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Abstract

The pitch, or in technical terms, the fundamental frequency (the lowest
oscillating prominent frequency component of a periodic signal) of a signal,
determines how “high” or “low” an audio signal would sound. One can
change the pitch of an audio recording by shifting the fundamental frequency
of the audio signal, to make sure that the final audio will always stay in tune
even if the music performer makes mistakes during the recording process.
Such a manner is often referred to as “pitch correction” as a post-processing
technique in audio engineering.

Pitch correction, in an offline context, will not be a too challenging task.
With the development of computing power, audio analysis and modification
seem to become more and more trivial. However, what if one wants to
perform pitch correction in real time?

A real-time environment sets harsh timing constraints on the computa-
tion. If an algorithm could not be executed efficiently enough, the timing
requirement would then not be met. What’s more, a more limited compu-
tation time usually calls for a more powerful computing system. Indeed,
computing power is becoming more and more abundant as the technology
evolves. Yet, in certain circumstances where a powerful computing system
cannot be deployed, an energy-efficient solution becomes vital.

Back to the previous question. If one needs to perform pitch correction,
a pitch detection operation needs to be performed first, followed by a pitch
shift operation. The pitch detection part tells us where is the current pitch
and how far it is away from the designated target, and the pitch shift part
modifies the pitch to the desired level. There exist numerous studies with
different approaches aimed to perform the prior two tasks. Nonetheless, little
research has been conducted to look for an energy-efficient real-time solution
that solves both questions.

Thus, this thesis study aims to develop a standalone power-efficient
system that can perform pitch detection and pitch shift operation simul-
taneously in real-time. The processing needs to be fast enough to catch
up with the audio sampling frequency, meanwhile utilizing as few hardware
resources as possible. In this thesis study, we proposed and developed
two novel mechanisms, one being the auto-cross correlation that performs
pitch detection, and another being a ring buffer, with jump-based-on-pitch
pointers, that performs pitch shift operation. We then verified our approaches
via experiments, making sure that they could yield an as-expected result.
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After the verification process, we implemented our design on an FPGA
platform. After the implementation, we recorded the output generated by our
new design and verified that the new design is able to satisfy the requirements
set by this study.

Keywords: Pitch detection, pitch shift, power-efficient, real-time, FPGA
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Chapter 1

Introduction

Sound is an oscillated wave that travels through a physical medium. The
faster the oscillation, the higher the sound. The height of a sound is usually
referred to as the pitch in musicology, and the pitch of an audio signal is
determined by the fundamental frequency of the oscillation. Different musical
instruments may bring different harmonic frequencies to their oscillation, re-
sulting in different timbres. However, as long as the fundamental frequencies
are kept the same, the pitch is kept the same.

Nowadays, people can record audio signals into digital forms using an
audio analog to digital converter (ADC). Once the signal’s digital data is
preserved, people can then use different approaches to analyze the signal or
to modify the signal via digital signal processing (DSP). In audio engineering,
one of the most important post-recording processes is pitch correction. If a
recorded signal is analyzed to have a pitch that is not in the desired range,
an audio engineer can use some DSP techniques to bring the pitch of the
signal back to the desired range rather than asking the performer to record
a second time.

The pitch correction process is mainly made up of two parts: pitch
detection and pitch shift. The pitch detection part tries to estimate the
fundamental frequency of the audio and calculates the distance between the
current pitch and the desired pitch. Once the distance is calculated, the pitch
shift part can then shift the signal by the calculated distance.

The above two processes will not be too difficult to realize in an offline
situation where timing constraints are not harsh – digital audio processing
can be traced way back to the last century when computing power was no
way near today’s level. However, performing pitch correction in a real-time
environment is a different story. Granted, computing power nowadays is
becoming not only more abundant but also cheaper compared to computing
power even ten years ago. Yet, there exists little research on real-time pitch
correction, let alone research on power-efficient real-time pitch correction.
Such a fact raised the interest of this research, which aims to develop a
standalone field programmable gate array (FPGA)-based system that can
perform pitch correction for a monophonic input (with a main focus on the

1



vocal signals), with two major requirements: real-time capability, and power
efficiency.

The flow of this thesis will be as follows. Pitch detection will be discussed
in Chapter 2, followed by pitch shift discussed in Chapter 3. The hardware
design and integration of this research will be laid out in Chapter 4, and the
whole thesis will be wrapped up by conclusions stated in Chapter 5.
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Chapter 2

Pitch Detection

This chapter mainly discusses pitch detection. First, some background of
pitch detection and basic music theory will be provided in section 2.1. Two
general ways of pitch detection will be introduced in section 2.2 along with the
technical details behind them. Then in section 2.3, the merits and drawbacks
of both approaches will be discussed, and the approach selected by this
research will be revealed. In addition, a novel approach will be proposed
alongside its experimental results in 2.4. Finally, a chapter summary will be
provided in section 2.5.

2.1 Background

2.1.1 Fundamental Frequency

As stated previously, the fundamental frequency (ω0) of a particular signal
determines the pitch of that signal. An audio signal may contain various
harmonic frequencies, which are the frequency components accommodated
at a higher frequency location than the ω0. Besides, harmonic frequencies
are positive-integer multiples of the ω0. Nonetheless, only the ω0 determines
the pitch of that signal.

To get a better understanding of the frequency components of a signal,
the Fourier transform needs to be introduced.

X(ω) = F{x(t)} =

∫ ∞

−∞
x(t) e−2jπω t dt (2.1)

Equation (2.1) defines the Fourier transform of a continuous signal x(t),
where t is the time unit of the signal x and ω is the frequency unit of x(t)’s
Fourier transform, X(ω). The Fourier transform decomposes the signal into
an infinite amount of sinusoidal components, and the amplitude of X at ω
determines how prominent is the sinusoidal component at phase ω. In other
words, Fourier transform brings a signal from time domain (TD) to frequency
domain (FD).
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However, capturing an ideally continuous signal, which has a time interval
of infinity, is simply not feasible. Besides, audio engineers nowadays mostly
use an ADC device to convert and preserve analog signals in digital form.
On that, the discrete Fourier transform (DFT) of a digital (discrete) signal
x[t] is defined in equation (2.2):

X[ω] = F{x[t]} =

t0+T−1∑
t=t0

x[t] e−2jπω t (2.2)

where t0 and T are the starting time and the time interval of the digital signal
x[t], respectively. It’s worth noting that for a real discrete signal that has no
imaginary component, its DFT will be symmetric at ω = length(X)/2 since
it has no negative frequency component.

We can now define the fundamental frequency (ω0) of a digital signal x[t].
Ideally, the ω0 of the signal x[t], if it has any frequency components, is the
minimal non-zero ω that yields a local maximum |X[ω]| (the “sinusoidal”
component at ω = 0 is simply not oscillating, thus is not considered as a
frequency component). For a real signal, ω0 would be positive since there is no
complex component. Also note that if the higher frequencies are not positive-
integer multiples of the ω0, then the signal will not be monophonic. Figure 2.1
shows the plot of a discrete signal, x[t] = 0.1 sin(40π t) + 0.5 sin(80π t)
sampled at 1000 Hz, and its DFT’s magnitude:
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Figure 2.1: A discrete signal x[t] and its DFT X[ω]

The DFT plot shows that there are two local maxima: one occurs at 20
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Hz, and another occurs at 40 Hz, which are also the frequency of sin(40π t)
and sin(80π t), respectively. In this case, although the 40 Hz component is
more prominent due to its higher coefficient, the ω0 is still considered as 20
Hz. That said, the ω0 does not always yield the greatest local maximum in
the FD.

However, real-world recordings of any type of signal are affected by various
sources of noise. Such a factor makes this ideal definition of ω0 not practical.
Consider another plot of a piece of the vocal audio signal recorded via a
microphone and its DFT, shown in Figure 2.2:
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Figure 2.2: A piece of vocal signal and its DFT

Although the major spikes are visible enough, many fluctuations with
many local maxima occur throughout the entire span of the signal’s FD.
Such a fact makes the ideal definition on the ω0 not practical in real-world
usages.

Thus, the definition of ω0 is very vague in this context. The ω0 of a
digital signal should yield the first “major” local maximum in its FD, but
there is no clear definition of how prominent a spike is considered “major”.
Many musical instruments have stronger harmonic components than their
fundamental-frequency component. Such a fact makes the determination of
ω0 much harder. Figure 2.3 plots the recording of a viola playing, sampled
at 48 kHz.

One may arbitrarily estimate that the fundamental frequency of the viola
sample is at around 262 Hz according to the Fourier transform plot. However,
if we plot the result in a logarithmic scale like in Figure 2.4, one may observe
that the first major peak occurs at around 131 Hz. Moreover, there also
exists a minor spike at around 59 Hz, yet that frequency component is not
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Figure 2.3: A piece of viola signal and its DFT

considered the fundamental frequency due to its low energy level. Thus, it
can be concluded that a standard on how to locate the fundamental frequency
can be hardly set up.
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Figure 2.4: DFT of the viola recording in logarithmic scale

2.1.2 Musical Notation

With the ω0 explained, let us proceed to musical notation. In musicology,
there are a total of 12 different notes in an octave. For simplicity, we will
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use the numbered musical notation, meaning that each octave is composed
of note 1, note 2, ..., and note 12. The note that is higher than note 12 is
note 1 but in a higher octave set. Likewise, the note that is lower than note
1 is note 12, but in a lower octave set. Besides, a note will have double the
fundamental frequency of the same note in its adjacently lower octave.

The explanation may sound confusing, so let us take an example. Denote
note xi as a note x in octave i, then note xi+1, which is one octave higher
than xi, will have double the ω0 of xi, and vice versa. Besides, adjacent
notes’ frequency will have a multiple of 21/12. E.G. assume note 104 has a ω0

of 440 Hz, then note 105 will have a ω0 of 880 Hz, and note 103 will have a ω0

of 220 Hz. Besides, note 114, which is adjacently higher than note 104, will
have a ω0 of 440× 21/12 ≈ 466.16 Hz. Likewise, note 94, which is adjacently
lower than note 104, will have a ω0 of 440 ÷ 21/12 ≈ 415.31 Hz. The note
higher than note 124 is note 15, and the note lower than note 14 is note 123.

In the following section, we will discuss some of the existing approaches
to estimating the ω0 of a piece of digital signal.

2.2 Frequency Domain and Time Domain

In general, there exist two general approaches to obtaining the fundamental
frequency of a signal: TD approaches and FD approaches. In fact, the
frequency domain approach has just been brought out in section 2.1. We
will look further into both techniques in this section.

2.2.1 Frequency Domain Approaches

As previously stated, one can calculate the DFT of an audio signal to obtain
its frequency characteristics, and the first major spike shown in the result
will be the ω0. Since the analysis is conducted in the FD, any use of DFT or
its variants is considered an FD technique.

