.5.9), strongly reflexive combinatory
pre-models only respect the ξ-rule of the lambda calculus in the absolute sense. That
is, when considering equality over polynomials. We therefore need the following
lemma.

Lemma 4.4.6. For any combinatory pre-model A, for all s, t ∈ T (X ∪ A),

s ≈X t⇒ A |= s = t.

Proof. Let A be a combinatory pre-model, let n ∈ N≥1 and let s, t ∈ T (X∪A) be such
that FV (s) ∪ FV (t) ⊆ {x1, . . . , xn}. We thus have that s, t ∈ T ({x1, . . . , xn} ∪ A).
Assume that s ≈X t. Then s ≈x1...xn t (cf. Remark 4.2.10).

We want to show that for any valuation ρ : {x1, . . . , xn} → A, we have A, ρ |= s =
t (cf. Definition 3.1.7). Let ρ : {x1, . . . , xn} → A be any valuation. Let f : A → A
be the identity isomorphism. By Proposition 4.2.2, we have that there exists a
unique f̃ : A[x1, . . . , xn] → A such that f̃ ◦ ηnA = f and f̃(〈xi〉n) = ρ(xi). Then
JsKAρ = f̃(〈s〉n) = f̃(〈t〉n) = JrKAρ , and thus A, ρ |= s = t as required.

Theorem 4.4.7. For any strongly reflexive combinatory pre-model A, for all s, t ∈
TΛ(A), we have

λ ` s = t⇒ A |= sCL† = tCL† .

Proof. By Lemma 4.4.6, it is sufficient to show that

λ ` s = t⇒ sCL† ≈X tCL†

for any s, t ∈ TΛ(A). Recall Definition 2.2.2. We will show this by induction on the
derivations in the lambda calculus.
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Let A = (A, ·, k, s, i, e) be an algebraic combinatory model. It is clear, in case
of (refl), that sCL† ≈X sCL† for s ∈ TΛ(A). The axioms (symm), (trans) and (cong)
follow similarly. Since the polynomial algebras are isomorphic up to renaming of
the variables, and by Remark 4.3.10, we have that the α-rule is satisfied similarly.
The case for the β-rule follows from Proposition 4.3.11.

From Theorem 4.4.2, if sCL† ≈X tCL† , then also λ†x.sCL† ≈X λ
†x.tCL† for any

sCL† , tCL† ∈ T (X ∪ A). This concludes the case for the ξ-rule and thus the proof of
the statement.

4.4.3 Combinatory models

Recall the definition of a combinatory model (Definition 3.4.1). In contrast to com-
binatory pre-models, the definition of combinatory models does not contain a com-
binator i. However, the element skk can take on this role:

Lemma 4.4.8. If (A, ·, k, s, e) is a combinatory model, then (A, ·, k, s, skk, e) is a
strongly reflexive combinatory pre-model.

Proof. Let A = (A, ·, k, s, e) be a combinatory model, let s, t ∈ T (X ∪ A) such that
s ≈X t and let x be a variable. By Theorem 4.4.2, it is sufficient to show that
λ†x.s ≈X λ

†x.t.
(A, ·, k, s, skk, e) is a combinatory pre-model, and thus A |= s = t by Lemma

4.4.6. Then λ†x.s ≈X λ
†x.t follows from Proposition 4.4.9 and Proposition 4.4.10.

The other direction does not work: not every strongly reflexive combinatory
pre-model is a combinatory model. We will say more about this in Remark 4.6.12
later.

We now show that combinatory models are weakly extensional with respect to
the λ†-abstraction, equivalently to the weak extensionality of lambda models (cf.
Proposition 3.3.3).

However, the λ†-abstraction (Definition 4.3.9) is only defined for terms of com-
binatory pre-models. We redefine λ† for combinatory models, but keep the same
notation. For any combinatory model A = (A, ·, k, s, e), we let λ†x.x = (e, skk),
and the rest of the definition follows similarly.

Proposition 4.4.9. For any combinatory model A = (A, ·, k, s, e), and for all s, t ∈
T (X ∪ A),

A |= s = t⇒ A |= λ†x.s = λ†x.t

Proof. Let A = (A, ·, k, s, e), and let s, t ∈ T (X ∪ A). Assume that A |= s = t. By
definition, for any valuation ρ we have JsKAρ = JtKAρ . Fix a variable x and a c ∈ A.
Then also, for any valuation σ such that σ(x) = c, we have JsKAσ = JtKAσ . And thus
Js[x/c]KAρ = Jt[x/c]KAρ for any valuation ρ.

Proposition 4.3.11 still holds for combinatory models. And thus Jλ†x.sKAρ · c =
J(λ†x.s, c)KAρ = J(λ†x.t, c)KAρ = Jλ†x.tKAρ · c for any valuation ρ. Since c was arbitrary,
from Definition 3.4.1 equation (ii), we get eJλ†x.sKAρ = eJλ†x.tKAρ for any valuation
ρ.

(A, ·, k, s, skk, e) is strongly reflexive and thus also reflexive by Lemma 4.4.8, and
thus by Lemma 4.3.12 we get Jλ†x.sKAρ = Jλ†x.tKAρ for any valuation ρ.
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Similarly to Proposition 3.5.11 for lambda models, the following holds.

Proposition 4.4.10. For any combinatory model A and all s, t ∈ T (X ∪ A),

A |= s = t⇒ s ≈X t.

Proof. Let A = (A, ·, k, s, e) be a combinatory model, let n ∈ N≥1 and let s, t ∈
T (X ∪ A) with FV (s) ∪ FV (t) ⊆ {x1, . . . , xn}. Assume that A |= s = t.

By Proposition 4.4.9, we have A |= λ†x1 · · · xn.s = λ†x1 · · · xn.t. The latter is a
closed equation, and thus also λ†x1 · · · xn.s ≈X λ

†x1 · · · xn.t. Since ≈X is a congruence
relation, (· · · (λ†x1 · · · xn.s, xn), · · · , x1) ≈X (· · · (λ†x1 · · · xn.t, xn), · · · , x1), and thus
s ≈X t by Proposition 4.3.11 (which still holds for combinatory models).

Similarly to how we argued in Section 3.5.3, this shows us that in combinatory
models every polynomial is determined by its behaviour as a function. Such as we
could already obtain from the Meyer-Scott axiom, combinatory models interpret
the lambda abstraction as a function, in contrast to strongly reflexive combinatory
pre-models, where it is interpreted as a polynomial.

The relationship between combinatory models and strongly reflexive combinatory
pre-models is similar to that of lambda models and lambda algebras (cf. Proposition
3.5.6).

Theorem 4.4.11. For any combinatory pre-model A = (A, ·, k, s, i, e), the following
are equivalent.

1. A is strongly reflexive.

2. A[X] is strongly reflexive.

3. A[X] is reflexive.

4. (A[X], ∗X, 〈k〉X, 〈s〉X, 〈e〉X) is a combinatory model.

Proof. Let A = (A, ·, k, s, i, e) be a combinatory pre-model.
(1 ↔ 2) From Proposition 4.2.9.(2) we have that there exists homomorphisms be-
tween A and A[X]. Then from Corollary 4.4.4 we have that A is strongly reflexive if
and only if A[X] is.
(2 ↔ 3) The left-to-right direction is clear. Assume that A[X] is reflexive. From
Proposition 4.2.9.(3) and Corollary 4.3.7 we have that (A[X])[x] is reflexive for any
variable x. And thus A[X] is strongly reflexive.
(1 → 4) Let A be strongly reflexive and let s, t ∈ T (X ∪ A). It is sufficient to
show that (s, r) ≈X (t, r) for all r ∈ T (X ∪ A) implies that (e, s) ≈X (e, t). So
assume that (s, r) ≈X (t, r) for all r ∈ T (X ∪ A), and let n ∈ N≥1 such that s, t ∈
T ({x1, . . . , xn} ∪ A). Then (s, xn+1) ≈x1...xn+1 (t, xn+1) by Remark 4.2.10. From
Proposition 4.3.8 we have that A[x1, . . . , xn] is reflexive, and from Proposition 4.3.14
we then obtain that (e, s) ≈x1...xn (e, t) and thus (e, s) ≈X (e, t).
(4 → 1) We will use Theorem 4.4.2 to show the claim. Let (A[X], ∗X, 〈k〉X, 〈s〉X, 〈e〉X)
be a combinatory model and assume that s ≈X t for some s, t ∈ T (X ∪ A).

From s ≈X t we have that 〈s〉X = 〈t〉X. Then λ†x.〈s〉X = λ†x.〈t〉X by Proposition
4.4.9. Since 〈q〉X ∗X 〈r〉X = 〈(q, r)〉X for all q, r ∈ T (X∪A), we obtain that 〈λ†x.s〉X =
〈λ†x.t〉X and thus λ†x.s ≈X λ

†x.t.
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The above tells us that strongly reflexive combinatory pre-models are retracts of
combinatory models.

Theorem 4.4.12. A combinatory pre-model is strongly reflexive if and only if it is
the retract of a combinatory model.

Proof. Let A be a combinatory pre-model. First assume that A is the retract of a
combinatory model. By Lemma 4.4.8, A is also the retract of a strongly reflexive
combinatory pre-model, and by Corollary 4.4.4, A is strongly reflexive.

Now assume that A is strongly reflexive. By Proposition 4.2.9.2, it is the
retract of A[X] = (A[X], ∗X, 〈k〉X, 〈s〉X, 〈i〉X, 〈e〉X). Then A is also the retract of
(A[X], ∗X, 〈k〉X, 〈s〉X, 〈e〉X), which is a combinatory model by Theorem 4.4.11.

Remark 4.4.13. The same argument works for lambda algebras being retracts of
lambda models.

4.5 Categorical models

In this section we will discuss categorical models of the lambda calculus. We outline
the known result of how to construct a cartesian closed category with a reflexive
object from a lambda algebra, and the other way around. We then discuss a similar
result for algebraic combinatory models.

A category is cartesian closed if it has all finite products and exponentials. A
reflexive object in a cartesian closed category is an object U together with two arrows
F : U → UU and G : UU → U , such that F ◦G = idU . In other words, it is an object
U such that UU is a retract of U .

There is another way to characterize cartesian closed categories, using cartesian
closed monoids. Cartesian closed monoids have been used by Scott to show how
to construct a cartesian closed category from a lambda algebra in [37]. The term
”cartesian closed monoid” comes from Koymans [26], similar structures as a ”C-
monoid” and a ”weak C-monoid” have been used in [29].

Definition 4.5.1. A monoid is a structure M = (M, ·, I), where M is a set called
the domain, · is a binary operation on M that is associative, and I is an element of
M such that for all a ∈M ,

I · a = a · I = a.

Definition 4.5.2. A monoid M = (M, ·, I) is cartesian closed when there exist
elements p, q, ε ∈ M , and operations [·, ·] : M ×M → M and Λ(·) : M → M , such
that for all a, b, c ∈M ,

i) p · [a, b] = a and q · [a, b] = b,

ii) [a, b] · c = [a · c, b · c],

iii) ε · [p, q] = ε,

iv) ε · [Λ(a) · p, q] = a · [p, q],
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v) Λ(ε) · Λ(a) = Λ(a),

vi) Λ(ε · [a · p, q]) = Λ(ε) · a.

There is a standard way of making a category from a monoid [26, 37].

Definition 4.5.3. The Karoubi envelope C(M) of a monoid M = (M, ·, I) is the
category with as objects the {a ∈M : a·a = a}, for any two objects a, b a morphism
f : a → b is an f ∈ M such that b · f · a = f , for any object a the identity ida is
a itself, and for any morphisms f : a → b and g : b → c for objects a, b, c, the
composition g ◦ f is defined as g · f .

One can easily verify the following.

Proposition 4.5.4. The Karoubi envelope of a cartesian closed monoid is a carte-
sian closed category.

Proof. See [26, 37].

Theorem 4.5.5. For any lambda algebra A = (A, ·, k, s) and variable x, the struc-
ture MA = (A, ◦, skk) is a cartesian closed monoid, where a ◦ b = λ∗x.(a, (b, x)) for
all a, b ∈ A. Moreover, the cartesian closed category C(MA) has skk as a reflexive
object with arrows F = G = 1 = s(k(skk)).

Proof. See Section 7 in [37].

Lambek first gave a construction of a lambda algebra from a cartesian closed
category with a reflexive object in [28]. Koymans later gave another construction
of a lambda algebra MC associated with every cartesian closed category C with a
reflexive object in [26]. Moreover, Koymans showed that for any lambda algebra A =
(A, ·, k, s), the lambda algebra MC(MA) is isomorphic to A, where MA = (A, ◦, skk)
as in the above theorem.

We show that we can construct a cartesian closed monoid from a strongly reflex-
ive combinatory pre-model. For the rest of this section, let A = (A, ·, k, s, i, e) be a
reflexive (not strongly) combinatory pre-model. Recall the set eA = {ea : a ∈ A} =
{a ∈ A : a = ea} (cf. Corollary 4.2.14). Define an application ◦ on eA by

a ◦ b = Jλ†x.(a, (b, x))KA

for all a, b ∈ eA. Define I ∈ eA by I = ei.

Proposition 4.5.6. The structure (eA, ◦, I) is a monoid.

Proof. We need to verify the following.

1. a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ eA.

2. I ◦ a = a ◦ I = a for all a ∈ eA.
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1. Let a, b, c ∈ eA. We have (a ◦ (b ◦ c), x) ≈x (a, (b, (c, x))) ≈x ((a ◦ b) ◦ c, x) for any
variable x. Then e(a◦(b◦c)) = e((a◦b)◦c) by Corollary 4.3.2, and a◦(b◦c) = (a◦b)◦c
by Lemma 4.3.12.
2. Let a ∈ eA. Then (I ◦ a, x) ≈x (ei, (a, x)) ≈x (a, x) for any variable x. Then
I ◦ a = e(I ◦ a) = ea = a by Lemma 4.3.12 and Corollary 4.3.2. The case a ◦ I = a
follows similarly.

For a cartesian closed monoid we need specific elements as in Definition 4.5.2.
First, recall the t, f, pair ∈ T (X∪A) from Section 4.2.3. We redefine these for the
λ†-abstraction.

t = JkKA, f = Jλ†xy.yKA, 〈·, ·〉 = Jλ†xyz.zxyKA.

We renaimed pair to denote 〈·, ·〉 to improve readability in this section. For the
monoid (eA, ◦, I), define p, q, ε ∈ eA and [·, ·] : eA× eA→ eA and Λ(·) : eA→ eA
as follows.

p = Jλ†x.(x, t)KA, q = Jλ†x.(x, f)KA, ε = Jλ†x.((x, t), (x, f))KA,

and

[a, b] = Jλ†x.〈(a, x), (b, x)〉KA, Λ(a) = Jλ†xy.(a, 〈x, y〉)KA,

for all a, b ∈ eA.

Theorem 4.5.7. If A is strongly reflexive, then (eA, ◦, I) is a cartesian closed
monoid.

Proof. We verify that (i)-(vi) of Definition 4.5.2 hold for the elements and operations
defined above.
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Fix an a, b and c ∈ eA.

