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Abstract

Task-oriented dialogue (TOD) systems have become increasingly crucial in var-

ious domains, providing efficient and appropriate interactions with users to per-

form specific tasks. These systems, such as voice assistants and chatbots, rely on

semantic parsing models to convert user queries into machine-understandable rep-

resentations, enabling accurate interpretation and appropriate responses. While

traditional semantic parsing methods have shown effectiveness in handling flat

intent-slot structures, they struggle to cope with the complexities introduced by

hierarchical semantic parsing (HSP). Hierarchical representations offer increased

expressiveness, allowing for more nuanced interpretations of user queries, but

they also pose challenges in accurately labeling and capturing nested structures.

In recent years, the field of natural language processing (NLP) has witnessed sig-

nificant advancements, largely driven by the remarkable success of pre-trained

language models like BERT. These models have demonstrated exceptional per-

formance across a wide range of tasks, including hierarchical semantic parsing.

Among these models, the RINE model has emerged as a leader by providing state-

of-the-art (SOTA) results. The distinctive strength of the RINE model lies in its

innovative utilization of a recursive insertion-based mechanism. This mechanism

allows the model to leverage the decoded tree from previous steps as direct input

for the current step, enabling more effective and context-aware parsing. Despite

the impressive achievements observed in the realm of hierarchical semantic pars-

ing, there is still significant room for enhancing the overall performance of these

systems. Previous works do not explicitly consider structured information within

utterances. However, this information about sentence structures is crucial in the

semantic parsing task, specifically when parsing complex utterances of hierarchi-

cal semantic parsing.

Taking these points into consideration, this thesis focuses on two key enhance-

ments: strengthening the hierarchical structure awareness of pre-trained language

models and employing dynamic pruning of unpromising decoding directions us-

ing inductive grammar. By incorporating sentence structure information, we aim

to improve the performance of hierarchical semantic parsing systems. To achieve

this objective, we propose the StructSP framework, which leverages hierarchi-

cal representations for their deep fine-grained structure and consists of two dis-

tinct phases: structure-aware boosting and grammar-based RINE. In the structure-

aware boosting phase, our aim is to enhance the representation of structured infor-

mation within pre-trained language models. We extend the vanilla mask language

modeling (MLM) task by giving higher priority to logical tokens present in the

linearized hierarchical representation. By doing so, we encourage the model to



focus on the essential elements of the logical structure and improve its under-

standing of the semantic relationships. Furthermore, we introduce a novel subtask

called relative tree agreement, which allows the model to develop closer vector

representations for relative trees in the same parsing process. By learning the hid-

den relationships between these intermediate parsing steps, our framework gains a

more comprehensive understanding of the logical structure and improves its abil-

ity to capture intricate dependencies. In the second phase, grammar-based RINE,

we incorporate grammar extracted from annotated data to help in the prediction

of node labels. By utilizing this grammar during the parsing process, we aim to

guide the model toward more accurate predictions by preventing branches in the

decoding process that won’t yield a solution, thus mitigating errors and improving

the overall performance of the system.

To evaluate the proposed StructSP framework, comprehensive experiments

were conducted on the widely used TOP and TOPv2 datasets. The performance

comparison with several previous approaches on the TOP dataset demonstrates

the effectiveness of the proposed approach. Our method achieves an impressive

exact match (EM) score of 88.18, outperforming existing SOTA models by no-

table margins. Specifically, it surpasses the current SOTA model, RINE, by 0.61

EM points. The experiments on the TOPv2 dataset, which includes low-resource

scenarios, further highlight the superiority of our approach. In these settings, our

models outperform the RINE model by up to 1.02 EM points. The results indicate

that our StructSP framework effectively leverages hierarchical semantic structured

information, demonstrating its potential to enhance the accuracy and reliability of

semantic parsing systems. The incorporation of grammar proves to be benefi-

cial in most cases, guiding the decoding process and improving label predictions.

However, in extremely limited training data scenarios, the performance gains from

grammar utilization may not be substantial due to insufficient coverage of gram-

mar patterns in the data. Addressing this issue requires further investigation and

potential improvements in grammar extraction techniques.

In the analysis section, we conducted a systematic ablation study to evalu-

ate the impact of different factors on the performance of our proposed model.

By comparing the performance of the full-setting model, which includes both

the Structure-aware boosting and Grammar-based RINE phases, with variations

where specific components were selectively disabled, we identified the key ele-

ments that significantly influenced the model’s performance. The results high-

lighted the importance of structure-focused MLM and relative tree agreement in

the structure-aware boosting phase, as well as the incorporation of grammar in

the grammar-based RINE phase, as these factors contributed to enhanced per-

formance on the TOP dataset. Furthermore, we investigated the impact of the

masking probability on the model’s performance by varying the value of masking

probabilities during training. Finally, to gain insights into the model’s perfor-
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mance on specific input queries, we conducted a case study comparing the out-

puts of the baseline RINE model with our StructSP model on the validation set of

the TOP dataset. We presented some examples, showcasing instances where our

model outperformed the baseline in accurately capturing the underlying semantics

of the input query. While our model demonstrated improved performance in most

cases, there were also examples where both models produced incorrect outputs,

highlighting areas for potential improvement in handling intricate queries.

In summary, this thesis contributes to the field of hierarchical semantic parsing

by proposing an innovative approach to integrate hierarchical semantic structured

information into pre-trained language models. By leveraging grammar during the

parsing process, our method achieves superior performance compared to exist-

ing SOTA models in task-oriented semantic parsing. This work demonstrates the

potential of our StructSP framework to advance the accuracy and reliability of

semantic parsing systems in various applications. Future work could focus on

refining the grammar extraction process, exploring other mechanisms for deep

structure awareness, and investigating techniques to improve performance in low-

resource scenarios.
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Chapter 1

Introduction

1.1 Semantinc Parsing in Task-oriented Dialog Sys-
tems

Task-oriented dialogue (TOD) systems have become increasingly important in

various domains by providing efficient and appropriate interactions with user ut-

terances to perform specific tasks (Bai et al., 2022; He et al., 2022; Pasupat et

al., 2019). These systems, such as voice assistants and chatbots, rely on semantic

parsing models to convert user queries into machine-understandable representa-

tions, enabling accurate interpretation and appropriate responses (Z. Zhang et al.,

2020; Yan et al., 2017). Figure 1.1 provides an illustrative example of a semantic

parser operating within a TOD system.

Any live music events
on friday

Semantic parser

Intents  GET_EVENT

Slots  CATE_EVENT: live music events
 DATE_TIME: on friday

User Utterance

Bot Service

Response Results

Figure 1.1: An example of the role of a semantic parser in a task-oriented dialog

system.

Specifically, semantic parsing plays a crucial role in transforming user utter-

ances into structured representations that include the identification of the user’s

intentions (intents) and relevant entities (slots). For instance, an intent could be la-
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beled as GET EVENT to obtain event information, accompanied by a correspond-

ing slot such as DATE TIME indicating the specific date and time of the event

(Figure 1.1). While traditional semantic parsing primarily focused on single-level

intents and flat slots (Mesnil et al., 2013; Q. Chen et al., 2019; Phuong et al.,

2022), the advent of hierarchical representations has led to the emergence of hi-

erarchical semantic parsing (HSP) (Gupta et al., 2018). HSP involves the iden-

tification of nested intents and slots within a user query, enabling the capture of

complex linguistic structures present in TOD systems (Aghajanyan et al., 2020).

Figure 1.2 provides an example illustrating the hierarchical representation of an

utterance through a fully parsed tree.

Figure 1.2: An example of hierarchical representation with the input utterance

“Driving directions to the Eagles game”. Where “SL:” denotes slot, “IN:” de-

notes intent.

1.2 Research Gap
While traditional semantic parsing methods have shown effectiveness in flat intent-

slot structures (Mesnil et al., 2013; Q. Chen et al., 2019), they struggle to handle

the complexities introduced by HSP. Hierarchical representations offer increased

expressiveness, allowing for more nuanced interpretations of user queries, but

they also pose challenges in accurately labeling and capturing nested structures

(Mansimov & Zhang, 2022).

In recent years, the field of natural language processing (NLP) has witnessed

significant advancements, largely driven by the remarkable success of pre-trained

language models like BERT (Devlin et al., 2019). These models have demon-

strated exceptional performance across a variety of tasks, including hierarchical
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semantic parsing (Ziai, 2019; Herzig & Berant, 2021; Rubin & Berant, 2021).