When trying to capture the ω0 of a signal, performing a DFT that covers
its entire time span may be impractical. Doing so not only takes more time
on waiting for the signal to finish but also suffers from a low resolution in
the TD. Imagine a digital signal lasting from t0 to t1 changes its frequency
characteristics within its lifetime. Then, the DFT of the signal will fuse
all the frequency characteristics at different time steps together, resulting
in a difficult-to-analyze output. Besides, a longer DFT requires a longer
calculation as well, further extending the waiting time.

Thus, it is more practical to perform several short-time Fourier transforms
(STFTs), each covering a smaller time interval, rather than a single long
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DFT. An STFT is simply a DFT performed in a time window with limited
size. Thus, performing STFTs means a more frequent output, yielding an
increase in the TD resolution. As a use-case example of the STFT technique,
a very early study on harmonics analysis achieves its goal by calculating the
STFTs of signals [1].

However, shortening the time frame of STFT will lower the resolution in
the FD. This resolution trade-off situation will be discussed in more detail
in section 2.3.

2.2.2 Time Domain Approaches

On the contrary to the FD approach, the TD approach “does not” rely
on the calculation of DFT nor STFT (more detail on that in section 2.3).
TD approaches estimate the fundamental frequency of a periodic or quasi-
periodic signal by calculating the similarity between the target signal and its
time-delayed self. There are multiple ways to calculate the level of similarity,
and two of the most popular choices are the uses of autocorrelation function
(ACF) and square difference function (SDF).

Rx[τ ] =

t0+T−1∑
t=t0

x[t]x[t+ τ ] (2.3)

SDFx[τ ] =

t0+T−1∑
t=t0

(x[t]− x[t+ τ ])2 (2.4)

Equations (2.3) and (2.4) define the ACF and SDF of discrete signal x[t],
correspondingly. In both functions, t0 and T are the starting time and the
time interval of x[t], respectively. It’s noticeable that if the discrete signal
x[t] starts at t0 and has a time interval of T , then x[t+τ ] = 0 when t+τ < t0
or t + τ > t0 + T − 1. Both functions calculate the similarity level between
a signal and its time-delayed self. For a periodic or quasi-periodic signal, its
period could be determined by the local maxima/minima of its ACF/SDF,
correspondingly. Several researchers estimate the fundamental frequency of
monophonic signals in TD based on the use of equation (2.3) and/or equation
(2.4) [2, 3].

Figure 2.5 plots the signal x[t] = 0.1 sin(4π t) + 0.5 sin(8π t) sampled at
100 Hz, along with its Rx[τ ] and SDFx[τ ]. As one may observe, the Rx[τ ]
reaches its absolute maximum, and SDFx[τ ] reaches its absolute minimum
at τ = 0, when the signal is compared to its identical self. One may also
observe that both functions have a tapering effect, this is because x[t+τ ] = 0
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Figure 2.5: Signal x[t] and its ACF and SDF

when t+ τ < t0 or t+ τ > t0 + T − 1. Furthermore, both the ACF and the
SDF are symmetric at τ = 0 because x[t] is real.

2.3 Merits and Drawbacks

In this section, we will see some of the merits and drawbacks of both general
approaches.

2.3.1 Merits of FD Approaches

One of the major merits of using an FD approach is that it offers very rich
information on both the fundamental frequency and the harmonic frequency
[1]. Though not necessarily meaningful to the detection of the pitch, the rich
information could help perform other audio processing tasks. Past research
such as [4,5] perform pitch detection using the methods based on the STFT.

According to equation (2.2), the naive calculation of DFT involving n
data points has a time complexity of O(n2). Yet, an efficient calculation of
the DFT named the fast (discrete) Fourier transform (FFT), does exist [6].
Such an algorithm brings down the time complexity of calculating the DFT
from O(n2) to O(n log(n)). For a data point of N = 2m where m is a
positive integer, research [6] calls for about 5N log(N) amount of floating-
point operations (FLOPs) to perform the FFT. A latter design further brings
down the required amount of FLOPs to 4N log(N) − 6N + 8 [7]. Keep in
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mind that these numbers all represent the amount of FLOPs, which require
much more resource to perform than integer operations.

2.3.2 Drawbacks of FD Approaches

Even though efficient calculations of DFT exist, calculations of both the DFT
and the STFT are still considered complicated. Though the time complexities
of FFT and its latter variants are O(n log(n)), the calculation of FFT still
requires not only FLOPs but also the handle of complex numbers. Both
factors severely slow down the calculation process and require a significant
amount of hardware resources.

Another major drawback of using a FD approach is that it suffers from
spectral leakages [1]. The spectral leakages happen because of the windowing
operation used in the STFT, making different frequency components clash
together. Think of it as the trade-off of increasing the resolution in the TD
– while a smaller-window STFT updates the frequency information more
frequently, each window contains less frequency information. For a real signal
sampled at SR Hz, its frequency grid, FG[t], of its N -point DFT, is described
in equation (2.5). Keep in mind that a larger grid means a lower resolution.

FG[t] =
SR÷ 2

N − 1
(2.5)

Figure 2.6 demonstrates the effect of a limited frequency resolution. An
audio signal produced by a piano is recorded and sampled at 48 kHz, and
DFTs are calculated using 800 data points and 22050 data points. When the
data points are kept to 800, each bin (I.E. each ω point) only has a frequency
resolution of 24000/(800 − 1) ≈ 30.04 Hz, whereas the frequency resolution
of using a window size of 22050 is 24000/(22050−1) ≈ 1.088 Hz. Thus, even
though the true fundamental frequency of the signal is at around 262 Hz,
the 800-point DFTcannot locate the frequency component at this frequency,
showing a peak at around 240.6 Hz. Moreover, this issue cannot be easily
fixed by enlarging the calculation window. Recall from section 2.2.1 that a
too-large window will fuse the frequency characteristics at all times together,
alongside a decrease in time resolution.

2.3.3 Merits of TD Approaches

A major advantage of performing pitch detection in the TD is that it does not
mandate FLOP nor complex-number calculation. Such a fact makes the TD
approaches both less time-consuming and less resource-intensive compared
to FD approaches that calculate the DFT or STFT naively.
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Figure 2.6: Different-size DFTs with different frequency resolution

Besides, since the TD methods perform in the TD only, the trade-off
between the TD resolution and the FD resolution is not proportional. For a
real signal sampled at SR Hz, the frequency resolution of its N -point window
depends on the time index t, and the frequency grid at time FG[t] is given
by:

FG[t] =
d

dt

SR

t
(2.6)

As one may observe, FG[t] becomes smaller (which indicates a higher
resolution) as t increases due to the inverse-proportion relationship between
FG[t] and t. This makes sense since frequency ω is the reciprocal of period t.

2.3.4 Drawbacks of TD Approaches

One of the major drawbacks of TD approaches is the fact that the calculation
of an n-sized ACF and SDF has a time complexity of O(n2) according
to equation (2.3) and (2.4). A workaround on calculating the ACF using
FFT does exit, which brings the time complexity down to O(n log(n)) [8].
However, doing so simply means that the advantage of not involving FLOPs
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and complex calculations is compromised. In addition, since FFT is involved,
the whole process can then hardly be categorized as a pure TD approach.

In addition, TD approaches can be significantly affected by a signal’s
harmonic frequencies. Once again, consider the viola sample mentioned at
Figure 2.3. Figure 2.7 shows its ACF and SDF. As one may observe, the ACF
suggests that the time lag at where the signal finds its most similar self is at
τ = 185. Since the sampling frequency is 48 kHz, the suggested frequency
is then 48000 ÷ 185 ≈ 260 Hz, whereas its true fundamental frequency is
at around 130 Hz. The SDF also suggests a ω0 at around 260 Hz. Thus,
contrary to FD approaches, the result generated via TD approaches can be
much more easily deteriorated by the harmonic frequencies. On that, TD
methods also provide little information on multi-phonic inputs, making it
not capable of detecting multiple fundamental frequencies at the same time.
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Figure 2.7: ACF and SDF of the viola signal

What’s more, the window size of either the ACF or the SDF needs to
contain at least 2 periods of the periodic or quasi-periodic signal in order to
generate a local maximum or a local minimum, respectively [2]. The reason
is that if the window contains less than 2 periods of signal, both the ACF
and SDF cannot time delay the original signal to the most similar point,
resulting in ambiguous results. Figure 2.8 describe such a circumstance,
where the signal x[t] = sin(π t) + 0.5 sin(1.5π t) is sampled at 100 Hz, and
the calculation window only contains 200 samples. One may observe that
after τ > 0, there is no new maximum in the ACF and no new minimum in
the SDF.
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Figure 2.8: ACF and SDF fail to provide any meaningful information

2.3.5 Conclusions and Thoughts

In conclusion, both the FD and the TD methods have their own merits
and drawbacks. Many of the drawbacks can be overcome using different
techniques, but some hard obstacles cannot be easily avoided. For the FD
approaches, it is the involvement of FLOPs and complex calculation. For the
TD approaches, it is the efficient calculation that yields a time complexity
of O(n log(n)) without the use of FFT.

Back to the purpose of this thesis. One of the main requirements of
this research is to use as few hardware resources as possible in order to
decrease power consumption. The FFT and its latter variants indeed have
a time complexity of O(n log(n)), yet the achievements are based on the
usage of more hardware resources. Modern computing powers are becoming
cheaper, but in many circumstances, abundant computing resources cannot
be guaranteed, restricted by circumstances that limit the deployment of
computing hardware and/or power supplies. Implementing any of the
variants of FFT involves complex arithmetic, where a complex addition takes
twice the amount of resources as a real addition, and a complex multiplication
takes three times the amount of resources as a real multiplication, which itself
is a more computing intensive task than real addition. What’s more, all of
the arithmetic is carried out using FLOPs, resulting in additional multiples of
resource consumption than integer-only operation. Since power consumption
is one of the major concerns of this research whereas multi-phonic monitoring
and processing is not in the scope of this research, we decided to perform all
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the operations in the TD only.
The time complexity of calculating either the ACF or the SDF is O(n2).

At first glance, one may think that such inefficient algorithms cannot obey
the timing constraint set by any real-time applications. Yet, the actual
situation, at least in the context of real-time pitch correction, is not as harsh
as one may imagine. In the following section, we will discuss some of the
current techniques on how to avoid the pitfalls of TD algorithms mentioned
earlier and an all-new design that aims to take the least amount of hardware
resources.

2.4 A New Approach in the Time Domain

2.4.1 Current Workarounds

One of the drawbacks of both the ACF and SDF, as mentioned earlier at
Figure 2.5, is that they both have a tapering effect. Such an effect may
not affect the estimation too much when the fundamental frequency is more
dominant than the harmonics but suffers greatly from the situation when the
fundamental frequency is less prominent than the harmonics.