(p ◦ [a, b], x) ≈x (p, ([a, b], x)) ≈x (p, 〈(a, x), (b, x)〉)
≈X (〈(a, x), (b, x)〉, t) ≈x (a, x).

(q ◦ [a, b], x) ≈x (b, x).

([a, b] ◦ c, x) ≈x ([a, b], (c, x)) ≈x 〈(a, (c, x)), (b, (c, x))〉
≈x 〈(a ◦ c, x), (b ◦ c, x)〉 ≈x ([a ◦ c, b ◦ c], x).

(ε ◦ [p, q], x) ≈x (ε, ([p, q], x)) ≈x (ε, 〈(p, x), (q, x))〉
≈x ((〈(p, x), (q, x)〉, t), (〈(p, x), (q, x)〉, f))

≈x ((p, x), (q, x)) ≈x ((x, t), (x, f)) ≈x (ε, x).

(ε ◦ [Λ(a) ◦ p, q], x) ≈x (ε, ([Λ(a) ◦ p, q], x)) ≈x (ε, 〈(Λ(a) ◦ p, x), (q, x)〉)
≈x (ε, 〈(Λ(a), (p, x)), (q, x)〉) ≈x (ε, 〈(Λ(a), (x, t)), (x, f)〉)
≈x ((〈(Λ(a), (x, t)), (x, f)〉, t), (〈(Λ(a), (x, t)), (x, f)〉, f))

≈x ((Λ(a), (x, t)), (x, f)) ≈x (a, 〈(x, t), (x, f)〉)
≈x (a, 〈(p, x), (q, x)〉) ≈x (a, ([p, q], x)) ≈x (a ◦ [p, q], x).

((Λ(ε) ◦ Λ(a), x), y) ≈x,y ((Λ(ε), (Λ(a), x)), y) ≈x,y (ε, 〈(Λ(a), x), y〉)
≈x,y ((〈(Λ(a), x), y〉, t), (〈(Λ(a), x), y〉, f))

≈x,y ((Λ(a), x), y).

((Λ(ε ◦ [a ◦ p, q]), x), y) ≈x,y (ε ◦ [a ◦ p, q], 〈x, y〉) ≈x,y (ε, ([a ◦ p, q], 〈x, y〉))
≈x,y (ε, 〈(a ◦ p, 〈x, y〉), (q, 〈x, y〉)〉)
≈x,y (ε, 〈(a, (p, 〈x, y〉)), (q, 〈x, y〉)〉)
≈x,y (ε, 〈(a, (〈x, y〉, t)), (〈x, y〉, f)〉)
≈x,y (ε, 〈(a, x), y〉) ≈x,y ((Λ(ε), (a, x)), y)

≈x,y ((Λ(ε) ◦ a, x), y).

By applying Corollary 4.3.2 for A and A[x] being reflexive, we get equalities,
only with extra e-combinators in front. Then the required equalities follow since
all elements and operations are defined using the λ†-abstraction: we can thus use
Lemma 4.3.12.

Similarly to the arguments in Section 7 in [37], one can show that I is the reflexive
object of the monoid. It is possible to create a lambda algebra, following Koymans’
structure, from the cartesian closed category C(M(eA, ◦, I)). We say something
about the difference between this construction for lambda algebras and algebraic
combinatory models (cf. Section 4 in [26]).

For a lambda algebra B = (B, ·B, kB, sB), the k and s-combinators in the lambda
algebra MC(MB) will be equal to kBJλ∗xy.xKB and kBJλ∗xyz.((x, z), (y, z))KB respec-
tively. The isomporphism ϕ : B → MC(MB) is then given by ϕ(b) = kBb for all
b ∈ B.

For a strongly reflexive combinatory pre-model A = (A, ·A, kA, sA, iA, eA), the k

and s-combinators in the lambda algebra MC(M(eA,◦,I)) will be equal to eAkAJλ†xy.xKA
and eAkAJλ†xyz.((x, z), (y, z))KA respectively. In the strongly reflexive combinatory
pre-model not necessarily kA = Jλ†xy.xKA and sA = Jλ†xyz.((x, z), (y, z))KA hold,
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as is the case in lambda algebras. As discussed in Remark 3.4.8, this is probably
due to (the lack of) stability. In the next section, we discuss the notion of stability
for strongly reflexive combinatory pre-models, and see how stable strongly reflexive
combinatory pre-models relate to lambda algebras.

4.6 Stability

4.6.1 Stability for algebraic combinatory models

This section will mostly follow the same structure as Section 3.4. We first formulate
Definition 3.4.2 for combinatory pre-models.

Definition 4.6.1 ([37]). Let A = (A, ·, k, s, i, e) be a combinatory pre-model. For
each n ∈ N≥1 we define εn ∈ A inductively as follows

ε1 = e, εn+1 = s(ke)(s(kεn)).

Lemma 3.4.3 can be formulated for polynomial algebras.

Lemma 4.6.2. Let A = (A, ·, k, s, i, e) be a combinatory pre-model. For all n ∈
N≥1, for all variables x1, . . . , xn and for all s, t ∈ T ({x1, . . . , xn} ∪ A),

εn+1st ≈X εn(st).

In particular, for all n ∈ N≥1, for all variables x1, . . . , xn and for all a ∈ A,

i) εnax1 · · · xn−1 ≈X e(ax1 · · · xn−1),

ii) εnax1 · · · xn ≈X ax1 · · · xn.

We give some useful intermediate results that do not have a counterpart in
Section 3.4. It turns out that the εn application and the λ†-abstraction coincide for
algebraic combinatory models.

Lemma 4.6.3. Let A = (A, ·, k, s, i, e) be a strongly reflexive combinatory pre-
model. For all a ∈ A and for all n ∈ N≥1,

εna = Jλ†x1 . . . xn.(· · · (a, x1) · · · , xn)KA.

Proof. We proof this by induction on n ∈ N. The base case is immediate by the
definitions.

Now assume that the statement holds for any strongly reflexive combinatory
pre-model and for all natural numbers up to n. Consider the case for n + 1. Let
A be a strongly reflexive combinatory pre-model, let x be a variable and let a ∈ A.
Note that

εn+1a = e(s(kεn)a). (4.4)

Since A is reflexive, it is enough to show that

(εn+1a, x) ≈x (Jλ†x1 . . . xn.(· · · (a, x1) · · · , xn+1)KA, x),
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since then

εn+1a = e(εn+1a) by Cor. 4.2.14 and eq. (4.4)

= e(Jλ†x1 . . . xn.(· · · (a, x1) · · · , xn+1)KA) by Cor. 4.3.2

= Jλ†x1 . . . xn.(· · · (a, x1) · · · , xn+1)KA by Lem. 4.3.12.

From equation (4.4) and Definition 4.1.3.(i) we can deduce that (εn+1a, x) ≈x

(((s, (kεn)), a), x) ≈x (εn, (a, x)). In turn, (Jλ†x1 . . . xn.(· · · (a, x1) · · · , xn+1)KA, x) ≈x

λ†x2 · · · xn+1(· · · (a, x), xn+1) ≈x Jλ†x2 · · · xn+1(· · · (a, x), xn+1)KA[x] which follows by
Definition 4.1.3.(i). A[x] is also strongly reflexive by Corollary 4.4.4, and thus, by
the induction hypothesis, Jλ†x2 · · · xn+1(· · · (a, x), xn+1)KA[x] ≈x (εn, (a, x)).

The above result allows us to reformulate Theorem 4.4.2.

Proposition 4.6.4. A combinatory pre-model A = (A, ·, k, s, i, e) is strongly reflex-
ive if and only if

(· · · (a, x1), · · · , xn) ≈x1...xn (· · · (b, x1), · · · , xn)⇒ εna = εnb

for any n ∈ N≥1 and all a, b ∈ A.

Proof. (⇒). This follows from the n-time application of Theorem 4.4.2 and Lemma
4.6.3, while taking Remark 4.2.10 into consideration.
(⇐). Let A = (A, ·, k, s, i, e) be a combinatory pre-model as in the statement and
let x be a variable. We need to show that A[x] reflexive. For this we use Proposition
4.3.14.(3). It is thus sufficient to show that

(s, y) ≈x,y (t, y)⇒ (e, s) ≈x (e, t)

for all s, t ∈ T ({x}∪A) and distinct variables x and y. Let x, y be distinct variables
and let s, t ∈ T ({x} ∪ A) be such that (s, y) ≈x,y (t, y). Then by Proposition
4.3.11, ((Jλ†x.sKA, x), y) ≈x,y ((Jλ†x.sKA, x), y), and thus ε2(Jλ†x.sKA) = ε2(Jλ†x.tKA)
by assumption. Then, by Lemma 4.6.2 and Proposition 4.3.11, we have (e, s) ≈x

(e, ((λ†x.s), x)) ≈x (e, ((λ†x.t), x)) ≈x (e, t).

We go back to following Section 3.4. Similarly to stable combinatory models
(cf. Def 3.4.4), we introduce the notion of stable strongly reflexive combinatory
pre-models.

Definition 4.6.5. A strongly reflexive combinatory pre-model A = (A, ·, k, s, i, e)
is stable if it satisfies the following equations:

ε2k = k ε3s = s ε1i = i ε2e = e.

Similarly to Corollary 4.4.4, we obtain that stability is closed under homomor-
phisms, since the definition consists of closed equations.

Corollary 4.6.6. If A is a stable strongly reflexive combinatory pre-model, B is a
strongly reflexive combinatory pre-model and f : A → B is a homomorphism, then
B is also stable.

61



We give the analogue of Lemma 3.4.5 for polynomial algebras.

Lemma 4.6.7. Let (A, ·, k, s, e) be a strongly reflexive combinatory pre-model. Then
the following implications hold.

1. ε2k = k⇔ ek = k ∧ (e, (k, t)) ≈X (k, t) for all t ∈ T (X ∪ A).

2. ε3s = s ⇔ es = s ∧ (e, (s, t)) ≈X (s, t) ∧ (e, (s, (s, t))) ≈X (s, (s, t))) for all
s, t ∈ T (X ∪ A).

3. ε2e = e⇔ ee = e.

Note that (e, (e, t)) ≈X (e, t) for all t ∈ T (X∪A) already follows from reflexivity
(cf. Proposition 4.3.14).

Proof. Let A = (A, ·, k, s, i, e) be a strongly reflexive combinatory pre-model. From
Theorem 4.4.11, we have that (A[X], ∗X, 〈k〉X, 〈s〉X, 〈e〉X) is a combinatory model. De-
fine a sequence (an)n≥1 by an = k for all n ∈ N≥1. Then by Proposition 4.2.6 we
have that there exists a homomorphism idA : : A[X]→ A (such that idA ◦ σA = idA
and idA(〈xn〉X) = k). Then by the homomorphisms idA and σA and Corollary 4.6.6,
we have that A is stable if and only if (A[X], ∗X, 〈k〉X, 〈s〉X, 〈e〉X) is stable. By Lemma
3.4.5, the latter is equivalent to the equations of the statement.

The meaning of stability is the same as for combinatory models. Namely, to
fix the definition for the combinators based on the combinator e, as outlined in
Proposition 3.4.6 for combinatory models.

Proposition 4.6.8. If (A, ·, k, s, i, e) is a stable strongly reflexive combinatory pre-
model, then any other stable strongly reflexive combinatory pre-model (A, ·, k′, s′, i′, e)
satisfies the following:

k = k′ s = s′ i = i′.

Proof. The proof is similar to the proof of Proposition 3.4.6 (cf. Proposition 5.6.6 in
[7]). Let A = (A, ·, k, s, i, e) and A′ = (A, ·, k′, s′, i′, e) be stable strongly reflexive
combinatory pre-models. We show that k = k′, the cases for s and i follow similarly.

Let x and y be distinct variables. By definition, we have that A[x] and A′[x]
are reflexive, and thus from Proposition 4.3.14.(3) we obtain that (e, (k, x)) ≈x

(e, (k′, x)), and thus (s(ke)k, x) = (s(k′e)k′, x). Then e(s(ke)k) = e(s(k′e)k′) from
Corollary 4.3.2, and thus k = ε2k = ε2k

′ = k′.

We deviate again from the structure of Section 3.4. We show that in stable
strongly reflexive combinatory pre-models, the interpretation of the combinators is
fixed and the λ†- and λ∗-abstractions are the same.

Proposition 4.6.9. If A = (A, ·, k, s, i, e) is a stable strongly reflexive combinatory
pre-model, then the following equations hold.

1. i = skk and e = s(ki),

2. k = Jλ†xyKA and s = Jλ†xyz.xz(yz)KA,
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3. λ†x.t ≈X λ
∗x.t for all variables x and all t ∈ T (X ∪ A).

Proof. (1). For any variable x, we have that

(i, x) ≈x x ≈x ((k, x), (k, x)) ≈x (skk, x).

From Corollary 4.3.2, Lemma 4.6.7, we obtain i = skk.
For any distinct variables x and y,

((e, x), y) ≈x,y (x, y) ≈x,y ((ki, y), (x, y)) ≈x,y (((s, ki), x), y).

Then (e, (e, x)) ≈x (e, ((s, ki), x)) from Proposition 4.3.14, and thus e = s(ki)
similarly as before.
(2). Follows from (1) and Lemma 4.6.7.
(3). This is proven by induction on the structure of t ∈ T (X ∪ A). Let x be a
variable. When t ≡ x, then λ†x.t ≈X (e, i) ≈X (e, skk) ≈X skk ≈X λ

∗x.t by (1) and
Lemma 4.6.7.

When t ≡ (a, x) for an a ∈ (X ∪ A) with a 6≡ x, then λ†x.t ≈X (e, a). We have
λ∗x.t ≈X s(ka)i. By applying both sides of equation (vi) of Theorem 4.4.3) with x,
we get that these are equal.

When t ∈ (X∪A) and t 6≡ x, then λ†x.t ≈X (e, (k, t)) ≈X (k, t) ≈X λ
∗x.t by Lemma

4.6.7.
The induction step then follows easily again using Lemma 4.6.7.

Remark 4.6.10. Recall the discussion at the end of Section 4.5. Stability thus ensures
that in a strongly reflexive combinatory pre-model (A, ·, k, s, i, e), we have that
k = Jλ†xy.xKA and s = Jλ†xyz.((x, z), (y, x))KA.

We state the equivalent of Theorem 3.4.7.

Theorem 4.6.11. For a combinatory pre-model A = (A, ·, k, s, e, i), the following
are equivalent.

1. A is a stable strongly reflexive combinatory pre-model.

2. (A, ·, k, s) is a lambda algebra, and i = skk and e = s(ki).

Proof. (1 → 2) follows from Proposition 4.6.9 and Lemma 3.2.4. (2 → 1) follows
from the definition of a lambda algebra.

Remark 4.6.12. Plotkin [34] and Barendrecht [7, Thm 20.1.1] show that there exist
lambda algebras that are not weakly extensional, and in particular, lambda alge-
bras that are not a lambda model. A lambda algebra is a stable strongly reflexive
combinatory pre-model (from the above theorem), and a lambda model is a stable
combinatory model (Theorem 3.4.7). Therefore, the same result tells us that not
every strongly reflexive combinatory pre-model is a combinatory model. Note that
stability is defined by equations between closed terms (consisting only of k, s, i and
e).

