JAIST Repository

https://dspace.jaist.ac.jp/

OXMLODOODOOXPat hOOOOooOoDOooOpOoO

Title gooooooogo

Author(s) oo, 00

Citation

Issue Date 2005-03

Type Thesis or Dissertation

Text version

aut hor

.net/101p9/1858

URL http:/7/7 hdl handl
Rights
Description Supervisor: goooag, ooooooo oo

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Interface Design of Wrappers for XPath Queries on
Non-XML Data,

Kenji Watatani (310124)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 10, 2005

Keywords: XML, XPath, non-XML data, wrapper, query processing.

As the cost of secondary storage drops, today there are huge amount of
data in various formats saved in the personal computers and on the severs
on the internet. It has arisen the demand for the tools to uniformly issue
queries on those data in various formats in order to retrieve necessary data.
There exist systems for issuing keyword queries on HTML, PDF, Microsoft
Power Point, and so on. However, as the volume of data increases, it
is getting hard to retrieve only necessary information from it, and it is
recently regarded that it is important to be able to issue not only keyword
queries but also structural queries which can specify the structure of the
data to retrieve.

As an approach to this problem, it has been proposed to use XML as the
standard data format for various data. If we represent personal address
books, schedule data, e-mail boxes, and so on in XML format, we can
uniformly issue queries on those data by using XML query languages, such
as XPath, which is a simple standard structural query language for XML.
For now, however, many application specific data formats, or standard data
formats for images, movies and so on, are still widely used, and even in
future, it is not likely that all the data would be in XML format because
of various reasons, such as data size and processing efficiency.

Therefore, in this research, we propose a system where we can uniformly
issue XPath queries on data in various formats. This system is composed

Copyright (© 2005 by Kenji Watatani



of a “common module” and “wrappers.” There exists one wrapper for
each data format, and wrappers provide a common interface to each data
format. The common interface consists of a set of operations, and the
common module evaluates given XPath queries by accessing each data
through those operations.

Here, the design of the interface between the common module and the
wrappers is very important. If the interface consists of very low-level op-
erations, it is easier to develop wrappers, but on the other hand, in the
evaluation of queries, it is more difficult to adopt various optimization de-
pending on each data format. On the contrary, if the interface consists
of very high-level operations, various format-dependent optimization can
be embedded in wrappers, but the cost of developing wrappers is higher,
which can be a serious obstacle to the support of many data formats.

Based on the observation above, in this research, we examine what op-
erations are needed for efficient evaluation of XPath queries, and design
a wrapper interface which achieves both relatively easy development of
wrappers and efficient evaluation of queries. Then, we compare that in-
terface and higher-level and lower-level interfaces in their query evaluation
efficiency and programming costs in order to justify the design of our in-
terface.

More specifically, we design the following four interfaces, from a high-
level interface to a low-level one.

Interface 1: The common module do not process XPath at all. It just
invokes wrappers corresponding to the target data format, and it passes
given XPath queries to them. The wrappers process XPath queries, and
return the result to the common module. In this approach, the programs
of wrappers include the codes for the process common to all the data
formats, i.e. the core part of XPath evaluations. Therefore, the cost of the
development of wrappers is high.

Interface 2: The common module decomposes the given XPath query into
a set of subexpressions in a subclass of XPath, which are called “simple
paths.” Each simple path is translated to an operation to move a file
pointer (and sometimes read the data at the file pointer), and given to
wrappers. Then, the wrappers execute that operation, return the result to
the common module, and wait for the next instruction. In this interface,



one operation in the interface corresponds to multiple navigation steps on
XML trees.

Interface 3: The common module decomposes the given XPath query
into a set of “steps,” which is a basic unit of XPath expressions. Each step
is translated to an operation to move a file pointer (and sometimes read
the data at the file pointer), and given to wrappers. Then, the wrappers
execute that operation, return the result to the common module, and wait
for the next instruction. In this interface, one operation in the interface
corresponds to one navigation step on XML trees.

Interface 4: Wrappers do not include any processing that depends on
the given query. They always process entire target data, and provide the
common module with views as if the data are XML data. More specifically,
in this research, we use SAX interface, which is a widely-used standard
interface for accessing XML data, and a wrapper outputs a sequence of
“SAX events” which correspond to the occurrences of opening/ending tags
of elements, attributes, and so on. In this approach, wrappers always
process whole target data, and therefore, query evaluation can be highly
inefficient, e.g. when extracting only small data appearing at the beginning
of huge data.

Among those interfaces, we have implemented 1, 3, 4. The experimental
results show that the interface 3 achieves both more efficient query process-
ing and lower memory usage. Thus, we have confirmed that the interface
3 is more appropriate than the interface 1 or 4.