Take a look back at Figure 2.5. Both functions suggest that the closest
similarity point occurs at τ = 25, which translates to a frequency of 100÷25 =
4 Hz. However, 4 Hz is the frequency of sin(8π t), which is not the fundamen-
tal frequency. Let us tweak the signal to x[t] = sin(4π t) + 0.5 sin(8π t) so
the fundamental frequency is more dominant. Figure 2.9 shows the adjusted
signal with its new ACF and SDF.
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Figure 2.9: ACF and SDF of an adjusted x[t]
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One may now observe that the ACF and the SDF are yielding the correct
result, with the most similar time lag happening at τ = 50, corresponding to
the period of sin(4π t). Thus, one can conclude that the tapering natural of
both the original ACF and SDF have a significantly negative impact on the
estimation result. Thus, finding a solution that avoids the tapering effect is
crucial.

Different methods of avoiding the tapering effect are discussed in [2, 3]
and many other literature. In research [3], the author introduces the concept
of “cumulative mean normalization operation”, which divides the result at
each time-lag point by a limited size of moving average. The moving average
decreases along with the decrease of the SDF, resulting in wiping out the
tapering effect. However, the choice of the length of the running-average
window is crucial, and an inappropriate choice may result in an even worse
estimation [9]. In research [2], the concept of “normalized square difference
function”, which divides the 2×ACF value of the signal by the SDF+2×ACF
value of the signal, was introduced. One can derive from equation (2.3) and
(2.4) that the expansion of the SDFx[τ ] contains a term of −2Rx[τ ] in it,
concluding that the normalized square difference function will always be in
the range of [−1, 1]. Since both the ACF and SDF have a tapering effect,
the division will cancel out the tapering effect.

However, the task of multiplication itself is already computing-intensive,
let alone the introduction of division, or even worse, floating-point division.
General-purpose computers nowadays usually have dedicated multiplication
hardware, but such a luxury is not available on smaller platforms like a
microcontroller unit. Besides, even with the aid of dedicated multipliers
in hardware, divisions still take more time to perform than multiplications
because divisions can hardly be executed in parallel. Thus, the former
solutions for solving the tapering effect, though proven to be effective, are a
burden rather than an alleviation to this research.

In the following section, we propose a new calculating method that not
only does not suffer from the tapering effect but also helps ease the computing
stress of calculating both the ACF and SDF.

2.4.2 Auto-cross Correlation

As stated previously, if the discrete signal x[t] starts at t0 and has a time
interval of T , then x[t+ τ ] = 0 when t+ τ < t0 or t+ τ > t0 + T − 1. Such a
fact causes the tapering effect: in the context of the ACF, the time-delayed
signal is multiplied by zeros when t + τ < t0 or t + τ > t0 + T − 1; in the
context of the SDF, the absolute difference is identical to the time-delayed
signal’s value when t + τ < t0 or t + τ > t0 + T − 1. Research [2, 3] suggest
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that one should modify the correlation structure to the description of (2.7),
where ◦ denotes any type of operation. However, this structure simply skips
the terms at when x[t + τ ] = 0, which does not necessarily cancel out the
tapering effect.

t0+T−τ−1∑
t=t0

x[t] ◦ x[t+ τ ] (2.7)

We would like to propose a new structure called the “auto-cross correla-
tion function (ATC)” structure. Consider a discrete signal x[t] starting at t0
and has a time interval of T . The ATC of signal x[t] is defined in equation
(2.8).

ATCx[τ ] =

t0+
T
2
−1∑

t=t0

x[t]x[t+ τ ], 0 ≤ τ ≤ T

2
(2.8)

Take a look at the inequality constraint first. τ ≥ 0 is set since a negative
τ provides information on a negative period. For digital audio signals, which
are always real, there is no negative frequency component. Thus, finding
the ATC at a negative τ would not provide any useful information since
the negative half would just be symmetric to the positive half. The other
constraint, τ ≤ T

2
, makes sure that t + τ ≤ t0 + T − 1 holds in τ ’s entire

range.
Taking a further look at the summation, one may realize that the ATC

only goes through half of the window size. Doing so not only reduces
the number of multiplications to a quarter compared to a traditional ACF
operation but also makes sure that the calculation of the ACF never operates
at the outside of its window, preventing the involvement of zeros that are
out of the bound.

Figure 2.10 shows the ATC result of the same signal used in Figure 2.5,
which is x[t] = 0.1 sin(4π t)+0.5 sin(8π t) sampled at 100 Hz. In Figure 2.5,
both ACF and SDF methods suggest that the highest similarity point shows
up at τ = 25, representing a frequency of 100 ÷ 25 = 4 Hz. This is
the frequency of 0.5 sin(8π t), and thus is not the fundamental frequency.
However, Figure 2.10 shows a higher local maximum occurring at τ = 50,
which represents a frequency of 100 ÷ 50 = 2 Hz. That said, although the
energy level of the sin(4π t) is much less than that of the sin(8π t), the ATC
is still able to capture that lower frequency point, which is also the ω0 in this
case. Thus, with the aid of the ATC, we are not only able to alleviate the
computing stress by three quarters but also avoid the tapering effect with
a better estimation than following the traditional ACF and SDF methods.
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Figure 2.10: ATC result with a better estimation

Another example is shown in Figure 2.11, where the ATC once again is able
to estimate the fundamental frequency of the viola signal that both the ACF
and the SDF failed to provide an accurate estimate.
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Figure 2.11: ATC of the viola signal

2.4.3 One-bit correlation

Although the ATC can provide a more accurate result with less requirement
on the computing power, the calculation is still very inefficient. Most digital
audio nowadays is recorded with a bit depth of at least 16 bits. Performing
16-bit multiplication in an O(n2) manner takes a long time, especially on
embedded systems that do not have a dedicated hardware multiplier. Thus,
a more aggressive optimization is needed.
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To fulfill the requirement of low-energy computing, we would like to
propose the operation of one-bit correlation. Let us first look at the property
of a square wave. A square wave is a periodic signal that is not sinusoidal
– its value jumps between its maximum and minimum. Figure 2.12 shows a
square wave and a sine wave both having a frequency of 4 Hz.
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Figure 2.12: A sine wave and a square wave with the same frequency and
amplitude

The Fourier expansion of a square wave with a period of 2L is described
in equation (2.9) [10].

square(t) =
4

π

∞∑
n=2k−1

1

n
sin(

nπ t

L
), k ∈ Z+ (2.9)

One may observe that a square wave is composed of an infinite amount of
sine waves, with the most prominent sine wave staying at the same frequency
as the square wave. I.E., the Fourier expansion of a square wave states that
there does not exist any sinusoidal component that has a lower frequency
than the square wave itself. With that being said, substituting all the
sinusoidal components in a signal with a square wave does not introduce any
low-frequency component, hence will not change the signal’s fundamental
frequency. That is, the signal xs(t) listed in equation (2.10) will have the
same fundamental frequency as x(t).

xs(t) =

{
1, if x(t) >= 0

−1, if x(t) < 0
(2.10)

Such a fact greatly eases the computation stress of estimating the ω0

via ATC. Moreover, let us modify equation (2.10) to (2.11). It is obvious
that xsi(t) = −0.5xs(t) + 0.5. Due to the linearity property of the Fourier
transform, each frequency component of xsi(t) will have a quarter of the
energy as the original frequency component at xs(t). Nonetheless, since every
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frequency band is scaled down by the same factor, the prominence of each
frequency component will mostly remain unchanged.

xsi(t) =

{
0, if x(t) ≥ 0

1, if x(t) < 0
(2.11)

Such facts greatly help ease the process of calculating the ATC since
every value can now be represented using just ones and zeros. Moreover, in
hardware binary computation, the most significant bit (MSB) of any signed
integer indicates if a signed integer is negative or not. If the MSB of an
integer z is 1, then z is a negative number; if the MSB of an integer z is
0, then z is a non-negative number. Hence, instead of calculating the ATC
using the raw data, one can simply calculate the ATC using each sample’s
MSB, I.E. performing a one-bit correlation. A one-bit multiplication can
simply be achieved using a one-bit AND gate, which outputs one only when
both inputs are ones and outputs zero otherwise. This little requirement
on hardware resources significantly compensates for the fact that the whole
process has a time complexity of O(n2), and is much more appealing than
using an FFT to reduce the time complexity.

2.4.4 Results

To verify the accuracy of the one-bit ATC, let us once again use the same
viola recording as a test case. Figure 2.13 plots the one-bit ATC of the same
viola recording used in Figure 2.11. As one may observe, the one-bit ATC is
still able to yield an accurate result just as the normal ATC does.
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Figure 2.13: One-bit ATC of a viola signal

The one-bit ATC does not suffer from the tapering effect and requires the
least amount of hardware resources among all of the existing approaches. All
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it needs is a one-bit AND gate to perform the “multiplication”. Since the
sum of the multiplications will always be not greater than the value of half
the window size (I.E. a 512-sample window will yield a maximum result of
256), the detection module just needs an additional adder that can handle
⌈log (window size)− 1⌉ bits of data. Since the one-bit “multiplication” is
never negative, the adder does not even require a sign bit.