Recall Proposition 3.4.9.
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Proposition 4.6.13. If A = (A, ·, k, s, i, e) is a strongly reflexive combinatory pre-
model, then (A·, ε2k, ε3s) is a lambda algebra.

Proof. Let A = (A, ·, k, s, i, e) be an algebraic combinatory model. By Theorem
4.4.11.(4), (A[X], ∗X, 〈k〉X, 〈s〉X, 〈e〉X) is a combinatory model.

From Proposition 3.4.9, we obtain that (A[X], ∗X, 〈ε2k〉X, 〈ε3s〉X) is a lambda model.
Then (A, ·, ε2k, ε3s) is a lambda algebra by Proposition 3.5.6.

4.6.2 Curry’s and Selinger’s equations

Using the results of the previous section, we can give an alternative description of
strongly reflexive combinatory pre-models.

Definition 4.6.14. Let A = (A, ·, k, s, i, e) be a combinatory pre-model. Define
the following sets of equations.

(CA) i = skk and e = s(ki),

(L1) k = ε2k and s = ε3s,

(L2) i) λ†xy.e(s(s(kk)x)y) = λ†xy.ex,

ii) λ†xyz.e(s(s(s(ks)x)y)z) = λ†xyz.e(s(sxz)(syz)),

v) λ†xy.e(s(kx)(ky)) = λ†xy.e(k(xy)),

vi) λ†x.e(s(kx)i) = λ†x.ex.

The equations of (L2) come from Theorem 4.4.3, and are thus numbered accord-
ingly. By applying both sides of these equations by terms in T (X ∪A), we obtain a
new set of equations.

Corollary 4.6.15. Let A = (A, ·, k, s, i, e) be a strongly reflexive combinatory pre-
model. If the equations of (L1) and (L2) hold in A, then the following holds for all
r, s, t ∈ T (X ∪ A),

i) (s(s(kk), s), t) ≈X (e, s),

ii) (s(s(s(ks), r), s), t) ≈X (s((s, r), t), ((s, s), t)),

v) ((s, (k, s)), (k, t)) ≈X (k, (s, t)),

vi) ((s, (k, t)), i) ≈X (e, t).

The equations of (CA), (L1) and (L2) are enough to characterize a stable strongly
reflexive combinatory pre-model.

Theorem 4.6.16. Let A = (A, ·, k, s, i, e) be a combinatory pre-model. Then A is
stable and strongly reflexive if and only if it satisfies (CA), (L1) and (L2).
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Proof. (⇐). Let A be a stable strongly reflexive combinatory pre-model as in the
statement. (L1) and (L2) follow directly from the definitions. (CA) follows from
Proposition 4.6.9.
(⇒). Let A be a combinatory pre-model as in the statement, that satisfies (CA),
(L1) and (L2). We show that A is reflexive. Then, since (CA), (L1) and (L2) are
closed equations, also A[x] is reflexive for any variable x, and thus A is strongly
reflexive.

To show that A is reflexive, we show that s ≈x t implies Jλ†x.sKA = Jλ†x.tKA for
any s, t ∈ T ({x}∪A), using induction on the derivation of ≈x (cf. Definition 4.1.3).
Then A is reflexive by Proposition 4.3.13.

Let s, t ∈ T ({x}∪A), and define p = λ†x.s and q = λ†x.t. Then λ†x.(((k), s), t) ≈x

(s(s(kk), p), q) by the definition of λ† and Lemma 4.6.7. From Corollary 4.6.15 we
obtain that the latter is equal to (e, p), which is λ†x.s by Lemma 4.6.7. Then the
equality Jλ†x.(((k), s), t)KA = Jλ†x.sKA follows as well.

The equation for s and the equation (a, b) ≈x ab for a, b ∈ A (iii) and (i) of the
definition of 1 (Definition 4.1.3) follow similarly as above, using equations (ii) and
(i) of Corollary 4.6.15 respectively. The equations for i and e of the definition of 1
follow from the ones for k and s using (CA).

We repeat Selinger’s equations [38].

Theorem 3.5.12. Let A = (A, ·, k, s) be a combinatory algebra. Then A s a lambda
algebra if and only if it satisfies the following equations for all r, s, t ∈ T (X ∪ A).

1. 1k = k

2. 1s = s

3. (1, (k, t)) ≈X (k, t)

4. (1, (s, t)) ≈X (s, t)

5. (1, ((s, s), t)) ≈X ((s, s), t)

6. (s(s(kk), s), t) ≈X (1, s)

7. (s(s(s(ks), r), s), t) ≈X (s((s, r), t), ((s, s), t))

8. ((s, (k, s)), (k, t)) ≈X (k, (s, t))

9. ((s, (k, t)), skk) ≈X (1, t)

We can discuss the origin of each of these axioms with the results from this
section. The equations (1) until (5) follow from (CA) and (L1), while using Lemma
4.6.7. These equations thus characterize the stability of the lambda algebra, and
ensure a fixed intierpretation of the combinators. The equations (6)-(9) follow from
Corollary 4.6.15. These come from Theorem 4.4.3. When we look back into this
chapter, we can say more about the origin of each of these axioms. The equations (6)
and (7) of Selinger, or equivalently the equation (i) and (ii) from (L2) or Theorem
4.4.3 come from the equations for k and s in the combinatory pre-model. The
equations (8) and (9), or (v) and (vi) were already discussed in Section 4.2.4.

65



The origin of Curry’s equations has been discussed before by Krivine in [27], as
was discussed in Remark 4.3.6. Still, is it worthwhile to also consider these equations
again.

Theorem 3.2.6. A combinatory algebra A = (A, ·, k, s) is a lambda algebra if and
only if it satisfies the following equations.

1. k = Jλ∗xy.kxyKA

2. s = Jλ∗xyz.sxyzKA

3. Jλ∗xy.s(kx)(ky)KA = Jλ∗xz.k(xy)KA

4. Jλ∗xy.s(s(kk)x)yKA = Jλ∗xyz.xzKA

5. Jλ∗xyz.s(s(s(ks)x)y)zKA = Jλ∗xyz.s(sxz)(syz)KA

Equation (3) is similar to (v) from (L2), and equations (4) and (5) are similar
to (i) and (ii) from (L2). As we discussed before, the equations (1) and (2) follow
from stability.
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Part II

Complexity
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Chapter 5

Kolmogorov complexity

5.1 Preliminaries

5.1.1 Notation

In this part of the dissertation, we make use of the following conventions. Let ε be
the empty string. For a string x ∈ {0, 1}∗, we write |x| for the length of x. For
n ∈ N, let bin(n) ∈ {0, 1}∗ denote the binary representation of n, with the usual
definition, where bin(0) = 0. For any r ∈ R>0, the value log r ∈ N will denote
the logarithm base two of r, rounded to the nearest integer above. Then for any
n ∈ N≥1, we have that |bin(n)| ≤ log n + 1. For any x, y ∈ {0, 1}∗, we denote xy
for the concatenation of x with y. We fix a standard encoding for pairs. For any
x, y ∈ {0, 1}∗, define 〈x, y〉 = db(x)01y, where db is the function that doubles every
bit (e.g., db(010) = 001100). Thus,

|〈x, y〉| = 2|x|+ |y|+ 2. (5.1)

5.1.2 Dovetailing

Dovetailing is a technique that is often used in algorithms. It is a way to linearly
execute several parallel processes. Let M be a Turing machine and let x0, x1, x2, . . .
be a possibly infinite enumeration of binary strings. This enumeration could be
anything (but is usually the lexicographical ordering of strings). The machine M
can now use dovetailing on this enumeration for different purposes. As an example,
let y be any string. When we say that a Turing machine N uses dovetailing to look
for an i ∈ N such that M(xi) = y, we mean that N repeats the following process
for j = 0, 1, 2, . . ..

For i ∈ {0, . . . , j}, run M on input xi for j + 1 steps. If M(xi) = y
within that time, output xi.

If the enumeration x0, x1, x2, . . . is finite, then we can include in the description
of the process that N outputs 0 when such a string cannot be found.

Note that if there is an i ∈ N such that M(xi) = y, then with dovetailing this
string can always be found.
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5.1.3 Prefix Kolmogorov complexity

In Section 2.4, we gave the definition of the Kolmogorov complexity of a string. If
we only allow certain Turing machines M for the Kolmogorov complexity CM(x) for
x ∈ {0, 1}∗, then the Kolmogorov complexity will have some nicer properties (see
[33]). We therefore introduce ”self-delimiting” machines.

Definition 5.1.1. A self-delimiting machine is defined as a Turing machine with
a separate input-tape, for which the corresponding head is read-only, and can only
move from left to right. The following convention is used. When M is a self-
delimiting machine, for any x ∈ {0, 1}∗, the computation of M on input x is a
success, denoted by M(x) ↓, when M halts while the input-tape-head is scanning
the rightmost bit of x. Otherwise, the computation is a failure, denoted by M(y) ↑.

We assume that for any Turing machine, the computation starts when the head,
that is on the same tape as the input, is scanning an empty cell immediately on
the left of the first bit of the input. We thus have that the above definition ensures
that when M is self-delimiting, then the set X of x ∈ {0, 1}∗ such that M(x) ↓
is prefix-free: for all x, y ∈ X, the string x is not a proper prefix of y. The prefix
Kolmogorov complexity of a string x is now defined as follows:

Definition 5.1.2. For any x ∈ {0, 1}∗ and any self-delimiting machine M , the prefix
Kolmogorov complexity of x relative to M is defined as

KM(x) = min{|p| : p ∈ {0, 1}∗, M(p) ↓ and M(p) = x},

if there is a p ∈ {0, 1}∗ such that M(p) ↓ and M(p) = x, and otherwise KM(x) =∞.

The time-bounded version is defined as follows.

Definition 5.1.3. For any x ∈ {0, 1}∗, any self-delimiting machine M and any
t ∈ N, the time-bounded prefix Kolmogorov complexity of x relative to M and t is
defined as

Kt
M(x) = min{|p| : p ∈ {0, 1}∗, M(p) ↓ , M(p) = x and TM(p) ≤ t},

if there is a p ∈ {0, 1}∗ such that M(p) ↓, M(p) = x and TM(p) ≤ t, and otherwise
Kt
M(x) =∞.

Sometimes we misuse notation and write K(n) for K(bin(n)) for some n ∈ N.
We define a specific machine, and usually consider the prefix Kolmogorov com-

plexity relative to that machine. First, for any n ∈ N, denote 1n for the string where
1 is repeated n times. We let · be a function that encodes a string by first giving its
length. That is, when for an x ∈ {0, 1}∗ we have |x| = n, then x = 1|bin(n)|0bin(n)x.
Note that then

|x| ≤ n+ 2 log n+ 3. (5.2)

Definition 5.1.4. Define V to be a Turing machine with the following characteris-
tics.

1. The machine is self-delimiting.
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2. The machine is universal, which for self-delimiting machines is defined as fol-
lows. For any self-delimiting Turing machine M , there exists an αM ∈ {0, 1}∗,
the binary representation of M , such that for all x, whenever M(x) ↓ then
V (〈αM , x〉) ↓ and V (〈αM , x〉) = M(x). When M keeps computing forever on
input x or M(x) ↑, then similarly for V (〈αM , x〉).

3. The machine is time-efficient. This means that for any self-delimiting machine
M there exists a cM ∈ N such that TV (〈αM , x〉) ≤ cMTM(x) log TM(x) for all
x for which M(x) ↓, where αM is the binary representation of M as described
above.

4. The machine can efficiently print strings. This means that there exist an
α ∈ {0, 1}∗ and a, b, c ∈ N such that V (〈α, x〉) ↓ and V (〈α, x〉) = x and
TV (〈α, x〉) = a · |x|+ b for any x ∈ {0, 1}∗\ε, where |〈α, x〉| ≤ |x|+ 2 log |x|+ c
because of equation (5.1).

5. The machine can efficiently restart computations. That is, there exists a string
r ∈ {0, 1}∗, such that V (〈r, pq〉) ↓ and V (〈r, pq〉) = x for any p, q, x ∈ {0, 1}∗
with V (p) ↓, V (〈q, V (p)〉) ↓ and V (〈q, V (p)〉) = x. Moreover, there exists a
c ∈ N such that TV (〈r, pq〉) = TV (p) + TV (〈q, V (p)〉) + c for any such p, q ∈
{0, 1}∗ for which V (p) ↓ and V (〈q, V (p)〉) ↓.

The existence of a machine that satisfies properties 1, 2 and 3 is a known result.
It is clear that the requirements 4 and 5 can be met additionally. The above ensures
that the machine V is optimal for the prefix Kolmogorov complexity, in the following
way.

Corollary 5.1.5. For any self-delimiting Turing machine M , there exists a constant
cM such that for all x ∈ {0, 1}∗ and t ∈ N for which Kt

M(x) <∞,

KcM t·log t+cM
V (x) ≤ Kt

M(x) + cM .

From now on, we will shorten notation and write K(x) instead of KV (x), and
similarly for Kt(x).

5.1.4 Comparing self-delimiting and prefix machines

It is not always necessary to consider self-delimiting machines. Sometimes it is
even unavoidable to consider other kinds of machines, since the algorithms for self-
delimiting machines have to work in a specific way, namely, only reading the input
from left to right.

We will show later (cf. Theorem 5.1.8) that self-delimiting machines can simulate
the computations of certain other machines as well. For this purpose we introduce
a specific kind of Turing machines called prefix machines.

Definition 5.1.6. A prefix machine is a Turing machine M such that the set X, of
x ∈ {0, 1}∗ for which M halts on input x, is prefix-free.
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One can ask themselves why we do not use prefix-machines to define the prefix
Kolmogorov complexity of a string. The reason is that with prefix-machines, a result
such as Corollary 5.1.5 cannot be derived. See [21] for more on this.

Since the machine V from Definition 5.1.4 can only simulate other self-delimiting
machines, we introduce a specific universal Turing machine that can simulate other
machines (such as prefix machines) as well.

Definition 5.1.7. Define U to be a Turing machine with the following characteris-
tics.

1. The machine is a universal Turing machine, which is defined as follows. For
any Turing machine M , there exists an αM ∈ {0, 1}∗, called the binary rep-
resentation of M , such that for all x ∈ {0, 1}∗, whenever M halts on input x
then U(〈αM , x〉) = M(x), and when M keeps computing forever then so does
U .

2. Moreover, the machine is time-efficient. This means that for all machines M
there exists a cM ∈ N such that TU(〈αM , x〉) ≤ cMTM(x) log TM(x) for all x
for which M halts on input x, where αM is the binary representation of M as
described above.

It is well-known that a machine that satisfies both properties exists.
In the following theorem, we show that at the cost of adding a constant number

of bits to the program length, a self-delimiting machine can simulate prefix machines
as well.

Theorem 5.1.8. There exists a self-delimiting machine M , such that for any pre-
fix machine N , for any x ∈ {0, 1}∗, when N halts on input x, then M(〈αN , x〉) ↓
and M(〈αN , x〉) = N(x), where αN is the binary representation of N as in Defini-
tion 5.1.7.1.

The proof comes from [11, Thm. 2.1].