Among these models, RINE model (Mansimov & Zhang, 2022) has emerged as

a leader by providing state-of-the-art (SOTA) results. The distinctive strength of

the RINE model lies in its innovative utilization of a recursive insertion-based
mechanism. This mechanism allows the model to leverage the decoded tree from

previous steps as direct input for the current step, enabling more effective and

context-aware parsing. Despite the impressive achievements observed in the realm

of hierarchical semantic parsing, there is still significant room for enhancing the

overall performance of these systems.

Input: What is going on right now

Candidates: [ IN:GET_LOCATION, IN:GET_EVENT, ... ]
Tree: What is going on right now

Candidates: [ SL:DATE_TIME, SL:NAME_EVENT, ... ]
Tree: [IN:GET_EVENT What is going on right now ]

Label: IN:GET_EVENT
Span: (0, 4)

Step 1

Full Tree: [IN:GET_EVENT What is going on [SL:DATE_TIME right now ] ]

Label: SL:DATE_TIME
Span: (4, 5)

Step 2

Figure 1.3: Example of the parsing process in our framework. Each tree is a

linearized representation, where IN:, SL: represent the intent and slot, respectively.

Logical tokens are highlighted in red.

One promising approach is to adapt the pre-trained language models to the

specific characteristics of the semantic parsing task. These language models, al-

though powerful in their general language understanding capabilities, lack explicit

knowledge of the logical structure present inside sentences (Bender et al., 2021).

Therefore, incorporating sentence structure information is crucial for accurate and

effective semantic parsing. In addition, task-oriented dialogue systems typically

adhere to task- or domain-specific grammars, where certain intents consistently

serve as parent nodes for specific slots. For instance, in the navigation domain, the

slot SL:DESTINATION usually follows by an intent SL:GET DIRECTIONS.

Surprisingly, existing methods largely overlook this valuable information (Mansimov

& Zhang, 2022).

1.3 Objectives
Taking these points into consideration, this thesis focuses on two key enhance-

ments: strengthening the hierarchical structure awareness of pre-trained language
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models and employing dynamic pruning of unpromising decoding directions us-

ing inductive grammar. By incorporating the logical structure of sentences and

leveraging task-specific grammar, we aim to improve the performance of hier-

archical semantic parsing systems. To achieve this objective, we propose the

StructSP framework, which leverages hierarchical representations for their deep

fine-grained structure (Y. Zhao et al., 2022; Desai & Aly, 2021; Louvan & Magnini,

2020) and consists of two distinct phases: structure-aware boosting and grammar-
based RINE.

In the structure-aware boosting phase, our aim is to enhance the represen-

tation of structured information within pre-trained language models. We extend

the vanilla mask language modeling (MLM) task (Devlin et al., 2019) by giving

higher priority to logical tokens present in the linearized hierarchical representa-

tion. By doing so, we encourage the model to focus on the essential elements of

the logical structure and improve its understanding of the semantic relationships.

Furthermore, we introduce a novel subtask called relative tree agreement, which

allows the model to develop closer vector representations for relative trees in the

same parsing process. By learning the hidden relationships between these inter-

mediate parsing steps, our framework gains a more comprehensive understanding

of the logical structure and improves its ability to capture intricate dependencies.

In the second phase, grammar-based RINE, we incorporate grammar ex-

tracted from annotated data to help in the prediction of node labels. By utilizing

this grammar during the parsing process, we aim to guide the model toward more

accurate predictions by preventing branches in the decoding process that won’t

yield a solution, thus mitigating errors and improving the overall performance of

the system.

Through comprehensive experiments and evaluations, we seek to demonstrate

the superiority of the StructSP framework compared to existing models in task-

oriented semantic parsing on the widely used TOP and TOPv2 datasets. By effec-

tively integrating hierarchical semantic structured information into a pre-trained

language model and utilizing grammar contains in the decoding step, our frame-

work aims to achieve remarkable results, showcasing its potential to advance the

accuracy and performance of semantic parsing systems in various applications. In

summary, this work presents three key contributions:

• Introduction of an effective fine-tuning approach to integrating hierarchical

semantic structured information into pre-trained language models.

• Introduction of grammar integration mechanism in the decoding parsing

process to avoid label predictions that won’t yield a solution.

• Demonstration of the superior performance of the StructSP framework com-

pared to existing models in task-oriented semantic parsing using the TOP
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and TOPv2 datasets.

1.4 Thesis Outline
This thesis comprises five chapters, Chapter 1 is the introduction. The outline of

the remaining chapters is as follows:

• In the first section of Chapter 2 a comprehensive review of relevant litera-

ture and previous works pertaining to the fundamental concepts and meth-

ods explored in this thesis are described. It focuses on topics including:

hierarchical semantic parsing, pre-trained language model adaptation, and

grammar-constrained neural network models. The second section provides

background knowledge of this thesis.

• Chapter 3 presents a detailed explanation of the proposed method, which

consists of two distinct fine-tuning phases: Structure-aware Boosting and

Grammar-based RINE. Each step of the method is elucidated to provide a

clear understanding of its implementation.

• Chapter 4 describes the experimental settings, evaluation methods, and pri-

mary results obtained from the conducted experiments.

• Chapter 5 involves a thorough analysis aimed at gaining deeper insights into

the proposed method’s performance and behavior.

• Chapter 6 serves as the concluding chapter, summarizing the main findings

and conclusions drawn from the research. It also offers suggestions and

directions for potential future improvements.
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Chapter 2

Related Works and Background
Knowledge

2.1 Related Works

2.1.1 Hierarchical Semantic Parsing
Task-oriented parsing (TOP) (Gupta et al., 2018) and its variant TOPv2 (X. Chen

et al., 2020) have emerged as prominent benchmarks for evaluating the perfor-

mance of task-oriented semantic parsing models. These datasets have been in-

strumental in introducing a hierarchical representation that emphasizes the sig-

nificance of nested sub-logic composition in task-oriented dialog systems. The

hierarchical structure allows for a more fine-grained understanding of the user

intentions and enables the modeling of complex dependencies between different

components. As a result, numerous approaches have been proposed to tackle the

semantic parsing task on these datasets, aiming to improve the effectiveness and

accuracy of parsing models.

Einolghozati et al. (2019) proposed and demonstrated the effectiveness of

three different improvements to the semantic parsing model for task-oriented di-

alog, including contextualized embeddings, ensembling, and pairwise re-ranking,

which collectively address various errors in hierarchical representation. Aghajanyan

et al. (2020) proposed a novel semantic representation, known as the ”decou-

pled representation,” for task-oriented conversational systems. This representa-

tion overcomes the constraints of the structured hierarchical representation by in-

tegrating session-based properties like co-reference resolution and context carry-

over, allowing for a more comprehensive understanding of queries. Furthermore,

the authors employed sequence-to-sequence (S2S) models to accurately predict

this new representation data. Rongali et al. (2020) introduced a unified architec-

ture utilizing S2S and Pointer Generator Network, which offers a flexible and
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precise approach to process both simple and complex queries in virtual assis-

tant systems. The noteworthy aspect of this architecture is its ability to handle

queries without imposing any limitations on the semantic parse schema, allowing

for improved flexibility and accuracy in parsing. Zhu et al. (2020) proposed a

non-autoregressive parser based on the Insertion Transformer (Stern et al., 2019),

which addresses the challenges of slow inference time and poor performance com-

monly encountered in semantic parsing. Additionally, Babu et al. (2021) devel-

oped a non-autoregressive approach for semantic parsing using an efficient S2S

model architecture, addressing the limitations of higher compute requirements and

latency associated with traditional autoregressive models. W. Zhao et al. (2022)

explored naturalized semantic parsing for TOP by introducing a general reduction

of hierarchical representation to abstractive question answering, which addresses

limitations associated with canonical paraphrasing. Mansimov and Zhang (2022)

introduced a novel approach called Recursive INsertion-based Encoder (RINE)

model. In general, this approach employs an encoder network to construct the

semantic parse tree step by step, predicting non-terminal labels along with their

positions in the linearized tree. During the generation process, the model recur-

sively inserts the predicted non-terminal labels at the predicted positions until the

tree construction is complete.

However, despite these advancements, the hierarchical structure information

has often been disregarded in parsing processes. Therefore, our research focuses

on leveraging this hierarchical structure to continue pre-training language models

and utilizing an inductive grammar derived from annotated data to guide node

label predictions, aiming to enhance the performance and accuracy of semantic

parsing models.