In addition, the one-bit ATC can also provide a clarity measure. When a
signal is noisy, its autocorrelation tends to hold a very low value. This value
is not absolute since the sum of the multiplications depends on the amplitude
of the signal, thus a normalization method is needed [2]. However, one-bit
ATC does not require normalization for its clarity measure. The reason is
that the amplitude of signals has already been standardized at the stage
of extracting just one bit from each sample. As previously mentioned, the
summation of multiplications will never exceed the value of half the window
size. Hence, one only needs to find the difference between the one-bit ATC
value at ω0 and the absolute minimum to determine the level of the noise.
Figure 2.13 shows the ATC when a generated white noise is injected into the
original viola sample. Although the pattern is still quite similar, the vertical
distance from the greatest local maximum to the absolute minimum declined
significantly.
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Figure 2.14: One-bit ATC results, with and without noise

It should be pointed out that the greatest local maximum does not always
yield the correct estimation. Consider a piece of piano-playing recording,
sampled at 48 kHz, and its noise-infused version shown in Figure 2.15. The
ω0 is at around 522 Hz, which is about 92 in terms of sampling period. As
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one may notice, the one-bit ATC can barely distinguish the fundamental
frequency from the harmonic frequency of even the cleaner signal and fails to
provide an accurate estimate using the value of the greatest local maximum.
Some musical instruments by their nature have a harder-to-detect frequency
characteristic, with a few of them intentionally designed to sound more multi-
phonic. The multi-phonic characteristic of these types of instruments can
compromise the performances of TD approaches. Figure 2.16 is the result
of the previous noisy piano signal processed using the normalized square
difference function proposed in [2]. As one may observe, naively choosing
the greatest local maximum will still yield an incorrect estimation. Thus,
related research calls for a threshold mechanism that would allow certain
local maxima to be chosen as the fundamental period, even if they were
not the greatest local maxima. The mechanism we propose is as follows:
once the ATC detects a local maximum, it will set the temporary estimation
to its value’s 17/16. Doing so allows this particular local maximum to be
chosen as the fundamental period even if a greater local maximum occurs at
a later time. We choose 17/16 because dividing an integer by 16 can be easily
achieved: one only needs to shift the binary representation to the right by 4
bits (with the least significant bit (LSB) at the right-most position) to obtain
the quotient. Then, after the bit-shift operation, we add the quotient back
to the temporary value, getting an approximation of 17/16. The number of
17/16 is very close to the reciprocal of the constant factor, 0.93, proposed
in [2], and is later proved in [9] to have the most accurate estimation among
a variety of instruments. Still, this value cannot guarantee a never-incorrect
estimation, because different instruments have different characteristics.
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Figure 2.15: More one-bit ATC results, with and without noise

Further experiments were conducted using both self-recorded samples and
pre-recorded samples provided by Ableton. The total length of the audio
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Figure 2.16: Normalized square difference function struggling to estimate
the fundamental frequency

signal exceeds 1,440,000 samples, with their fundamental frequency varying
from 130 Hz to 1760 Hz. The experimental results show that with the selected
multiplier of 17/16, the fundamental frequency calculated by purposed one-
bit ATC and never deviates more than 4% of the supposed fundamental
frequency, which is less than a deviation of a note. Since the samples are
also not guaranteed to be produced at an exact frequency, the deviation
is considered as acceptable. To test the clarity measure, we also conduct
experiments on an additional 144,000 samples that consist of various kinds
of noise, such as the hitting of a keyboard or the plucking of a string. These
introduced noises tend to make the one-bit ATC more vulnerable to making
an octave error, which outputs an estimation that is twice the supposed
fundamental frequency. However, recall from section 2.1.2 that the scale
factor between any two notes, no matter their octaves, is the same. Thus,
an octave error would not compromise the performance of performing pitch
correction.

2.4.5 Select Parameters for Hardware

We will discuss some of the parameter choices of the one-bit ATC to be
implemented in FPGA in this section.

The first would be the window size. As previously stated in section 2.3.4,
the window size of the calculation needs to contain at least 2 periods of the
signal. In order to detect a low fundamental frequency, one needs to enlarge
the window size accordingly. However, a larger window size will result in
a longer delay due to the wait for arriving samples. After consideration,
we decided to choose a window size of 1600 when operating in a 48-kHz-
sampling-rate environment. A window size of 1600 will be able to detect a
frequency as low as 48000 ÷ 800 = 60 Hz, while the waiting time of 1600
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samples would be about 1600 ÷ 48000 ≈ 33.33 milliseconds, a tolerable
amount of delay. A shorter delay can be achieved by shortening the window
size, which will also raise the lower bound of the frequency detection range.
Nonetheless, this delay is purely dependent on the characteristics of the
sampling rate, since the one-bit ATC will hardly be the bottleneck when
processing signals sampled at 48 kHz.

We then set the clarity threshold at 200. That said, the one-bit ATC
module will report an invalid status when the difference between the selected
local maximum and the absolute minimum is less than 200. A perfect periodic
signal centered at magnitude = 0 will have this difference equal to 400, which
is a quarter of the window size. Thus, we consider a threshold of 200 as a
reasonable value.

In addition, we set a minimal period detection to 18. As stated in 2.3.3,
the frequency resolution drops at a more significant rate when the period
gets closer to zero. In order to keep a frequency resolution high enough
so that it can distinguish two notes that are adjacent to each other in the
time domain, we need to make sure that the inequality (2.12) holds. Solving
the inequality yields a period of x ≥ 18, thus we choose a minimal period
detection of 18. This determines that the highest frequency it can detect is
at around 48000÷ 18 ≈ 2666.67 Hz, which is much higher than the standard
upper bound of a female soprano.

Last but not least, we set the output period of the one-bit ATC module
to 1600÷ 2 = 800 samples. Recall that the ATC method only calculates the
correlation up to the point at τ = T/2, meaning that the calculation of the
ATC terminates at 1600/2 = 800 sample. Thus, the pitch information can
be updated every 800 samples.

48000
x

48000
x−1

≥ 1

2
1
12

, x ∈ Z+ (2.12)

2.5 Chapter Summary

In this chapter, we took an overview of the two general pitch detection
approaches: the FD and the TD approach. We conclude that one of the major
drawbacks of FD approaches, the harsh requirement of hardware resources,
cannot be easily avoided, and thus we choose to perform operations in TD
only. Then, we checked out some of the existing methods and analyzed
what could be done to compensate for the deficiencies. We proposed a novel
concept of one-bit ATC, and it is proven to counteract some known flaws of
typical TD approaches such as the tapering effect and the harsh requirement
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of computing resources. Lastly, we lay down the parameters to be used in
the actual hardware design.
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Chapter 3

Pitch Shift

This chapter mainly discusses pitch shift. First, a brief introduction to pitch
shift will be provided in section 3.1. Two general ways of pitch shift will be
briefly introduced in section 3.2. In section 3.3, we will look at some major
deficiencies of the existing designs. In addition, a novel approach will be
proposed alongside its experimental results in section 3.4. Finally, a chapter
summary will be provided in section 3.5.

3.1 Background

Pitch shift can be achieved in a really straightforward manner. To change the
pitch by a factor of α where α is a non-negative constant, one simply needs
to set the playback speed at a rate of α times the original speed. Doing so
will make the original signal x[t] turn into x[α t], shrinking the signal when
α > 1 and expanding the signal when α < 1.

However, since the digital signal has a finite length, doing so will
inevitably also change the time span of the signal. Depending on the
circumstance, a variation in time may or may not be desired. In the context
of pitch correction, one would likely prefer not to modify the time interval
of the signal, since doing so introduces significant discontinuity at the time
when the edit is performed. The goal of this research is also to perform
real-time pitch shifts without modifying the time interval.

Similar to pitch detection, pitch shift can also be achieved in either the
FD or the TD. However, since it has been determined in 2.3.5 that this
research aims to perform all operations in the TD only, we will just briefly
introduce some of the FD and the TD pitch shift methods in section 3.2 and
then focus on the TD methods.
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3.2 Frequency Domain and Time Domain

3.2.1 Frequency Domain Approaches

Just like the FD approaches applied to detect the pitch, the FD approaches
aiming to shift pitch also heavily rely on the use of DFT and STFT. As
previously mentioned, the Fourier transform offers very rich information in
the frequency domain. In the context of pitch detection, richer information
is not necessarily helpful since one only needs the frequency information
at the fundamental frequency. However, the abundant information can be
greatly helpful in the context of pitch shift. Since the DFT also reveals
the relationship between harmonic frequencies, one can use these pieces of
information to either preserve the harmonic characteristics when performing
a frequency shift or to totally change the harmonic characteristics, generating
more acoustic effects.

The development of one of the most famous pitch-shifting mechanisms,
the phase vocoder, can be traced way back to 1966 [11]. In general, a
phase vocoder first performs STFT on segments of a signal, then repositions
the area with a significant amplitude, which implies a prominent frequency
component, to the desired position. After the repositioning, along with some
techniques that improve the sound quality after modification, the vocoder
then performs an inverse STFT to transform the signal back to the TD [11].

Other FD methods, though treating the STFTs of signals in different
manners, all follow the general flow of performing STFTs, followed by using
the obtained frequency information to re-synthesize a new set of frequency
pattern, and finished with performing inverse STFTs. A more detailed
overview can be found in generative research [12].

Since the scope of this research does not include pitch shift techniques in
the FD, we will jump into the analysis of TD methods.

3.2.2 Time Domain Approaches

The technique stated at the very beginning of section 3.1 is a classic way of
performing pitch shift in the TD. Although it modifies the time interval of
the signal, it performs its operations in the TD only. In order to maintain
the time interval of the output at the same level as the input, some segments
of the audio signal need to be played back in repetition when shifting up
the pitch or be skipped when shifting down the pitch. It is noticeable that
if such a device’s repetition or skipping pattern is set arbitrarily, it will
introduce many discontinuities to the signal, resulting in a low-quality audio
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output [13]. However, such an approach does not involve any complicated
computation, and thus is very easy to implement even in an analog context.

Besides this straightforward implementation is the famous synchronous
overlap and add (SOLA) method. When performing the SOLA, the input
audio signal is chopped into frames, each has a small section that overlays
on its adjacent frame. When the signal needs to be made shorter, one needs
to move these frames closer to each other, and vice versa when the signal
needs to be made longer. After the replacement of frames, one then needs
to fuse the shifted segments back together. Since each frame will carry a
certain amount of the original signal, some of the frequency characteristics
will be preserved, resulting in a time-varied signal that has a similar frequency
characteristic to the original input. Many TD approaches, such as [14, 15],
are based on the SOLA method.

One may have already noticed that these methods by themselves do not,
or are not intended to, perform pitch shifts. Since they all try to preserve as
much original information as possible, SOLA methods by their nature mainly
vary the time interval of a signal. Nevertheless, since the time interval has
been lengthened or shortened, one can then change the playback pace of
these modified signals, which will yield a pitch-shifted signal with the same
time interval as the original input. Thus, to perform an upward frequency
shift, one needs to first use any of the SOLA methods to stretch the length of
the signal, and then play the stretched signal at a faster rate, resulting in a
pitch-shifted-up signal with an identical final length to the original signal. It
is worth noting that the order of performing a SOLA operation and changing
the playback speed can be swapped, I.E. one can choose to either perform
the SOLA operation first or change the playback speed first.

In short, the TD methods can be separated into two main categories, with
the first being the simple repeat-or-discard, and the second being the SOLA
based operation.

3.3 Limitations of the Time Domain Methods

3.3.1 Simple Repeat-or-Discard

As previously mentioned, this approach is straightforward to implement due
to its simple nature. It does not perform any analysis on the current input,
nor takes any types of feedback control. Due to the lack of a preprocessing
stage, discontinuities will inevitably occur at a repetition or a discarding
point, resulting in unpleasant crackling noises fused into the output.

Despite its unsatisfactory performance, the simple repeat-or-discard
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methods require almost zero computing resources. All it needs is a memory
space that can store some of the inputs in a short amount of time and an
“if-else” mechanism that tells it to perform how many times of repetitions
or dumps per cycle. As one may realize, a fine-tuned “if-else” mechanism
may help improve the quality of its output. Thus, it becomes crucial to
implement an additional analysis stage to improve the simple repeat-or-
discard approach.