Proof. We define M . It first checks whether its input is of the form 〈α, x〉 =
db(α)01x for some α, x ∈ {0, 1}∗. It does so by starting to read the input, while
also copying the contents on another tape. If M reads only doubled bits and then
01, the input is of the right form and M stops reading with the head of the input
tape still on the 1, after having copied everything before the bits 01. Otherwise, M
keeps computing forever.

In the following, assume that M has an input 〈α, x〉 for some α, x ∈ {0, 1}∗.
Also assume that, by checking the input as described above, M has copied db(α) on
a separate tape, and the head of the input tape is on the 1 of the 01 after db(α).
Then, M defines a string x′ = ε and a set of natural numbers S = ∅. For the the
rest of the computation, the machine repeats the following process.

For i = 0, 1, . . . , with i 6∈ S, for j ∈ {0, . . . , i}, the machine M simulates
the computation of U on input 〈α, zj〉 for i+ 1 steps, where U is the ma-
chine from Definition 5.1.7 and z0, z1, . . . is the lexicographical ordering
of all binary strings, until U halts on an input 〈α, zj〉 for a j (M uses
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dovetailing). Then M checks the following. If x′ is equal to zj, then
M outputs U(〈α, zk〉) = U(〈α, x′〉). If x′ is a proper prefix of zj, then
M reads one more bit of the input and redefines x′ by appending that
bit. If x′ is not equal to zj and also not a proper prefix of zj, then M
redefines S by adding j to it.

We argue that M satisfies the requirements of the statement. By construction,
the machine M is self-delimiting. Let N be a prefix-machine. For an x ∈ {0, 1}∗,
assume that N halts on input x, and consider the computation of M on input
〈αN , x〉, where αN is the binary representation of N as in Definition 5.1.7.1. To
finish the proof of the statement, we show that M outputs N(x) and M(〈αN , x〉) ↓.
Assume that during the computation M has already copied αN on the worktape
and that M started the process described above. During the process, bits of x get
added to x′. Therefore, at any point in the rest of the computation, there are two
cases for the string x′: either x′ is a proper prefix of x, or x′ is equal to x.

First consider the case that x′ is a proper prefix of x. Since N halts on x by
assumption, and since N is a prefix machine, it is not possible that N halts on x′.
However, N musts halt on a string zj for some j ∈ N, for which x′ is a proper prefix
of zj, as is the case for zj = x. After simulating U on input 〈αN , zj〉, the machine
M will read an extra bit of x and append this bit to x′. Then x′ is either still a
proper prefix of x, or x′ is equal to x.

Now consider the case that x′ is equal to x. Since N is a prefix machine and
halts on x by assumption, it is not possible that N halts on a string of which x is a
proper prefix. And thus M eventually simulates and outputs U(〈αN , x〉). Since M
has read the entire string x′ = x of the input, the head of the input tape is on the
last bit of the input, and M(〈αN , x〉) ↓ holds.

5.2 Algorithmic probability

Kolmogorov complexity is not only used for describing the information content of a
string. Solomonoff introduced Kolmogorov complexity for his work on probability
theory. This application will also be useful for defining the physical complexity of
strings.

By considering all programs that produce a certain string, a universal probability
of that string can be formulated. The presentation below comes from [33].

Definition 5.2.1. For any x ∈ {0, 1}∗, the algorithmic (universal a priori) proba-
bility of x is

QV (x) =
∑

p∈{0,1}∗, V (p)↓
V (p)=x

2−|p|.

For any x ∈ {0, 1}∗ and any t ∈ N, the time-bounded algorithmic probability of x
relative to t is

Qt
V (x) =

∑
p∈{0,1}∗, V (p)↓
V (p)=x, TV (p)≤t

2−|p|,

or Qt
V (x) =∞ when such p does not exist.
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Thus, for any string x, the value of QV (x) is the probability of V producing x
on an input where each bit has an equal chance of being 0 or 1. Since V is a prefix
machine, the Kraft inequality tells us that the value of QV (x) is bounded by 1.

From the definition it is obvious that 2−K(x) ≤ QV (x) for all x ∈ {0, 1}∗. There
is the Coding theorem [11, 30] for the other direction.

Theorem 5.2.2. There exists a c ∈ N such that for any x ∈ {0, 1},∗

QV (x) < 2−(K(x)−c).

In several intermediate steps, we eventually present the proof as it was given
by Chaitin in [11]. This is done by showing that there exists a c ∈ N such that
K(x) < − logQV (x)+c for all x ∈ {0, 1}∗. In order to prove this, for any x ∈ {0, 1}∗
we show that there exists a program that has a length less than − logQV (x) + c
and computes x. This is done in the following steps. First, notice that we can
use dovetailing to enumerate pairs (x, n) with x ∈ {0, 1}∗ and n ∈ N such that
n ≤ − logQV (x). We then show that there exists a machine that, given a program
that does the enumeration and a program of length n, can give the corresponding
x, for all such pairs (x, n).

We first formally define how such an enumeration of pairs works.

Definition 5.2.3. Let P ⊆ {0, 1}∗ and let r ∈ {0, 1}∗. The set P is recursively
enumerated by r, if for all y ∈ {0, 1}∗, it holds that U(〈r, y〉) = 1 if y ∈ P , and
otherwise U keeps computing forever on input 〈r, y〉.

Let S ⊆ {0, 1}∗ × N and let r ∈ {0, 1}∗. The set S is recursively enumerated by
r, if for all y ∈ {0, 1}∗, it holds that U(〈r, y〉) = 1 if y = 〈x, bin(n)〉 for an (x, n) ∈ S,
and otherwise U keeps computing forever on input 〈r, y〉.

Occasionally it is useful to use a different representation of a recursive enumer-
ation. The following lemma shows how to go between recursively enumerable as
defined in Definition 5.2.3, and enumerating a set as a sequence.

Lemma 5.2.4. There exists a Turing machine R, such that for each S ⊆ {0, 1}∗×N
and each r ∈ {0, 1}∗ that recursively enumerates S, the following holds.

1. For each (x, n) ∈ S there exists a unique i ∈ N such that R halts on input
〈r, bin(i)〉 and R(〈r, bin(i)〉) = 〈x, bin(n)〉.

2. For each i ∈ N and y ∈ {0, 1}∗ such that R halts on input 〈r, bin(i)〉 and
R(〈r, bin(i)〉) = y, it holds that y = 〈x, bin(n)〉 for some (x, n) ∈ S.

3. When R halts on input 〈r, bin(i)〉 and R(〈r, bin(i)〉) = x for some i ∈ N
and x ∈ {0, 1}∗, then for each j ≤ i there exists an y ∈ {0, 1}∗ such that
R(〈r, bin(j)〉) = y.

The above is a well-known result, and therefore we only give the proof-sketch.

Proof sketch. Let S and r be as in the statement of the lemma. Since r recursively
enumerates S, for all y ∈ {0, 1}∗, we have U(〈r, y〉) = 1 if and only if y = 〈x, bin(n)〉
for an (x, n) ∈ S.
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Let i ∈ N. The computation of R on input 〈r, bin(i)〉 is as follows. R defines an
integer j = i. R will simulate U(〈r, 〈x, bin(n)〉〉) for all pairs (x, n) ∈ {0, 1}∗ × N,
using dovetailing. Whenever U(〈r, 〈x, bin(n)〉〉) = 1 for some (x, n) ∈ {0, 1}∗ × N,
then R will redefine j by subtracting 1.

If at any point j = 0, then R outputs the last 〈x, bin(n)〉 that it found to be a
member of S (that is, for which U(〈r, 〈x, bin(n)〉) = 1).

We need another definition and lemma.

Definition 5.2.5. For every r ∈ {0, 1}∗ that enumerates a nonempty S ⊆ {0, 1}∗×
N, recursively define a sequence qr0, q

r
1, . . . , q

r
|S| as follows.

Let qr0 be the lexicographic smallest string of length n0, where n0 ∈ N is such
that R(〈r, bin(0)〉) = (x, n0) for some x ∈ {0, 1}∗.

For i ≤ |S| − 1, let ni ∈ N such that R(〈r, bin(i)〉) = (x, ni) for some x ∈ {0, 1}∗.
Let qri be the lexicographically smallest string of length ni such that {qr0, . . . , qri−1}
is prefix-free, if such a string exists, and otherwise qri = ε.

Note that if qri = ε for an r ∈ {0, 1}∗ that enumerates a nonempty S ⊆ {0, 1}∗×N
and for an i < |S|, then qrj = ε for all j, i ≤ j ≤ |S|.

We want to show that for an r ∈ {0, 1}∗ that enumerates a nonempty S ⊆
{0, 1}∗ × N with

∑
(x,n)∈S 2−n ≤ 1, for all i ≤ |S|, we have qri 6= ε. For this we need

the following lemma.

Lemma 5.2.6. Let S ⊆ {0, 1}∗ × N be a nonempty set, and let r ∈ {0, 1}∗ be a
program that recursively enumerates it. For any m ∈ N with m ≤ |S| for which
qrm 6= ε, there exists an M ∈ N and a sequence of strings z1, . . . , zM with z1 >
z2 > · · · > zM and |z1| < |z2| < · · · < |zM |, such that for any string z, the set
{z} ∪ {qr0, . . . , qrm} is prefix-free if and only if z has one of z1, . . . , zM as a prefix.

Proof. In everything that follows, for each i ∈ N with i ≤ |S|, let xi ∈ {0, 1}∗ and
ni ∈ N be such that R(〈r, bin(i)〉) = 〈xi, bin(ni)〉. For each n ∈ N, let the string 0n

denote a sequence of n zeroes.
We prove this claim by induction on m. First, let m = 0. Then the string qr0 is

equal to 0n0 . Note that for any string z, we have that {z, qr0} is prefix-free if and
only if z has a prefix from 1, 01, 001, . . . , 0n0−11.

Now assume that the lemma holds for some m ∈ N with m ≤ |S| − 1. By the
induction hypothesis, there exists an M ∈ N and a sequence of strings z1, . . . , zM ,
with z1 > z2 > · · · > zM and |z1| < |z2| < · · · < |zM |, such that for any string z the
set {z} ∪ {qr1, . . . , qrm} is prefix-free if and only if z has a prefix from z1, . . . , zM .

And thus, if qrm+1 6= ε, then there exists a j ∈ {1, . . . , M} such that zj is a prefix
of qrm+1. By minimality, the string qrm+1 is equal to zj0

nm+1−|zj |.
For any string z, the set {z} ∪ {qr0, . . . , qrm+1} is prefix-free, if and only if z has

either a string from z1, . . . , zj−1, zj+1, . . . , zM as a prefix, or a string that has zj as a
prefix but not zj0

nm+1−|zj | as a prefix. We argue that we can redefine these strings
as a sequence that satisfies the requirements from the statement.

Namely, we define a new sequence of strings y1, . . . , yM ′ for an M ′ ∈ N as
z1, . . . , zM where zj is replaced by zj1, zj01, . . . , zj0

nm+1−|zj |−11, while keeping that
order. That is, the new sequence will be

z1, . . . , zj−1, zj1, zj01, . . . , zj0
nm+1−|zj |−11, zj+1, . . . , zM .
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This can be defined more formally as follows. Let M ′ = M + nm+1 − |zj| − 1. For
i ∈ N, if i ≤ j − 1, then yi = zi, if j ≤ i ≤ j + nm+1 − |zj| − 1, then yi = zj0

j−i1,
and if j + nm+1 − |zj| ≤ i ≤M ′, then yi = zi−nm1+|zj |+1.

Since z1 > z2 > · · · > zM , we have for all i ∈ {j + 1, . . . ,M ′} that |zi| > nm+1,
because otherwise, when |zi| ≤ nm+1, the machine could’ve chosen for qrm+1 a string
with zi as a prefix, which contradicts with the minimality of qrm+1. This gives us
that y1 > y2 . . . > yM ′ and |y1| < |y2| < . . . < |yM ′|.

We can now show the following.

Lemma 5.2.7. Let S ⊆ {0, 1}∗ × N be a nonempty set, and let r ∈ {0, 1}∗ be a
program that recursively enumerates it. If

∑
(x,n)∈S 2−n ≤ 1, then qri 6= ε for each

i ∈ N with i ≤ |S|.

Proof. In everything that follows, for each i ∈ N with i ≤ |S|, let xi ∈ {0, 1}∗ and
ni ∈ N be such that R(〈r, bin(i)〉) = 〈xi, bin(ni)〉. For each n ∈ N, let the string 0n

denote a sequence of n zeroes.
We will prove the lemma by contradiction. Let S and r be as in the statement

of the lemma. Let m ∈ N be the smallest number such that m ≤ |S| and qrm = ε.
We will argue that Lemma 5.2.6 implies that

∑
(x,n)∈S 2−n > 1.

Lemma 5.2.6 implies that there exists an M ∈ N, and a sequence of strings
z1, . . . , zM with |z1| < |z2| < · · · < |zM |, such that any string z for which {z} ∪
{qr0, . . . , qrm−1} is prefix-free has a prefix from z1, . . . , zM . First note that for all
i ∈ {1, . . . , M} we have

|zi| > nm, (5.3)

because otherwise zi0
nm−|zi| is a string of length nm for which {zi0nm−|zi|} ∪

{qr0, . . . , qrm−1} is prefix-free, which contradicts that qrm = ε.
Let N ∈ N be any number such that for all i ∈ {1, . . . ,m}, we have N ≥ ni. That

is, N is bigger then or equal to nm and the length of any element from {qr0, . . . , qrm−1}.
From equation 5.3 and |z1| < |z2| < · · · < |zM | we can deduce

2N−nm >
∑
i≤M

2N−|zi|. (5.4)

Define QN = {q ∈ {0, 1}∗ | {q} ∪ {qr0, . . . , qrm−1} is prefix free and |q| = N}.
There are

∑
i<m 2N−ni strings of length N that have one of {qr0, . . . , qrm−1} as a

prefix. And thus,

|QN | = 2N −
∑
i<m

2N−ni .

Moreover, by Lemma 5.2.6, the strings q ∈ QN are the ones that have one of
z1, . . . , zM as a prefix. Thus,

|QN | =
∑
i≤M

2N−|zi|

This gives us that ∑
i≤M

2N−|zi| = 2N −
∑
i<m

2N−ni . (5.5)
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From equations 5.4) and 5.5), we have

2N−nm > 2N −
∑
i<m

2N−ni .

After dividing everything by 2N , we obtain

2−nm > 1−
∑
i<m

2−ni ,

which implies
∑

i≤m 2−ni > 1, the desired contradiction.

Recall the enumeration of pairs (x, n) with x ∈ {0, 1}∗ and n ∈ N, such that n ≤
− logQV (x), that was discussed before. The following lemma shows the existence
of a machine that, given a program that recursively enumerates those pairs, and a
program of length n, outputs the corresponding x.

Lemma 5.2.8. There exists a machine Q that does the following. Let S ⊆ {0, 1}∗×
N be a nonempty set, and let r ∈ {0, 1}∗ be a program that recursively enumerates
it. If

∑
(x,n)∈S 2−n ≤ 1, then for any (x, n) ∈ S, there exists a unique p ∈ {0, 1}∗

such that |p| = n and Q(〈r, p〉) = x. Moreover, the set of these p for all elements of
S is prefix-free.