2.1.2 Pre-trained Language Model Adaptation
In recent years, the adaptation of pre-trained language models has emerged as a

powerful technique for enhancing the performance of natural language processing

tasks across various domains. Notably, researchers have explored the application

of pre-trained language models in tasks such as summarization (J. Zhang et al.,

2020), knowledge inference (Sun et al., 2019; W. Liu et al., 2020), and biomedical

natural language processing (Lee et al., 2020; Gu et al., 2021) by adapting pre-

trained language models and achieving remarkable results.

When it comes to semantic parsing, Yu, Zhang, et al. (2020) introduced SCORE,

a pre-training approach for Conversational Semantic Parsing (CSP) tasks. SCORE

aims to capture the alignment between dialogue flow and structural context, ad-

dressing the limitations of existing pre-trained language models in representing

natural language references to contextual structural data. In addition, GraPPa (Yu,

Wu, et al., 2020) was introduced as a pre-training approach specifically designed
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for table semantic parsing. This approach leverages a synchronous context-free

grammar (SCFG) to generate synthetic question-SQL pairs over high-quality ta-

bles. The model is pre-trained on this synthetic data using a novel text-schema

linking objective that predicts the syntactic role of a table field in the SQL for

each question-SQL pair. Moreover, the utilization of Abstract Meaning Repre-

sentation (AMR) as a source of explicit semantic knowledge for pre-training lan-

guage models in the field of dialogue comprehension is explored by Bai et al.

(2022). The authors proposed a semantic-based pre-training framework that ex-

tends the standard pre-training framework by incorporating three tasks related to

core semantic units, semantic relations, and overall semantic representation based

on AMR graphs.

In contrast to existing methods such as SCORE and Grappa, which rely on

generating or augmenting large artificial datasets to learn structure information

(Yu, Zhang, et al., 2020; Yu, Wu, et al., 2020), our approach focuses on strength-

ening the hierarchical structure information. Instead of relying on extensive com-

putational resources, we continue the training process of the model using only

annotated data for the fine-tuning task. This strategy enables the model to ef-

fectively handle the challenges of hierarchical semantic parsing while requiring

fewer computational resources. By adopting this approach, we aim to enhance the

model’s performance and ensure efficient utilization of available computational

capacity.

2.1.3 Grammar-Constrained Neural Network Models
The integration of grammar constraints with deep neural networks has received

significant attention in the research community. In a previous work, Yin and Neu-

big (2017) proposed a neural architecture that incorporates a grammar model to

explicitly capture the target syntax of a general-purpose programming language.

By encoding the underlying syntax as prior knowledge, this grammar model facil-

itates the generation of code that adheres to syntactic correctness. Similarly, Xiao

et al. (2016) emphasized the integration of grammatical constraints into the RNN-

based sequential predictor. This integration allows the predictor to follow the

syntactic rules and structures specified by the grammar when generating logical

forms. By incorporating these constraints, the model ensures that the generated

sequences maintain grammatical accuracy and coherence in line with the under-

lying grammar. In recent research by Baranowski and Hochgeschwender (2021),

the significance of grammar in semantic parsing tasks, particularly in program-

ming or query languages like SQL, was highlighted. By leveraging a context-free

grammar, which formalizes the target meaning representations, syntactical con-

straints can be enforced during the prediction of logical forms. To enforce these

grammar constraints, an LR parser (Knuth, 1965), was employed to ensure the va-
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lidity of the generated sequences during the decoding phase. The incorporation of

grammar constraints in the parsing process guarantees that the produced outputs

adhere to the grammatical rules of the target language.

Our approach distinguishes itself from prior research by going beyond using

grammar solely for valid label predictions. Instead, we exploit grammar as an

additional source of structured information during training by incorporating it into

a conditional loss function. This novel aspect enhances the capabilities of our

approach and sets it apart from previous works.

2.2 Background Knowledge

2.2.1 Hierarchical Representation
When coming to the design of semantic representation, there are various consid-

erations that need to be taken into account. One of the main challenges is finding

the right balance between the expressiveness of the representation and the ease

of annotation, parsing, and execution. This trade-off is crucial in order to create

effective semantic parsing systems.

In the context of semantic parsing in task-oriented dialog systems, many exist-

ing annotation schemes (Mesnil et al., 2013; Zettlemoyer & Collins, 2012) have

leaned towards either non-recursive intent or slot tagging. An example of this can

be seen in the ATIS dataset (B. Liu & Lane, 2016), where given one utterance,

the annotations focus on categorizing one intent and tagging specific slots. These

approaches have their advantages, such as simplicity and straightforwardness in

the annotation process. However, they also have limitations in terms of capturing

more complex and nuanced semantic structures.

Gupta et al. (2018) introduced a hierarchical representation that similarity to

a constituency syntax tree, where words serve as terminals. In this structure, non-

terminals can either be intents or slots, and the root node is always an intent.

By organizing the representation in a hierarchical manner, it becomes possible

to capture the relationships and dependencies between different components of

a given utterance or query. This allows for a more nuanced and comprehensive

understanding of the user’s input.

Formally, given the utterance X = [x1, x2, ..., xm] with m tokens. The goal of

hierarchical representation is to predict the semantic parse tree Pgold (e.g. Figure.

2.1). In this tree, each leaf node represents a token span xi:j = [xi, xi+1, ..., xj−1]
from X . Each non-terminal node has a label l. This label can be either an intent

(starting with "IN:") or a slot (starting with "SL:").
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Figure 2.1: An example of hierarchical representation with the input utterance

”What route should I take to reach Albany airport by 2 PM”.

2.2.2 Recursive Insertion-based Method for Hierarchical Se-
mantic Parsing

The recursive insertion-based method, as outlined in the study by Mansimov and

Zhang (2022), involves a recursive and incremental process of constructing sub-

parsed trees. This method can be described as the step-by-step generation of a

sequence of sub-parsed trees denoted as P = [P0,P1, ...,Pgold]. The initial sub-

parsed tree P0 is identical to the input utterance X , while each subsequent sub-

parsed tree is generated based on the output of the previous step.

An alternative perspective to understanding this method is to view the target

tree Pgold as the result of a series of incremental insertions of elements from a set

S = {(l0, s0, e0) ,..., (li, si, ei) ,..., (lT , sT , eT )} into the original utterance X . Here,

each element (li, si, ei) in S consists of an intent/slot label li, a start position si,
and an end position ei. The label li represents a specific semantic category and

covers the token span (si, ei − 1) within the partially constructed tree Pi. By

successively inserting the elements from S into X in the specified positions, we

arrive at the desired target tree Pgold.

A concrete example of the semantic tree generation process using the recur-

sive insertion-based method is shown in Figure 2.2. In the first iteration, the label

IN:GET DIRECTIONS is inserted at the beginning of the utterance, spanning

positions 0 to 7 in the sentence “What is the shortest way home ?”. This insertion

operation yields the intermediate tree representation “[IN:GET DIRECTIONS
What is the shortest way home ? ]”. Subsequently, this modified tree is fed back

into the model, which generates the tuple (SL:DESTINATION, 6, 8) as output.

The updated tree, now including the SL:DESTINATION label “[IN:GET DIR-
ECTIONS What is the shortest way [SL:DESTINATION home ] ? ]”, is then

used as input for the model, producing the tuple (IN:GET LOCATION HOME,
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7, 9). Finally, to indicate the completion of the generation process, the model

predicts a special end-of-prediction (EOP) label.

Figure 2.2: An overview of top-down generation of the recursive insertion-based

method for hierarchical semantic parsing. The inserted labels at each step are

highlighted in red.

The recursive insertion-based method incorporates an encoder component,

which can utilize various architectures such as an RNN (Elman, 1990), Trans-

former (Vaswani et al., 2017), or any other suitable model. The encoder plays a

crucial role in processing the input utterance and extracting meaningful represen-

tations that can be used for subsequent steps in the parsing process. The choice

of encoder architecture depends on the specific requirements of the task and the

characteristics of the data being parsed.
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Chapter 3

Proposed Method

3.1 Overview
Figure 3.5 provides an overview of our StructSP framework, which consists of

two fine-tuning phases: Structure-aware Boosting and Grammar-based RINE.

In the first phase, we aim to enhance the structured information within hierarchical

representations, enabling pre-trained language models to adapt more effectively

to the semantic parsing task. To achieve this, we propose two novel sub-tasks:

Structure-focused Masked Language Modeling (MLM) (detailed in section 3.2.1)

and Relative Tree Agreement (described in section 3.2.2). These sub-tasks focus

on strengthening the understanding of structured information and improving the

ability to capture hierarchical dependencies within the language models.