3.3.2 SOLA Operations

The SOLA method will yield a better result compared to that of a simple
repeat-or-discard method due to the preservation of a certain amount of
original data. However, this operation does not vary too much from the
single repeat-or-discard: the only difference is that instead of repeating or
discarding a certain frame of the audio, it plays back a longer or a shorter
overlaying area of the signal.

Simply stretching or shrinking the overlaying area between adjacent
frames can still create many discontinuities. One approach to solve this
problem is to apply a smoothing window when extracting time frames [16].
Since the edge of each frame is smoothed out, it will greatly reduce the
amount of harsh discontinuities when trying to add separated or gathered
frames back together.

However, the smoothing-windowing techniques come at a cost. Extracting
frames using a smoothing window, such as a Hamming window or a Kaiser
window, means that FLOPs are involved. Besides, trigonometry calculation,
the key element of generating a smoothing window, can be very computing
intensive. Thus, one either needs to spend more computing resources on
obtaining the desired trigonometry components or use a dedicated memory
space to store pre-calculated values of the needed trigonometry components.
In either case, floating-point multiplications need to be carried out in order
to correctly apply the smoothing window. Such a fact puts more burden on
the computing unit and does not align with the requirement of using as few
hardware resources as possible.

Another technique that helps reduce the number of discontinuities when
adding back frames is to find the similarity point within the overlaid area.
Like the techniques used in performing pitch detection, calculations like cross-
correlation or square difference function can help determine if a similar point
exists [17]. If the module is able to find a similar point between two adjacent
frames, then it can overlay both frames at that particular point, so that the
discrepancy is kept at a low level. However, overlaying frames according to a
variable standard makes the final outputs become more inconsistent in time
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intervals. Because signals with different frequency components will yield
different positions of similar points, the time interval of the final output is
not guaranteed to be a fixed value even if the time scaling factors are set to
be the same.

Another major drawback of using a SOLA method is that an inappro-
priate length of frames will deteriorate the result significantly. Ideally, the
non-overlaying part of each frame should be kept equal to the length of the
signal’s period. However, such a condition can hardly be fulfilled in real-
time. It was pointed out in [18] that the development of a reliable frame-size
determination algorithm is challenging. Moreover, even if we have a reliable
algorithm that is optimized to calculate the frame size, the variation of the
frame size, along with the variation of the overlaying area and the variation
of the correlation-finding area, makes the whole process much harder to be
adopted.

We conducted an experiment using one of the SOLA methods mentioned
in [18]. Recall that in section 2.4.5, the output period of the pitch estimation
is kept at 800 samples. That said, to catch up with the pitch detection
pace, the pitch shift module also needs to operate within a window size
of 800 samples. However, such a size is too small for the SOLA method
to operate, because it simply does not provide enough space to perform
meaningful analysis. Figure 3.1 shows the DFT of both a clean piano signal
and its time-stretched signal via the SOLA provided in [18]. The window size
is set to 800, and the analysis frame size is set to 200. The time scale factor is
set to α = 1.2. As one may observe, the modified signal no longer maintains a
similar harmonic characteristic, and there are many noises occurring around
the location of the fundamental frequency, resulting in a multi-phonic output.

Thus, it is shown that the SOLA method is not suitable for real-time
processing which operates in a tight window size. Even if it is, it still requires
the aid of multiple tools in order to yield a decent result.

3.3.3 Resampling

Up to this point, we describe the task of changing the audio playback speed
as the most trivial task in the operation of pitch shifts. However, it turns
out that even the most trivial task can be challenging.

When modifying the playback speed, the sampling rate of the original
input is modified as well. In an analog context, it would not be a huge
issue since the sampling rate is infinite and signals are continuous. However,
digital audio is discrete, and it provides no information between each sample.
Thus, one would need to guess the data value at a time position in between
each sample. Such a process is called interpolation and is a crucial step when
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Figure 3.1: DFTs of a piano signal and its SOLA stretched signal

trying to increase the sampling rate. There exist many ways of interpolation,
but such a task, usually involving linear filtering, can require a significant
amount of computing resources to perform [19]. To maintain a low power
consumption, one would have to use the interpolation methods that require
the least amount of calculation.

Among all the interpolation methods, the nearest-neighbor interpolation
is probably the most straightforward one. When samples need to be inserted
at a certain position, nearest-neighbor interpolation simply asserts a value
that is equal to its nearest neighbor. Figure 3.2 illustrates the process
when trying to stretch a piece of data to its 7/5 using the nearest neighbor
interpolation method. It simply asserts two repeating values to the original
array at every five-point interval.

Figure 3.2: Stretching an array using nearest the neighbor interpolation
method

This simple interpolation method requires nearly zero computation since
it just makes copies of data. It is simple, yet effective. Figure 3.3 shows
a comparison between this simple approach and the resampling method
provided by MATLAB, which applies a finite-impulse-response anti-aliasing
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low-pass filter to help improve the quality of the output [20]. We perform a
stretch of 16/15 to a piece of viola signal, resulting in a scale of approximately
15/16 in its frequency. As shown in the plots, both methods successfully shift
the pitch down by about 15/16.
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Figure 3.3: Comparison between two interpolation methods

However, taking a further look, one may notice that the nearest-neighbor
method introduces a lot more fluctuations at higher frequency bands as shown
in Figure 3.4. Such a phenomenon happens due to the fact that the signal’s
continuity, though not fully destroyed, is compromised as shown in Figure 3.5,
with some of the discontinuities highlighted by rectangles.
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Figure 3.4: Further comparison between two interpolation methods

Nonetheless, these fluctuations all have a smaller energy level and do not
interfere with the fundamental frequency. If the top priority is low power
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consumption, a trade-off in sound quality is acceptable depending on the
requirement.

So far, we have been talking about the resampling method of an up-
sampling situation. The down-sampling situation is almost identical to
the up-sampling circumstance, except that we discard samples instead of
inserting samples. Thus, corresponding to the nearest-neighbor interpolation
method, one can simply discard an n1 amount of samples for every n2 samples
to realize a down-sampling rate of (n2 − n1)/n2, where n1 < n2.

3.3.4 Conclusions and Thoughts

We have discovered that the SOLA method, at least with little modification,
is not suitable for real-time implementation. There are too many variables to
take care of, and it needs extensive aid from all sorts of processing techniques.
Thus, we decide to not use any variants of the SOLA method. Instead, we
will find a way to improve the simple repeat-or-discard method.

Besides, since we need to implement a resampling process that requires
very little amount of hardware resources, we decide to choose the most
straightforward approach of using the nearest-neighbor interpolation.

The question now turns into “how to improve the simple repeat-or-
discard method”. In the following section, we will purpose a workaround
to compensate for the natural deficiencies of the simple repeat-or-discard
method.

3.4 Ring Buffer Approach

A historical method of performing a time expansion or compression to an
audio recording, back in time when audio signals are mainly recorded in
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analog forms, is to set up a two-reel tape-playing system like the one designed
in [21]. These two reels will be wrapped with tape that contains audio
information. By rotating the reel, the replay head can read the signal
imprinted on the tape continuously. On that, one of the reels will rotate at
a speed that is the same as the rotational speed used at the recording stage,
while the other reel’s rotational speed is controllable. Thus, by rotating
the controllable reel at different rates, alongside the use of different types of
replay heads, a time expansion or compression can be achieved.

A modern replica of the two-reel mechanism can be built using a ring
buffer. A ring buffer is a memory unit that has a similar structure to a
first-in-first-out (FIFO) memory structure, except that the new data will
overwrite the most dated data when the ring buffer is at its full capacity.
This type of memory unit has a very similar characteristic to a reel-based
audio playback device, except that a reel operates with analog data while
a ring buffer operates with digital data. A ring buffer, like all memory
structures, has a pointer that helps identify which memory address to access.
The memory pointer, in the context of audio-signal reading, acts similarly
as the replay head of a tape-playing device. The main difference between an
analog and a digital ring-storage structure is that an analog system would
require two reels to perform writing and reading simultaneously, while a
single digital ring buffer can be capable of performing simultaneous writing
and reading – as long as it supports dual-port operation, it only needs an
extra pointer to distinguish the writing and the reading position. To speed
up/slow down the playback speed, one only needs to increase/decrease the
moving speed of the output pointer. Therefore, we will implement a ring
buffer with an input and an output pointer, with the input pointer moving
at a constant speed and the output pointer moving at a variable speed, to
achieve pitch-shifting operations.

With the memory structure and playback method decided, it is now time
to focus on the discontinuity issue. As previously mentioned, performing
repeat-or-discard actions trivially would generate an enormous amount of
discontinuities. The same concept applies to the ring buffer structure, too.
Since a ring buffer has a finite amount of memory space, if the output pointer
moves too slowly, it will be over-passed by the input pointer by a cycle. Since
the input pointer will overwrite the old data, the output pointer will read
the new data in an abrupt manner. Likewise, if the output pointer moves so
fast that it passes the input pointer, it will start outputting data that is not
yet updated, making it read the dated data in an abrupt manner. Thus, it is
crucial to design a mechanism that keeps the two pointers from over-passing
each other, and the output pointer should be kept behind the input pointers
at all times.
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Nevertheless, since both pointers operate at different speeds when per-
forming pitch shift operations, it is inevitable to jump the output pointer
to a safe location. A trivial jumping mechanism will have the same defects
as not performing the jump, since an arbitrary jump will still generate a
discontinuous point, resulting in a low-quality output. To counteract this
situation, we design a simple jumping mechanism that can help keep the
discontinuity at a minimal level.

As stated in Chapter 1, a sound is generated by an oscillating wave, and
its fundamental oscillating period can be detected using methods introduced
in Chapter 2. That said, the safest position for jumping the output pointer
will be either a fundamental period before or after its current position. Yet,
worth noting that most audio signals are considered quasi-periodic signals,
because the amplitude of any sound may vary over time. Moreover, an audio
signal’s harmonic characteristic may also vary over time, depending on the
vibrating material that generates the oscillating wave. Thus, a jumping
distance of a whole fundamental period does not guarantee 100% integrity.
Nonetheless, it is still the safest distance to perform a jump, since it offers
the maximal similarity among the operated signal.