The proof of this lemma is a new representation of an older result, based on the
proof of Theorem 3.2 in [11] and the proof of the Kraft inequality. Let a prefix-code
for a set X be a set of strings Y , that is prefix-free, such that for every x ∈ X there
exists a unique y ∈ Y , called the code-word for x.

The lemma shows that for a program r and a set S as in the statement, and for
an (x, n) ∈ S, there exists a unique p ∈ {0, 1}n that can be used to find the string
x. That is, this p is the code-word for x.

The proof of the Kraft inequality shows us that when creating a prefix-code for a
set X, it is optimal to assign the code-words in increasing length, starting with the
code-word that has the smallest length. By optimal it is meant that when assigning
the code-words in this order, we can always find a prefix-free code when there is
one. As we will see, the proof of this lemma shows that it is also optimal to assign
the code-words in order of increasing value, starting with the code-word that is the
smallest string in the lexicographical ordering.

Proof of Lemma 5.2.8. We define Q. The machine Q first checks whether its input
is of the form 〈r, p〉 for some r, p ∈ {0, 1}∗. If not, Q keeps computing forever.
Otherwise, Q repeats the following process for rounds i = 0, 1, 2, . . ..

Q computes R(〈r, bin(i)〉), where R is the machine of Lemma 5.2.4, and
checks whether it is equal to a string 〈x, bin(n)〉 for some x ∈ {0, 1}∗ and
n ∈ N. If not, Q will continue to compute forever. Otherwise, Q defines
qi ∈ {0, 1}∗ as the lexicographically smallest string of length n such that
{q0, . . . , qi} is prefix-free, where q0, . . . , qi−1 are the strings defined in
previous rounds. If such a string does not exist, then Q continues to
compute forever. If qi = p, then Q outputs x and the computation halts.
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For the rest of the proof, fix an r ∈ {0, 1}∗ and an S ⊆ {0, 1}∗ × N as in the
statement of the lemma.

Let i ∈ N such that R halts on input 〈r, bin(i)〉, and let p ∈ {0, 1}∗ such that
Q machine reaches round i of the process. Then the qi that the machine defines in
this round, is the same as the qri from Definition 5.2.5. Lemma 5.2.7 implies that
the machine can always find this qi.

Let (x, n) ∈ S, and let i ∈ N such that R(〈r, bin(i)〉) = 〈x, bin(n)〉. Then, by
construction, Q(〈r, qri 〉) halts and Q(〈r, qri 〉) = x. The unique p ∈ {0, 1}∗ from the
lemma is thus equal to this qri . Moreover, by definition, the set of all qri for i ≤ |S|
is prefix-free.

We continue to the proof of the Coding Theorem:

Theorem 5.2.2. There exists a c ∈ N such that for any x ∈ {0, 1},∗

QV (x) < 2−(K(x)−c).

We need to be precise regarding the logarithm. Thus, in the following, let log2

denote the logarithm base two, however not rounded to any integer. Thus, for
r ∈ R>0, we have that log2 r ∈ R.

Proof of Theorem 5.2.2. We will show the existence of a prefix machine N such that
for all x ∈ {0, 1}∗,

CN(x) ≤ d− log2QV (x)e+ 1. (5.6)

Then the theorem holds for c = 2|αM |+ 2|αN |+ 6, where αN is the binary rep-
resentation of N and αM is the binary representation of the self-delimiting machine
from Theorem 5.1.8, where the binary representations are as in Def. 5.1.4.2. This
c is sufficient to prove the statement, since now, for any x ∈ {0, 1}∗ and witness p
of CN(x) (that is, N(p) = x and |p| = CN(x)), we have that V (〈αM , 〈αN , p〉〉) =
N(p) = x, and the following holds by equation (5.1).

K(x) ≤ |〈αM , 〈αN , p〉〉|
= 2|αM |+ 2|αN |+ |p|+ 4

≤ d− log2QV (x)e+ c− 1

< − log2QV (x) + c.

Let r be a program that recursively enumerates S (cf. Def. 5.2.3).
We now show that

∑
(x,n)∈S 2−n ≤ 1, which implies that S and r satisfy the

requirements from Lemma 5.2.8. First note that for a fixed x ∈ {0, 1}∗,∑
n≥d− log2QV (x)e+1

2−n = 2−(d− log2QV (x)e) ·
∑
i∈N≥1

2−i = 2−d− log2QV (x)e < QV (x).

And thus ∑
(x,n)∈S

2−n =
∑
x

∑
n≥d− log2QV (x)e+1

2−n <
∑
x

QV (x) ≤ 1, (5.7)

where the latter inequality follows from the Kraft inequality and the fact that that
V is a prefix machine.
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The definition of N is now as follows. Let Q be the Turing machine from Lemma
5.2.8. On an input p, the machine N computes and outputs Q(〈r, p〉).

From Lemma 5.2.8, it is clear that N is a prefix machine. We will now argue
why N satisfies (5.6). Fix an x ∈ {0, 1}∗ and let n = d− log2QV (x)e + 1. Then
(x, n) ∈ S, and by Lemma 5.2.8, there exists a p ∈ {0, 1}∗ with |p| = n such that
Q(r, p) = x and thus also N(p) = x. Thus, CN(x) ≤ d− log2QV (x)e+ 1.
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Chapter 6

Logical depth

In this chapter, we discuss Bennet’s definition of logical depth, together with other
related notions. It is based on joint work with Akitoshi Kawamura, as were some of
the proofs in the previous chapter. We first outline the thought process of Bennet,
considering different definitions leading up to the final definition of logical depth.
We also discuss the relations between the different notions. After that we give results
that outlines problems with the definition of logical depth .

6.1 Defining logical depth

Benett’s intention was to capture the value of a message, which he describes as “the
amount of mathematical or other work plausibly done by its originator, which its
receiver is saved from having to repeat” [9, p. 230]. In this line of thought, the depth
of a string could be thought of as the computation time of the shortest program that
produces the string. This definition was discarded, since there could be a program
only a few bits longer, but running much faster. If the difference in length is small,
the faster program is perhaps more likely to have produced the string [9]. In order
to solve this problem, a definition is introduced, where the difference in length to
the shortest program is made variable, by introducing an extra parameter s called
the significance level.

Definition 6.1.1 ([9, p. 240, Tentative Definition 0.2]). For any x ∈ {0, 1}∗ and
any s ∈ N≥1,

ds(x) = min{TV (p) : p ∈ {0, 1}∗, V (p) ↓, V (p) = x and |p| −K(x) < s },

Thus, for any string x, the value ds(x) is the time required to compute x by a
program less than s bits longer than the shortest program. In other words, ds(x) is
the minimum t ∈ N such that Kt(x) (see Definition 5.1.3) is not ∞ and Kt(x) −
K(x) < s. Therefore, Definition 6.1.1 is very similar to the following, which is
Definition 3.1 in [4].

Definition 6.1.2. For any x ∈ {0, 1}∗ and any t ∈ N, the basic computational depth
of x relative to t is the difference between the prefix Kolmogorov complexity and
the time-bounded prefix Kolmogorov complexity of x relative to t:

bcdt(x) = Kt(x)−K(x).
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If Kt(x) =∞, then so is bcdt(x).

The definitions ds and bcdt are actually just a change of parameter.

Corollary 6.1.3. For any s, t ∈ N≥1 and any x ∈ {0, 1}∗,

ds(x) ≤ t if and only if bcdt(x) < s.

Results such as the existence of strings x for which bcdt(x) and thus also ds(x)
is high, and applications of this definition to average time-complexity, can be found
in [4].

Note that for all x, the value ds(x) is defined for any s ∈ N≥1, and that ds(x) is
non-increasing in s (that is, ds(x) ≥ ds′(x) for any s, s′ ∈ N with 0 < s ≤ s′).

Remark 6.1.4. On one end, d1(x) is the running time of a shortest program for x;
on the other end, ds(x) is small for large s: there exist a, b and c ∈ N such that for
all x ∈ {0, 1}∗ and for all s ≥ |x| + 2 log |x| + c − K(x), we have ds(x) ≤ a|x| + b
because of Definition 5.1.4.4.

We return to the attempts of Bennett for finding a definition for the value of a
message. Definition 6.1.1 was also dismissed, because of the way it treats multiple
programs of the same length [9, p. 240]. Subsequently, Bennett introduces the
definition below.

Definition 6.1.5 ([9, p. 240, Tentative Definition 0.3]). For any x ∈ {0, 1}∗ and
any s ∈ N≥1,

ldepths(x) = min

{
t ∈ N :

Qt
V (x)

QV (x)
≥ 2−s

}
.

Thus, for any x ∈ {0, 1}∗ and s ∈ N≥1, the value ldepths(x) is the time t required
for x’s time-bounded algorithmic probability Qt

V (x) to rise within a factor 2−s of
QV (x). Again, ldepths(x) is non-increasing in s.

In [5, Th. 3.5], we can find a result that relates ldepths to bcdt (and hence,
by Corollary 6.1.3, to ds). We suspect that the proof is incorrect, and propose a
different statement than the one described there.

Theorem 6.1.6. There exists a c ∈ N such that for any x ∈ {0, 1}∗ and any
s ∈ N≥1,

ldepths+c(x) ≤ ds(x).

Proof. Let c be as in the Coding Theorem (Th. 5.2.2), such that 2−(K(y)−c) > QV (y)
for all y ∈ {0, 1}∗. Fix an x ∈ {0, 1}∗ and s ∈ N≥1, and let t = ds(x), so that
Kt(x)−K(x) < s. Then ldepths+c(x) ≤ t, because

Qt
V (x)

QV (x)
>

2−K
t(x)

2−(K(x)−c) = 2−(Kt(x)−K(x)+c) > 2−(s+c).

In [9], Definition 6.1.5 is shown (see Theorem 6.2.11 below) to be almost equiv-
alent to the following, on which Bennett settles.
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Definition 6.1.7 ([9, p. 241, Definition 1]). For any x ∈ {0, 1}∗ and any s ∈ N≥1,
the (logical) depth of x at significance level s is the least time required for an s-
incompressible program to compute x:

depths(x) = min{TV (p) : p ∈ {0, 1}∗, V (p) ↓, V (p) = x and |p| −K(p) < s },

or depths(x) =∞ when such a p does not exist.

Bennett argues that logical depth is a measure of physical complexity, and he
uses it to study the self-organization of systems [9, Section 5]. It is by far the most
used definition of all definitions for complexity that are based on computation time.
Besides the definitions mentioned before, another definition that uses computation
time is the n-potent by Adleman [1]. Other authors occasionally use one of the
definitions that Bennett discarded. For example, in [18] the computation time of
the shortest program is used as the depth of a string, and ds is used in [4, 3].

6.2 Properties of logical depth

6.2.1 Basic properties

In the standard way, the logical depth of a string is defined with respect to the
program length of programs for the universal machine V . In order to justify this
decision, it is necessary to establish how the logical depth of strings will differ when
we use different Turing machines. Because of Corollary 5.1.5, for different universal
machines the depth can differ up to a logarithmic term. We will formalize this
statement. We first need the following lemma.

Lemma 6.2.1. For any universal self-delimiting Turing machine M that satisfies
the properties (1) - (5) from Definition 5.1.4, there exists a constant c ∈ N such that
KM(y) ≤ KM(〈x, y〉) + c for any x, y ∈ {0, 1}∗.

Proof. Let M be a universal self-delimiting machine that satisfies properties (1) - (5)
from Definition 5.1.4. Let r ∈ {0, 1}∗ be the restart program from property (5) in
Definition 5.1.4. That is, M(〈r, pq〉) ↓ and M(〈r, pq〉) = x for any p, q, x ∈ {0, 1}∗
with M(p) ↓, M(〈q,M(p)〉) ↓ and M(〈q,M(p)〉) = x. Let N be a self-delimiting
Turing machine such that N(〈x, y〉) ↓ and N(〈x, y〉) = y for any x, y ∈ {0, 1}∗. Let
αN be the binary representation of N (cf. property (2) of Definition 5.1.4), such
that M(〈αN , x〉) ↓ and M(〈αN , x〉) = N(x) for all x ∈ {0, 1}∗ for which N(x) ↓.
Define c = 2|r|+ |αN |+ 2.

We argue that KM(y) ≤ KM(〈x, y〉)+c for any x, y ∈ {0, 1}∗. Let x, y ∈ {0, 1}∗.
Let p ∈ {0, 1}∗ be the witness of KM(〈x, y〉), that is, M(p) ↓, M(p) = 〈x, y〉 and
|p| = KM(〈x, y〉). Then M(〈r, pαN〉) ↓ and M(〈r, pαN〉) = y. Therefore KM(y) ≤
|〈r, pαN〉| = 2|r|+ |p|+ |αN |+ |2| = KM(〈x, y〉) + c.

It is necessary to define logical depth where another Turing machine than V is
used.
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Definition 6.2.2. For any self-delimiting machine M that satisfies the properties
(1) - (5) from Definition 5.1.7, for any x ∈ {0, 1}∗ and any s ∈ N≥1, the logical
depth of x with respect to M at significance level s is

depthMs (x) = min{TM(p) : p ∈ {0, 1}∗ , M(p) ↓ , M(p) = x and |p| −K(p) < s},

or depthMs (x) =∞ when such a p does not exist.

We can now give the difference between the logical depth of a string with respect
to different Turing machines.

Proposition 6.2.3. Let N and M be two machines satisfying properties (1) - (5)
from Definition 5.1.7. There exist c1, c2 ∈ N, dependent on N and M , such that for
any x ∈ {0, 1}∗ and any s ∈ N≥1,

depthMs+c1(x) ≤ c2depthNs (x) log(depthNs (x))

Proof. Let αN be the binary representation of N (cf. Def. 5.1.4.2), such that
M(〈αN , x〉) ↓ andM(〈αN , x〉) = N(x) for all x ∈ {0, 1}∗ for whichN(x) ↓. Similarly,
let αM be the binary representation of M for machine N . Let k ∈ N be the constant
from Lemma 6.2.1, such that KM(y) ≤ KM(〈x, y〉) + k for any x, y ∈ {0, 1}∗. Then,
let c1 = k + 4|αN |+ 4 and let c2 be the constant from property (3) from Definition
5.1.4, such that TM(〈αN , x〉) ≤ c2TN(x) log TN(x) for all x for which N(x) ↓.

In the following, fix an x ∈ {0, 1}∗. Let p ∈ {0, 1}∗ such that N(p) ↓ and p is
the witness of depthNs (x) (that is, N(p) = x and |p| − KN(p) < s and TN(p) =
depthNs (x)). Then also M(〈αN , p〉) ↓ and M(〈αN , p〉) = x, and we have that
TM(〈αN , p〉) ≤ c2TN(p) log(TN(p)). In what follows, we will argue that |〈αN , p〉| −
KM(〈αN , p〉) < s+ c1. We can conclude that depthMs+c1(x) ≤ c2TN(p) log(TN(p)).