Training data
[IN:GET_EVENT [SL:CATE_EVENT Concerts ] 

by [SL:NAME_EVENT Chris Rock ] ]

Phase 1: Structure-
aware boosting

Lstr_mlm

Structure-aware 
Boosted Model

Optimize

Recursive Insertion-
based Encoder

(with conditional loss by
Grammar rules)

Semantic Parsing 
Model

Lcontrastive

Phase 2: Grammar-
based RINE

IN:GET_EVENT

SL:CATE_EVENT by SL:NAME_EVENT

Concerts Chris Rock

Grammar

Structure-focused MLM
[IN:GET_EVENT [SL:CATE_EVENT Concerts ... ] ]

0.3 0.3 0.15 ...

Text:

Masking Prob.:

Masked Text: [MASK] [SL:CATE_EVENT Concerts ... ] ]

Relative Tree Agreement

...

Full trees

Labels
id: f01

id: f02

synthesize

...

Pruned trees
id: s01

id: s02

Prunning

f01-s01: True
f01-s02: False
f01-s03: False...
f02-s01: False
f02-s02: True
f02-s03: False

1

642

5

8 9

7

1

342

5 6

8

9

7

3...

∅
IN:GET_EVENT

SL:CATE_EVENT
...

IN:GET_DISTANCE
...

...

Legend

Non-terminal node

Terminal node

Figure 3.1: System architecture of StructSP framework. Where the structure-
aware boosted model is the output model from the first phase and is used as the

backbone encoder for the second Grammar-based RINE phase.

In the second phase, called Grammar-based RINE, we employ a recursive
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insertion-based approach (Mansimov & Zhang, 2022) enhanced by grammar con-

straints to address the problem of the hierarchical semantic parsing task. We syn-

thesize a grammar from the annotated training data, resulting in an inductive gram-

mar with the root represented by the special label ∅. Utilizing the structure-aware

model obtained from the previous phase as the backbone encoder, we introduce

a constrained objective function using the synthesized grammar. This enables the

model to focus on crucial information for promising label predictions. During

the inference phase, we further utilize the grammar to guide the decoding process

and prevent unpromising decoding directions, improving the overall accuracy and

effectiveness of the framework.

3.2 Structure-aware Boosting
The structure-aware boosting phase consists of two sub-tasks: Structure-focused
MLM and Relative Tree Agreement, which we will discuss in detail in this section.

3.2.1 Structure-focused MLM
Before delving into the proposed approach of structure-focused MLM, we first

recap the concept of vanilla MLM (Devlin et al., 2019).

Vanilla MLM: In the field of pre-trained language models, the masked lan-

guage modeling technique is a crucial component for enhancing the proficiency

of language understanding. The main objective of this task is to train the lan-

guage model by predicting masked tokens based on the contextual information

provided by the input sequence. Mathematically, given an input sequence X =
[x1, x2, ..., xm], a masking distribution T = [t1, t2, ..., tm] is applied, where ti rep-

resents the probability of masking token xi. In the vanilla MLM approach pro-

posed by Devlin et al. (2019), all ti values in T are set equally to 15%. Let D
denote the set of tokens selected for masking, e.g., D = {x1}, and let X ′ repre-

sent the masked sequence X ′ = [[MASK], x2, ..., xm]. The objective function for

vanilla MLM is defined as follows:

Lmlm = − 1

|D|
|D|∑
i=1

|V|∑
j=1

xij log p(xij | X ′) (3.1)

Here, Lmlm denotes the specific loss function employed for the vanilla MLM task.

The vocabulary set V encompasses all possible tokens that the language model can

generate. The conditional probability p(xij | X ′) measures the likelihood that the
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masked token xi is predicted as the j-th token in the vocabulary, given the context

X ′. By minimizing the average negative log-likelihood across all masked tokens,

the model learns to accurately predict the original tokens, leveraging the contex-

tual information provided by the surrounding tokens. The vanilla MLM approach

has proven to be effective (Lee et al., 2020; Nguyen & Nguyen, 2021). However,

when applying the masked language model to the task of semantic parsing, there

is room for further improvement by leveraging the characteristics of this specific

task.

Structure-focused MLM: In the linearized hierarchical representation, we en-

counter two types of tokens: normal tokens and logical tokens (Figure 3.2). Nor-

mal tokens correspond to the natural language text of the utterance, while logi-

cal tokens encode the structural information of the semantic representation. The

logical tokens can be further categorized into two subtypes: label tokens and

bracket tokens. Label tokens represent specific label types, such as intents or slots,

for instance SL:NAME EVENT, while bracket tokens indicate the corresponding

spans of labels. When we input the linearized hierarchical representation into a

masked language model, the correct prediction of label tokens demonstrates the

model’s understanding of label types, while the correct prediction of bracket to-

kens demonstrates the model’s comprehension of label spans. Therefore, masking

logical tokens is an effective approach to help the model learn the structured infor-

mation within the hierarchical representation (Bai et al., 2022). However, vanilla

MLM treats all tokens equally, without considering whether they are logical or

normal tokens.

Figure 3.2: An example of linearized hierarchical representation. Logical tokens

are highlighted in red, and normal tokens are in black.

In the structure-focused MLM approach, we assign a higher masking proba-

bility to logical tokens, aiming to prioritize the hierarchical structure information
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within language models. This mechanism allows the models to acquire knowledge

from the semantic structure of utterances while retaining contextual understanding

based on normal masked tokens (Yu, Wu, et al., 2020). Specifically, we introduce

a new masking distribution T ′ = [t′1, t
′
2, ..., t

′
m], where t′i = α if token xi corre-

sponds to a logical token. The choice of a suitable value for α is crucial, and we

conduct an experiment to determine its optimal value (see section 5.2). During

training, we use the structure-focused MLM loss function (Lstr mlm) to compute

the loss for masked tokens, following a similar approach to the original MLM.

Using the values of T ′, we randomly select a set of tokens D′ for masking, and the

model is trained to predict the masked tokens based on the contextual informa-

tion provided by the unmasked tokens. The objective is to minimize the negative

log-likelihood of the predicted tokens, as shown in the following equation:

Lstr mlm = − 1

|D′|
|D′|∑
i=1

|V|∑
j=1

xij log p(xij | X ′) (3.2)

Similar to the masking strategy employed in RoBERTa (Y. Liu et al., 2019a), we

perform token masking during each training iteration rather than in the prepro-

cessing step. This approach ensures that the model learns to handle the presence

of masked tokens dynamically.

3.2.2 Relative Tree Agreement
In the tree format of hierarchical representation, the structure is organized such

that each leaf node corresponds to a token span, while non-terminal nodes rep-

resent labels indicating intents or slots. We construct a non-terminal list by per-

forming a breadth-first search traversal of the parsed tree. The non-terminal list

consists of all the non-terminal nodes encountered during the traversal. Figure

3.3 provides an example of such a non-terminal list. This list will then be used in

generating positive training samples for the relative tree agreement subtask.

The parsed tree that includes all the non-terminal nodes is referred to as the

full tree or gold tree. In the subsequent steps, for each non-terminal node in the

non-terminal list, we create a pruned tree by removing all the non-terminal nodes

located to the right of that particular node in the list from the full tree. Conse-

quently, a full tree can have multiple pruned trees. These pruned trees and the

full tree are considered relative to each other. An example of pruned trees and

a full tree is presented in Figure 3.4. To construct positive training samples, we

randomly select one of the pruned trees, denoted as Ppruned, and combine it with

the full tree, denoted as Pfull, resulting in a positive training sample represented

as (Ppruned, Pfull).
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Figure 3.3: An example of non-terminal list according to the hierarchical repre-

sentation of utterance “Concerts by Chris Rock”.