We can now lay out our design of the pitch shift module. As the system
starts working, the input pointer, moving at a constant speed, will start
recording the incoming samples into the ring buffer, whereas the output
pointer will stay at the initial location. The output pointer will start moving
after there is a certain amount of data available in the ring buffer. Once there
is enough data, the output pointer will then start outputting the previously
stored samples at a rate according to the scale of pitch shift. If the distance
between the input and output pointer exceeds a preset maximal distance, the
output pointer will jump forward by a distance of the current fundamental
period of the signal. Likewise, if the distance is shorter than a preset minimal
distance, the output pointer will jump backward by a distance of the current
fundamental period of the signal. Hence, the output pointer is never ahead
of nor over-passed by the input signal, maintaining a similar time signature
as the input while keeping the discontinuity level at a minimum. Figure 3.6
shows an example circumstance when the output pointer is about to take
over the input pointer.

To verify this concept, we performed experiments using different samples.
Alongside the nearest-neighbor interpolation, we are able to get a result
output that keeps the same time-interval signature as the input, while
shifting its pitch. Figure 3.7 shows the plot of performing the purposed
pitch shift operation. We shifted the pitch downward by a factor of 5/6.
As one may observe, with an almost identical sample size, the period of the
signal is lengthened. Furthermore, a DFT analysis shows that the frequency
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Figure 3.6: Appropriately jumping the output pointer

characteristics are kept at a close-to-original level, which is far superior to
the SOLA operation’s output shown at Figure 3.1.
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Figure 3.7: DFT analysis on the stretched signal

Since the module itself does not have any ability to estimate the funda-
mental period of the signal, it will need external help from other modules.
Fortunately, a pitch correction system mandates a pitch detection module,
which has been introduced with details in section 2.4.2 of Chapter 2. With
that being said, the pitch shift module does not need to perform a redundant
pitch detection, which further lowers the overall computation cost. All we
need to do is to calculate the factor of a desired pitch shift, apply that factor
to the output pointer of our ring buffer design, and jump the output pointer
in appropriate circumstances.

Our pitch detection module starts working after the arrival of the 1600th
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sample and update period information every 800 samples. To keep the pitch
shift module synchronized, the output pointer should also wait for 1600
samples before starting to move. Besides, the shortest distance between
the input and the output pointer should not be less than 800 samples, and
the longest counterpart should not be more than 1600 samples. Those are all
the parameters needed to be set when performing the pitch shift operations
in our system.

3.5 Chapter Summary

In this chapter, we discussed some existing methods designed to perform pitch
shift operations. We analyzed the merits and drawbacks of different types
of pitch shift solutions, alongside considerations of interpolation methods,
and we concluded that a novel ring-buffer-based design helps us satisfy the
requirement. We conducted experiments to verify our concept, and the
experiment results showed that the ring-buffer design indeed has superior
performance than the SOLA method in a real-time context. Next, we
revealed the fact that our pitch shift module does not need to perform
any redundant calculations, since a pitch detection module has already been
implemented. In the end, we discussed the parameters to be used in the
actual hardware design so that the pitch shift module can work with the
pitch detection module at the same pace.
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Chapter 4

Hardware Design and Implemen-
tation

We’ve already discussed the theories behind our selected approach. In this
chapter, we will focus on the design of the actual hardware. We will first
briefly discuss the reason to implement our design using FPGA in section
4.1. Then, we will lay out our schematics at each level in section 4.2. We
will present the experiment results in section 4.3, and wrap up the chapter
with conclusions stated in section 4.4.

4.1 Motivations

As stated in Chapter 1, the main goal of our research is to design a real-
time pitch correction system that is power efficient. Such a system not
only requires two modules – pitch detection and pitch shift modules – to
run simultaneously but also asks for the least amount of hardware-resource
usage. Thus, in order to maintain a high configurability and perform parallel
computing while also achieving low power consumption, an FPGA platform
would be the ideal foundation for our design and development.

Prior to this study, numerous studies were conducted on using FPGAs
to alleviate certain computing pressure or increase the speed of certain
computations, such as those conducted in [22, 23]. Besides, many studies
also focus on the development of FFT cores using FPGAs, which are closely
related to this research [24, 25]. However, there exists little to no research
that aims to implement a standalone real-time pitch correction system. All
these factors motivate the proposal of this research, which will be revealed
in detail in the following sections.
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4.2 Schematic Details

The theory behind our purposed system has already been discussed with
details in Chapter 2 and Chapter 3. Thus, we will only focus on the actual
design and implementation of our proposed system.

4.2.1 Top Level Overview

The top level of our design is very straightforward. Figure 4.1 shows the top
level of our system

Figure 4.1: Top-level schematics of the proposed system

The top level of our design has 5 inputs and 2 outputs. Our design
has sequential components, thus a clock input is needed. The io_data_in

represents a parallel input of an audio sample. Since a bit depth of 16 bits is
the most commonly used digital audio bit depth, io_data_in is also a 16-bit
wide. The io_write signal is the input that indicates whether the current
io_data_in is valid or not. If it is at a low level, the whole system will not
proceed to calculate. The io_targets input indicates the current desired
target notes of its user’s preference. Recall in section 2.1.2 that an octave
contains 12 different notes. E.G., if one does not want note 3 to appear in
the final output, one can switch off the input corresponding to note 3, telling
the system to shift every detected note 3 away. The last input, reset, simply
resets all the sequential components in the system.

Only two outputs are generated in our design: the io_data_out, which
is a 16-bit wide output that carries the output generated by the pitch shift
module. There is also a io_out signal that indicates the output io_data_out
is valid.

Inside the top level is the two core modules that run in parallel while
communicating with each other. As their name suggests, the pitch_detect
module calculates the fundamental pitch, and the pitch_shift module
performs the pitch shift operation.
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4.2.2 Pitch Detection Module

We will now look at the pitch detection module. Figure 4.2 shows the
schematics of the pitch detection module. It is made up of four components
as follows:

1. The get_period component, which is the core of the pitch detection
module that calculates the estimated fundamental period and feeds it
to the pitch shift module;

2. The period_to_note component, which translates the fundamental
period to its corresponding musical note;

3. The get_distance component that finds the distance between the
current note to the next closest target;

4. The distance_to_rate component that translates the distance to a
pitch-shift scale factor for the outer pitch_shift module.

4.2.2.1 FSM that calculates the pitch

The get_period component is the core element of not only the pitch
detection module but also the entire system. Without its proper functioning,
pitch correction cannot be carried out. This module is mainly made up of an
finite-state machine (FSM) and a true dual-port memory array that has 2048
addresses for one-bit wide words. We implement a true dual-port memory
because we need to check two different locations, with one accessing the
location of x[t+ (T/2)] and another accessing the location of x[t+ τ ].

Figure 4.2: Schematics of the pitch detection module

Since this component needs to access two memory addresses simultane-
ously, it needs two memory pointers as well. Besides, it needs several registers
to store the pitch information as well as miscellaneous registers to determine
the current state.

Here are some additional technical details:
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1. Once there is enough data stored in the memory address, the calculation
of the ATCx[τ ] starts right after the arrival of a new input. Recall that
for each τ , t + τ is always less than or equal to t + (T/2). Thus, the
calculation of ATCx[τ = 1] only requires 801 data to be available when
T = 1600;

2. This FSM actually requires three pointers: one pointer for writing the
data and two pointers for reading the data. However, since the reading
process should not start until the writing action is finished anyway, a
multiplexer is enough to share the port between the writing pointer
and one of the reading pointers;

3. There is no way to check if ATCx[τ ] reaches a local maximum right after
the calculation of ATCx[τ ]. Whether ATCx[τ ] is a local maximum or
not can only be determined at τ = τ + 1;

4. Synchronous-read memory costs an additional clock cycle to read the
data, thus the FSM has to prepare an extra cycle for the calculation;

5. Each ATCx[τ ] requires about 810 cycles to be settled down, with
800 of them being the calculation processes. Thus, the frequency
of io_data_out should not exceed F/810, where F is the running
frequency of the FPGA. The frequency of the io_data_out is usually
determined by the audio sampling frequency, depending on the actual
use case. That said, for a sampling frequency of 48 kHz, the FPGA’s
frequency should be higher than 810× 48000 ≈ 38.88 MHz.

It’s worth noting that since the core of the ATC calculation only requires
one AND gate, one can easily put several AND gates in parallel so that the
operating frequency of the FPGA can be lowered if there is such a desire.

The source code that describes the above FSM will be provided in
Appendix A.

4.2.2.2 Translation from period to note

The entire period_to_note component is just a look-up table that helps
reference the correct note value. The conversion between note and peri-
od/frequency is rather complicated since it involves the term 21/12. Because
a 1600-sample window will be able to estimate a maximal fundamental period
of 800 samples long, the look-up table is simply a block of memory that is
800 words wide, with each word having a length of 4 bits (since the maximal
number is 12).
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4.2.2.3 Determine the distance to target

The get_distance component calculates the distance between the current
note and the closest active target. Worth noting that the distance between
note 12 and note 1 is 1 rather than 11, thus this part also involves signed
addition/subtraction. The overall logic can be summarized as follows:

1. Calculate the distance between the current note and note 1;
2. If note 1 is active, output the actual distance to the final comparison

module. Otherwise, output a distance of 12 to that module;
3. Doing so for all 12 notes in parallel;
4. The comparison module will select the minimal value as its output.

4.2.2.4 Translation from distance to a pitch scaling factor

The distance_to_rate component is again just a look-up table that helps
reference the correct pitch scaling value. As introduced in section 2.1.2, the
pitch scaling factor of a fixed distance is also fixed, I.E. a distance from note
3 to note 5 will yield the same pitch scaling factor as a distance from note
4 to note 6, since they both have a distance of 2. In addition, worth noting
that the maximal distance between any two notes is 6.

One may observe from the schematics that this module has three outputs
labeled as rate1, rate2, and way. The purpose of setting up these signals
will be explained in section 4.2.3.

4.2.3 Pitch Shift Module

We will now look at the pitch_shift module, which has a very simple
structure. An overview of this module is shown in Figure 4.3.

The pitch_shift takes the audio sample as one of its inputs. Besides,
it also takes the information on fundamental frequency and the pitch scale
factor from the pitch_detection module. The pitch_shift module, just
like the pitch_detection module, also operates at a pace decided by the
io_write signal that comes from the external of the FPGA unit.

The pitch_shift module itself is basically an FSM that contains a ring
buffer. The size of the ring buffer is 2048 words wide, with each word having
a length of 16 bits, which is kept the same as the io_data_in. It was
previously mentioned in section 3.4 that the maximal distance between the
output pointer and the input pointer is 1600 samples. Thus, a ring buffer size
larger than 1600 would suffice this condition. Another reason for choosing
a memory width of 2048 is that it helps skip the process of resetting the
pointer’s value since 2047 + 1 = 0. Likewise, we do not need to worry about
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Figure 4.3: An overview of the pitch shift module

taking an absolute value when trying to figure out the distance between the
input and the output pointer since A−B = 2048 +A−B when performing
unsigned subtraction in a bit width of 11 bits.