Let q be such that M(q) ↓ and q is the witness of KM(p). Then M(q) = p and
|q| = KM(p). Note that N(〈αM , q〉) = M(q) = p. Now, by equation 5.1,

KN(p) ≤ |〈αM , q〉| = KM(p) + 2|αN |+ 2. (6.1)

By Lemma 6.2.1, we have that KM(p) ≤ KM(〈αN , p〉) + k. Combining this with
(6.1), we obtain

KM(〈αN , p〉) ≥ KN(p)− k − 2|αN | − 2. (6.2)

We now have the following.

|〈αN , p〉| −KM(〈αN , p〉) ≤ |〈αN , p〉| −KN(p) + k + 2|αN |+ 2 by equation (6.2)

≤ 4|αN |+ |p| −KN(p) + k + 4 by equation (5.1)

< 4|αN |+ s+ k + 4 |p| −KN(p) < s

= s+ c1.

The depth of a string is always associated with a significance level. If for some
s ∈ N≥1 and x ∈ {0, 1}∗, the value of depths(x) is large, then this can be de-
scribed as that “each individual hypothesis for the rapid origin of x is implausible
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at the 2−s confidence level” [9, p. 241]. Being very specific about what s to pick
or defining what constitutes as “large depth” is difficult. But we know that depths
is non-increasing in s (for all x ∈ {0, 1}∗, when s ∈ N≥1 increases, then the value
depths(x) decreases). Thus, when Bennett discusses shallow objects (having low
depth), he gives an example of a string that has a depth that is smaller than some
low-order polynomial at some small significance level. For evidence of a deep string
the significance level can be large [9]. See Theorem 6.3.5 for this.

Logical depth satisfies a slow growth law : deep strings cannot be quickly com-
puted from shallow ones [9, Th. 1] .

Remark 6.2.4. As with ds (cf. Remark 6.1.4), there exist a, b and c ∈ N, such that
depths(x) ≤ a|x|+ b for all x ∈ {0, 1}∗ and all s ≥ |x|+ 2 log |x|+ c.

A lower bound for the significance level s for which depths is not infinite is given
later in Proposition 6.2.6, together with the relation of depths to ds.

6.2.2 Comparing different definitions

In this section we present several results that relate depths to other definitions. We
start with the somewhat obvious relation between ds and depths. It also gives us a
significance level for which depths is guaranteed to be not infinite. Before we prove
the relation we introduce a specific Turing machine.

Lemma 6.2.5. There exists a self-delimiting Turing machine R, such that for any
q ∈ {0, 1}∗, if there exists a p ∈ {0, 1}∗ for which V (q) ↓, V (q) = p, and V (p) ↓,
then R(q) = V (p).

Proof sketch. The existence of this Turing machine is not obvious, since it has to be
self-delimiting, but it can be defined using a similar procedure as in Theorem 5.1.8
and Lemma 6.2.1.

Proposition 6.2.6. There is a c ∈ N such that depths+c(x) ≤ ds(x) for all s ∈ N≥1

and x ∈ {0, 1}∗. In particular, depths+c(x) <∞ for all s ∈ N≥1.

Proof. Let R be the Turing machine from Lemma 6.2.5. Let c = 2|αR|+ 2. Fix an
s ∈ N≥1 and an x ∈ {0, 1}∗. By the definition of ds(x), there is a p ∈ {0, 1}∗ such
that V (p) = x, satisfying TV (p) = ds(x) and

|p| < K(x) + s. (6.3)

To prove our claim, it suffices to show that the same program p satisfies

|p| < K(p) + s+ c. (6.4)

For this, let q ∈ {0, 1}∗ be a shortest program for p (i.e., V (q) = p and |q| = K(p)),
and note that V (〈αR, q〉) = x. From equation (5.1) we know that |〈αR, q〉| = |q|+ c.
Hence, K(x) ≤ |q|+ c = K(p) + c, and thus (6.3) implies (6.4).

For the relation between depth and ldepth we need some intermediate results.
More specifically, we need more results in order to obtain a bound on depth assuming
a bound on ldepth. In ldepth we have the time bounded algorithmic probability
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Qt
V (x) for some x ∈ {0, 1}∗ and t ∈ N. It turns out, that all programs that output

such a specific x within a time t, can be compressed. In order to show this, we
first outline how such programs can be recursively enumerated. Then, using this
enumeration and Lemma 5.2.8, we obtain that there is a unique way to identify any
such program, given the enumeration. The latter implies that the programs can be
compressed. In turn, the compression gives us a bound on the depth.

In what follows, we say that a p ∈ {0, 1}∗ is a program for an x ∈ {0, 1}∗ or a
t ∈ N, when V (p) ↓ and V (p) = x or V (p) = bin(t) respectively. For any x ∈ {0, 1}∗
and t ∈ N, let Px,t = {p : p ∈ {0, 1}∗ ∧ V (p) ↓ ∧V (p) = x ∧ TV (p) ≤ t}. Then,
Qt
V (x) =

∑
p∈Px,t

2−|p|. We now start by showing how to enumerate programs in

such a set (recall Definition 5.2.3).

Lemma 6.2.7. There exists an r ∈ {0, 1}∗ such that for any x ∈ {0, 1}∗, any t ∈ N,
and all programs px, pt for x and t respectively, 〈r, pxpt〉 recursively enumerates Px,t.

Proof. We show that there exists an r ∈ {0, 1}∗, such that for any x, t, px and pt as
in the lemma, and for any y ∈ {0, 1}∗, the machine U outputs 1 on input 〈〈r, pxpt〉, y〉
if y ∈ Px,t and otherwise keeps computing forever.

For any z, y ∈ {0, 1}∗, the computation of U on input 〈〈r, z〉, y〉 starts with
simulating computations of V on all prefixes of z, using dovetailing, until either
V (z0) ↓ for some prefix z0 or the machine keeps computing forever. Let the rest of
the string z be z1, that is, z = z0z1. Then, it also simulates V on input z1. It keeps
computing forever if not V (z1) ↓. Subsequently, the machine computes V on input
y. If V (y) ↓ and V (y) = V (z0) and TV (y) ≤ V (z1), it outputs 1, and otherwise
keeps computing forever.

Now let x ∈ {0, 1}∗, let t ∈ N and let px, pt be any programs for x and t
respectively. Then z0 = px and z1 = pt during the computation of U on input
〈〈r, pxpt〉, y〉. The machine outputs 1 only when y ∈ Px,t.

Corollary 6.2.8. There exists an r ∈ {0, 1}∗ such that for any x ∈ {0, 1}∗, any
t ∈ N, and all programs px, pt for x and t respectively, 〈r, pxpt〉 recursively enu-
merates the set {(p, bin(|p| −m)) | p ∈ Px,t}, where m ∈ N is maximum such that∑

p∈Px,t
2−|p| ≤ 2−m.

Proof. Since for any x ∈ {0, 1}∗ and t ∈ N, the set Px,t is finite, the number m is
computable. The result then follows from Lemma 6.2.7.

Now that we have algorithms for the enumeration, we can show how to uniquely
identify the programs in the enumeration.

Lemma 6.2.9. There exists a prefix machine N , such that for any x ∈ {0, 1}∗ and
t ∈ N, for any p ∈ Px,t, there exists an xp ∈ {0, 1}∗, such that for all programs
px, pt for x and t respectively, N(pxptxp) = p, where |xp| = |p| −m and m ∈ N is
maximum such that

∑
p∈Px,t

2−|p| ≤ 2−m.

Proof. We define N . On an input y, it simulates computations of V on all prefixes of
y using dovetailing, until V (y0) ↓ for some prefix y0 of y. This is done again for the
rest of the string y without the prefix y0, such that eventually three sub-strings y0,
y1 and y2 are found, with y = y0y1y2 and V (y0) ↓ and V (y1) ↓. When y is not of this
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form, N keeps computing forever. Let x0 = V (y0) and x1 = V (y1). Let r ∈ {0, 1}∗
be the program from Corollary 6.2.8 and let Q be the machine from Lemma 5.2.8.
Then N simulates Q on input 〈〈r, y0y1〉, y2〉 and when it halts, outputs the same.

We claim that this N is sufficient. Let x, t, px and pt be as in the lemma.
Let p ∈ Px,t. Let m be maximum such that

∑
p∈Px,t

2−|p| ≤ 2−m, and thus also∑
p∈Px,t

2−|p|−m ≤ 1. Then xp is the string that satisfies |xp| = |p| − m and

Q(〈〈r, pxpt〉, xp〉) = p. The existence is guaranteed by Corollary 6.2.8 and Lemma
5.2.8.

In order to see that this suffices, consider the computation of N on input pxptxp.
Then, y0 and y1 will get the values px and pt and y2 will get the value xp. N will
thus output Q(〈〈r, pxpt〉, xp〉) = p. Moreover, N is a prefix-machine: it will only
halt on strings which are the concatenation of three other strings, all coming from
specific prefix-free sets.

How exactly the programs can be compressed is formulated in the following
corollary.

Corollary 6.2.10. There exists a c ∈ N such that for all x ∈ {0, 1}∗ and t ∈ N, for
any m ∈ N such that

∑
p∈Px,t

2−|p| ≤ 2−m, for all p ∈ Px,t

K(p) ≤ K(x) +K(bin(t)) + |p| −m+ c.

Proof. Let N be the prefix machine from Lemma 6.2.9, and αN as in Definition
5.1.7.1. Let M be the self-delimiting machine from Theorem 5.1.8 and αM as in
Definition 5.1.4.2. Then c = 2|αM |+ 2|αN |+ 4.

Let x, t and m as in the statement, let px be a witness of K(x) (that is, V (p) ↓,
V (p) = x and |px| = K(x)) and let pt be a witness of bin(t). Let p ∈ Px,t. By
Lemma 6.2.9 and Theorem 5.1.8, there exists an xp ∈ {0, 1}∗ with |xp| = |p| − m
such that V (〈αM , 〈αN , pxptxp〉〉) ↓ and V (〈αM , 〈αN , pxptxp〉〉) = p. Thus, K(p) ≤
|〈αM , 〈αN , pxptxp〉〉| ≤ K(x) +K(bin(t)) + |p| −m+ c.

We state the relation between ldepth and depth, which comes from Lemma 3 in
[9].

Theorem 6.2.11. We can make two comparisons.

1. There is a c1 ∈ N such that for all x ∈ {0, 1}∗, s ∈ N and t ∈ N,

ldepths+K(bin(t))+c1(x) > t =⇒ depths(x) > t. (6.5)

2. There is a c2 ∈ N such that for all x ∈ {0, 1}∗ and s ∈ N≥1,

depths+c2(x) ≤ ldepths(x). (6.6)

Thus, the two versions of depth are similar in the sense that they can be bounded
by each other subject to a small addition in the significance level. Note that, to make
the two parts of the lemma look alike, we could rewrite (6.6) as

depths+c2(x) > t =⇒ ldepths(x) > t. (6.7)
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Proof. 1. Let d1 be the constant from Corollary 6.2.10. Let d2 be the constant from
Theorem 5.2.2, that is,

QV (y) < 2−(K(y)−d2) (6.8)

for all y ∈ {0, 1}∗. We let c1 = d1 + d2.
Now let x ∈ {0, 1}∗ and s, t ∈ N be such that ldepths+K(bin(t))+c1(x) > t. By

definition, Qt
V (x)/QV (x) < 2−(s+K(bin(t))+c1). By equation (6.8),∑

p∈Px,t

2−|p| = Qt
V (x) < 2−(s+K(x)+K(bin(t))+c1−d2). (6.9)

Now, by Corollary 6.2.10 for m = s+K(x) +K(bin(t)) + c1 − d2, we have

K(p) ≤ K(x) +K(bin(t)) + |p| −m+ d1

= |p| − s

for all p ∈ P , which implies depths(x) > t.
2. We let c2 = 2 · |αR|+ 3, where R is the machine from Lemma 6.2.5 and αR is

as in property 2 of Definition 5.1.4. We prove (6.7).
The assumption depths+c2(x) > t in (6.7) means that |p| ≥ K(p) + s+ c2 for all

p ∈ Px,t, and thus

Qt
V (x) =

∑
p∈Px,t

2−|p| ≤
∑
p∈Px,t

2−(K(p)+s+c2). (6.10)

For each p ∈ Px,t, let qp ∈ {0, 1}∗ be a shortest program for p (i.e., V (qp) = p and
|qp| = K(p)). Since 〈αR, qp〉 is another program for x which, by (5.1), has length
|〈αR, qp〉| = |qp|+ c2 − 1 = K(p) + c2 − 1, we have

QV (x) ≥
∑
p∈P

2−|〈αR,qp〉| =
∑
p∈P

2−(K(p)+c2−1). (6.11)

Comparing (6.10) and (6.11), we have Qt
V (s)/QV (s) ≤ 2−s−1 < 2−s, and thus

ldepths(x) > t, as was claimed in (6.7).

6.3 Problems with the significance level

6.3.1 Instability

In this section we show that logical depth is unstable with respect to the significance
level: the logical depth ldepths(x) of a string x can change a lot under only small
changes of s. In what follows, we assume that for all n ∈ N, we have that ∞ > n.
When some expression f(x) can be equal to ∞ for some x, then f(x) < n for some
n ∈ N implies f(x) 6=∞

In what follows, we will use c to denote the constant c from Proposition 6.2.6,
such that depths+c ≤ ds(x) for all x ∈ {0, 1}∗ and s ∈ N. Also recall the constants
a, b and c′ ∈ N from Remark 6.1.4, such that ds(x) ≤ a|x| + b for all x ∈ {0, 1}∗
and s ∈ N for which s ≥ |x|+ 2 log |x|+ c−K(x). We define l(n) = n+ 2 log n+ c′,
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which will also be used later. Note that depthl(n)+c ≤ ds(n)(x) ≤ an + b for any
x ∈ {0, 1}n.

In Theorem 2 of [6], the instability of logical depth with respect to the significance
level was first proven for ds(x).

Theorem 6.3.1. The function

f(n) = max
|x|=n,1≤s≤l(n)

(
ds(x)− ds+1(x)

)
grows faster than any computable function (i.e., for any computable h : N→ N, there
exists n0 ∈ N such that f(n) > h(n) for all n ≥ n0).

For depths(x), some difficulties arise because it can be infinite for some s. Using
similar techniques we can show the following.

Theorem 6.3.2. For any s ∈ N and x ∈ {0, 1}∗, let f ′(s, x) = depths(x) −
depths+1(x) if depths+1(x) ≤ depths(x) < ∞, and f ′(s, x) = 0 otherwise. Then
the function

f(n) = max
|x|=n,0≤s≤l(n)+c

f ′(s, x)

grows faster than any computable function.

The proof is given later. The function f(n) gives the maximum value by which
the logical depth can change for strings of the same length, when only adding 1 to
the significance level. We will show that this function is incomputable by showing
that it is related to another function: the maximum computation time for programs
that compute strings of a given length. Since depthc+1(x) <∞ for all x, we restrict
ourselves to programs p for which |p|−K(p) < c+1. We thus first show the following
lemma.

Lemma 6.3.3. Define g : N→ N by

g(n) = max
|x|=n

min
p
{TV (p) : x, p ∈ {0, 1}∗ ∧ V (p) = x ∧ |p| −K(p) < c+ 1}.