The objective of this task is to ensure that the representations of relative trees

are closely aligned in the embedding space. This alignment facilitates the effec-

tive utilization of recursive insertion-based parsing. To achieve this objective, we

begin by encoding the pruned tree Ppruned and the full tree Pfull to obtain their

corresponding hidden states, denoted as hpruned and hfull, respectively.

hfull = RoBERTa(Pfull)

hpruned = RoBERTa(Ppruned)
(3.3)

To train the model for this task, we leverage the power of contrastive learn-

ing techniques (Frosst et al., 2019; Gao et al., 2021; Bai et al., 2022; Luo et al.,

2022). The primary objective of contrastive learning is to bring similar instances

closer together in the embedding space, minimizing their distances, while simul-

taneously pushing dissimilar instances apart by maximizing their distances. In

our case, at the i-th position of the batch B, the positive pair consists of h
(i)
full and

h
(i)
pruned, representing the hidden states of the full tree and the pruned tree, respec-

tively. The negative pairs are formed by combining h
(i)
full with the hidden states of

the other samples in the batch. After obtaining the hidden state of each tree, we

can compute the similarity between each positive or negative training pair, which

measures how well the representations of the two trees align in the embedding

space. To encourage closer alignment between the pruned tree and the full tree

in the same parsing process, we employ a contrastive loss function, denoted as

Lcontrastive, defined as follows:

Lcontrastive = −log
exp(sim(h

(i)
full, h

(i)
pruned)/τ)

∑
j∈B exp(sim(h

(i)
full, h

(j)
pruned)/τ)

(3.4)

In this equation, sim(h
(i)
full, h

(i)
pruned) represents the similarity score between the

i-th pair of hidden states based on cosine distance, τ is a temperature parameter

(Gao et al., 2021), and B denotes the batch of training examples.
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Concerts by Chris Rock

Concerts by Chris Rock

IN:GET_EVENT

Pruned TreePruned Tree

Linearization: Concerts by
Chris Rock

Linearization: [IN:GET_EVENT
Concerts by Chris Rock ]

Pruned Tree

Concerts

IN:GET_EVENT

SL:CATE_EVENT by Chris Rock

Linearization: [IN:GET_EVENT
[SL:CATE_EVENT Concerts ] by Chris Rock ]

Concerts

IN:GET_EVENT

SL:NAME_EVENT

Chris Rock

SL:CATE_EVENT by

Full Tree

Linearization: [IN:GET_EVENT [SL:CATE_EVENT Concerts ]
by [SL:CATE_EVENT Chris Rock ] ]

Figure 3.4: An example of pruned trees and the full tree in the parsing process of

utterance “Concerts by Chris Rock”.

3.2.3 Objective Function
We integrate the losses from the two above sub-tasks to formulate the final objec-

tive functions for training our model.

Lsab = Lcontrastive + λ ∗ Lstr mlm (3.5)

In this equation, the hyperparameter λ is used to balance the contributions of the

two sub-tasks. By adjusting the value of λ, we can control the relative importance

of the contrastive learning and structure-based MLM objectives during training.

We follow the approach of previous works (Lee et al., 2020; Nandy et al., 2021;

Bai et al., 2022) by initializing our model with the weights of a pre-trained lan-

guage model (Y. Liu et al., 2019a). This initialization helps our model leverage

prior knowledge stored in the language model.

3.3 Grammar-based RINE
In the grammar-based RINE phase, we utilize the recursive-insertion based ap-

proach (Mansimov & Zhang, 2022) enhanced by grammar constraints. The back-

bone encoder used in this phase is the structure-aware model from the previous
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phase, which has learned to capture and encode hierarchical representations. The

parsing process in the recursive-insertion based approach can be represented as

an incremental generation of sub-parsed trees, where the output of the previous

step serves as the input for the current step. Table 3.1 illustrates an example of the

parsing process.

Table 3.1: Example chain of incremental trees in parsing process using Recursive

Insertion-based Encoder.

3.4 Grammar Constraints
It has been observed that the relationships between nodes in hierarchical represen-

tations typically adhere to a grammar. This knowledge is crucial in hierarchical

semantic parsing as it can be leveraged to correct decoding steps and prevent un-

reliable label predictions. For instance, in the case of a parent node labeled as

IN:GET EVENT, its child nodes should correspond to slots containing event in-

formation, such as SL:NAME EVENT or SL:CATE EVENT. Recognizing the im-

portance of grammar in improving parsing performance, we introduce grammar

integration into our model (section 3.4.1).

To incorporate grammar constraints, we synthesize a grammar G = {A →
B | A,B are non-terminal nodes } from annotated training data, as illustrated in

Figure 3.5. This synthesized grammar captures the constraints and dependencies

observed in the training data. For example, one of the constraints in the grammar

could be IN:GET EVENT→ IN:NAME EVENT. By employing this grammar in

our method, at each parsing step, the model only needs to consider a candidate set

C = G(U) instead of evaluating all possible label types. Here, U represents the

parent node of the label that is currently being predicted.
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Figure 3.5: Process of using annotated training data to synthesize the grammar.

3.4.1 Modeling
Training: Without loss of generality, we consider the ith step of the parsing

process. At this point, the input consists of the linearized representation of the

current parsed tree Pi = [x1, x2, ..., xn] and the parent node U . The objective

of the model is to predict a label from the label set L = [l1, l2, ..., l|L|] and its

corresponding span (s, e), where both s and e are within the range [0, n).
During the training phase, we begin by inputting the parsed tree Pi into the en-

coder model to acquire its hidden states. Following previous works (Mansimov &

Zhang, 2022), we utilize the vector representation of the hidden state correspond-

ing to the [CLS] token to compute the probability of the node label. Additionally,

we utilize the hidden states from the last two transformer encoder layers to calcu-

late the probabilities of the start and end positions (s, e).

pnodeLb = softmax(Wlbh
(t)
[CLS] + blb) (3.6)

pstartk = softmax(Wsh
(t)
wk

+ bs) (3.7)

pendk = softmax(Weh
(t−1)
wk

+ be) (3.8)

In these equations, Wlb, Ws, and We are weight matrices, blb, bs, and be are bias,

h
(t)
[CLS] represents the hidden state of the [CLS] token in the tth encoder layer,

and h
(t)
wk and h

(t−1)
wk represent the hidden states corresponding to the kth word in

the linearized representation of the parsed tree in the tth and (t − 1)th encoder

layers, respectively. Especially, we integrate a grammar-based penalty into the

loss function to ignore unpromising node label predictions. The penalty is defined

as follows:

spenalty =

{
0 if nodeLb ∈ C
+∞ otherwise

(3.9)
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Here, C denotes the canditates that is obtained by the grammar G and parent node

U (C = G(U)). The final loss functions are computed using the cross-entropy loss

as follows:

LnodeLb = CE(gnodeLb, pnodeLb) + spenalty (3.10)

Lstart =
∑
k

CE(gstartk , pstartk ) (3.11)

Lend =
∑
k

CE(gendk , pendk ) (3.12)

Lfinal = LnodeLb + Lstart + Lend (3.13)

Where, gnodeLb represents the ground-truth node label, gstartk and gendk are the

ground-truth start and end positions. The loss function LnodeLb combines the

cross-entropy loss between the predicted node label pnodeLb and the ground truth,

with the grammar-based penalty spenalty. Similarly, Lstart and Lend compute the

cross-entropy losses between the predicted start and end positions pstartk and pendk ,

respectively, and their corresponding ground truth.

Inference: During the inference step, we employ the recursive-insertion based

approach to generate the output parsed tree. However, a challenge arises in this

step due to the lack of information about the current parent node U , which is re-

quired to generate the candidate set C. To tackle this problem, we adopt a straight-

forward strategy: we first predict the label span and then use the predicted label

span to identify the current parent node. For example, let’s consider the beginning

of the third step of the parsing process in Table 3.1, with the input P2. At this

moment, we do not have any information about the parent node, which could be

either IN:GET EVENT or IN:CATE EVENT. To determine the parent node, we

run the span prediction and obtain the span ”Chris Rock”. Based on the position

of this span, we can identify that the parent node should be IN:GET EVENT.

Utilizing this information about the parent node, we generate the candidate set C
based on the grammar G. Next, we proceed with the model to obtain the current

label predictions. We then prune all label predictions that do not belong to the

candidate set C by setting the probability of these label predictions to zero, i.e.,

c /∈ C. This pruning step ensures that only labels consistent with the grammar

constraints are considered.
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Parsed Tree: [IN:GET EVENT [SL:CATE EVENT Concerts ] by Chris Rock ]

Parent Node: IN:GET EVENT
Candidates: [ SL:DATE_TIME, SL:NAME_EVENT, ... ]

Predict span: "Chris Rock"

Figure 3.6: Using the span prediction to determine the parent node.
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Chapter 4

Experiment

4.1 Datasets and Evaluation Metric
To evaluate the performance of our StructSP model, we conducted experiments

on the TOP dataset1 (Gupta et al., 2018) and its variant, TOPv22 (X. Chen et al.,

2020). These datasets provide a diverse range of semantic parsing queries across

different domains. Additionally, we employed a standard evaluation metric to

measure the effectiveness of our model’s predictions. The datasets and evaluation

metric are described as follows:

TOP: The TOP dataset serves as the primary dataset for our experiments. It

consists of training, development, and test sets, with statistics presented in Table

4.1. The dataset covers two domains: navigation and event. It offers a rich

variety of semantic parsing task, with 29 distinct intents and 36 different slots,

enabling a comprehensive evaluation of our model’s semantic parsing capabilities.