We will now explain the logic behind the rate1, rate2, and way. First,
way == truemeans the required pitch shift is an upward pitch shift, and vice
versa for a downward pitch shift. Next, the rate1 and rate2 work as follows:
“for every rate1 amount of samples, stay at/skip rate2 amount of samples if
performing a downward/upward pitch shift”. E.G., if one wants to raise the
pitch of note 2 to note 3, one can set rate1=16; rate2=1; way=true. In
that case, the pitch_shift module will skip 1 sample for every 16 samples,
resulting in a playback speed of 17/16 ≈ 21/12. The same logic applies to
every distance of pitch shift, except that the rate1, rate2 and way are
automatically controlled by the pitch_detection module. Besides, if the
pitch_detection module determines a signal is too noisy to be detected, it
will set rate1 and rate2 to zero to prevent the pitch_shift module from
varying the movement speed of its output pointer.

The source code of the pitch_shift module will be provided in Ap-
pendix B.
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4.3 Results

4.3.1 Hardware Resource and Power Consumption

We will report the required amount of hardware resources and the estimated
power consumption of our design in this section. The design was synthesized
and implemented via Vivado 2022.1, on a Basys 3 FPGA board that carries
the Xilinx Artix-7 XC7A35T-ICPG236C FPGA chip. The board is set to
operate at its native clock frequency, which is 100 MHz.

4.3.1.1 Hardware resource

Table 4.1 lists the hardware resources required at a component level. Note
that get_period is a part of pitch_detection. The “LUT” and “BRAM”
listed in the table mean “look-up table” and “block random-access memory”,
correspondingly.

Component LUT Register BRAM

get_period 131 101 0.5
pitch_detection 410 111 0.5
pitch_shift 62 41 1

Table 4.1: Hardware Resource – Component Level

Table 4.2 lists the hardware resources required at the top level. We
constructed a total of 3 configurations. The “WNS” listed in the table means
the worst negative slack.

Top Level LUT Register BRAM F7Muxes F8Muxes DSP WNS

Config. 1 585 217 1.5 67 13 0 1.868 ns

Config. 2 518 210 1.5 54 13 0 1.172 ns

Config. 3 474 205 1.5 3 0 0 0.085 ns

Table 4.2: Hardware Resource – Top Level

4.3.1.2 Power consumption

The power consumption reported by Vivado’s default post-implementation
power report is listed in Table 4.3.
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Components Power (milliwatt)

Clock 3
Signals 2
Logic 1
BRAM 5
Inputs & Outputs 30
Device Static Power 72
Total 113

Table 4.3: Power Consumption of Our Design

4.3.1.3 An informal comparison

We are not able to find any formal research that shares the same goal as
ours. In addition, commercial solutions that function in the same way as
ours are hard to find. Most commercial hardware that performs real-time
pitch correction also integrates several modules, such as ADCs and digital
to analog converters (DACs), to make the device plug-and-play. In contrast,
our design only focuses on signal processing. Thus, a comparative study is
difficult to conduct.

Nonetheless, there exist several recent studies on the development of
FPGA FFT cores. Those studies can be a somewhat good reference that
reflects the importance of avoiding the FD approaches.

Research [24] purposed an FPGA intellectual property that can calculate
1024-point 16-bit real-time FFT using 466 look-up tables (LUTs), 32,768 bits
of random-access memory, 16,384 bits of read-only memory and 4 hardware
multipliers. The LUT and random-access memory usages are very close to
our design, yet it requires more read-only memory and dedicated hardware
multipliers. The number of registers used in this FFT architecture was not
revealed.

Research [25] purposed an FPGA architecture that uses 6043 LUTs,
5264 registers, 8 block random-access memorys (BRAMs), and 24 hardware
DSP units to perform a 24-bit fixed-point FFT with a window size of 256
points. This approach requires much more hardware resources compared to
the previous one. However, this architecture can not only operate at a much
higher frequency but also takes fewer cycles to perform the calculation.

In short, one may conclude that the implementation of FFT cores is
not trivial. Moreover, FFT itself does not perform any modification in the
FD, meaning that one needs to spend additional hardware resources on a
modification mechanism. Therefore, we choose to avoid FD approaches since
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our goal does not require one.

4.3.2 Simulation Results

We performed several post-implementation timing simulations, and the
simulation results are as expected. First, we recorded a piece of a vocalist
humming the note C (1), D (3), and E (5). Then, the sample was fed to
our design. We recorded the real-time generated output and performed DFT
analysis on the output. The experiment results are shown as follows.

In our first experiment, we set the target note to a single D, meaning that
all the notes that are detected not as a D will be shifted to the location of
D. We then analyzed the result by applying the DFT across the entire time
span of the modified signal. The analysis is shown in Figure 4.4.
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Figure 4.4: Real-time pitch correction targeting at note D

As one may observe, the DFT of the original record shows that there
are 3 major spikes centered at around 128 Hz (close to C), 146 Hz (close to
D), and 163 Hz (close to E). There are also two minor spikes that occur at
around 115 Hz and 174 Hz. Both spikes occur because the unprofessional
vocal performer (that’s me) was not able to find the right pitch at all times,
and the DFT is able to capture these frequency characteristics. Nonetheless,
taking a look at the DFT analysis of the auto-shifted recording, we may
observe that most spikes are either shifted to around 147 Hz, or to around
294 Hz, which is the note D in an octave higher. We then ran multiple
experiments, each targeting at note C, E, and F# (note 7), with their DFT

45



analysis plotted in Figure 4.5, Figure 4.6 and Figure 4.7 accordingly. The
results speak for themselves.
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Figure 4.5: Real-time pitch correction targeting at note C
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Figure 4.6: Real-time pitch correction targeting at note E

At last, we deactivate all the targets, making the system force shift every
detected note to an octave higher. The DFT analysis is plotted in Figure 4.8
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Figure 4.7: Real-time pitch correction targeting at note F#
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Figure 4.8: Real-time pitch shift targeting at one octave higher

We also performed an informal listening test and found the auto-shifted
results all carried subtle crackling sounds. Moreover, when the recording
enters a transition between notes, the system, depending on its target, may
make a noticeable clipping noise at the transition.
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4.4 Chapter Summary

We first stated the motivation for using an FPGA platform to realize our
design. We then presented the technical details of our hardware design.
After that, we listed the DFT analysis of the post-implementation timing
simulations and showed that the system outputs were as expected.
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Chapter 5

Conclusions

5.1 What Did We Achieve

We successfully designed and implemented a novel approach to designing
a real-time pitch correction system via FPGA. We first looked back at
the existing solutions and found the merits and drawbacks of them. We
analyzed these solutions in detail and concluded that some of the obstacles
can be bypassed while others can hardly be avoided. Studying from the
past, we proposed two innovative designs, with one being the one-bit auto-
cross correlation for pitch detection, and another being the ring-buffer
pointer-jumping techniques for pitch shift. We then verified our concept by
performing various experiments, which proved the feasibility of our proposed
approaches. Based on that, we then designed and integrated an FPGA based
system using the proposed approach. In the end, we tested the system and
the results confirmed our concepts. Thus, we concluded that the one-bit auto-
cross correlation is an efficient pitch detection method that can significantly
alleviate the computation pressure without compromising accuracy, and the
jump-based-on-pitch method for controlling the pointers in a ring buffer is
efficient and effective in a real-time context.

5.2 What Could be Done

We pointed out that any TD approach for pitch detection will suffer from
a lack of frequency resolution as the pitch goes higher. In our design, we
simply set a minimal detectable fundamental period instead of solving the
issue. Can we use any techniques that help compensate for this deficiency so
we can expand the detectable region?

We also implemented a rather naive approach to interpolate a signal when
resampling is required. Such an approach cannot generate a result on-par
with other more complicated approaches. We didn’t use the complicated
approaches since an efficient computing method with the least amount
of power consumption is our first priority. Nonetheless, does there exist
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an interpolation method that can be both energy efficient but also more
accurate?

During the informal listening test, we found that our system, although
had been given several preventive measures, can still produce clipping noises
in special circumstances. How should we further improve our design in order
to make our design more robust?

These questions, though remain unsolved for now, is what we aim to
break through in the future.
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Appendix A

Scource code of the FSM de-
signed for pitch detection

1 import c h i s e l 3 .
2 import c h i s e l 3 . u t i l .
3
4 ob j e c t p i t c h d e t e c t i o n f sm s t a t e s {
5 ob j e c t s t a t e extends ChiselEnum {
6 va l i d l e s t a t e ,
7 c a l c u l a t e s t a t e ,
8 per iod check ,
9 p e r i o d l o g = Value
10 }
11 }
12
13 class p i t ch d e t e c t i on f sm ( space n : Int , s e a r c h s i z e : Int ,

min per iod : Int , th r e sho ld : Int ) extends Module {
14 import p i t c h d e t e c t i o n f sm s t a t e s . s t a t e
15 import p i t c h d e t e c t i o n f sm s t a t e s . s t a t e .
16
17 // Parameters
18 va l r i n g s i z e = math . pow(2 , space n ) . intValue // r ing

b u f f e r s i z e , not r e a l l y used
19 va l s e a r c h s i z e b i t = l og2Ce i l ( s e a r c h s i z e )
20 va l m in in i t = math . pow(2 , s e a r c h s i z e b i t ) . intValue

− 1
21 va l s t a r t l o c a t i o n = s e a r c h s i z e // in matlab t h i s i s

s e a r c h s i z e + 1
22 /////////////////////////////////////////////////////////
23
24 va l i o = IO(new Bundle {
25 va l da ta in = Input (UInt ( 1 .W) ) // 1− b i t c o r r e l a t i o n
26 va l wr i t e = Input ( Bool ( ) )
27 va l per iod = Output (UInt ( s e a r c h s i z e b i t .W) )
28 })
29
30 // Reg i s t e r s
31 va l s t a t e r e g = RegIn i t ( i d l e s t a t e )
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32 va l i nput p t r = RegIn i t ( 0 .U( space n .W) ) // 0 ˜ 2ˆ
r i n g s i z e −1

33 va l r ead pt r = RegIn i t ( 0 .U( space n .W) ) // 0 ˜ 2ˆ
r i n g s i z e −1

34 va l c a l c c n t = RegIn i t ( 0 .U( space n .W) ) // 0 ˜
s ea r ch s i z e , f o r c o r r e l a t i o n ca l c

35 va l r ead cnt = RegIn i t ( 0 .U( space n .W) ) // 0 ˜
s ea r ch s i z e , f o r window s i z e check

36 va l fund per iod = RegIn i t ( 0 .U( s e a r c h s i z e b i t .W) ) //
0 ˜ s e a r c h s i z e

37 va l f u n d p e r i o d f i n a l = RegIn i t ( 0 .U( s e a r c h s i z e b i t .W) ) //
0 ˜ s e a r c h s i z e