Then g grows faster than any computable function.

Proof. Assume, towards a contradiction, that g is computable. Then there exists
a p ∈ {0, 1}∗ such that V (〈p, bin(n)〉) = g(n) for all n ∈ N. We will show that
this implies that there exists a c′′ ∈ N, such that for any n ∈ N, there exists a
qn ∈ {0, 1}∗ of length K(n) + K(p) + c′′, such that V (qn) = x, where x ∈ {0, 1}∗ is
the smallest string of length n for which K(x) ≥ l(n). That is, x is random. The
existence of such x for which K(x) ≥ l(|x|) is a known fact. Then K(x) ≤ |qn| =
K(n) + K(p) + c′′ < l(n) for big enough n, which is a contradiction. We conclude
that g cannot be computable.

We first define a prefix machine N that does the following, similarly to how
the machine from Lemma 6.2.9 works. On an input y ∈ {0, 1}∗, the machine N
simulates computations of V on all prefixes of y using dovetailing, until V (y0) halts
for some prefix y0 of y. Let V (y0) = x0. The machine defines y1 ∈ {0, 1}∗ such that
y = y0y1 and computes V (y1). When V does not halt on input y1 or when V (y1) ↓
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does not hold, then N continues to compute forever. Otherwise, let x1 = V (y1). The
machine N then computes V (〈x0, x1〉). If this computation does not halt, then N
continues to compute forever. If V (〈x0, x1〉) = bin(n) for some n ∈ N, then N goes
over all strings of length n in lexicographical order. N outputs the first x ∈ {0, 1}∗
for which the shortest program p ∈ {0, 1}∗ that outputs x within g(n) steps (that
is, V (p) = x and TV (p) ≤ g(n)) is of length at least l(n).

Note that the machine N only halts on strings xy for which V (x) ↓ and V (y) ↓.
Then N has to be a prefix-machine, since V is a self-delimiting machine.

Let p ∈ {0, 1}∗ be such that V (〈p, bin(n)〉) = g(n) for all n ∈ N. Fix an
n ∈ N. Let yn ∈ {0, 1}∗ be the witness of K(n), that is, V (yn) = bin(n) and
|yn| = K(n). Let yp similarly be the witness of K(p). Then the string qn is
defined as 〈αM , 〈αN , ypyn〉〉, where αM is the binary representation of the ma-
chine M from Theorem 5.1.8 as in property (2) from Definition 5.1.4, and αN is
the binary representation of N as in Theorem 5.1.8. By equation (5.1), |qn| =
2|αM | + 2|αN | + K(p) + K(n) + 4. The constant c′′ that was mentioned at the be-
ginning is thus equal to 2|αM |+ 2|αN |+ 4. We can see that for each n ∈ N we have
V (qn) = x for an x ∈ {0, 1}∗ such that K(x) ≥ l(n).

By the definition of g, and since depths is non-increasing in s, we know that there
cannot be a shorter program for x that computes it within any amount of time.

For any computable function h such that h(n) ≥ g(n) for all n ∈ N, the above
program still works. So, arguing by contradiction, we can conclude that for any
computable h, there exists an n0 such that g(n) > h(n) for all n ≥ n0.

The proof of Theorem 6.3.2 can now be given similarly as in [6], but instead
using Lemma 6.3.3.

Proof of Theorem 6.3.2. If |x| = n, then depthl(n)+c(x) ≤ an+ b for any x ∈ {0, 1}∗.
There also exists an xn ∈ {0, 1}∗ of length n, and a minimal s′ ∈ {0, . . . , c + 1},
such that depths′(xn) = g(n). Consider the average of f ′(s, xn) over all s such that
s′ ≤ s ≤ l(n) + c. This average is bigger than or equal to (g(n)− an+ b)/(l(n) + c),
and thus f(n) ≥ (g(n) − an + b)/(l(n) + c). From Lemma 6.3.3 we obtain that f
grows faster than any computable function.

6.3.2 Comparing depth

It has not been made precise which significance level to choose when considering
the logical depth of a string. Knowing that depth is unstable with respect to the
significance level, as shown in Theorem 6.3.2, makes it difficult to consider the
complexity value for just a single significance level.

Another definition for the physical complexity of a string is sophistication [25,
24]. Similarly as for logical depth, sophistication also uses a significance level in the
definition. Moreover, similarly as for logical depth, it was shown that sophistication
is unstable with respect to this significance level. See Theorem 5 in [2]. The authors
said that the instability poses no problem, and that it shows that sophistication
should be considered as a function in the significance level instead.

In this case, if we want to compare the complexity of different strings, we need
to outline how to do this for functions in the significance level. So far, this has not
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been done. In this section, we show how for logical depth we can find two strings and
significance levels, such that which of the strings has the highest complexity value
differs for both significance levels. This shows that how to compare such functions
is not straightforward.

We first state the theorem itself. However, in order to prove this, we need some
intermediate results. These will be stated afterwards, with their proofs. At the end
of this section we provide the proof of the theorem.

Theorem 6.3.4. There exist infinitely many n ∈ N, for which there are x, y ∈
{0, 1}∗ with |x| = |y| = n, and s1, s2 ∈ N, such that s1 ≤ s2 and ∞ > depths1(x) >
depths1(y) and depths2(x) < depths2(y).

We will need a result that gives us the existence of deep strings. This result was
first discussed in Bennett’s paper [9], under the heading “Examples of very deep
objects” on page 244.

Theorem 6.3.5. There exists c ∈ N such that for any n ∈ N and t ∈ N, there exists
an x ∈ {0, 1}∗ of length n such that

depthn−K(n)−2K(t)−c(x) > t.

The proof is based on [9] as well.

Proof. Before we can give c, we have to define a Turing machine N . On an input y,
the machine M simulates computations of V on all prefixes of y with dovetailing,
until V (y0) ↓ for some prefix y0 of y. Let y = y0y1 Then it simulates V on input
y1. If not V (y1) ↓, then it keeps computing forever. Let V (y0) = bin(z0) and let
V (y1) = bin(z1) for some z0, z1 ∈ N. Let xz00 , x

z0
1 , . . . be the lexicographical ordering

of strings of length z0. For i = 0, 1, . . ., M computes Qz1
V (xz0i ). If Qz1

V (xz0i ) ≤ 2−z0

for some i, then N outputs xz0i and the computation halts. Otherwise N keeps
computing forever.

We continue to define c. First, let αN be the binary representation of N , as in
Definition 5.1.7.1. Let M be the machine from Theorem 5.1.8, and let αM be the
binary representation of M as in Definition 5.1.4.2. Let d ∈ N be as in the Coding
Theorem 5.2.2, such that

QV (x) < 2−(K(x)−d) (6.12)

for all x ∈ {0, 1}∗. Let c1 ∈ N be as in Theorem 6.2.11, such that for all x ∈ {0, 1}∗,
s ∈ N and t ∈ N

ldepths+K(t)+c1(x) > t⇒ depths(x) > t. (6.13)

Then c = 4|αM |+ 2|αN |+ 4 + c1 − d.
Let n, t ∈ N. Let pn, pt ∈ {0, 1}∗ be the witnesses for K(n) and K(t) respec-

tively. That is, K(n) = |pn|, V (pn) ↓ and V (pn) = bin(n), and similarly for t.
We first argue that the computation of N on input pnpt halts and outputs an

x ∈ {0, 1}n. Namely, on input pnpt, the machine N will find that z0 = n and
z1 = t. It will then compute Qt

V (x) for strings x of length n. If Qt
V (x) > 2−n

for all x ∈ {0, 1}n, then N will not halt. If Qt
V (x) ≤ 2−n for some x, then N

halts and outputs that x. We therefore have to argue that Qt
V (x) ≤ 2−n for some
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x. Assume, towards a contradiction, that Qt
V (x) > 2−n for all x ∈ {0, 1}n. Then∑

x∈{0,1}n Q
t
V (x) > 2n · 2−n = 1. This is a contradiction, since V is a self-delimiting

machine and in particular prefix-free, therefore all programs on which it halt satisfy
the Kraft inequality.

For any n, t ∈ N, there thus exists an x of length n, such that N(pnpt) halts and
N(pnpt) = x, where pn, pt ∈ {0, 1}∗ are the witnesses for K(n) and K(t) respectively.
Also note that N only halts on x ∈ {0, 1}∗, for which there exist x0, x1 ∈ {0, 1}∗,
for which x = x0x1 and V (x0) ↓ and V (x1) ↓. And thus N is a prefix machine.

Thus, V (〈αM , 〈αN , pnpt〉〉) ↓ and V (〈αM , 〈αN , pnpt〉〉) = x. Equation 5.1 then
implies that

K(x) ≤ K(n) +K(t) + 4|αM |+ 2|αN |+ 4. (6.14)

Moreover, by the computation of M , we have that Qt
V (x) ≤ 2−n. By equation

6.12, we can then deduce that

Qt
V (x)

QV (x)
< 2−(n−K(x)+d).

From Definition 6.1.5, we then obtain that

ldepthn−K(x)+d(x) > t.

And from equation 6.13, that

depthn−K(x)+d−K(t)−c1(x) > t.

By equation 6.14,

n−K(x) + d−K(t)− c1 ≥ n−K(n)− 2K(t)− 4|αM | − 2|αN | − 4 + d− c1

= n−K(n)− 2K(t)− c.

And thus depthn−K(n)−2K(t)−c(x) > t.

Now that we have this result, we will step by step find the specific x, y ∈ {0, 1}∗
as from Theorem 6.3.4. We start with the requirements for finding the right x.

Specifying x

The idea is as follows. We want a string x, which has high depth at low significance
levels, but guaranteed a low depth at higher significance levels. We do this by letting
x be the same as another string z, but with every bit doubled. That is x = db(z),
where db is the function that doubles every bit (e.g., db(101) = 110011). We let z
have a high depth at low significance levels. We then show that therefore x also has
a high depth at high significance levels. But, if we let the significance level of the
depth for x be high enough, then for the witness of the depth of x we can even use
programs that include the description of z. Given z, we can also quickly find x, as
we will show. Therefore the depth x at such significance levels will be low.

We will first show an upper bound for the logical depth of the string db(z) for
some z ∈ {0, 1}∗. The observation here is that when we have the string z, we can
also obtain db(z) from this.
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Lemma 6.3.6. There exist c1, c2 ∈ N such that for any z ∈ {0, 1}∗\ε of length n,

depthn+2 logn+c1(db(z)) ≤ c2n
2.

Proof. Before we can give c1 and c2, we need to consider the following. Let α ∈
{0, 1}∗ be as in Definition 5.1.4.4, such that for any x ∈ {0, 1}∗\ε, V (〈α, x〉) ↓ and
V (〈α, x〉) = x.

We define a self-delimiting Turing machine M . On an input y ∈ {0, 1}∗, the
machine M executes the computation of V on input 〈α, y〉 (while thus only moving
the head on the input-tape from left to right). Every time when during that com-
putation a bit is to be written on the output-tape, M prints the bit twice. When
the computation of V on input 〈α, y〉 halts then so does M .

From Definition 5.1.4.4, we have that for any x ∈ {0, 1}∗\ε, TV (〈α, x〉) ≤ a|x|+
b ≤ (a+b)|x| for some a, b ∈ N. This, together with the above description of M , tells
us that there exists a c ∈ N such that for any x ∈ {0, 1}∗\ε, TV (〈αM , x〉) ≤ c|x|2.

Now we can define c1 = 2|αM |+5, and c2 = c. Let z ∈ {0, 1}∗\ε, and let n = |z|.
Then V (〈αM , z〉) ↓ and V (〈αM , z〉) = db(z). Moreover,

|〈αM , z〉| −K(〈αM , z〉) ≤ |〈αM , z〉|
= 2|αM |+ 2 + |z| by eq. 5.1

≤ n+ 2 log n+ 2|αM |+ 5 by eq. 5.2

= n+ 2 log n+ c1

We have thus found the program 〈αM , z〉 for db(z), for which TV (〈αM , z〉) ≤ c2n
2 and

|〈αM , z〉|−K(〈αM , z〉) ≤ n+2 log n+c1. We conclude that depthn+2 logn+c1(db(z)) ≤
c2n

2.

Now that we have the upper bound of our db(z) for a higher significance level,
we will give the lower bound of db(z) at lower significance levels. But for this we
need an intermediate result. We will show that the depth of a string z is not too
different from the depth of the string db(z).

Lemma 6.3.7. There exist c1, c2 ∈ N, such that for all z ∈ {0, 1}∗\ε and all t, s ∈ N

depths(z) > t⇒ depths−c1(db(z)) > t− c2|z|.

Proof. Before we can give c1 and c2, we first define a self-delimiting Turing machine
M .

On an input p ∈ {0, 1}∗, the machine does the same computation V on input p.
If V (p) ↑ or V keeps computing forever on input p, then so does M .

If V (p) ↓, the machine defines a bit b = 0, and executes the computation of V on
input (〈α, V (p)). Every time when during that computation a bit would be printed
on the output tape, M does the following. If b = 0, then M also writes the bit on
the output tape, and then sets b = 1. If b = 1, then M does not write the bit on
the output tape, but sets b = 0 and continues the rest of the computation of V on
input (〈α, V (p)). Eventually, when the computation of V on input (〈α, V (p)) halts,
M also halts.
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Let αM be the binary representation of M , as in Definition 5.1.4.2. From the
above description and Definition 5.1.4.4, we obtain that there exists a d ∈ N, such
that for all p ∈ {0, 1}∗, if V (p) ↓, then

TV (〈αM , p〉) ≤ TV (p) + d|V (p)|. (6.15)

We let c2 = d. Let c be the constant from Lemma 6.2.1 for V . That is,

K(y) ≤ K(〈x, y〉) + c (6.16)

for any x, y ∈ {0, 1}∗. Then we let c1 = 2|αM |+ 2 + c.
We now continue to proving the statement of the lemma. Let z ∈ {0, 1}∗\ε, let

t, s ∈ N and assume that depths(z) > t. Also assume, towards a contradiction, that
depths−c1(db(z)) ≤ t− c2|z|. Let p ∈ {0, 1}∗ be the witness of this. That is, V (p) ↓,
V (p) = db(z), TV (p) ≤ t− c2|z| and |p| −K(p) < s− c1.

Then V (〈αM , p〉) ↓ and V (〈αM , p〉) = z. And thus,

|〈αM , p〉| −K(〈αM , p〉) = 2|αM |+ 2 + |p| −K(〈αM , p〉) by eq. 5.1

< 2|αM |+ 2 + |p| −K(p) + c by eq. 6.16

= c1 + |p| −K(p)

< s since |p| −K(p) < s− c1.

Moreover, by equation 6.15, we have that TV (〈αM , p〉) ≤ TV (p)+c2|z|. And thus
TV (〈αM , p〉) ≤ t. This implies that depths(z) ≤ t, a contradiction.

Now we can give the lower bound for db(z).

Lemma 6.3.8. There exist c3, c4, such that for any n, t, d ∈ N≥1 with K(t) ≤
K(n) + d, there exists a z ∈ {0, 1}∗ of length n such that

depthn−3K(n)−c3−2d(db(z)) > t− c4n.