To ensure consistency with previous works (Einolghozati et al., 2019; Rongali

et al., 2020; Zhu et al., 2020; Mansimov & Zhang, 2022), we followed their

setting by removing all utterances containing the UNSUPPORTED intent from the

dataset. This preprocessing step resulted in the TOP dataset containing 28,14

training examples, 4032 development examples, and 8241 test examples.

TOPv2 In addition to the TOP dataset, we also utilized the TOPv2 dataset to fur-

ther evaluate the performance of our proposed model, particularly in low-resource

scenarios. The TOPv2 dataset serves as an extension of the TOP dataset and in-

troduces two new domains: weather and reminder. Within each domain, the

TOPv2 dataset offers two different settings: 25 SPIS and 500 SPIS. Here, ”SPIS”

1Provided under the CC-BY-SA license
2Provided under the CC BY-NC 4.0 license
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Table 4.1: Statistics of TOP and TOPv2 datasets.

stands for samples per intent and slot. In the case where an intent or slot ap-

pears fewer times than the value of SPIS, the utterances containing that intent or

slot are included in the training dataset. In simpler terms, a smaller SPIS setting

corresponds to a smaller training dataset. For the weather domain in the TOPv2

dataset, there are 7 distinct intents and 11 different slots. While the reminder do-

main consists of 19 intents and 32 slots. The statistic of data samples is shown in

Table 4.1.

Evaluation Metric: For evaluating the performance of our model, we employed

the exact match (EM) score as the evaluation metric following the previous studies

(Zhu et al., 2020; Rongali et al., 2020; Mansimov & Zhang, 2022). The EM

score measures the percentage of predictions that perfectly match the ground truth.

It provides a strict evaluation criterion, reflecting the accuracy of the model in

generating correct semantic representations (parsed trees).

4.2 Data Preprocessing and Experimental Setting

4.2.1 Data Pre-processing
To prepare the data for training our StructSP model, we followed a series of pre-

processing steps. These steps ensured the extraction and transformation of the

necessary information from the training samples. The data preprocessing steps

are as follows:

• Step 1: Extraction of Grammar. In the first step, we extracted the gram-

mar by utilizing the full trees from the training samples. We followed

the instruction G = {A → B | A,B are non-terminal nodes} to create

the grammar rules. For example, a grammar rule could be represented as
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IN:GET EVENT→ SL:CATE EVENT. This extraction process enabled us

to build an inductive grammar with the root denoted by ROOT label.

• Step 2: Conversion of Ground-Truth Trees. Next, we converted the

ground-truth full trees into multiple sub-parsed trees. Each sub-parsed tree

was represented as a triple, consisting of the linearized representation of the

current parsed tree, the label associated with that tree, and the corresponding

label span. Figure 1.3 provides an example illustrating this transformation.

• Step 3: Extraction of Label Types. In the final step, we extracted the set of

label types from the training samples. By extracting the labels present in the

data, we obtained a collection of the different label types that appeared in

the dataset. This information was crucial for training our model to recognize

and generate appropriate labels during the decoding phase.

By following these data preprocessing steps, we prepared the dataset to train

our models in two fine-tuning phases: Structure-aware Boosting and Grammar-
based RINE.

4.2.2 Experimental Setting
In the training process, we utilized various hyperparameters for our proposed

models. The hyperparameters used for each phase of our StructSP method when

performing the TOP dataset are presented in Table 4.2.

Structure-aware Boosting: In the Structure-aware Boosting phase, we utilized

the Roberta model (Y. Liu et al., 2019b) as our backbone encoder. To optimize

our model’s performance, we carefully selected hyperparameters. We set the batch

size to 16 and the learning rate to 1e-5. The sequence length was set to 300, allow-

ing for sufficient context coverage. Additionally, we performed a hyperparameter

search for α, which represents the weighting factor for the structure-focused MLM

and relative tree agreement loss functions. We evaluated different values of α and

found that the best performance was achieved with values of 0.5 or 1.0, with the

0.5 value producing the most balanced contributions between the two loss func-

tions. The training process was conducted for 10 epochs. In the TOPv2 datasets,

we made adjustments to the number of training epochs for the 25 SPIS settings.

Since the training data size is smaller in these settings, we increased the number

of training epochs to 50. This modification allowed our model to benefit from

extended training on the limited data available in low-resource scenarios.
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Table 4.2: Hyper-parameters of our models in TOP dataset

Phase Hyper-Parameter Value

Structure

Aware

Boosting

Batch size 16

Learning Rate 1e-5

Sequence length 512

MLM Weight (θ) 0.5

Training Epoch 10

Grammar

based

RINE

Batch Size 32

Optimizer Adam

Learning Rate 1e-5

Warmup Step 1000

Max Training Epoch 50

Max length 512

Logical Token Masking Prob. (α) 0.3

Attention Dropout 0.2

MLP Dropout 0.5

Grammar-based RINE: For the Grammar-based RINE phase, we fine-tuned

our model by adjusting several key hyperparameters. We set the batch size to 32

and utilized the Adam optimizer (Kingma & Ba, 2014) with a learning rate of

1e-5. To ensure stable training, we applied a warmup step of 1000 and limited

the maximum training epoch to 50. Considering the maximum length of inputs,

we set it to 512. To control the logical token masking probability (α), which is

crucial for capturing logical structure information, we conducted a hyperparam-

eter search. We evaluated different values of α from the set {0.2, 0.3, 0.4, 0.5,

0.6, 0.7}, and the value of 0.3 yielded the highest performance, highlighting its

effectiveness in balancing the masking of logical tokens. To control the logical

token masking probability (α), which is crucial for capturing logical structure in-

formation, we conducted a hyperparameter search. We evaluated different values

of α from the set {0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, and the value of 0.3 yielded the

highest performance, highlighting its effectiveness in balancing the masking of

logical tokens. In the TOPv2 datasets, we made further adjustments to the num-

ber of training epochs specifically for the 25 SPIS settings. In these low-resource

settings, we extended the training duration to 100 epochs.
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4.3 Main Results
Performance on TOP dataset: We conducted a performance comparison of our

StructSP method with several previous approaches on the TOP test set. Table 4.3

presents the results in terms of the exact match (EM) score.

Table 4.3: Performance comparison using exact match score for our StructSP

method and previous works on TOP test set.

Method Pre-trained EM

Seq2seq (Bai et al., 2022) SARA-ROBERTA 82.78

RNNG ensem. + SVMRank (Einolghozati et al., 2019) ELMo 87.25

Non-AR S2S-Ptr (Shrivastava et al., 2021) RoBERTabase 85.07

S2S-Ptr (Rongali et al., 2020) RoBERTabase 86.67

Decoupled S2S-Ptr (Aghajanyan et al., 2020) RoBERTalarge 87.10

Insertion Transformer + S2S-Ptr (Zhu et al., 2020) RoBERTabase 86.74

RINE (Mansimov & Zhang, 2022) RoBERTalarge 87.57 ± 0.03

Non-grammar StructSP (ours) RoBERTalarge 87.89 ± 0.08

StructSP (ours) RoBERTalarge 88.18 ± 0.24

Our method outperforms all previous methods, achieving an impressive EM

score of 88.18 ± 0.24. Specifically, it achieved a higher EM score than the RNNG

model ensemble with ranking SVM (Einolghozati et al., 2019) by 0.93 EM, the

non-autoregressive seq2seq model with pointer (Shrivastava et al., 2021) by 3.11

EM, the autoregressive seq2seq model with pointer (Rongali et al., 2020) by 1.51

EM, and the decoupled seq2seq model with pointer (Aghajanyan et al., 2020) by

1.08 EM. Among insertion-based parsing methods, our proposed model outper-

forms the seq2seq-ptr model based on the Insertion Transformer (Zhu et al., 2020)

by 1.44 EM, and the current SOTA model, RINE (Mansimov & Zhang, 2022),

by 0.61 EM. Furthermore, our results outperformed those of the Seq2seq model

based on SARA-ROBERTA (Bai et al., 2022) by a significant margin (5.40 EM),

despite their efforts to enhance the structural information of pre-trained models

through general Abstract Meaning Representation (AMR) structures.