38 va l current max = RegIn i t ( 0 .U( s e a r c h s i z e b i t .W) ) //
0 ˜ s e a r c h s i z e

39 va l current min = RegIn i t ( m in in i t .U( s e a r c h s i z e b i t
.W) ) // 0 ˜ s e a r c h s i z e

40 va l p r e v r e s u l t = RegIn i t ( 0 .U( s e a r c h s i z e b i t .W) ) //
0 ˜ s e a r c h s i z e

41 va l prev increment = RegIn i t ( fa l se .B) // f a l s e =
descending , t rue = increment ing

42 va l ready = RegIni t ( fa l se .B) // enough inpu t s
in the ram

43 va l temp corr = RegIn i t ( 0 .U( s e a r c h s i z e b i t .W) ) //
0 ˜ s e a r c h s i z e

44 /////////////////////////////////////////////////////////
45
46 // ram r e l a t e d components & io
47 va l cu r r w in r ead pos = read pt r + c a l c c n t ; // corr

p o i s t i o n o f the curren t window
48 va l next win read pos = input p t r − s e a r c h s i z e .U + ca l c c n t

// corr p o s i t i o n o f the next window
49 va l sha r ed por t po s = Mux( s t a t e r e g === i d l e s t a t e ,

input ptr , cu r r w in r ead pos ) // the r&w por t addr
50 va l r i n g p i t c h d e t e c t = Module (new s i n g l e w r i t e d u a l r e a d (

space n , 1) ) // t rue dual−por t ram
51 r i n g p i t c h d e t e c t . i o . c l o ck := c lo ck
52 r i n g p i t c h d e t e c t . i o . we := i o . wr i t e
53 r i n g p i t c h d e t e c t . i o . addr a := shared por t po s
54 r i n g p i t c h d e t e c t . i o . addr b := next win read pos
55 r i n g p i t c h d e t e c t . i o . din := i o . da ta in
56 va l cu r r w in va lue = r i n g p i t c h d e t e c t . i o . dout a
57 va l next win va lue = r i n g p i t c h d e t e c t . i o . dout b
58
59 /////////////////////////////////////////////////////////
60
61 // Wires ( combinat iona l l o g i c )
62 va l p i t ch p e r i od = read cnt
63 va l c r o s s e d l i n e = p i t ch p e r i od > min per iod .U
64 va l cur rent inc rement = temp corr > p r e v r e s u l t
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65
66 // fsm
67 switch ( s t a t e r e g ) {
68 i s ( i d l e s t a t e ) {
69 temp corr := 0 .U
70 ready := ready | | ( i nput p t r === s t a r t l o c a t i o n .U)
71 when ( i o . wr i t e ) {
72 input p t r := input p t r + 1 .U
73 when ( ready ) {
74 c a l c c n t := 0 .U
75 s t a t e r e g := c a l c u l a t e s t a t e
76 } . o the rw i se {
77 s t a t e r e g := i d l e s t a t e
78 }
79 } . o the rw i se {
80 s t a t e r e g := i d l e s t a t e
81 }
82 }
83
84 i s ( c a l c u l a t e s t a t e ) {
85 when ( c a l c c n t === 0 .U) {
86 c a l c c n t := c a l c c n t + 1 .U
87 s t a t e r e g := c a l c u l a t e s t a t e
88 } . e lsewhen ( c a l c c n t <= s e a r c h s i z e .U) { // i t

needs an ex t ra c y c l e s ince SyncReadMem i s one
c y c l e s lower

89 temp corr := temp corr + ( cur r w in va lue &
next win va lue )

90 c a l c c n t := c a l c c n t + 1 .U
91 s t a t e r e g := c a l c u l a t e s t a t e
92 } . o the rw i se {
93 c a l c c n t := 0 .U
94 s t a t e r e g := per i od check
95 }
96 }
97
98 i s ( pe r i od check ) {
99 when ( p i t ch p e r i od === 0 .U) {
100 p r e v r e s u l t := temp corr
101 } . e lsewhen ( p i t ch p e r i od === 1 .U) {
102 prev increment := cur rent inc rement
103 p r e v r e s u l t := temp corr
104 } . o the rw i se {
105 when ( ( ! cur r ent inc rement ) && prev increment ) {
106 when ( ( p r e v r e s u l t > current max ) &&

c r o s s e d l i n e ) {
107 current max := p r e v r e s u l t + ( 0 .U( 4 .W)

## pr e v r e s u l t (9 , 4) )
108 fund per iod := p i t ch p e r i od
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109 }
110 }
111 prev increment := cur rent inc rement
112 p r e v r e s u l t := temp corr
113 }
114
115 when ( temp corr < current min ) {
116 current min := temp corr
117 }
118
119 when ( read cnt < ( s e a r c h s i z e −1) .U) {
120 read cnt := read cnt + 1 .U
121 s t a t e r e g := i d l e s t a t e
122 } . o the rw i se {
123 read cnt := 0 .U
124 s t a t e r e g := pe r i o d l o g
125 }
126 }
127
128 i s ( p e r i o d l o g ) {
129 r ead pt r := read pt r + s e a r c h s i z e .U
130 when ( ( current max − current min ) < th r e sho ld .U) {
131 f u nd p e r i o d f i n a l := 0 .U
132 } . o the rw i se {
133 f u nd p e r i o d f i n a l := fund per iod
134 }
135 current max := 0 .U
136 current min := s e a r c h s i z e .U
137 fund per iod := 0 .U
138 s t a t e r e g := i d l e s t a t e
139 }
140
141 }
142
143 i o . per iod := f u nd p e r i o d f i n a l
144 }
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Appendix B

Scource code of the FSM de-
signed for pitch shift

1 import c h i s e l 3 .
2 import c h i s e l 3 . u t i l .
3
4 ob j e c t p i t c h s h i f t o p t s t a t e s {
5 ob j e c t s t a t e extends ChiselEnum {
6 va l i d l e s t a t e ,
7 c a l c u l a t e s t a t e ,
8 d i s t anc e che ck = Value
9 }
10 }
11
12 class p i t c h s h i f t o p t ( space n : Int , s e a r c h s i z e : Int ) extends

Module {
13 import p i t c h s h i f t o p t s t a t e s . s t a t e
14 import p i t c h s h i f t o p t s t a t e s . s t a t e .
15
16 // Parameters
17 va l r i n g s i z e = math . pow(2 , space n ) . intValue // r ing

b u f f e r s i z e , not r e a l l y used
18 va l s e a r c h s i z e b i t = l og2Ce i l ( s e a r c h s i z e )
19 va l s t a r t l o c a t i o n = 2∗ s e a r c h s i z e // in matlab t h i s i s 2∗

s e a r c h s i z e + 1
20 /////////////////////////////////////////////////////////
21
22 va l i o = IO(new Bundle {
23 va l da ta in = Input (UInt ( 1 6 .W) ) // audio data
24 va l wr i t e = Input ( Bool ( ) ) // an incoming data i s

v a l i d
25 va l per iod = Input (UInt ( s e a r c h s i z e b i t .W) )
26 va l way = Input ( Bool ( ) ) // t rue = upward jump ,

f a l s e = downward jump
27 va l ra te1 = Input (UInt ( 4 .W) )
28 va l ra te2 = Input (UInt ( 4 .W) )
29 va l data out = Output (UInt ( 1 6 .W) ) // output data
30 va l out = Output ( Bool ( ) ) // output data i s

ready
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31 })
32
33 // Reg i s t e r s
34 va l s t a t e r e g = RegIn i t ( i d l e s t a t e )
35 va l i nput p t r = RegIn i t ( 0 .U( space n .W) ) // 0 ˜ 2ˆ r i n g s i z e

−1
36 va l output ptr = RegIn i t ( 0 .U( space n .W) ) // 0 ˜ 2ˆ r i n g s i z e

−1
37 va l work rate = RegIn i t ( 0 .U( 4 .W) )
38 va l ready = RegIn i t ( fa l se .B) // enough inpu t s in the

ram
39 va l out r eg = RegIn i t ( fa l se .B) // d r i v e s io . out
40 va l d i s t anc e = RegIn i t ( 0 .U( space n .W) )
41 /////////////////////////////////////////////////////////
42
43 // ram r e l a t e d components & io
44 va l r i n g p i t c h s h i f t = Module (new s i n g l e w r i t e s i n g l e r e a d (

space n , 16) ) // t rue dual−por t ram
45 r i n g p i t c h s h i f t . i o . c l o ck := c lo ck
46 r i n g p i t c h s h i f t . i o . we := i o . wr i t e
47 r i n g p i t c h s h i f t . i o . addr w := input p t r
48 r i n g p i t c h s h i f t . i o . addr r := output ptr
49 r i n g p i t c h s h i f t . i o . din := i o . da ta in
50 i o . data out := r i n g p i t c h s h i f t . i o . dout
51
52 /////////////////////////////////////////////////////////
53
54 // fsm
55 switch ( s t a t e r e g ) {
56 i s ( i d l e s t a t e ) {
57 ready := ready | | ( i nput p t r === s t a r t l o c a t i o n .U)
58 when ( i o . wr i t e ) {
59 input p t r := input p t r + 1 .U
60 when ( ready ) {
61 out r eg := true .B // output the data at

ou t pu t p t r
62 s t a t e r e g := c a l c u l a t e s t a t e
63 } . o the rw i se {
64 s t a t e r e g := i d l e s t a t e
65 }
66 } . o the rw i se {
67 s t a t e r e g := i d l e s t a t e
68 }
69 }
70
71 i s ( c a l c u l a t e s t a t e ) {
72 out r eg := fa l se .B
73 when ( ( ( work rate <= io . ra te2 ) && ( i o . ra t e1 =/= 0 .U)

) ) {
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74 output ptr := output ptr + ( i o . way ## fa l se .B)
75 } . o the rw i se {
76 output ptr := output ptr + 1 .U
77 }
78 when ( work rate <= 1 .U) {
79 work rate := i o . ra t e1
80 } . o the rw i se {
81 work rate := work rate − 1 .U
82 }
83 d i s t ance := input p t r − output ptr
84 s t a t e r e g := d i s t anc e che ck
85 }
86
87 i s ( d i s t anc e check ) {
88 when ( d i s t anc e < s e a r c h s i z e .U) { // po in t e r s are

too c l o s e
89 output ptr := output ptr − i o . per iod
90 } . e lsewhen ( d i s t anc e > s t a r t l o c a t i o n .U) { //

po in t e r s are too f a r
91 output ptr := output ptr + io . per iod
92 }
93 s t a t e r e g := i d l e s t a t e
94 }
95
96 }
97
98 i o . out := out r eg
99 }
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