Proof. Let c1, c2 be as in Lemma 6.3.7. Let c be the constant in Theorem 6.3.5,
such that for any n ∈ N and t ∈ N, there exists an x ∈ {0, 1}∗ of length n such that

depthn−K(n)−2K(t)−c(x) > t. (6.17)

Then let c3 = c+ c1 and let c4 = c2.
We continue to prove the lemma. Let n, t ∈ N be as in the statement.
From equation 6.17, we get that there exists a z ∈ {0, 1}∗ of length n such that

depthn−K(n)−2K(t)−c(z) ≥ t.
Then from Lemma 6.3.7, we get that

depthn−K(n)−2K(t)−c−c1(db(z)) ≥ t− c2n. (6.18)

By assumption, K(t) ≤ K(n) + d, and thus

n−K(n)− 2K(t)− c− c1 ≥ n− 3K(n)− 2d− c− c1

= n− 3K(n)− c3 − 2d.

Then depthn−3K(n)−c3−2d(db(z)) > t− c2n follows from equation 6.18.
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Specifying y

We have all the necessary intermediate results for one string. Now we will state
some lemmas that are necessary for ensuring that the other string exists.

Lemma 6.3.9. There exists a d ∈ N such that for all n ∈ N,

K(n3) ≤ K(n) + d

and
K(2n) ≤ K(n) + d.

Proof. Straightforward.

Lemma 6.3.10. There exists a d1, d2 ∈ N such that for all n ∈ N, there exists a
string y of length 2n, such that

depth2n−3K(n)−d1(y) > n3

and
K(y) ≤ K(n) + d2.

The proof is similar to the proof of Theorem 6.3.5.

Proof. Before we can give d1, d2, we need to define a self-delimiting Turing machine
M .

On an input p ∈ {0, 1}∗, the machine M computes V on input p. If V (p) ↑
or V keeps computing forever on input p, then so does M . If V (p) ↓, then let
bin(n) = V (p). Let x2n

0 , x
2n
1 , . . . be the lexicographical ordering of strings of length

2n. For i = 0, 1, . . ., M computes Qn3

V (x2n
i ). If Qn3

V (x2n
i ) ≤ 2−2n for some i, then M

outputs x2n
i and the computation halts. Otherwise M keeps computing forever.

Let d be as in Lemma 6.3.9 such that

K(n3) ≤ K(n) + d (6.19)

and
K(2n) ≤ K(n) + d (6.20)

for all n ∈ N.
Let e ∈ N be as in the Coding Theorem 5.2.2, such that

QV (x) < 2−(K(x)−e) (6.21)

for all x ∈ {0, 1}∗. Let c1 ∈ N be as in Theorem 6.2.11, such that for all x ∈ {0, 1}∗,
s ∈ N and t ∈ N

ldepths+K(t)+c1(x) > t⇒ depths(x) > t. (6.22)

Let αM be the binary representation of M as in Definition 5.1.4.2. Then d2 =
2|αM |+ 2 and d1 = d+ d2 + c1 − e.

Let n, c ∈ N. Let pn ∈ {0, 1}∗ be the witness of K(n). That is, K(n) = |pn|,
V (pn) ↓ and V (pn) = bin(n). Similarly to how it is shown in the proof of Theorem
6.3.5, we have that there exists an y ∈ {0, 1}∗ of length 2n with V (〈αM , pn〉) ↓

93



and V (〈αM , pn〉) = y. By equation 5.1, we have that K(y) ≤ K(n) + 2|αM | + 2 =
K(n) + d2.

In order to prove the lemma, we now need to show that depth2n−3K(n)−d1(y) > n3.

This also follows similarly to the proof of Theorem 6.3.5. Qn3

V (y) ≤ 2−2n by definition
of M . By equation 6.21,

Qn3

V (y)

QV (y)
< 2−(2n−K(y)+e).

Thus by Definition 6.1.5,

ldepth2n−K(y)+e(y) > n3.

And from equation 6.22,

depth2n−K(y)+e−K(n3)−c1(y) > n3.

Since K(y) ≤ K(n) + d2,

2n−K(y) + e−K(n3)− c1 ≥ 2n−K(n)− d2 + e−K(n3)− c1

≥ 2n− 2K(n) + e− d− d2 − c1 by equation 6.19

= 2n− 2K(n)− d1.

For the following lemma, recall Definition 6.1.1.

Lemma 6.3.11. For all c ∈ N there exists a d3 ∈ N, such that for all y ∈ {0, 1}∗\ε
of length 2n,

K(d1(y) + cn) ≤ K(y) + d3.

Proof. Let c ∈ N. Before we can define d3, we define a self-delimiting Turing machine
M .

On an input p ∈ {0, 1}∗, the machine M computes V on input p, and it counts
the steps for this computation. If V (p) ↓, let m ∈ N be the number of steps counted.
Then M outputs m + c|V (p)|. If V (p) ↑ or keeps computing forever, then so does
M .

We let d3 = 2|αM |+ 2.
We continue to prove the lemma. Let y ∈ {0, 1}∗\ε. Let T = d1(y) and let

py ∈ {0, 1}∗ be the witness of d1(y). That is, K(y) = |py|, V (py) ↓, V (py) = y and
TV (py) = d1(y) = T .

Let αM be the binary representation of M as in Definition 5.1.4.2. By definition
of M , we have V (αM , py) ↓ and V (αM , py) = T + c|y|. Thus by equation 5.1,
K(T + c|y|) ≤ 2|αM |+ 2 +K(y) = K(y) + d3.

The final theorem

We continue to the proof of Theorem 6.3.4.

Theorem 6.3.4. There exist infinitely many n ∈ N, for which there are x, y ∈
{0, 1}∗ with |x| = |y| = n, and s1, s2 ∈ N, such that s1 ≤ s2 and ∞ > depths1(x) >
depths1(y) and depths2(x) < depths2(y).
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Proof of Theorem 6.3.4. We first lay out the necessary constants from the previous
lemmas. Let c1, c2 ∈ N be the constants from Lemma 6.3.6, such that for any
z ∈ {0, 1}∗\ε of length n,

depthn+2 logn+c1(db(z)) ≤ c2n
2. (6.23)

Let c3, c4 ∈ N be the constants from Lemma 6.3.8, such that for any n, t, d ∈ N≥1

with K(t) ≤ K(n) + d, there exists a z ∈ {0, 1}∗ of length n such that

depthn−3K(n)−c3−2d(db(z)) > t− c4n. (6.24)

Let d1, d2 ∈ N be the constants from Lemma 6.3.10 such that for all n,∈ N, there
exists a string y of length 2n, such that

depth2n−3K(n)−d1(y) > n3 (6.25)

and
K(y) ≤ K(n) + d2. (6.26)

Let d3 ∈ N be the constant from Lemma 6.3.11 for c4, such that for all y ∈
{0, 1}∗\ε of length 2n,

K(d1(y) + c4n) ≤ K(y) + d3. (6.27)

Let e ∈ N be the constant from Proposition 6.2.6, such that

depths+e ≤ ds(x) <∞ (6.28)

for all s ∈ N≥1 and x ∈ {0, 1}∗.
We now continue to prove the theorem. Let n ∈ N≥1 be such that the following

three equations hold:

n− 3K(n)− c3 − 2(d3 + d2) ≥ e+ 1. (6.29)

2n− 3K(n)− d1 ≥ n+ 2 log n+ c1. (6.30)

n ≥ c2. (6.31)

Note that there are infinitely many n for which this holds.
Let y ∈ {0, 1}∗ be the string of length 2n such that

depth2n−3K(n)−d1(y) > n3. (6.32)

From equation 6.26 and 6.27, we obtain that

K(d1(y) + c4n) ≤ K(n) + d2 + d3. (6.33)

From equation 6.24 we then obtain that there exists a z ∈ {0, 1}∗ of length n such
that

depthn−3K(n)−c3−2(d2+d3)(db(z)) > d1(y). (6.34)

We let x = db(z). Let s1 = n− 3K(n)− c3 − 2(d2 + d3) and s2 = n+ 2 log n+ c1.
We now have the following.
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depths1(y) = depthn−3K(n)−c3−2(d2+d3)(y)

≤ depthe+1(y) by eq. 6.29

≤ d1(y) by eq. 6.28

< depthn−3K(n)−c3−2(d2+d3)(x) by eq. 6.34

= depths1(x)

<∞ by eq. 6.29 and 6.28

depths2(x) = depthn+2 logn+c1(x)

≤ c2n
2 by eq. 6.23

≤ n3 by eq. 6.31

< depth2n−3K(n)−d1(y) by eq. 6.32

≤ depthn+2 logn+c1(y) by eq. 6.32

= depths2(y).
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Chapter 7

Concluding remarks

7.1 Computability

In Chapter 4 we reconsidered different structures for the lambda calculus. Starting
from a combinatory algebra, we first introduced a combinatory pre-model by adding
two combinators. We then defined the notion of reflexivity (an algebraic analogue of
the Meyer-Scott axiom). Reflexivity was shown to be important for interpreting the
lambda calculus. However, it is not sufficient. Strong reflexivity, which corresponds
to the polynomial algebra being reflexive, is sufficient for interpreting the lambda
calculus. We also compared strongly reflexive combinatory pre-models with other
known structures of the lambda calculus.

With the results in this dissertation, the relations and properties of the known
structures for the lambda calculus can now be displayed in a more complete man-
ner. It is also useful to distinguish between two different lambda abstractions for
combinatory pre-models. In addition to the known λ∗-abstraction, we introduced
the λ†-abstraction. It is similar to the λ∗-abstraction, but makes use of the e-
combinator. This lambda abstraction is particularly useful for showing properties
of structures of the lambda calculus that do not satisfy stability.

The results can be summarized in the diagram below. The statements hold for
all q, r ∈ TΛ(A) and for all s, t ∈ T (X ∪ A), where A is a structure as denoted by
the box.

strongly reflexive
combinatory pre-model
s ≈X t⇒ A |= s = t
s ≈X t⇒ λ†x.s ≈X λ

†x.t
λ ` s = t⇒ A |= sCL† = tCL†

lambda algebra
s ≈X t⇒ A |= s = t
s ≈X t⇒ λ∗x.s ≈X λ

∗x.t
1. λ ` q = r ⇒ A |= qCL∗ = rCL∗

2. k = λ∗xy.x, s = λ∗xyz.xz(yz)

combinatory model
s ≈X t⇔ A |= s = t
A |= s = t⇒ A |= λ†x.s = λ†x.t

lambda model
s ≈X t⇔ A |= s = t
A |= s = t⇒ A |= λ∗x.s = λ∗x.t

stability

stability

MS-axiomretractMS-axiomretract
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For a strongly reflexive combinatory pre-model or for a lambda algebra A, we
have that when s, t ∈ T (X ∪ A) are equal as polynomials (equal using the absolute
interpretation), then the corresponding algebra also satisfies their equality. That is,
s ≈X t ⇒ A |= s = t. The other direction does not hold necessarily. It does, when
the Meyer-Scott axiom holds, and thus it is true for combinatory models and lambda
models. There, polynomials are determined by their behaviour as a function.

This can also be observed in the following way. For a strongly reflexive com-
binatory pre-model or for a lambda algebra A, the lambda abstractions only re-
spect equality between terms in the absolute sense: s ≈X t ⇒ λ†x.s ≈X λ†x.t
or s ≈X t ⇒ λ∗x.s ≈X λ

∗x.t for all s, t ∈ T (X ∪ A). For a combinatory model
or for a lambda model A, we have that A |= s = t ⇒ A |= λ†x.s = λ†x.t or
A |= s = t ⇒ A |= λ∗x.s = λ∗x.t for all s, t ∈ T (X ∪ A). This is thus also because
of the Meyer-Scott axiom.

The differences between the structures on the left and on the right side are
characterized by stability. With stability, we can replace the λ†-abstraction by the
λ∗-abstraction.

We have only considered the β-equality of lambda calculus. In [7, Def 7.3.13] it
was shown that in order for a lambda algebra to respect the η-equality, the axiom
λ∗x.s(kx)i = i can be introduced. For future work, it is worthwhile to consider how
this axiom fits in the diagram with the four structures. More specifically, we should
consider the difference between stable and non-stable structures, and see whether
there is an alternative of the axiom using the λ†-abstraction.

Another possible direction of research is reflexive combinatory algebras. We have
defined reflexivity and identified it as important, but not sufficient, for interpreting
the lambda calculus. However, reflexive combinatory algebras possibly have other
properties that still can be found.

We have also shown how to construct a cartesian closed category with a reflexive
object from a strongly reflexive combinatory pre-model in Section 3.4. This was
analogous to the known construction of a cartesian closed category from a lambda
algebra. There is also a construction of lambda algebras from cartesian closed cate-
gories with a reflexive object. Possibly, there is a construction of a strongly reflexive
combinatory pre-model from such categories as well, however, this seems unlikely.
More research should be done in order to obtain a definite answer to this question.

7.2 Complexity

In Chapter 6, we gave an overview of several related definitions for the notion of
logical depth (or physical complexity). We also outlined results that state the corre-
spondence between different definitions. By doing this, we fixed mistakes that were
found in the literature. Moreover, all these results are gathered in a single document
for the first time.

It has not been made very clear how to compare the logical depth of two different
strings. For example, it is not certain whether the definition results in a total order;
whether we can compare the logical depth of any two strings. Perhaps this is not
the case. The definition uses a significance level, which has as a result that it is not
directly apparent which value of logical depth represents the ”right” value for the
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string, if there is such a thing. The other results in this dissertation indicate that it
is important to first make clear what requirements there are for using logical depth,
and specifically how to compare two different strings.

Namely, we showed that logical depth is unstable with respect to the significance
level. This was already shown for sophistication, a similar definition. It was then
concluded that sophistication should be considered as a function in the significance
level. It is reasonable to then also assume this for logical depth. The problem with
this, is that we do not know yet how to compare the logical depth of different strings,
when we interpret logical depth as a function in the significance level. This has also
not been written out for sophistication. The most straightforward way would be to
check whether one string has a higher logical depth than the other string for every
significance level. But this is not always possible. With Theorem 6.3.4, we showed
that it is not always the case that one string has a higher logical depth than the
other for every significance level.

With these results, it becomes uncertain how the definition of logical depth
should be used. This illustrates that it is important to reconsider the basis for the
definition, and make clear what assumptions and requirements are behind it. Some
of these requirements are already clear: random strings and the most simple strings
(such as a sequence of ones) should have the lowest depth. Other presumptions,
such as those specifying which strings can be compared to each other and which
not, are still needed.

99



Publication

Marlou M. Gijzen, Hajime Ishihara, Tatsuji Kawai, Reflexive combinatory algebras,
Journal of Logic and Computation, 2022; https://doi.org/10.1093/logcom/exac049

100



Bibliography

[1] Leonard M. Adleman. Time, space and randomness. Tech. rep. MIT/LCS/TM-
131. Massachusetts Institute of Technology, Laboratory for Computer Science,
1979.

[2] Lúıs Antunes, Bruno Bauwens, André Souto, and Andreia Teixeira. “Sophis-
tication vs Logical Depth”. In: Theory of Computing Systems 60.2 (2017),
pp. 280–298.
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