The results we obtained clearly demonstrate the effectiveness of our approach,

which introduces a novel injecting mechanism for integrating hierarchical struc-

ture information from natural sentences into pre-trained language models. More-

over, we observed a notable improvement in our model’s performance when we

incorporated grammar into the training and inference processes. Specifically, our

model that utilized grammar achieved a 0.29-point higher score compared to a ver-

sion that did not utilize grammar. This highlights the importance of incorporating
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grammar to guide the decoding process and avoid unpromising decoding direc-

tions when dealing with the TOP dataset. These findings underscore the value

and impact of incorporating grammar in improving the accuracy and reliability of

semantic parsing models.

Performance on TOPv2 dataset: We present the main results of our experi-

ments on the TOPv2 dataset, comparing the performance of our proposed StructSP

method with previous approaches in Table 4.4.

Table 4.4: Performance comparison using exact match score for our StructSP

method and previous works on TOPv2 test set.

Method Pre-trained

Exact Match

Weather Reminder

25 SPIS 500 SPIS 25 SPIS 500 SPIS

LSTM Seq2Seq-

Ptr (X. Chen et al.,

2020)

46.2 78.6 21.5 65.9

Seq2seq-Ptr (X. Chen

et al., 2020)

RoBERTabase 83.5 71.9

Seq2seq-Ptr (X. Chen

et al., 2020)

BARTlarge 71.6 84.9 55.7 71.9

RINE (Mansimov &

Zhang, 2022)

RoBERTabase 74.53 ± 0.86 87.80 ± 0.04 68.71 ± 0.46 80.30 ± 0.04

RINE (Mansimov &

Zhang, 2022)

RoBERTalarge 77.03 ± 0.16 87.50 ± 0.28 71.10 ± 0.63 81.31 ± 0.22

Non-grammar

StructSP

RoBERTalarge 78.24 ± 0.47 88.00 ± 0.47 72.07 ± 1.24 81.57 ± 0.27

StructSP RoBERTalarge 77.96 ± 0.92 88.08 ± 0.11 72.12 ± 1.13 82.28 ± 0.24

The experimental results indicate that our proposed StructSP method out-

performs previous approaches across all SPIS settings. Specifically, at 25 SPIS

settings, our models achieve higher scores than the state-of-the-art RINE model

(Mansimov & Zhang, 2022) by 0.93 EM in the weather domain and 1.02 EM in

the reminder domain. At 50 SPIS settings, our models surpass the performance

of the RINE model by 0.58 EM and 0.97 EM, respectively. These findings high-

light the effectiveness of our proposed method, which demonstrates significant

improvements even in low-resource scenarios.

Furthermore, it is worth noting that our model without using grammar per-

forms better than the model that incorporates grammar at 25 SPIS in the weather

domain. We attribute this difference to the extremely limited training data with
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only 176 samples available at 25 SPIS settings. Consequently, the grammar ex-

tracted from the training data may not be comprehensive enough to capture the

grammar patterns present in the validation and test sets. Addressing this issue

requires further investigation and future work.
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Chapter 5

Analysis

5.1 Ablation Study
To evaluate the impact of different factors on the performance of our proposed

model, we conducted a systematic ablation study. The goal was to analyze and

assess the contributions of individual components in our model, identifying the

key elements that significantly influenced its performance. Initially, we trained

the RINE baseline model described in the original paper by Mansimov and Zhang

(2022) without any additional techniques or modifications. This baseline model

served as a reference for comparing subsequent variations. Next, we conducted

a series of ablations on our proposed model, systematically removing or altering

specific components to observe their effects. The results of this ablation study,

shown in Table 5.1, are as follows:

• In the first row, we evaluated the full-setting model, which included both

the Structure-aware boosting and Grammar-based RINE phases. This con-

figuration achieved an impressive exact match (EM) score of 88.26, signifi-

cantly outperforming the baseline model according to the T-test (p < 0.05).

• Moving to the second row, we investigated the impact of each individual

component by selectively disabling them. When both structure-focused

MLM and relative tree agreement were disabled, while grammar was still

employed, the model achieved an EM score of 87.69, representing a signif-

icant decrease of 0.57 compared to the full-setting model. In addition, the

T-test revealed that this configuration was not significantly better than the

baseline model (p > 0.05).

• Continuing to the third row, when grammar was disabled while both structure-

focused MLM and Relative tree agreement were enabled, the EM score
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Table 5.1: The ablation study results on the validation set of the TOP dataset are

shown. The symbols � and � represent whether the corresponding component

was included or excluded, respectively. The symbol Δ indicates the difference in

scores between the full-setting model and other models.

ID Method

Settings

EM Δ
T-test

(Significantly
better at 95%?)

Structure-aware boosting

GrammarStructure fo-
cused MLM

Relative tree
agreement

(1)

StructSP

� � � 88.26 yes

(2) � � � 87.69 -0.57 no

(3) � � � 88.09 -0.17 yes

(4) � � � 87.93 -0.33 yes

(5) � � � 87.62 -0.64 no

(6) Baseline � � � 87.57 -0.69

slightly decreased to 88.09, indicating a drop in performance. However,

this configuration was significantly better than the baseline model.

• Furthermore, in the fourth and fifth rows, we examined the isolated influ-

ence of each component in the structure-aware boosting phase. Enabling

only structure-focused MLM resulted in an EM score of 87.93, a decrease

of 0.33 compared to the full-setting model. This configuration was signifi-

cantly better than the baseline model. Similarly, enabling only Relative tree

agreement led to an EM score of 87.62, a decrease of 0.64 compared to the

full-setting model. However, this setup was not significantly better than the

baseline model.

The baseline model, without any of the mentioned components enabled, achieved

an EM score of 87.57, serving as the reference point for comparison. Overall,

the results of the ablation study underscored the importance of structure-focused

MLM and relative tree agreement in the structure-aware boosting phase, as well

as the incorporation of grammar in the grammar-based RINE phase. These factors

contributed to enhanced performance on the TOP dataset.

5.2 Impact of Masking Probability α

In this section, we investigate the impact of the masking probability α on the

performance of our model. The masking probability α represents the likelihood
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of randomly masking logical tokens during the training process (section 3.2.2).

To evaluate its effect, we conducted a series of experiments where we varied the

value of α and measured the model’s performance using the exact match (EM)

metric.

Figure 5.1 illustrates the results of our experiments. The x-axis represents the

different values of α ranging from 0.2 to 0.6, while the y-axis represents the EM

scores achieved by our model and the baseline RINE model. As we analyze the

graph, we observe an interesting trend. Initially, as α increases from 0.2 to 0.3, the

EM score of our model shows a gradual improvement, surpassing the baseline per-

formance. However, beyond α = 0.3, further increasing the masking probability

leads to a decline in the EM score, indicating a decrease in the model’s perfor-

mance. This suggests the importance of finding the right balance point between

preserving the original logical tokens and introducing masked logical tokens dur-

ing pretraining.

In addition, comparing our model’s performance to the baseline RINE model,

we consistently achieve higher EM scores across all α values. This demonstrates

the effectiveness of our proposed approach in capturing the underlying semantics

of logical tokens. In conclusion, our experiments highlight the significance of the

masking probability α in training our model. The results indicate that a moder-

ate value of α, around 0.25, yields the best trade-off between preserving logical

tokens and enhancing the model’s performance, as measured by the EM metric.

0.2 0.3 0.4 0.5 0.6

87.6

87.8

88

α

EM

StructSP
RINE (Baseline)

Figure 5.1: Effect of logical-token masking probability (α) on system perfor-

mance.
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5.3 Case Study
To further evaluate the performance of our proposed StructSP model, we con-

ducted a case study comparing its outputs with those of the baseline RINE model.

We focused on the validation set of the TOP dataset and examined the outputs

for various input queries. Table 5.2 presents the comparison between the outputs

of the baseline model and our StructSP model (the outputs in a tree format are

shown in Figure 5.2). This table includes three examples, each consisting of the

input query, the ground-truth logical form, the output of the baseline model, and

the output of our StructSP model.

Table 5.2: Case study results of our StructSP model against the baseline model

(RINE) using the validation set from the TOP dataset.

In the first example, the input query is ”Where is the nearest Tom Thumb.”
The baseline model fails to generate the correct logical form, as it mistakenly in-

cludes the category of the event (SL:NAME EVENT) instead of correctly captur-

ing the point on the map (SL:POINT ON MAP). In contrast, our StructSP model

correctly identifies the point on the map, resulting in an accurate logical form.
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This difference can be explained by the fact that the grammar used for extraction

doesn’t include the constraint (IN:GET LOCATION=> SL:NAME EVENT). This

highlights the effectiveness of incorporating grammar into our model.

In the second example, the input query is ”What to do after a Pacers game.”.

In this query, the parsing models need to recognize the span ”following a Pacers

game” as a date-time slot (SL:DATE TIME) and accurately interpret the underly-

ing structure within that specific slot. Our model successfully produces the correct

output, while the baseline model fails to do so.

Lastly, the third example involves the input query ”traffic near me right now.”
This is a particularly challenging example where the models need to predict the

ground truth parsed tree with a depth of 5. Unfortunately, both the baseline and

our StructSP model produce incorrect outputs. This highlights an area for im-

provement in the model’s output when handling such intricate queries.

Figure 5.2: Case study outputs with tree representation.
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Chapter 6

Conclusions and Future Works

6.1 Conclusion
In this research study, we have introduced a novel method to improve the perfor-

mance of state-of-the-art models for hierarchical semantic parsing. We achieve

this by incorporating knowledge about the structure of utterances into the seman-

tic parsing process. Specifically, our proposed model learns contextual repre-

sentations from the hierarchical representation of the utterances by using objec-

tive functions tailored to the semantic parsing task. In addition, we introduced a

novel integration mechanism of grammar rules, which encode structural knowl-

edge, during training and inference to prevent unpromising label predictions. To

demonstrate the effectiveness of our method, we conducted experiments on the

TOP and TOPv2 datasets, and the results show that our model outperforms previ-

ous state-of-the-art approaches.

However, our work has a few limitations that need to be addressed:

• Non-English datasets: Currently, our method is only applicable to English

text. It means that our findings can be specific to the English language, and

the results may vary when applied to other languages. To further explore

this, we plan to apply our method to non-English datasets like MTOP (Li et

al., 2021).

• Grammar Constraint: The effectiveness of using grammar with low re-

source data can be uncertain, as observed in our experiments on the TOPv2

dataset (section 4.3). This uncertainty arises because the extracted grammar

from the training data may not be general enough to capture the constraints

of new data instances in validation or test sets. To ensure the effectiveness

of our method, it’s crucial to provide grammar rules that cover all possible

grammar variations, especially in low-resource settings.
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• Prediction Time: Our current approach uses a recursive insertion-based

strategy for prediction. This means that the output of the previous parsing

step serves as input for the subsequent parsing step, leading to a recursive

process until a terminal signal is reached. As a result, parsing a complex

tree with multiple intents/slots can be time-consuming due to the recursive

nature of the method. In future research, we will focus on improving the

prediction time by predicting all labels at the same level in the parsed tree

instead of predicting them one by one.

6.2 Future Works
There are several noteworthy directions for future research and development that

we aim to emphasize:

• Firstly, we intend to extend the adaptability of our framework to tackle

other tasks and other languages that involve nested representation datasets,

such as Named Entity Recognition (NER). By exploring the applicability of

our approach in diverse domains, we can assess its effectiveness in different

contexts and expand its utility beyond the specific task addressed in this

thesis.

• Secondly, another direction for future research is to develop techniques that

enable the model to adapt to dynamic grammar variations. Instead of rely-

ing solely on a fixed set of grammar rules during training, the model could

be designed to learn and update grammar rules dynamically from the data

itself. This adaptive grammar approach would allow the model to handle

novel or evolving language patterns more effectively and improve its per-

formance in scenarios where the grammar rules may change over time.

• Furthermore, given the characteristics of the recursive insertion-based strat-

egy employed in our framework, parsing complex trees with multiple in-

tents/slots (labels) may result in lengthy processing times. As part of future

work, we aim to explore strategies and techniques to optimize the parsing

prediction time. This optimization could involve refining the algorithmic

efficiency, exploring parallel processing, or employing advanced compu-

tational techniques to expedite the parsing process without compromising

accuracy.

• Lastly, we believe that conducting further analysis and investigation into

the model’s interpretability and explainability would be an essential direc-

tion for future research. Understanding how the model arrives at its predic-
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tions and providing human-interpretable explanations can enhance the trust

and acceptance of the model in real-world applications.

6.3 Publications and Awards

6.3.1 Publications related to the thesis
• Dinh-Truong Do, Minh-Phuong Nguyen, Minh-Le Nguyen. “StructSP:

Efficient Fine-tuning of Task-Oriented Dialog System by Using Structure-

aware Boosting and Grammar Constraints”. In Findings of the Association
for Computational Linguistics: ACL 2023, pages 10206–10220, Toronto,
Canada. Association for Computational Linguistics.

6.3.2 Other publications
• Dinh-Truong Do, Chau Nguyen, Vu Tran, Chau Nguyen, Ken Satoh, Yuji

Matsumoto, and Minh-Le Nguyen. “CovRelex-SE: Adding semantic in-

formation for relation search via sequence embedding”. In Proceedings of
the 17th Conference of the European Chapter of the Association for Com-
putational Linguistics EACL 2023: System Demonstrations, pages 35–42,
Dubrovnik, Croatia, May 2023.

• Dinh-Truong Do, Minh-Phuong Nguyen, Minh-Le Nguyen. “GRAM: Gram-

mar based Refined-Label Representing Mechanism in the Hierarchical Se-

mantic Parsing Task”. In International Conference on Applications of Natu-
ral Language to Information Systems, pp. 339-351. Cham: Springer Nature
Switzerland, 2023.

• Dinh-Truong Do, Ha Thanh Nguyen, Thang Ngoc Bui, and Hieu Dinh Vo.

“Vsec: Transformer-based model for Vietnamese spelling correction”. In
Proceedings of PRICAI 2021: 18th Pacific Rim International Conference
on Artificial Intelligence, Hanoi, Vietnam, November 8–12, 2021. Part II
18, pages 259–272.

• Dinh-Truong Do. “Kodiak@Alqac2021: Deep learning for Vietnamese

legal information processing”. In 2021 13th International Conference on
Knowledge and Systems Engineering (KSE), pages 1–5.

• Kien-Tuan Ngo, Dinh-Truong Do, Thu-Trang Nguyen, and Hieu Dinh Vo.

“Ranking warnings of static analysis tools using representation learning”. In
2021 28th Asia-Pacific Software Engineering Conference (APSEC), pages
327–337.
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• Binh Dang, Dinh-Truong Do, and Le-Minh Nguyen. “Tbart: Abstrac-

tive summarization based on the joining of topic modeling and Bart”. In
2022 14th International Conference on Knowledge and Systems Engineer-
ing (KSE), pages 1–6.

• Chau Nguyen, Minh-Quan Bui, Dinh-Truong Do, Nguyen-Khang Le, Dieu-

Hien Nguyen, Thu-Trang Nguyen, Ha-Thanh Nguyen, Vu Tran, Le-Minh

Nguyen, Ngoc-Cam Le, Thi-Thuy Le, Minh-Phuong Nguyen,Tran-Binh

Dang, Truong-Son Nguyen, Viet-Anh Phan, Thi-Hai-Yen Vuong, Minh-

Tien Nguyen, Tung Le, and Tien-Huy Nguyen, “ALQAC 2022: A Summary

of the Competition”. In 2022 14th International Conference on Knowledge
and Systems Engineering (KSE). 2022, pp. 1-5.

• Bui, Quan Minh, Chau Nguyen, Dinh-Truong Do, Nguyen-Khang Le, Dieu-

Hien Nguyen, Thi-Thu-Trang Nguyen, Minh-Phuong Nguyen, and Minh Le

Nguyen. “JNLP Team: Deep Learning Approaches for Tackling Long and

Ambiguous Legal Documents in COLIEE 2022”. In New Frontiers in Artifi-
cial Intelligence: JSAI-isAI 2022 Workshop, JURISIN 2022, and JSAI 2022
International Session, Kyoto, Japan, June 12–17, 2022, Revised Selected
Papers, pp. 68-83.

• Quan Minh Bui, Dinh-Truong Do, Nguyen-Khang Le, Dieu-Hien Nguyen,

Khac-Vu-Hiep Nguyen, Trang Pham Ngoc Anh, and Minh Le Nguyen.

“JNLP @COLIEE-2023: Data Augmentation and Large Language Model

for Legal Case Retrieval and Entailment”. In JURISIN 2023 post-proceedings
(LNAI) (Accepted)

6.3.3 Awards
• Ranked first place among all Task 4 (Legal Textual Entailment) competitors

of legal competition COLIEE 2023.

• Runner-up prize in Legal Text Retrieval task Zalo AI competition in 2021.

• Organizing committee of the legal Workshop of KSE 2022: Automated Le-

gal Question Answering Competition (ALQAC 2022)
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